

1 **partR2: Partitioning R² in generalized linear mixed models**

2

3 Martin A. Stoffel^{1,2}, Shinichi Nakagawa³, Holger Schielzeth¹

4 ¹ Institute of Ecology and Evolution, Friedrich Schiller University Jena, Germany

5 ² Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK

6 ³ Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences,

7 University of New South Wales, Sydney, Australia

8 ORCID: MAS 0000-0003-4030-3543, SN 0000-0002-7765-5182, HS 0000-0002-9124-2261

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 Corresponding authors

28 Martin A. Stoffel, martin.stoffel@ed.ac.uk

29 Holger Schielzeth, holger.schielzeth@uni-jena.de

30

31 **Abstract**

32 The coefficient of determination R^2 quantifies the amount of variance explained by regression
33 coefficients in a linear model. It can be seen as the fixed-effects complement to the repeatability R
34 (intra-class correlation) for the variance explained by random effects and thus as a tool for variance
35 decomposition. The R^2 of a model can be further partitioned into the variance explained by a
36 particular predictor or a combination of predictors using semi-partial (part) R^2 and structure
37 coefficients, but this is rarely done due to a lack of software implementing these statistics. Here, we
38 introduce `partR2`, an R package that quantifies part R^2 for fixed effect predictors based on
39 (generalized) linear mixed-effect model fits. The package iteratively removes predictors of interest
40 from the model and monitors the change in the variance of the linear predictor. The difference to
41 the full model gives a measure of the amount of variance explained uniquely by a particular predictor
42 or a set of predictors. `partR2` also estimates structure coefficients as the correlation between a
43 predictor and fitted values, which provide an estimate of the total contribution of a fixed effect to the
44 overall prediction, independent of other predictors. Structure coefficients can be converted to the
45 total variance explained by a predictor, here called 'inclusive' R^2 , as the square of the structure
46 coefficients times total R^2 . Furthermore, the package reports beta weights (standardized regression
47 coefficients). Finally, `partR2` implements parametric bootstrapping to quantify confidence intervals
48 for each estimate. We illustrate the use of `partR2` with real example datasets for Gaussian and
49 binomial GLMMs and discuss interactions, which pose a specific challenge for partitioning the
50 explained variance among predictors.

51 **Introduction**

52 Coefficients of determination R^2 are of interest in the study of ecology and evolution, because they
53 quantify the amount of variation explained by a linear model (Edwards et al., 2008). By doing so, they
54 go beyond significance testing in putting effects in perspective of the phenotypic variance. R^2 is
55 expressed as a proportion of the total variance in the response, which represents a biologically
56 relevant quantity if the total variation is representative for the total population (de Villemereuil et al.,
57 2018). The total coefficient of determination in a generalised linear mixed model (GLMM) quantifies
58 the variance explained by all fixed effects together (marginal R^2 *sensu* Nakagawa & Schielzeth, 2013,
59 also known as the total correlation coefficient, Watanabe (1960)).

60

61 However, it is often of interest to attribute explained variation to individual predictors. Semi-partial
62 coefficients of determination, also known as part R^2 , decompose the variance of R^2 into components
63 uniquely explained by individual predictors (Jaeger et al., 2017; Jaeger, Edwards & Gurka, 2019) or
64 sets of predictors (Figure 1). The set of all predictors in the model yields the total proportion of
65 variance explained by the fixed part of the model (total R^2). With correlations among predictors, it
66 often happens that predictors in univariate regressions explain a large share of the variance, but do
67 not show large part R^2 if other correlated predictors are included in the model. Note that part R^2
68 estimates the proportion of the variance in the response explained by a predictor *while* accounting
69 for covariance between this predictor and the other predictors in the model, whereas the (arguably
70 more familiar) partial R^2 estimates the proportion of the variance that is explained by a predictor of
71 interest *after* accounting for the other predictors from the response as well as the predictor of
72 interest. The difference is subtle, but important (see more below). Therefore, part R^2 represents
73 'variance accounted for' in relation to the total variance, but partial R^2 does not. Consequently, part
74 R^2 will be conceptually easier to compare with (total) R^2 .

75

76 Structure coefficients provide a valuable addition to part R^2 in the decomposition of the phenotypic
77 variance (Nimon et al., 2008; Yeatts et al., 2017). Structure coefficients quantify the correlation
78 between individual predictors and the linear predictor. Predictors that correlate well with a
79 response, but are fitted with collinear predictors may show large structure coefficients as they are
80 correlated to the predicted response, but low part R^2 as other predictors explain part of the same
81 variance. Structure coefficients range from -1 to 1 with their absolute value expressing the correlation
82 relative to a perfect correlation if a single predictor explains as much as the total fixed part of the
83 model.

