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ABSTRACT

Without an effective prophylactic solution, infections from SARS-CoV-2 continue to rise
worldwide with devastating health and economic costs. SARS-CoV-2 gains entry into host cells
via an interaction between its Spike protein and the host cell receptor angiotensin converting
enzyme 2 (ACEZ2). Disruption of this interaction confers potent neutralization of viral entry,
providing an avenue for vaccine design and for therapeutic antibodies. Here, we develop single-
domain antibodies (nanobodies) that potently disrupt the interaction between the SARS-CoV-2
Spike and ACE2. By screening a yeast surface-displayed library of synthetic nanobody
sequences, we identified a panel of nanobodies that bind to multiple epitopes on Spike and
block ACE2 interaction via two distinct mechanisms. Cryogenic electron microscopy (cryo-EM)
revealed that one exceptionally stable nanobody, Nb6, binds Spike in a fully inactive
conformation with its receptor binding domains (RBDs) locked into their inaccessible down-
state, incapable of binding ACE2. Affinity maturation and structure-guided design of
multivalency yielded a trivalent nanobody, mNb6-tri, with femtomolar affinity for SARS-CoV-2
Spike and picomolar neutralization of SARS-CoV-2 infection. mNb6-tri retains stability and
function after aerosolization, lyophilization, and heat treatment. These properties may enable
aerosol-mediated delivery of this potent neutralizer directly to the airway epithelia, promising to
yield a widely deployable, patient-friendly prophylactic and/or early infection therapeutic agent to

stem the worst pandemic in a century.
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72  MAIN TEXT:
73  Over the last two decades, three zoonotic B-coronaviruses have entered the human population,
74  causing severe respiratory symptoms with high mortality (7-3). The ongoing COVID-19
75  pandemic is caused by SARS-CoV-2, the most readily transmissible of these three
76  coronaviruses (4-7). SARS-CoV-2 has wrecked the world’s economy and societies to an
77  unprecedented extent, to date (Aug. 14, 2020) causing 751,154
78  reported deaths around the globe (8). Although public health measures have slowed its spread
79  in many regions, infection hotspots keep reemerging. No successful vaccine or preventive
80 treatment has yet been manufactured for any coronavirus, and the time to develop an effective
81  and broadly available vaccine for SARS-CoV-2 remains uncertain. The development of novel
82  therapeutic and prophylactic approaches thus remains essential, both as temporary stopgaps
83 until an effective vaccine is generated and as permanent solutions for those segments of the
84  population for which vaccination proves ineffective or contraindicated.
85
86  Coronavirus virions are bounded by a membrane envelope that contains ~25 copies of the
87  homotrimeric transmembrane spike glycoprotein (Spike) responsible for virus entry into the host
88  cell (9). The surface-exposed portion of Spike is composed of two domains, S and S, (70). The
89  S;domain mediates the interaction between virus and its host cell receptor, the angiotensin
90 converting enzyme 2 (ACE2), while the S; domain catalyzes fusion of the viral and host cell
91 membranes (3, 171-13). During its biogenesis, the Spike protein is proteolytically cleaved
92 between the Sy and S; domains, which primes the virus for cellular entry (70). Contained within
93  Siis the receptor binding domain (RBD), which directly binds to ACE2. The RBD is attached to
94  the body of Spike by a flexible region and can exist in an inaccessible down-state or an
95  accessible up-state (74, 15). Binding to ACE2 requires the RBD in the up-state and enables
96 cleavage by host proteases TMPRSS2 or cathepsin, triggering a dramatic conformational
97 change in S; that enables viral entry (16). In SARS-CoV-2 virions, Spike oscillates between an
98 active, open conformation with at least one RBD in the up-state and an inactive, closed
99  conformation with all RBDs in the down-state (9, 11, 14, 15).
100
101 By screening a high-complexity yeast surface-displayed library of synthetic nanobodies, we
102  have uncovered a collection of nanobodies that block the Spike-ACE2 interaction. Biochemical
103  and structural studies revealed that two classes of these nanobodies act in distinct ways to
104  prevent ACE2 binding. Combining affinity maturation and structure-guided multimerization, we

105 optimized these agents and generated Spike binders that match or exceed the potency of most
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106  monoclonal antibodies disclosed to date. Our lead neutralizing molecule, mNb6-tri, blocks

107  SARS-CoV-2 entry in human cells at picomolar efficacy and withstands aerosolization,

108 lyophilization, and elevated temperatures. mNbG-tri provides a promising approach to deliver a
109 potent SARS-CoV-2 neutralizing molecule directly to the airways for prophylaxis or therapy.

