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Abstract

The coefficient of determination R? quantifies the amount of variance explained by regression
coefficients in a linear model. It can be seen as the fixed-effects complement to the repeatability R
(intra-class correlation) for the variance explained by random effects and thus as a tool for variance
decomposition. The R? of a model can be further partitioned into the variance explained by a
particular predictor or a combination of predictors using semi-partial (part) R?> and structure
coefficients, but this is rarely done due to a lack of software implementing these statistics. Here, we
introduce partR2, an R package that quantifies part R? for fixed effect predictors based on
(generalized) linear mixed-effect model fits. The package iteratively removes predictors of interest
from the model and monitors the change in the variance of the linear predictor. The difference to
the full model gives a measure of the amount of variance explained uniquely by a particular predictor
or a set of predictors. partR2 also estimates structure coefficients as the correlation between a
predictor and fitted values, which provide an estimate of the total contribution of a fixed effect to the
overall prediction, independent of other predictors. Structure coefficients can be converted to the
total variance explained by a predictor, here called ‘inclusive’ R?, as the square of the structure
coefficients times total R?. Furthermore, the package reports beta weights (standardized regression
coefficients). Finally, partR2 implements parametric bootstrapping to quantify confidence intervals
for each estimate. We illustrate the use of partR2 with real example datasets for Gaussian and
binomial GLMMs and discuss interactions, which pose a specific challenge for partitioning the

explained variance among predictors.
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Introduction

Coefficients of determination R? are of interest in the study of ecology and evolution, because they
quantify the amount of variation explained by a linear model (Edwards et al., 2008). By doing so, they
go beyond significance testing in putting effects in perspective of the phenotypic variance. R? is
expressed as a proportion of the total variance in the response, which represents a biologically
relevant quantity if the total variation is representative for the total population (de Villemereuil et al.,
2018). The total coefficient of determination in a generalised linear mixed model (GLMM) quantifies
the variance explained by all fixed effects together (marginal R? sensu Nakagawa & Schielzeth, 2013,

also known as the total correlation coefficient, Watanabe (1960)).

However, it is often of interest to attribute explained variation to individual predictors. Semi-partial
coefficients of determination, also known as part R?, decompose the variance of R? into components
uniquely explained by individual predictors (Jaeger et al., 2017; Jaeger, Edwards & Gurka, 2019) or
sets of predictors (Figure 1). The set of all predictors in the model yields the total proportion of
variance explained by the fixed part of the model (total R?). With correlations among predictors, it
often happens that predictors in univariate regressions explain a large share of the variance, but do
not show large part R? if other correlated predictors are included in the model. Note that part R?
estimates the proportion of the variance in the response explained by a predictor while accounting
for covariance between this predictor and the other predictors in the model, whereas the (arguably
more familiar) partial R? estimates the proportion of the variance that is explained by a predictor of
interest after accounting for the other predictors from the response as well as the predictor of
interest. The difference is subtle, but important (see more below). Therefore, part R? represents
'variance accounted for’ in relation to the total variance, but partial R? does not. Consequently, part

R? will be conceptually easier to compare with (total) R?.

Structure coefficients provide a valuable addition to part R? in the decomposition of the phenotypic
variance (Nimon et al., 2008; Yeatts et al., 2017). Structure coefficients quantify the correlation
between individual predictors and the linear predictor. Predictors that correlate well with a
response, but are fitted with collinear predictors may show large structure coefficients as they are
correlated to the predicted response, but low part R? as other predictors explain part of the same
variance. Structure coefficients range from -1 to 1 with their absolute value expressing the correlation
relative to a perfect correlation if a single predictor explains as much as the total fixed part of the

model.


https://doi.org/10.1101/2020.07.26.221168
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.26.221168; this version posted March 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

101

102
103
104

made available under aCC-BY-NC-ND 4.0 International license.

Structure coefficients are correlations and since the square of a correlation yields the variance
explained, we can use structure coefficients to estimate the total variance explained by a predictor
(Nimon et al., 2008). We call this the inclusive R? of a predictor and calculate it as the squared
structure coefficient, i.e. its contribution to the linear predictor independent of other predictors
(Nimon et al., 2008) times the proportion of variance explained by the linear predictor (which is the
"total’ marginal R? of the model) (see also Nathans, Oswald & Nimon, 2012). As far as we are aware,
inclusive R? has not been implemented before, but it provides valuable insights into the structure of

the variance explained (Figure 1).