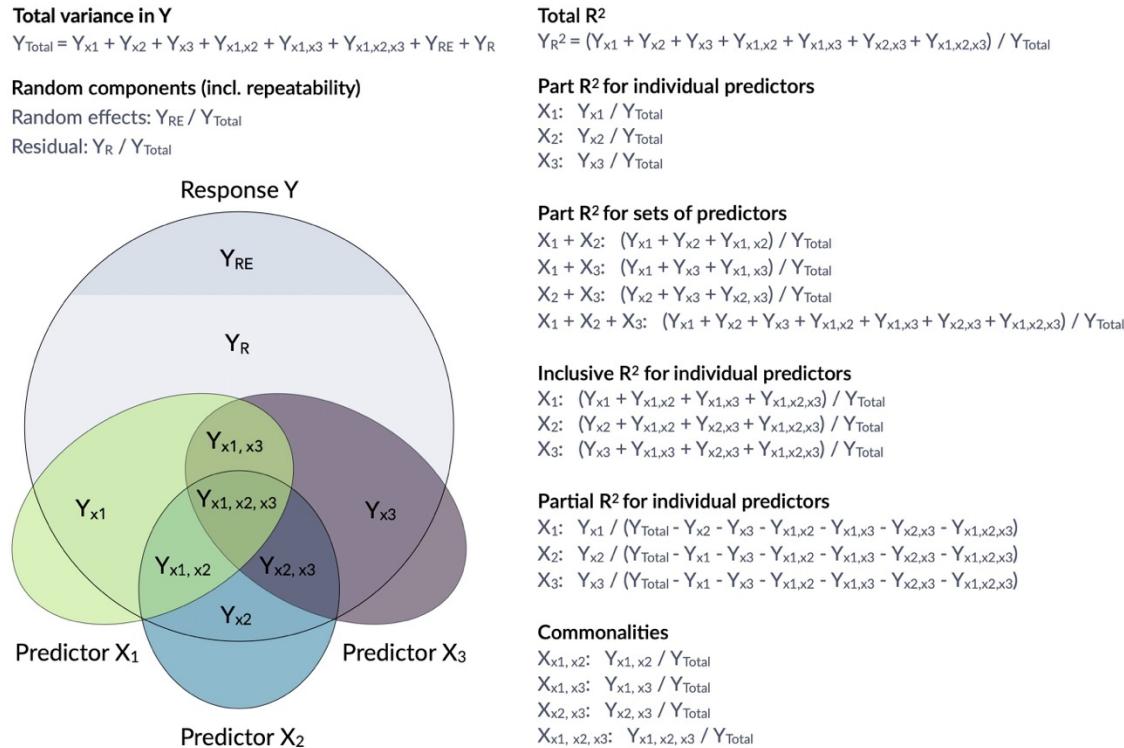
84

85 Structure coefficients are correlations and since the square of a correlation yields the variance
 86 explained, we can use structure coefficients to estimate the total variance explained by a predictor
 87 (Nimon et al., 2008). We call this the inclusive R^2 of a predictor and calculate it as the squared
 88 structure coefficient, i.e. its contribution to the linear predictor independent of other predictors
 89 (Nimon et al., 2008) times the proportion of variance explained by the linear predictor (which is the
 90 'total' marginal R^2 of the model) (see also Nathans, Oswald & Nimon, 2012). As far as we are aware,
 91 inclusive R^2 has not been implemented before, but it provides valuable insights into the structure of
 92 the variance explained (Figure 1).

93

94 Here, we introduce `partR2`, a versatile package for estimating part R^2 , inclusive R^2 , structure
 95 coefficients and beta weights from mixed-effects models. Figure 1 gives an overview of how
 96 variances are calculated and how they relate to partial R^2 and to commonality analysis (Ray-
 97 Mukherjee et al., 2014; Seibold & McPhee, 1979; Zientek & Thompson, 2006). We illustrate how to
 98 use `partR2` with real example datasets for Gaussian and binomial GLMMs, discuss how to estimate
 99 part R^2 in the presence of interactions and discuss some challenges and limitations.

100



101

102 **Figure 1: Conceptual framework for the estimation of proportions of variance components in a mixed**
 103 **model.** The large grey circle symbolizes the variance in a response Y, the dark grey area on the top indicates
 104 the share explained by random effects and the coloured ellipses symbolize variance in covariates with

105 intersections indicating jointly explained variances. `partR2` calculates total R^2 , part R^2 for individual predictors
106 and sets of predictors as well as inclusive R^2 . The package does not report partial R^2 and commonalities,
107 although they could be calculated from the `partR2` output.
108

109 **Mathematical representation**

110 **Part R^2**

111

112 A Gaussian mixed-effects model can be written as:

113
$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \sum \boldsymbol{\alpha}_k + \boldsymbol{\varepsilon} \quad (\text{Eq. 1})$$

114
$$\boldsymbol{\alpha}_k \sim N(0, \sigma_{\alpha_k}^2)$$

115
$$\boldsymbol{\varepsilon} \sim N(0, \sigma_{\varepsilon}^2)$$

116 Where \mathbf{y} is a vector of response values (outcomes), \mathbf{X} is the design matrix of fixed effects, $\boldsymbol{\beta}$ is a
117 vector of regression coefficients, $\sum \boldsymbol{\alpha}_k$ is the random part of the model that might contain multiple
118 random effects and $\boldsymbol{\varepsilon}$ is a vector of residual deviations. The linear predictor $\boldsymbol{\eta}$ represents the vector
119 of predicted values from the fixed part of the model as $\boldsymbol{\eta} = \mathbf{X}\boldsymbol{\beta}$. Note that we dealing with estimates
120 of regression coefficients and variance components throughout (hence all $\boldsymbol{\beta}$ should be read as $\hat{\boldsymbol{\beta}}$).

121

122 Since we are interested in the proportion of the phenotypic variance explained, we symbolize
123 variance components by upper case Y and index by the source of variance (als in Figure 1). While
124 variances are frequently represented as V with the source of variance as an index, this leads to
125 ambiguity for V_X which might represent variance in y explained by x or variance in x itself, which is
126 why we use this alternative notation. The total variance in the response is $Y_{Total} = \text{var}(\mathbf{y})$ and is
127 estimated from the raw data or from the model (see below). The variance of the residuals is estimated
128 by the model as $Y_R = \text{var}(\boldsymbol{\varepsilon})$. The variance of the (sum of) random effects is estimated by the model
129 as $Y_{RE} = \text{var}(\sum \boldsymbol{\alpha}_k)$ and the variance explained by fixed effects can be estimated as the variance
130 in the linear predictor $Y_X = \text{var}(\mathbf{X}\boldsymbol{\beta})$.

131

132 The coefficient of determination R^2 estimates the proportion of variance in the response that is
133 explained by fixed effects. The coefficient of determination R^2 for the total fixed part of the model is
134 thus:

135
$$R_x^2 = \frac{Y_X}{Y_X + Y_{RE} + Y_R} = \frac{Y_X}{Y_{Total}} \quad (\text{Eq. 2})$$

136 Note that the sum of the components in the denominator might deviate numerically from the total
137 outcome variance in the raw data. However, conceptually they are the same in that they represent
138 the population-level outcome variance. The variance in the outcome is an estimate from the specific
139 sample, while the sum of components of the mixed model represents a population-level estimate
140 given the data and the model.