110

111 RESULTS

112  Synthetic nanobodies that disrupt Spike-ACE2 interaction

113  To isolate nanobodies that neutralize SARS-CoV-2, we screened a yeast surface-displayed

114 library of >2x10° synthetic nanobody sequences. Our strategy was to screen for binders to the
115  full Spike protein ectodomain, in order to capture not only those nanobodies that would compete
116 by binding to the ACE2-binding site on the RBD directly but also those that might bind

117  elsewhere on Spike and block ACE2 interaction through indirect mechanisms. We used a

118  mutant form of SARS-CoV-2 Spike (Spike*,) as the antigen (15). Spike* lacks one of the two
119  activating proteolytic cleavage sites between the S and S; domains and introduces two

120  mutations to stabilize the pre-fusion conformation. Spike* expressed in mammalian cells binds
121 ACE2 with a Kp = 44 nM (Supplementary Fig. 1), consistent with previous reports (77). Next, we
122  labeled Spike* with biotin or with fluorescent dyes and selected nanobody-displaying yeast over
123 multiple rounds, first by magnetic bead binding and then by fluorescence-activated cell sorting
124  (Fig. 1A).

125

126  Three rounds of selection yielded 21 unique nanobodies that bound Spike* and showed

127  decreased Spike* binding in the presence of ACE2. Closer inspection of their binding properties
128 revealed that these nanobodies fall into two distinct classes. One group (Class I) binds the RBD
129  and competes with ACE2 (Fig. 1B). A prototypical example of this class is nanobody Nb6, which
130  binds to Spike* and to RBD alone with a Kp of 210 nM and 41 nM, respectively (Fig. 1C; Table
131 1). Another group (Class Il), exemplified by nanobody Nb3, binds to Spike* (Ko = 61 nM), but
132  displays no binding to RBD alone (Fig. 1C, Table 1). In the presence of excess ACE2, binding of
133  Nb6 and other Class | nanobodies is blocked entirely, whereas binding of Nb3 and other Class Il
134  nanobodies is decreased only moderately (Fig. 1B). These results suggest that Class |

135 nanobodies target the RBD to block ACE2 binding, whereas Class Il nanobodies target other
136  epitopes and decrease ACE2 interaction with Spike allosterically or through steric interference.
137  Indeed, surface plasmon resonance (SPR) experiments demonstrate that Class | and Class |l
138  nanobodies can bind Spike* simultaneously (Fig. 1D).

139
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140  Analysis of the kinetic rate constants for Class | nanobodies revealed a consistently greater

141  association rate constant (ks) for nanobody binding to the isolated RBD than to full-length Spike*
142  (Table 1), which suggests that RBD accessibility influences the Kp. We next tested the efficacy
143  of our nanobodies, both Class | and Class Il, to inhibit binding of fluorescently labeled Spike* to
144  ACE2-expressing HEK293 cells (Table 1, Fig. 1E). Class | nanobodies emerged with highly

145  variable activity in this assay with Nb6 and Nb11 as two of the most potent clones with ICso

146  values of 370 and 540 nM, respectively (Table 1). For unexplained reasons, Class |l nanobodies
147  showed little to no activity in this assay (Table 1, Fig. 1E).

148

149  Going forward, we prioritized two Class | nanobodies, Nb6 and Nb11, that combine potent

150  Spike* binding with relatively small differences in ks between binding to Spike* or RBD. We

151 reasoned that the epitopes recognized by Nb6 and Nb11 would be more readily accessible in
152  the Spike protein on intact virions. For Class Il nanobodies we prioritized Nb3 because of its
153  optimal stability and yield during purification.