Here, we introduce partR2, a versatile package for estimating part R?, inclusive R? structure
coefficients and beta weights from mixed-effects models. Figure 1 gives an overview of how
variances are calculated and how they relate to partial R? and to commonality analysis (Ray-
Mukherjee et al., 2014; Seibold & McPhee, 1979; Zientek & Thompson, 2006). We illustrate how to
use partR2 with real example datasets for Gaussian and binomial GLMMs, discuss how to estimate

part R?in the presence of interactions and discuss some challenges and limitations.

Total variance in Y Total R2
Yotal = Yxt + Y2 + Y3 + Yxixz + Yxtxa + Yxax2xa + YRe + YR Yr2=(Yx1 + Yx2 + Yx3 + Yx1x2 + Yx13 + Yxoxa + Yx1.x2x3) / YTotal

Random components (incl. repeatability) Part R2for individual predictors
Random effects: Yre / Yrotal X1t Yxt / Yotal

" X2: Yx2 / YTotal
Residual: Yr / Ytota
esidual: YR / Ytotal X3 Yxa / Yotal

Response Y

Part R2 for sets of predictors

X1+ X2t (Yx1 +Yx2 + Yx1,x2) / Yotal

X1+ X3 (Yxt +Yx3 + Yxa,x3) / YTotal

X2+ X3t (Yx2 +Yx3 + Yx2,x3) / Yotal

X1+ X2+ X3 (Yxr + Yx2 + Y3 + Yaaxz + Yxax3+ Yx2x3 + Yxix2x3) / Yotal

Inclusive R2 for individual predictors

X1 (Y)d + Yx1,x2 +Yxixa + Yxl,xZ.xS) / Yotal
X2 (Y2 + Yxx2 + Yx2x3 + Yxix2x3) / Yotal
X3t (Yx3 + Yxix3 + Yx2u3 + Yx1x2x3) / Yotal

Partial R for individual predictors

X1t Yxt / (Yotal- Yx2 = Yx3 = Y2 - Yx1x3 = Yx2x3 = Yx1.x2x3)
X2: Yx2 / (Ytota = Yxt = Ya3 = Yx1x2 = Yx1x3 = Yx2x3 = Yx1x2x3)
Xa: Yxa / (Yotal = Yx1 = Yx3 = Y2 = Yx1x3 = Yx2x3 = Yx1x2x3)

' — Commonalities
Predictor X1

Predictor X3 Xx1,x2: Yx1,x2 / YTotal

Xx1,x3: Yx1,x3 / YTotal
Xx2,x3: Yx2,x3 / YTotal
Predictor X2 Xx1, x2,53:  Yx1,x2,x3 / YTotal

Figure 1: Conceptual framework for the estimation of proportions of variance components in a mixed
model. The large grey circle symbolizes the variance in a response Y, the dark grey area on the top indicates
the share explained by random effects and the coloured ellipses symbolize variance in covariates with
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105 intersections indicating jointly explained variances. partR2 calculates total R?, part R? for individual predictors
106 and sets of predictors as well as inclusive R2. The package does not report partial R? and commonalities,
107  although they could be calculated from the partR2 output.

108

109 Mathematical representation

110  PartR?
111

112 A Gaussian mixed-effects model can be written as:

113 y=Xp+> a, += (Eq. 1)

114 4, ~ N(O, aj{k)

115 &~ N(0,0))

116 Where y is a vector of response values (outcomes), Xis the design matrix of fixed effects, pis a

117  vector of regression coefficients, Z“k is the random part of the model that might contain multiple

118 random effects and g is a vector of residual deviations. The linear predictor n represents the vector

119  of predicted values from the fixed part of the model as i = Xg. Note that we dealing with estimates

120  of regression coefficients and variance components throughout (hence all B should be read as ﬁ).
121

122  Since we are interested in the proportion of the phenotypic variance explained, we symbolize
123 variance components by upper case Y and index by the source of variance (als in Figure 1). While
124  variances are frequently represented as V with the source of variance as an index, this leads to
125  ambiguity for Vx which might represent variance in y explained by x or variance in x itself, which is
126 why we use this alternative notation. The total variance in the response is Yy, = var(y) and is
127 estimated from the raw data or from the model (see below). The variance of the residuals is estimated
128 by the model as y, = var(g)- The variance of the (sum of) random effects is estimated by the model

129 as Y, = Var(zak) and the variance explained by fixed effects can be estimated as the variance

130 in the linear predictor Y, = var(XB)-

131

132  The coefficient of determination R? estimates the proportion of variance in the response that is
133  explained by fixed effects. The coefficient of determination R? for the total fixed part of the model is

134 thus:

135 2 Yy Yy
RX - =
Yy +Yp +Y, Y, (Eq.2)
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Note that the sum of the components in the denominator might deviate numerically from the total
outcome variance in the raw data. However, conceptually they are the same in that they represent
the population-level outcome variance. The variance in the outcome is an estimate from the specific
sample, while the sum of components of the mixed model represents a population-level estimate

given the data and the model.