141

142 A reduced model with a (set of) fixed effect predictors X^* removed but the same random effect
143 structure can be fitted as (now using the tilde to highlight the differences from Eq. 1):

144
$$\mathbf{y} = \tilde{\mathbf{X}}\tilde{\boldsymbol{\beta}} + \sum \tilde{\boldsymbol{\alpha}}_k + \tilde{\boldsymbol{\varepsilon}} \quad (\text{Eq. 3})$$

145
$$\tilde{\boldsymbol{\alpha}}_k \sim N(0, \sigma_{\tilde{\boldsymbol{\alpha}}_k}^2)$$

146
$$\tilde{\boldsymbol{\varepsilon}} \sim N(0, \sigma_{\tilde{\boldsymbol{\varepsilon}}}^2)$$

147 with the variance in the linear predictor of the reduced model being $Y_{\tilde{X}} = \text{var}(\tilde{\mathbf{X}}\tilde{\boldsymbol{\beta}})$.

148

149 The variance uniquely explained by X^* is then the difference between the variance explained by
150 fixed effects in the full and the reduced model $Y_{X^*} = Y_X - Y_{\tilde{X}}$. Part R^2 sets this variance in proportion
151 to the total outcome variance:

152
$$R_{X^*}^2 = \frac{Y_X - Y_{\tilde{X}}}{Y_X + Y_{RE} + Y_R} = \frac{Y_X - Y_{\tilde{X}}}{Y_{Total}} \quad (\text{Eq. 4})$$

153 The process of fitting a reduced model, estimation of Y_{X^*} and estimation of $R_{X^*}^2$ can be repeated
154 for all predictors and combinations of predictors. At the limit for a model with all fixed effects
155 removed, $R_{X^*}^2 = R_X^2$.

156

157 **Side-note on partial R^2**

158

159 For completeness we note that the partial R^2 could be calculated as:

160
$$R_{X^*}^2 = \frac{Y_X - Y_{\tilde{X}}}{Y_{Total} - Y_{\tilde{X}}} \quad (\text{Eq. 5})$$

161 However, this estimate does not put the explained variance in perspective of the total variance in the
162 response. It has the major disadvantage that the denominator depends on $Y_{\tilde{X}}$. The same effect in
163 terms of Y_{X^*} thus appears larger if the reduced model explains more variance (larger $Y_{\tilde{X}}$). Even in
164 the case of independent additive predictors, the contributions of the different fixed effects do not
165 sum up to R_X^2 , because of the change in the denominator that different Y_{X^*} are compared to.

166 Finally, since we are interested in explaining phenotypic variation in some biological response (the
167 phenomenon to be explained), we think that part R^2 is the more relevant quantity, as it represents
168 the proportion of variance in the response uniquely explained by X^* .

169

170 **Inclusive R^2**

171

172 Structure coefficients are the Pearson correlations between a particular predictor of interest x^* and
173 the linear predictor η . Note that we now use a lower case x^* to indicate that we are dealing with a
174 single predictor. Structure coefficients are quantified from the full model as:

175 $SC_{x^*} = \text{cor}(\eta, x^*)$ (Eq. 6)

176

177 The squared correlation between two variables a and b gives the variance explained for these
178 variables $\text{cor}(a, b)^2 = R_a^2$. The squared structure correlations thus quantify the proportion of
179 variance in the linear predictor Y_x that is explained by a the predictor of interest x^* . Since the
180 proportion of outcome variance explained by the linear predictor in the full model is R_x^2 , the
181 inclusive variance explained by predictor x^* is:

182 $IR_{x^*}^2 = SC^2 \cdot R_x^2$ (Eq. 7)

183

184 Inclusive R^2 as we define it here, complements part R^2 by giving additional insights. While part R^2
185 quantifies the variance uniquely explained by a predictor (or set of predictors), inclusive R^2 quantifies
186 the total proportion of variance explained in the model, both uniquely and jointly with other
187 predictors. In the special case of a single predictor in a model $SC_{x^*} = \text{cor}(\eta, x^*) = 1$, such that

188 $IR_{x^*}^2 = R_x^2$.

189

190 **Part R^2 in non-Gaussian models**

191

192 For Gaussian models there is a single residual error term ε with variance $Y_R = \text{var}(\varepsilon)$. For non-
193 Gaussian models, however, there is additional error that arises from the link function that translates
194 latent-level predictions to observed outcomes. This variance can be approximated for a variety of
195 link functions and error distributions (Nakagawa & Schielzeth, 2010; Nakagawa, Johnson &
196 Schielzeth, 2017). Our R package currently implements distribution-specific variances for Poisson
197 models with log and square root link functions and binomial models with logit and probit link
198 functions. For Poisson models and non-binary binomial models (proportion models), partR2 also

199 fits an observational level random effect (if none is fitted already) to estimate variance due to
200 overdispersion (Harrison, 2014). Both the overdispersion variance, now denoted Y_R and the
201 distribution-specific variance Y_D are included in the denominator of the part R2 calculation:

202

203
$$R_{X^*}^2 = \frac{Y_X - Y_{\bar{X}}}{Y_X + Y_{RE} + Y_D + Y_R}$$
 (Eq. 8).

204

205 Notably, there are other estimation methods for R^2 for non-Gaussian models or GLMM (Jaeger et
206 al., 2017; Piepho, 2019). Currently, `partR2` only implements the method based on Nakagawa &
207 Schielzeth (2013) and Nakagawa, Johnson & Schielzeth (2017).