154

155 Nb6 and Nb11 target the RBD and directly compete with ACE2

156  To define the binding sites of Nb6 and Nb11, we determined their cryogenic electron

157  microscopy (cryo-EM) structures bound to Spike* (Fig. 2A-B, Supplementary Fig. 2-4,

158  Supplementary Table 1). Both nanobodies recognize RBD epitopes that overlap the ACE2

159  binding site (Fig. 2E). For Nb6 and Nb11, we resolved nanobody binding to both the open and
160  closed conformations of Spike*. We obtained a 3.0 A map of Nb6 bound to closed Spike*, which
161  enabled modeling of the Nb6-Spike* complex (Fig. 2A), including the complementarity

162  determining regions (CDRs). We also obtained lower resolution maps for Nb6 bound to open
163  Spike* (3.8 A), Nb11 bound to open Spike* (4.2 A), and Nb11 bound to closed Spike* (3.7 A).
164  For these lower resolution maps, we could define the nanobody’s binding orientation but not
165  accurately model the CDRs.

166

167  Nb6 bound to closed Spike* straddles the interface between two adjacent RBDs. The majority of
168  the contacting surfaces are contributed by CDR1 and CDR2 of Nb6 (Fig. 2C). CDR3 contacts
169 the adjacent RBD that is counterclockwise positioned when viewed from the top of Spike* (Fig.
170  2C). The binding of one Nb6 therefore stabilizes two adjacent RBDs in the down-state. We

171 surmise that this initial binding event pre-organizes the binding site for a second and third Nb6
172  molecule to stabilize the closed Spike* conformation. Indeed, binding of two Nb6 molecules

173  would lock all three RBDs into the down-state, thus highly favoring binding of a third Nb6
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174  because binding would not entail any further entropic cost. By contrast, Nb11 bound to down-
175  state RBDs only contacts a single RBD (Fig. 2D).

176

177  Nb3 interacts with the Spike S1 domain external to the RBD

178  Our attempts to determine the binding site of Nb3 by cryo-EM proved unsuccessful. We

179  therefore turned to radiolytic hydroxyl radical footprinting to determine potential binding sites for
180 Nb3. Spike*, either apo or bound to Nb3, was exposed to 5-50 milliseconds of synchrotron X-ray
181 radiation to label solvent-exposed amino acids with hydroxyl radicals. Radical-labeled amino
182  acids were subsequently identified and quantified by mass spectrometry of trypsin/Lys-C or Glu-
183  C protease digested Spike*(78). Two neighboring surface residues on the S1 domain of Spike
184  (M177 and H207) emerged as highly protected sites in the presence of Nb3 (Supplementary
185  Fig. 5). The degree of protection is consistent with prior observations of antibody-antigen

186 interactions by hydroxyl radical footprinting (79). Both M177 and H207 are greater than 40 A
187  distant from the ACE2 binding site on the RBD, suggesting that Nb3 may inhibit Spike-ACE2
188 interactions through allosteric means.

189

190 Rationally engineered multivalency increases potency

191  The structure of Nb6 bound to closed Spike* enabled us to engineer bivalent and trivalent

192  nanobodies predicted to lock all RBDs in the down-state. To this end, we inserted flexible Gly-
193  Ser linkers of either 15 or 20 amino acids to span the 52 A distance between adjacent Nb6

194  monomers bound to down-state RBDs in closed Spike* (Supplementary Fig. 6). Both linker

195 lengths are too short to span the distance (72 A) between Nb6 bound to a down-state RBD and
196  an up-state RBD that would co-exist in an open Spike. Moreover, binding of three RBDs in the
197  previously reported conformation of Nb6-bound open Spike* would be physically impossible
198  even with longer linker length because of steric clashes (Supplementary Fig. 6). By contrast, the
199  minimum distance between adjacent Nb11 monomers bound to either open or closed Spike* is
200 68 A (Supplementary Fig. 6). We therefore predicted that multivalent binding by Nb6 constructs
201  would display significantly slowed dissociation rates due to the enhanced avidity afforded by
202  Spike’s trimeric architecture.

203

204  We assessed multivalent Nb6 binding to Spike* by SPR. Both bivalent Nb6 with a 15 amino acid
205 linker (Nb6-bi) and trivalent Nb6 with two 20 amino acid linkers (Nb6-tri) dissociate from Spike*
206 in a biphasic manner. The dissociation phase can be fitted to two components: a fast phase with
207  kinetic rate constants kqs of 2.7x102 s for Nb6-bi and 2.9x102 s™' for Nb6-tri, which are of the
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208 same magnitude as that observed for monovalent Nb6 (ks = 5.6x10? s') and a slow phase that
209 is dependent on avidity (k42 = 3.1x10™ for Nb6-bi and kg2 < 1.0x10° s for Nb6-tri, respectively)
210 (Fig. 3A). The relatively similar k4 for the fast phase suggests that a fraction of the observed
211 binding for the multivalent constructs is nanobody binding to a single Spike* RBD. By contrast,
212  the slow dissociation phase of Nb6-bi and Nb6-tri indicates engagement of two or three RBDs.
213  We observed no dissociation for the slow phase of Nb6-tri over 10 minutes, indicating an upper
214 boundary for k4 of 1x10° s™ and subpicomolar affinity. This measurement remains an upper-
215  bound estimate rather than an accurate measurement because the technique is limited by the
216 intrinsic dissociation rate of Spike* from the chip imposed by the chemistry used to immobilize
217  Spike*.

218

219  We reasoned that the biphasic dissociation behavior could be explained by a slow

220 interconversion between up- and down-state RBDs, with conversion to the more stable down-
221  state required for full trivalent binding. According to this view, a single domain of Nb6-tri

222  engaged with an up-state RBD would dissociate rapidly. The system would then re-equilibrate
223 as the RBD flips into the down-state, eventually allowing Nb6-tri to trap all RBDs in closed

224  Spike*. To test this notion directly, we varied the time allowed for Nb6-tri binding to Spike*.

225 Indeed, we observed an exponential decrease in the percent fast-phase with a t12 of 65 s (Fig.
226  3B), which, we surmise, reflects the timescale of conversion between the RBD up- and down-
227  states in Spike*. Taken together, dimerization and trimerization of Nb6 afforded 750-fold and
228  >200,000-fold gains in Kp, respectively.

229

230 Class | and Il nanobodies prevent SARS-CoV-2 infection

231  We next tested the neutralization activity of trivalent versions of our top Class | (Nb6 and Nb11)
232  and Class Il (Nb3) nanobodies against SARS-CoV-2 pseudotyped lentivirus. In this assay,

233 SARS-CoV-2 Spike is expressed as a surface protein on a lentiviral particle that contains a
234  ZsGreen reporter gene, which is integrated and expressed upon successful viral entry into cells
235  harboring the ACE2 receptor (20). Nb6 and Nb11 inhibited pseudovirus infection with 1Cso

236  values of 2.0 uM and 2.4 uM, respectively, and Nb3 inhibited pseudovirus infection with an 1Cso
237  of 3.9 uM (Fig. 3C, Table 1). Nb6-tri shows a 2000-fold enhancement of inhibitory activity, with
238  anICs of 1.2 nM, whereas trimerization of Nb11 and Nb3 resulted in more modest gains of 40-
239 and 10-fold (51 nM and 400 nM), respectively (Fig. 3C).

240
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241  We next confirmed these neutralization activities with a viral plaque assay using live SARS-
242  CoV-2 virus infection of VeroE6 cells. Consistent with its activity against pseudotyped lentivirus,
243  Nb6-tri proved exceptionally potent, neutralizing SARS-CoV-2 with an average ICso of 160 pM
244  (Fig. 3D). Nb3-tri neutralized SARS-CoV-2 with an average ICso of 140 nM (Fig. 3D).

245

246  Affinity maturation yields a femtomolar Ko Spike inhibitor

247  We further optimized the potency of Nb6 by selecting high-affinity variants. To this end, we
248  prepared a new library, starting with the Nb6 coding sequence, in which we varied each amino
249  acid position of all three CDRs by saturation mutagenesis (Fig. 4A). After two rounds of

250 magnetic bead-based selection, we isolated a population of high-affinity clones. Sequencing
251 revealed two highly penetrant mutations: 127Y in CDR1 and P105Y in CDR3. We incorporated
252  these two mutations into Nb6 to generate matured Nb6 (mNb6), which binds with 500-fold

253 increased affinity to Spike* as measured by SPR (Fig. 4B). As a monomer, mNb6 inhibits both
254  pseudovirus and live SARS-CoV-2 infection with low nanomolar potency, a ~200-fold

255  improvement compared to Nb6 (Fig. 4I-J, Table 1).