208 **Other implementations in R packages**

209 There are a few R packages that calculate part R^2 for linear models (`lm`), for example
210 `rockchalk::getDeltaRsquare` (Johnson & Grothendieck, 2019). Other packages calculate
211 partial R^2 (not part R^2) such as `asbio::partial.R2` (Aho, 2020) and `rr2::R2` (Ives & Li, 2018) for
212 `lms` and `rsq::rsq.partial` (Zhang, 2020) for linear models and generalized linear models (`glm`).
213 Note that partial R^2 is different from part (semi-partial) R^2 (partial $R^2 >$ part R^2), since it represents the
214 unique variance explained by a particular predictor but after removing ('partialling out') the variance
215 explained by the other predictors (Yeatts et al., 2017, Figure 1). The `ppcor` package calculates semi-
216 partial and partial correlations, but does not work on fitted GLM or GLMM models (Kim, 2015). The
217 package `yhat` features functions for commonality analyses in `glms` (Nimon, Oswald & Roberts,
218 2020). None of these packages estimates part R^2 for mixed-effects models that we focus on here.
219 Several packages estimate (marginal) R^2 as the variance explained by all fixed effects in linear mixed-
220 effects models. This includes `performance::r2_nakagawa` (Lüdecke et al., 2020),
221 `MuMIn::r.squaredGLMM` (Bartoń, 2019), and `rptR::rpt` (Stoffel, Nakagawa & Schielzeth, 2017).
222 These packages do not allow to estimate part R^2 . The only versatile package to estimate part R^2 from
223 linear mixed-models is `r2glmm` (Jaeger, 2017). The function `r2glmm::r2beta` computes part R^2
224 from `lmer`, `lme` and `glmmPQL` model fits (also for linear models `lm` and `glm`) based on Wald statistics.
225 However, it does neither support `lme4::glmer` for generalized linear model fits nor does it allow
226 to estimate R^2 for combinations of predictors. Furthermore, it does not estimate structure
227 coefficients, inclusive R^2 or part R^2 for multilevel factors as a unit.

228

229 **Features of partR2**

230 partR2 takes a fitted (generalized) linear mixed-model (GLMM), from the popular mixed model
231 package `lme4` (Bates et al., 2015) and estimates part R^2 by iteratively removing fixed effects (Nimon
232 et al., 2008). The specific fixed effects of interest are specified by the `partvars` and/or by the
233 `partbatch` argument. The package estimates part R^2 for all predictors specified in `partvars`
234 individually and in all possible combinations (the maximum level of combinations can be set by the
235 `max_level` argument). A custom specification of fixed effects of interest saves computation time as
236 compared to an all-subset specification and is therefore required in partR2.

237 The central function `partR2` will work for Gaussian, Poisson and binomial GLMMs. Since the model
238 fit is done externally, there is no need to supply a `family` argument. For non-Gaussian GLMMs, the
239 package estimates link-scale R^2 (*sensu* Nakagawa & Schielzeth, 2013). We implement parametric
240 bootstrapping to quantify sampling variance and thus uncertainty in the estimates. Parametric
241 bootstrapping works through repeated model fitting on simulated data based on fitted values
242 (Faraway, 2015). The number of bootstrap iterations is controlled by the `nboot` argument. We
243 recommend a low number of `nboot` for testing purposes and a large number (e.g. `nboot = 1000`)
244 for the final analysis.

245 The package returns an object of class `partR2` that contains elements for part R^2 , inclusive R^2 ,
246 structure coefficients, beta weights (standardized regression slopes), bootstrapping iterations and
247 some other information. An extended summary, that includes inclusive R^2 , structure coefficients and
248 beta weights can be viewed using the `summary` function. The `forestplot` function shows a
249 graphical representation of the variance explained by individual predictors and sets of predictors
250 along with their bootstrapping uncertainties. All computations can be parallelized across many cores
251 based on the `future` and `furrr` packages (Vaughan & Dancho, 2018; Bengtsson, 2020). An
252 extended vignette with details on the complete functionality accompanies the package.

253

254 **Example with Gaussian data**

255 We use an example dataset with hormone data collected from a population of captive guinea pigs
256 to illustrate the features of partR2. The dataset contains testosterone measurements of 31 male
257 guinea pigs, each measured at 5 time points (age between 120 and 240 days at 30-day intervals).
258 We analyze log-transformed testosterone titers and fit male identity as a random effect. As covariates
259 the dataset contains the time point of measurement and a rank index derived from behavioral
260 observations around the time of measurement (Mutwill et al., in prep.).

261 *Rank* and *Time* are correlated in the dataset ($r = 0.40$), since young individuals are typically low rank,
262 while older individuals tend to hold a high rank. *Time* might be fitted as a continuous predictor or as
263 a factor with five levels. Here we present the version of a factorial predictor to illustrate the estimation
264 of part R^2 for interactions terms. Hence, an interaction between time and rank will also be fitted.
265 First, the package needs to be loaded (after successful installation) in an R session (R Core Team,
266 2019). The package comes with the guinea pig dataset that also needs to be loaded using the data
267 function.

268

269 `library(partR2)`

270 `data(GuineaPigs)`

271

272 A single record contains missing values for testosterone measurements. Missing records can be
273 problematic to handle in `partR2` and are better removed prior to the analysis. We also log-transform
274 the response and convert *Time* to a factor and filter for the first three time points to simplify the
275 output.

276

277 `GuineaPigs <- subset(GuineaPigs,`

278 `!is.na(Testo) & !is.na(Rank) & (Time %in% c(1,3,5))`

279 `GuineaPigs$TestoTrans <- log(GuineaPigs$Testo)`

280 `GuineaPigs$Time <- factor(GuineaPigs$Time)`

281

282 We then fit a linear mixed effects model using `lmer` from the `lme4` package (Bates et al., 2015).
283 Further exploration of the data and model checks are omitted here for simplicity, but are advisable
284 in real data analysis.

285

286 `library(lme4)`

287 `mod <- lmer(TestoTrans ~ Rank * Time + (1|MaleID), data=GuineaPigs)`

288

289 The `partR2` analysis takes the `lmer` model fit (an `merMod` object) and a character vector `partvars`
290 indicating the fixed effects to be evaluated. Interactions are specified with the colon syntax (see the
291 package's vignette for further details).