256

257 A 2.9 A cryo-EM structure of mNb6 bound to Spike* shows that, like the parent nanobody Nb6,
258 mNb6 binds to closed Spike (Fig. 4C, Supplementary Fig. 7). The higher resolution map allowed
259  us to build a model with high confidence and determine the effects of the 127Y and P105Y

260  substitutions. mNb6 induces a slight rearrangement of the down-state RBDs as compared to
261 both previously determined structures of apo-Spike* and Spike* bound to Nb6, inducing a 9°
262  rotation of the RBD away from the central three-fold symmetry axis (Fig. 4H) (74, 15). This
263  deviation likely arises from a different interaction between CDR3 and Spike*, which nudges the
264 RBDs into a new resting position. While the 127Y substitution optimizes local contacts between
265 CDRH1 inits original binding site on the RBD, the P105Y substitution leads to a marked

266 rearrangement of CDR3 in mNb6 (Fig. 4F-G). This conformational change yields a different set
267  of contacts between mNb6 CDR3 and the adjacent RBD (Fig. 4D). Remarkably, an X-ray crystal
268  structure of MNb6 alone revealed dramatic conformational differences in CDR1 and CDR3
269 between free and Spike*-bound mNb6, suggestive of significant conformational heterogeneity
270  for the unbound nanobodies and induced-fit rearrangements upon binding to Spike* (Fig. 4E).
271

272  The binding orientation of mMNb6 is similar to that of Nb6, supporting the notion that our

273  multivalent design would likewise enhance binding affinity. Unlike Nb6-tri, trivalent mNb6

274  (mNb6-tri) bound to Spike with no observable fast-phase dissociation and no measurable
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275  dissociation over ten minutes, yielding an upper bound for the dissociation rate constant kq of
276  1.0x10°s™ (t12 > 8 days) and a Kp of <1 pM (Fig. 4B). As above, more precise measurements
277  of the dissociation rate are precluded by the surface chemistry used to immobilize Spike*.

278

279  mNb6-tri displays further gains in potency in both pseudovirus and live SARS-CoV-2 infection
280 assays with ICso values of 120 pM (5.0 ng/mL) and 54 pM (2.3 ng/mL), respectively (Fig. 4H-,
281  Table 1). Given the sub-picomolar affinity observed by SPR, it is likely that these viral

282  neutralization potencies reflect the lower limit of the assays. mNb6-tri is therefore an

283  exceptionally potent SARS-CoV-2 neutralizing antibody, among the most potent molecules
284  disclosed to date.

285

286  Nb6, Nb6-tri, mNb6, and mNb6-tri are robust proteins

287  One of the most attractive properties that distinguishes nanobodies from traditional monoclonal
288  antibodies is their extreme stability (27). We therefore tested Nb6, Nb6-tri, mNb6, and mNb6-tri
289 for stability regarding temperature, lyophilization, and aerosolization. Temperature denaturation
290 experiments using circular dichroism measurements to assess protein unfolding revealed

291 melting temperatures of 66.9, 62.0, 67.6, and 61.4 °C for Nb6, Nb6-tri, mNb6 and mNb6-tri,
292  respectively (Fig 5A). Aerosolization and prolonged heating of Nb6, mNb6, and mNb6-tri for 1
293  hour at 50°C induced no loss of activity (Fig 5B). Moreover, mNb6 and mNb6-tri were stable to
294  lyophilization and to aerosolization using a mesh nebulizer, showing no aggregation by size
295  exclusion chromatography and preserved high affinity binding to Spike* (Fig. 5C-D).

296

297 DISCUSSION

298 There is a pressing need for prophylactics and therapeutics against SARS-CoV-2 infection.
299  Most recent strategies to prevent SARS-CoV-2 entry into the host cell aim at blocking the

300 ACE2-RBD interaction. High-affinity monoclonal antibodies, many identified from convalescent
301 patients, are leading the way as potential therapeutics (22-29). While highly effective in vitro,
302 these agents are expensive to produce by mammalian cell expression and need to be

303 intravenously administered by healthcare professionals (30). Moreover, large doses are likely to
304  be required for prophylactic viral neutralization, as only a small fraction of systemically

305 circulating antibodies cross the epithelial cell layers that line the airways (37). By contrast, single
306 domain antibodies (nanobodies) provide significant advantages in terms of production and

307  deliverability. They can be inexpensively produced at scale in bacteria (E. coli) or yeast (P.
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308 pastoris). Furthermore, their inherent stability enables aerosolized delivery directly to the nasal
309 and lung epithelia by self-administered inhalation (32).

310

311 Monomeric mNb6 is among the most potent single domain antibodies neutralizing SARS-CoV-2
312  discovered to date. Multimerization of single domain antibodies has been shown to improve
313  target affinity by avidity (32, 33). In the case of Nb6 and mNb6, however, our design strategy
314  enabled a multimeric construct that simultaneously engages all three RBDs, yielding profound
315  gains in potency. Furthermore, because RBDs must be in the up-state to engage with ACE2,
316  conformational control of RBD accessibility can serve as an added neutralization mechanism.
317  Indeed, our Nb6-tri and mNb6-tri molecules were designed with this functionality in mind. Thus,
318  when mNb6-tri engages with Spike, it prevents ACE2 binding by both directly occluding the

319  binding site and by locking the RBDs into an inactive conformation. Although a multitude of

320 other monoclonal and single-domain antibodies against SARS-CoV-2 Spike have been

321  discovered to date, there are few if any molecules as potent and stable as mNb6-tri (33-43).
322  Resistance to aerosolization, in particular, offers unprecedented opportunity for patient-friendly
323  nasal and pulmonary administration.

324

325  Our discovery of Class Il neutralizing nanobodies demonstrates the presence of previously

326  unexplored mechanisms of blocking Spike binding to ACE2. For one Class Il nanobody, Nb3,
327  we identified a likely binding site in the Spike S; domain external to the RBDs. Previously

328  discovered neutralizing antibodies from convalescent patients bind an epitope in a similar region
329  of Spike (24, 26, 27). Binding of Nb3 to this epitope may allosterically stabilize RBDs in the

330 down-state, thereby decreasing ACE2 binding. Pairing of Class | and Class Il nanobodies in a
331 prophylactic or therapeutic cocktail could thus be a highly advantageous strategy for both potent
332  neutralization and prevention of escape variants. The combined stability, potency, and diverse
333  epitope engagement of our anti-Spike nanobodies therefore provide a unique potential

334  prophylactic and therapeutic strategy to limit the continued toll of the COVID-19 pandemic.

335
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585

586  Figure 1. Discovery of two distinct classes of anti-Spike nanobodies. A, Selection strategy
587  for identification of anti-Spike nanobodies that disrupt Spike-ACEZ2 interactions using magnetic
588 bead selections (MACS) or fluorescence activated cell sorting (FACS). B, Flow cytometry of
589 yeast displaying Nb6 (a Class | nanobody) or Nb3 (a Class Il nanobody). Nb6 binds Spike*-
590 Alexa 647 and receptor binding domain (RBD-Alexa 647). Nb6 binding to Spike* is completely
591  disrupted by an excess (1.4 uM) of ACE2-Fc. Nb3 binds Spike*, but not the RBD. Nb3 binding
592  to Spike* is partially decreased by ACE2-Fc. C, SPR of Nb6 and Nb3 binding to either Spike* or
593 RBD. Red traces are raw data and global kinetic fits are shown in black. Nb3 shows no binding
594 to RBD. D, SPR experiments with immobilized Spike* show that Class | and Class Il nanobodies
595 can bind Spike* simultaneously. By contrast, two Class | nanobodies or Class Il nanobodies do
596  not bind simultaneously. E, Nanobody inhibition of 1 nM Spike*-Alexa 647 binding to ACE2

597  expressing HEK293T cells. n = 3 (ACE2, Nb3) or 5 (Nb6, Nb11) biological replicates. All error
598 bars represent s.e.m.
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Figure 2
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601 Figure 2. Cryo-EM structures of Nb6 and Nb11 bound to Spike. A, Cryo-EM maps of Spike*-
602 Nb6 complex in either closed (left) or open (right) Spike* conformation. B, Cryo-EM maps of
603  Spike*-Nb11 complex in either closed (left) or open (right) Spike* conformation. The top views
604  show receptor binding domain (RBD) up- or down-states. C, Nb6 straddles the interface of two
605 down-state RBDs, with CDR3 reaching over to an adjacent RBD. D, Nb11 binds a single RBD in
606 the down-state (displayed) or similarly in the up-state. No cross-RBD contacts are made by