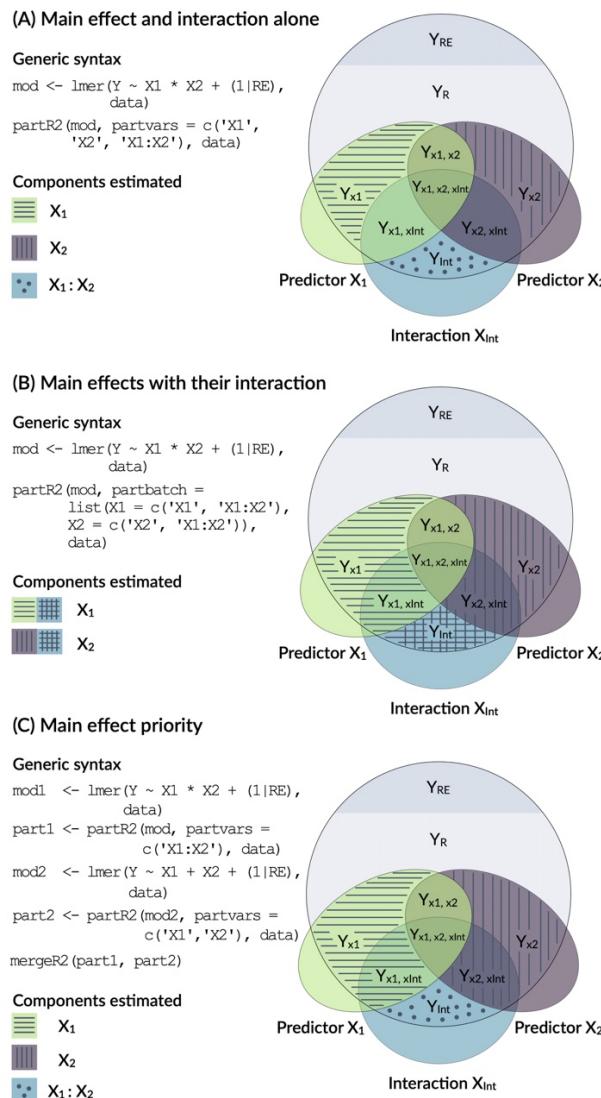
292

```
293 res <- partR2(mod, partvars = c("Rank", "Time", "Rank:Time"),  
294 nboot=100)  
295  
296 The function returns a partR2 object. The print function reports the part coefficients of  
297 determination and a more extensive summary can be viewed with the summary function which also  
298 shows inclusive  $R^2$ , structure coefficients and beta weights (standardized slopes) (Figure 2).  
299  
300 print(res)  
301 summary(res, round_to = 2)  
  
R2 (marginal) and 95% CI for the full model:  
R2 CI_lower CI_upper ndf  
0.17 0.09 0.36 6  
-----  
Part (semi-partial) R2:  
Predictor(s) R2 CI_lower CI_upper ndf  
Model 0.17 0.09 0.36 6  
Rank 0.00 0.00 0.18 6  
Time 0.02 0.00 0.20 4  
Rank:Time 0.04 0.00 0.21 4  
Rank+Time 0.02 0.00 0.20 4  
Rank+Rank:Time 0.16 0.08 0.34 3  
Time+Rank:Time 0.04 0.00 0.22 2  
Rank+Time+Rank:Time 0.17 0.09 0.36 1  
-----  
Inclusive R2 (SC^2 * R2):  
Predictor IR2 CI_lower CI_upper  
Rank 0.13 0.03 0.26  
Time3 0.00 0.00 0.04  
Time5 0.00 0.00 0.04  
Rank:Time3 0.05 0.01 0.13  
Rank:Time5 0.01 0.00 0.07  
-----  
Structure coefficients r(Yhat,x):  
Predictor SC CI_lower CI_upper  
Rank 0.87 0.56 0.94  
Time3 0.14 -0.18 0.43  
Time5 0.16 -0.26 0.48  
Rank:Time3 0.56 0.22 0.75  
Rank:Time5 0.28 -0.14 0.57  
-----  
Beta weights (standardised estimates)  
Predictor BW CI_lower CI_upper  
Rank 0.50 -0.08 0.94  
Time3 -0.19 -0.53 0.14  
Time5 0.17 -0.20 0.55  
Rank:Time3 0.17 -0.36 0.83  
Rank:Time5 -0.36 -0.95 0.38  
-----  
302 -----  
303 Figure 2: Summary output for example data analysis with Gaussian data (guinea pig analysis).  
304
```

305 The variances appear largely additive, since combinations of predictors explain about the sum of the
306 variance explained by individual predictors. The main components of the `partR2` object can be
307 accessed for further processing as `res$R2` for part R^2 (with point estimates and confidence intervals),
308 `res$SC` for structure coefficients, `res$IR2` for inclusive R^2 and `res$BW` for beta weights.
309

310 Dealing with interactions

311 Models with interactions are problematic, because the variance explained by a main factor can be
312 estimated in multiple ways (Figure 3) and because of the internal parametrization of the model
313 matrix.



314

Figure 3: Conceptual framework for dealing with interactions. An interaction is the product of two main effects and thus often correlated with each of the main effects. The figure shows three options for estimating the part R^2 for main effects that are involved in an interaction.

318 The model output above shows the number of parameters fitted in each model (Figure 2, each row
319 in the `R2` part refers to a reduced model). In the `print` and `summary` output this is visible as a column
320 labelled 'ndf'. A close inspection shows that the removal of rank did not change the number of
321 parameters (6 for the full model, 6 for the model excluding rank). This is because the model matrix
322 is reparametrized in the reduced model and `lmer` will fit three terms for the interaction (here
323 `Time1:Rank`, `Time3:Rank`, `Time5:Rank`) rather than just two for the interaction in the full model.
324 Dummy coding of the factor can be usefully combined with centering of dummy coded variables
325 (Schielzeth, 2010) and gives more control over this re-parametrisation. It allows for example to
326 estimate the part R^2 for the average effect of `Rank` by constraining the average `Rank` effect to zero,
327 so that only the two contrasts are fitted (here `Time3:Rank`, `Time5:Rank`):