607 Nb11 in either RBD up- or down-state. E, Comparison of RBD epitopes engaged by ACE2

608  (purple), Nb6 (red), or Nb11 (green). Both Nb11 and Nb6 directly compete with ACE2 binding.
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611 Figure 3. Multivalency improves nanobody affinity and inhibitory efficacy. A, SPR of Nb6
612  and multivalent variants. Red traces show raw data and black lines show global kinetic fit for
613  Nb6 and independent fits for association and dissociation phases for Nb6-bi and Nb6-tri. B,

614  Dissociation phase SPR traces for Nb6-tri after variable association time ranging from 4 to 520
615 s. Curves were normalized to maximal signal at the beginning of the dissociation phase. Percent
616 fast phase is plotted as a function of association time (right) with a single exponential fit. n = 3
617  independent biological replicates. C, Inhibition of pseudotyped lentivirus infection of ACE2

618  expressing HEK293T cells. n = 3 biological replicates for all but Nb11-tri (n = 2) D, Inhibition of
619 live SARS-CoV-2 virus. Representative biological replicate with n = 3 (right panel) or 4 (left

620 panel) technical replicates per concentration. n = 3 biological replicates for all but Nb3 and Nb3-
621  tri (n = 2). All error bars represent s.e.m.

622
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Figure 4
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624  Figure 4. Affinity maturation of Nb6 yields a picomolar SARS-CoV-2 neutralizing
625 molecule. A, A saturation mutagenesis library of Nb6 was subjected to two rounds of selection
626 to identify consensus mutations 127Y and P105Y. B, SPR of mNb6 and mNb6-tri binding to
627  immobilized Spike*. Red traces show raw data and black lines show global kinetic fit. No
628  dissociation was observed for mNb6-tri over 10 minutes. C, Cryo-EM structure of Spike*-mNb6
629 complex. D, Comparison of receptor binding domain (RBD) engagement by Nb6 and mNb6.
630 One RBD was used to align both structures (RBD align), demonstrating changes in Nb6 and
631 mNDb6 position and the adjacent RBD. E, Comparison of mNb6 complementarity determining
632  regions in either the cryo-EM structure of the Spike*-mNb6 complex or an X-ray crystal structure
633  of mNb6 alone. F, CDR1 of Nb6 and mNb6 binding to the RBD. As compared to 127 in Nb6, Y27
634  of mNb6 hydrogen bonds to Y453 and optimizes pi-pi and pi-cation interactions with the RBD.
635 G, CDRS3 of Nb6 and mNb6 binding to the RBD demonstrating a large conformational
636 rearrangement of the entire loop in mNb6. H, Comparison of closed Spike* bound to mNb6 and
637  NDb6. Rotational axis for RBD movement is highlighted. I, Inhibition of pseudotyped lentivirus
638

infection of ACE2 expressing HEK293T cells by mNb6 and mNb6-tri. n = 3 biological replicates
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639 J, mNb6 and mNb6-tri inhibit SARS-CoV-2 infection of VeroE6 cells in a plaque assay.
640 Representative biological replicate with n = 4 technical replicates per concentration. n = 3
641 biological replicates for all samples. All error bars represent s.e.m.

642
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Figure 5
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Figure 5. Nb6 and its derivates are robust proteins. A, Thermal denaturation of nanobodies

assessed by circular dichroism measurement of molar ellipticity at 204 nm. Apparent melting

temperatures (T») for each nanobody are indicated. B, Nanobody inhibition of 1 nM Spike*-
Alexa 647 binding to ACE2 expressing HEK293T cells after incubation at either 25 °C or 50 °C

for 1 hour or after aerosolization. C, Size exclusion chromatography of nanobodies after

lyophilization or aerosolization. D, Summary table of SPR kinetics data and affinities for

aerosolized or lyophilized mNb6 and mNb6-tri.
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652 Table 1. Anti-Spike nanobody affinity and neutralization potency
Spike* Binding RBD Binding Spike* SARS-CoV-2 Live
Competition | Pseudovirus | SARS-CoV-2
Nanobod Class
v ka kq Ko ka ka Ko ICso (s.e.m) | ICso(s.em.) | ICso(s.e.m.)
(M's™) | (s) (M) (M7s?) | (s™) (™M) (M) (m)° (M)
6
Nb2 9.0x10° | 5.3x10" | 5.9x107 | 1.0x10° | 9.9x10"! | 9.7x107 (515-%186) NP NP
-6 -6
Nb3 | 1.8x10° | 1.1x107 | 6.1x10° NB NC EHE SHEAY
(7.9x107) (3.2x107)
5 2 7 6 2 8 3.7X10'7 2.0x1 0'6 3.3X10'6
Nb6 2.7x10° | 5.6x102 | 2.1x107 | 2.1x10° |8.7x102| 4.1x10 (4.9x10%) (3.5x107) 7 2107)
5 1 6 5 -1 7 4.8x10°®
Nb8 1.4x10° | 8.1x10"" | 5.8x10° | 6.6x10° | 3.3x10"" | 5.1x10 . NP NP
(4.9x107)
6 1 7 6 1 8 5.4x107 2.4x10°
Nb11 1.2x10° | 1.6x10°" | 1.4x107 | 3.2x10° | 2.4x10""| 7.6x10 (1.2x107) (5.4x107) NP
) “ PO I U I 2.5x107 1.2x10°
Nb12 1.2x10° | 2.0x10* | 1.6x10° | Biphasic |Biphasic| Biphasic (5.5%109) (9.0x107) NP
5 -1 6 5 -1 7 2.2x10°° 6.7x10°°
Nb15 1.7x105 | 2.3x10°" | 1.3x10 | 6.0x10° | 2.2x10"" | 3.6x10 (2.5x107) (3.6x10%) NP
5 1 6 9.5x1077
Nb16 1.1x105 | 1.3x10"" | 1.3x10 NP (1.1x107) NP NP
5 -1 7 7.6x10°
Nb17 I 7.3x10° | 2.0x10" | 2.7x10 NB NC (1.0x10%) NP
5 15 -8 5.2x10°°
Nb18 Il 1.4x105 | 6.4x10° | 4.5x10 NB (1.5x10%) NP NP
4 1 6 5 2 7 4.1x10® 2.4x10°%
Nb19 2.4x10* | 1.1x10™ | 4.5x10 | 1.0x10° |8.9x102| 8.8x10 (4.9x107) 7 7109 NP
-7
Nb24 9.3x10° | 2.7x10" | 2.9x107 | 2.4x10° | 3.5x10" | 1.5x107 (Z-gﬂg_,) NP NP
-7 -7
ACE2 N/A | 2.7x10° | 1.2x102 | 4.4x10% | NP NP NP 1.7x10 6.2x10°7 NP
(6.6x10®) (1.7x107)
6 4 10 6 4 10 1.3x10° 6.3x10° 1.2x10°8
mNb6 1.0x10° | 4.5x104 | 4.5x10°"° | 1.1x10° | 6.4x10*| 5.6x10 4.1x107) (1.6x10%) Py
. 3.6x107 1.8x107
Nb3-bi I NP NP NP NP NP NP NP
(1.5x107) (1.2x108)
i . . . . . . 4.1x10°® 4.0x107 1.4x107
Nb3-tri ] Biphasic | Biphasic | Biphasic NP NP NP (1.6x109) (1.6x107) (4.9x10%)
Nb6-bi Biphasic |Biphasic | Biphasic | NP NP NP NP 6.3x10° NP
(1.5x10%)
i . . . . . . 1.5x10°° 1.2x10° 1.6x1071°
Nb6-tri Biphasic | Biphasic | Biphasic NP NP NP (5.2x1071%) (2.5%107%) (2.6x10°)
. VTN P 5.1x108
Nb11-tri Biphasic | Biphasic | Biphasic NP NP NP NP 8 NP
(1.6x10%)
5.3x10° 4.0x10® 2.6x108
ACE2-Fc N/A NP NP NP NP NP NP (2.5x10%) (8.6x10%) g
tri 6 6 12 4.0x107° 1.2x1070 5.4x10™"
mNb6-tri 1.4x10° |<1.0x10%|<1.0x10 NP NP NP (1.4x107) (2.8x10™ 1 k10
653
654  “Average values from n = 5 biological replicates for Nb6, Nb11, Nb15, Nb19 are presented, all
655  others were tested with n = 3 biological replicates.
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656  °Average values from n = 2 biological replicates for Nb12, Nb17, and Nb11-tri are presented, all
657  others were tested with n = 3 biological replicates.

658  “Average values from n = 2 biological replicates for Nb3, Nb3-bi, and Nb3-tri. n = 3 biological
659 replicates for all others.

660 NB —no binding

661  NC — no competition

662 NP — not performed
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