328
329 `GuineaPigs <- cbind(GuineaPigs, model.matrix(~ 0 + Time,`
330 `data=GuineaPigs))`
331 `GuineaPigs$Time3 <- GuineaPigs$Time3 - mean(GuineaPigs$Time3)`
332 `GuineaPigs$Time5 <- GuineaPigs$Time5 - mean(GuineaPigs$Time5)`

333
334 The model can then be fitted with dummy predictors. Since the usual specification in `partR2` via
335 `partvars` would fit all possible combinations, including combinations of the different `Time` terms,
336 such a run can take a long time. However we are mostly interested in fitting and removing all dummy
337 predictors at a time. The package therefore features an additional argument `partbatch` to specify
338 a list of character vectors containing the sets of predictors that should always be kept together. In
339 the example, the list has two elements, a character vector for the dummy-coded main effects and a
340 character vector for the interaction terms. The analysis yields part R^2 for two batches of predictors as
341 well as `Rank` and their combinations.

342
343 `mod <- lmer(TestoTrans ~ (Time3 + Time5) * Rank + (1|MaleID),`
344 `data=GuineaPigs)`
345 `batch <- c("Time3", "Time5")`
346 `partR2(mod, partvars=c("Rank"), partbatch=list(Time=batch,`
347 ``Time:Rank` = paste0(batch, ":Rank"))), nboot=100)`

348

349 This, however, is only one way of dealing with interactions (Option A in Figure 3). It represents the
350 variance uniquely explained by main effects even in the presence of an interaction. Since interactions
351 are the products of main effects, interaction terms are typically correlated with main effects and the
352 part R^2 calculated above might not represent a biologically relevant quantity. There are two
353 alternative ways of how to deal with interactions. Both are possible in partR2, but since
354 requirements differ between applications, we do not implement one with priority.

355 One way to think about variance explained by main effects and their interactions is to pool the
356 variance explained by a main effect with the variance explained by interactions that the term is
357 involved in (Option B in Figure 3). In the guinea pig example, for instance, *Rank* might be considered
358 important either as a main effect or in interaction with time and we might want to estimate the total
359 effect of rank. This can be done for the guinea pig dataset by using partbatch:

```
360  
361 mod <- lmer(Testo ~ Time * Rank + (1|MaleID), data=GuineaPigs)  
362 partR2(mod, partbatch = list(Time=c("Time", "Time:Rank"),  
363 Rank=c("Rank", "Time:Rank"))), nboot=100)
```

364

365 A third, which we think usually preferable option is to prioritize main effects by assigning the
366 proportion of variance that is explained by a main effect together with the variance jointly explained
367 with its interaction to the main effect (Option C in Figure 3). This implies that part R^2 for a main effect
368 is estimated when its own interaction is excluded from the model (mod1 and part1 below). The
369 variance explained by the interaction is then estimated in a separate model (mod2 and part2 below).
370 We have implemented a helper function mergeR2 that allows to merge two partR2 runs.

```
371  
372 mod1 <- lmer(Testo ~ Time * Rank + (1|MaleID), data=GuineaPigs)  
373 part1 <- partR2(mod1, partvars = c("Time:Rank"), nboot=100)  
374 mod2 <- lmer(Testo ~ Time + Rank + (1|MaleID), data=GuineaPigs)  
375 part2 <- partR2(mod2, partvars = c("Time", "Rank"), nboot=100)  
376 mergeR2(part1, part2)
```

377

378 All these results can be viewed by print, summary and plotted by forestplot. It is important to
379 bear in mind the differences in the interpretation as illustrated in Figure 3.

380

381 **An example with proportion data**

382 As an example for proportion data, we analyze a dataset on spatial variation in color morph ratios in
383 a color-polymorphic species of grasshopper. Individuals of this species occur either in a green or a
384 brown color variant and the dataset contains counts of brown and green individuals (separated for
385 females and males) from 42 sites sampled in the field (Dieker et al., 2018). Site identity will be fitted
386 as a random effect. As covariates the dataset contains a range of Bioclim variable that describe
387 various aspects of ecologically relevant climatic conditions (Karger et al., 2017). The aim is to identify
388 the climatic conditions that favour one or the other colour variant.

389 We first load the grasshopper dataset. We standardise all Bioclim variables using the `scale` function
390 and add an observation-level counter that will be used as an observation-level random effect (OLRE)
391 to account for overdispersion (Harrison, 2014).

392

```
393 data(Grasshoppers)
394 for (i in which(substr(colnames(Grasshoppers), 1, 3)=="Bio")){
395     Grasshoppers[,i] <- scale(Grasshoppers[,i])
396 }
397 Grasshoppers$OLRE <- 1:nrow(Grasshoppers)
```

398

399 We first fit a GLMM with binomial error structure and logit link using the `glmer` function from the
400 `lme4` package (Bates et al., 2015). A previous analysis has shown that the first principle component
401 of the Bioclim data explains a small, but significant part of variation in morph ratios (Dieker et al.,
402 2018). For illustration, we use the four Bioclim variables that show a loading of more than 0.30 on
403 the first principle component.

404

```
405 mod <- glmer(cbind(nGreen, nBrown) ~ Bio7 + Bio14 + Bio17 + Bio19 +
406     (1|SiteID) + (1|OLRE), data=Grasshoppers, family="binomial")
407 res <- partR2(mod, partvars=c("Bio7", "Bio14", "Bio17", "Bio19"),
408     max_level = 1, nboot=100)
```

409

410 The summary output informs us (at the bottom) that there have been warnings in the bootstrapping
411 processes. This is not unusual since bootstrapping frequently generates data, for which one of the

412 parameters is estimated at the boundary (in particular if one of the variance components is very
413 small). The results can be visualised using the `forestplot` function (Figure 4). Plotting is based on
414 `ggplot2` (Wickham, 2016), and multiple forest plots can easily be assembled using the `patchwork`
415 package (Pedersen, 2020). Forest plots show the effect sizes graphically and can be set to either
416 show part R^2 when `type = "R2"` (the default), inclusive R^2 when `type = "IR2"`, structure
417 coefficients when `type = "SC"`, and beta weights (standardized model estimates) with `type =`
418 `"BW"`.

419

```
420 p1 <- forestplot(res, type = "R2")  
421 p2 <- forestplot(res, type = "IR2")  
422 p3 <- forestplot(res, type = "SC")  
423 p4 <- forestplot(res, type = "BW")  
424  
425 library(patchwork)  
426 (p1 + p2) / (p3 + p4) + plot_annotation(tag_levels = "A",  
427 tag_prefix = "(", tag_suffix = ")")
```

428



429

430 **Figure 4:** Comparison of part R^2 for individual predictors (A), inclusive R^2 (B), structure coefficients
431 and beta weights (D) for an example dataset with proportion data from grasshoppers.

432 A comparison of part R^2 , inclusive R^2 , structure coefficients beta weights shows the different insights
433 that can be gained from these different summaries of the model fit (Figure 3). In this case, three of
434 the Bioclim variables (*Bio14*, *Bio17*, *Bio19*) are highly positively correlated ($r \geq 0.93$), while a fourth
435 one (*Bio7*) is moderately negatively correlated to all three of them ($r \leq -0.63$). Part R^2 are thus low,
436 because none of the parameters uniquely explains a large share of the variance. *Bio17* seems to be
437 the best predictor of morph ratios, with the largest (negative) beta weight, largest part R^2 , largest
438 structure coefficients and largest inclusive R^2 . Beta weights for the two positively correlated (but
439 slightly weaker) predictors, *Bio14* and *Bio19*, switch sign as is not unusual for collinear predictors.
440 This means that after accounting for the effect of *Bio17*, they contribute positively to prediction.
441 However, structure coefficients show that both variables load negatively on the linear predictor, as
442 does *Bio17*.

443

444 **Challenges**

445 Using transformation or functions in the formula argument can lead to issues with matching the terms
446 of the model with the `partvars` argument of `partR2`. It is therefore important that the names in
447 `partvars` match exactly the terms in the `merMod` object. However, any complications are easily
448 circumvented by implementing the transformations before fitting the model and storing them in the
449 data frame used in the analysis. It is also worth to be aware that unusual names may cause
450 complications and renaming can offer an easy solution.

451 We have repeatedly seen model outputs where the point estimate does not fall within the confidence
452 interval. This might seem like in the bug in the package, but in our experience usually indicates issues
453 with the data and/or the model. In fact, parametric bootstrapping can be seen as a limited form of
454 posterior predictive model checks (Gelman & Hill, 2006). If generating new data from the fitted
455 model (as done with parametric bootstrapping) results in data that are dissimilar to the original data,
456 then the model is probably not a good fit to the data.

457 Bootstrap iterations can sometimes yield slightly negative estimates of part R^2 , in particular if the
458 variance explained by a predictor is low. These negative estimates happen in mixed-effects models,
459 because estimates of random-effect variance might change when a predictor is removed and this
460 can lead to a slight decrease in the residual variance, and hence a proportional increase in R^2 (see
461 also Rights & Sterba, 2019). By default, `partR2` sets negative R^2 values to 0, but this can be changed
462 by setting `allow_neg_r2` to `TRUE`. It also happens that inclusive R^2 is estimated slightly lower than
463 part R^2 when the contribution of a particular predictor is very large. We consider both cases as

464 sampling error that should serve as a reminder that variance components are estimated with
465 relatively large uncertainty and minor differences should not be over-interpreted.

466 A warning needs to be added for the estimation of R^2 (and, in fact, also repeatability R) from small
467 datasets. In particular if the number of levels of random effect is low, variance components might be
468 slightly overestimated (Xu, 2003). This issue applies similarly to the variance explained by fixed
469 effects, in particular if the number of predictors is large relative to the number of data points.

470

471 **Code and data availability**

472 The current stable version of `partR2` can be downloaded from CRAN (<https://cran.r-project.org/web/packages/partR2/index.html>) and the development version can be obtained from
473 GitHub (<https://github.com/mastoffel/partR2>). The data used in the examples is part of the package.

474

475

476

477 **Acknowledgements**

478 We thank Alexandra Mutwill for providing the guinea pig data.

479

480 **References**

481 Aho K. 2020. `asbio`: A Collection of Statistical Tools for Biologists. Available at <https://CRAN.R-project.org/package=asbio> (accessed July 25, 2020).

483 Bartoń K. 2019. `MuMIn`: Multi-Model Inference. Available at <https://CRAN.R-project.org/package=MuMIn> (accessed July 25, 2020).

485 Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using `lme4`.
486 *Journal of Statistical Software* 67. DOI: 10.18637/jss.v067.i01.

487 Bengtsson H. 2020. `future`: Unified Parallel and Distributed Processing in R for Everyone. Available
488 at <https://CRAN.R-project.org/package=future> (accessed July 25, 2020).

489 Dieker P, Beckmann L, Teckentrup J, Schielzeth H. 2018. Spatial analyses of two colour
490 polymorphisms in an alpine grasshopper reveal a role of small-scale heterogeneity.
491 *Ecology and Evolution* 8:7273-7284. DOI: 10.1002/ece3.4156.

492 Edwards LJ, Muller KE, Wolfinger RD, Qaqish BF, Schabenberger O. 2008. An R2 statistic for fixed
493 effects in the linear mixed model. *Statistics in Medicine* 27:6137-6157. DOI:
494 10.1002/Sim.3429.

495 Faraway JJ. 2015. *Linear models with R*. Boca Raton: CRC Press, Taylor & Francis Group.

496 Gelman A, Hill J. 2006. *Data analysis using regression and multilevel/hierarchical models*.
497 Cambridge university press.

498 Harrison XA. 2014. Using observation-level random effects to model overdispersion in count data
499 in ecology and evolution. *PeerJ* 2:e616. DOI: 10.7717/peerj.616.

500 Ives A, Li D. 2018. rr2: An R package to calculate R2s for regression models. *Journal of Open
501 Source Software* 3:1028.

502 Jaeger B. 2017.r2glmm: Computes R Squared for Mixed (Multilevel) Models. Available at
503 <https://CRAN.R-project.org/package=r2glmm> (accessed July 25, 2020).

504 Jaeger BC, Edwards LJ, Das K, Sen PK. 2017. An R2 statistic for fixed effects in the generalized
505 linear mixed model. *Journal of Applied Statistics* 44:1086-1105. DOI:
506 10.1080/02664763.2016.1193725.

507 Jaeger BC, Edwards LJ, Gurka MJ. 2019. An R 2 statistic for covariance model selection in the
508 linear mixed model. *Journal of Applied Statistics* 46:164-184.

509 Johnson PE, Grothendieck G. 2019.rockchalk: Regression Estimation and Presentation. Available at
510 <https://CRAN.R-project.org/package=rockchalk> (accessed July 25, 2020).

511 Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP,
512 Kessler M. 2017. Climatologies at high resolution for the earth's land surface areas.
513 *Scientific data* 4:170122.

514 Kim S. 2015. ppcor: an R package for a fast calculation to semi-partial correlation coefficients.

515 *Communications for statistical applications and methods* 22:665.

516 Lüdecke D, Makowski D, Waggoner P, Patil I. 2020. performance: Assessment of Regression

517 Models Performance. Available at <https://CRAN.R-project.org/package=performance>

518 (accessed July 25, 2020).

519 Mutwill AM, Schielzeth H, Zimmermann TD, Richter H, Kaiser S, Sachser N. in prep. Endocrine

520 mechanisms underlying dominance rank acquisition in males: individuality meets plasticity

521 in a complex social environment.

522 Nakagawa S, Johnson PCD, Schielzeth H. 2017. The coefficient of determination R2 and intra-class

523 correlation coefficient from generalized linear mixed-effects models revised and

524 expanded. *Journal of the Royal Society Interface* 14:20170213. DOI:

525 10.1098/rsif.2017.0213.

526 Nakagawa S, Schielzeth H. 2010. Repeatability for Gaussian and non-Gaussian data: a practical

527 guide for biologists. *Biological Reviews* 85:935–956.

528 Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized

529 linear mixed-effects models. *Methods in Ecology and Evolution* 4:133–142.

530 Nathans LL, Oswald FL, Nimon K. 2012. Interpreting multiple linear regression: A guidebook of

531 variable importance. *Practical Assessment, Research, and Evaluation* 17:9.

532 Nimon K, Lewis M, Kane R, Haynes RM. 2008. An R package to compute commonality coefficients

533 in the multiple regression case: an introduction to the package and a practical example.

534 *Behavior Research Methods* 40:457–66. DOI: 10.3758/brm.40.2.457.

535 Nimon K, Oswald F, Roberts JK. 2020. yhat: Interpreting Regression Effects. Available at

536 <https://CRAN.R-project.org/package=yhat> (accessed July 25, 2020).

537 Pedersen TL. 2020. patchwork: The Composer of Plots. Available at <https://CRAN.R-project.org/package=patchwork> (accessed July 25, 2020).

539 Piepho H-P. 2019. A coefficient of determination (R2) for generalized linear mixed models.

540 *Biometrical Journal* 61:860-872.

541 R Core Team. 2019. *R: A language and environment for statistical computing*. R Foundation for

542 *Statistical Computing*. Vienna, Austria.

543 Ray Mukherjee J, Nimon K, Mukherjee S, Morris DW, Slotow R, Hamer M. 2014. Using commonality

544 analysis in multiple regressions: a tool to decompose regression effects in the face of

545 multicollinearity. *Methods in Ecology and Evolution* 5:320-328. DOI: 10.1111/2041-

546 210X.12166.

547 Rights JD, Sterba SK. 2019. New recommendations on the Use of R-squared differences in

548 multilevel model comparisons. *Multivariate Behavioral Research*:1-32. DOI:

549 10.1080/00273171.2019.1660605.

550 Schielzeth H. 2010. Simple means to improve the interpretability of regression coefficients.

551 *Methods in Ecology and Evolution*.

552 Seibold DR, McPhee RD. 1979. Commonality analysis: a method for decomposing explained

553 variance in multiple regression analyses. *Human Communication Research* 5:355-365.

554 Stoffel MA, Nakagawa S, Schielzeth H. 2017. rptR: repeatability estimation and variance

555 decomposition by generalized linear mixed-effects models. *Methods in Ecology and*

556 *Evolution* 8:1639-1644. DOI: 10.1111/2041-210X.12797.

557 Vaughan D, Dancho M. 2018. furrr: Apply Mapping Functions in Parallel using Futures. Available at

558 <https://CRAN.R-project.org/package=furrr> (accessed July 25, 2020).

559 de Villemereuil P, Morrissey M, Nakagawa S, Schielzeth H. 2018. Fixed effect variance and the

560 estimation of repeatabilities and heritabilities: Issues and solutions. *Journal of Evolutionary*

561 *Biology* 31:621-632. DOI: 10.1111/jeb.13232.

562 Watanabe S. 1960. Information theoretical analysis of multivariate correlation. *IBM Journal of*

563 *Research and Development* 4:66-82. DOI: DOI 10.1147/rd.41.0066.

564 Xu RH. 2003. Measuring explained variation in linear mixed effects models. *Statistics in Medicine*
565 22:3527-3541. DOI: Doi 10.1002/Sim.1572.

566 Yeatts PE, Barton M, Henson RK, Martin SB. 2017. The use of structure coefficients to address
567 multicollinearity in sport and exercise science. *Measurement in Physical Education and*
568 *Exercise Science* 21:83-91.

569 Zhang D. 2020. rsq: R-Squared and Related Measures. Available at <https://CRAN.R-project.org/package=rsq> (accessed July 25, 2020).

571 Zientek LR, Thompson B. 2006. Commonality analysis: Partitioning variance to facilitate better
572 understanding of data. *Journal of Early Intervention* 28:299-307.

573