A reduced model with a (set of) fixed effect predictors X “removed but the same random effect
structure can be fitted as (now using the tilde to highlight the differences from Eqg. 1)
y=XB+>D @, +% (Eq. 3)

a, ~ N(O, a;k )

g ~N(0,07)

with the variance in the linear predictor of the reduced model being Y, = var(XB)-

The variance uniquely explained by X" is then the difference between the variance explained by

fixed effects in the full and the reduced model Y . =Y,—Y, Part R? sets this variance in proportion

to the total outcome variance:

PR (RN (e .
Yy A Y+ Y, Y, (Eq. 4)

Total

The process of fitting a reduced model, estimation of Y,. and estimation of R>.can be repeated

for all predictors and combinations of predictors. At the limit for a model with all fixed effects

removed, R?. = R}.
X

Side-note on partial R?

For completeness we note that the partial R? could be calculated as:

Y, —-Y.

R —_x "% (Eg. 5)
X YTotal_Y)?

However, this estimate does not put the explained variance in perspective of the total variance in the

response. It has the major disadvantage that the denominator depends on Y. The same effect in
terms of Y,. thus appears larger if the reduced model explains more variance (larger v ). Evenin
the case of independent additive predictors, the contributions of the different fixed effects do not

sum up to Rf(, because of the change in the denominator that different y, . are compared to.
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166  Finally, since we are interested in explaining phenotypic variation in some biological response (the
167 phenomenon to be explained), we think that part R? is the more relevant quantity, as it represents

168  the proportion of variance in the response uniquely explained by X .

169
170  Inclusive R?

171

172 Structure coefficients are the Pearson correlations between a particular predictor of interest x* and
173 thelinear predictor 7. Note that we now use a lower case x" to indicate that we are dealing with a
174  single predictor. Structure coefficients are quantified from the full model as:

175 sC. =cor(n,x) (Eq. 6)

176

177  The squared correlation between two variables a and b gives the variance explained for these
178  variablescor(a,b)* = R>. The squared structure correlations thus quantify the proportion of
179  variance in the linear predictor y, that is explained by a the predictor of interest x". Since the

180  proportion of outcome variance explained by the linear predictor in the full model is R2, the

181  inclusive variance explained by predictor x" is:
182 IR>. =SC?-R> (Eqg. 7)
183

184  Inclusive R? as we define it here, complements part R? by giving additional insights. While part R?
185  quantifies the variance uniquely explained by a predictor (or set of predictors), inclusive R? quantifies
186  the total proportion of variance explained in the model, both uniquely and jointly with other
187 predictors. In the special case of a single predictor in a model SC.. =cor(z7,x ) =1, such that
188  IR. =R:.

189

190  Part R?in non-Gaussian models

191

192 For Gaussian models there is a single residual error term & with variance y, = var(s). For non-
193 Gaussian models, however, there is additional error that arises from the link function that translates
194  latent-level predictions to observed outcomes. This variance can be approximated for a variety of
195 link functions and error distributions (Nakagawa & Schielzeth, 2010; Nakagawa, Johnson &
196  Schielzeth, 2017). Our R package currently implements distribution-specific variances for Poisson
197 models with log and square root link functions and binomial models with logit and probit link

198  functions. For Poisson models and non-binary binomial models (proportion models), partR2 also
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199 fits an observational level random effect (if none is fitted already) to estimate variance due to
200 overdispersion (Harrison, 2014). Both the overdispersion variance, now denoted Yz and the

201 distribution-specific variance Y,, are included in the denominator of the part R2 calculation:

202
203 2 Yy — Yy

Ry. =

XY, 4 Y, + Y, + Y, (Eq. 8).

204
205 o :

Notably, there are other estimation methods for R? for non-Gaussian models or GLMM (Jaeger et
206 al., 2017; Piepho, 2019). Currently, partR2 only implements the method based on Nakagawa &
207

Schielzeth (2013) and Nakagawa, Johnson & Schielzeth (2017).

208  Other implementations in R packages

209 There are a few R packages that calculate part R? for linear models (Im), for example
210 rockchalk: :getDeltaRsquare (Johnson & Grothendieck, 2019). Other packages calculate
211 partial R? (not part R?) such as asbio: :partial.R2 (Aho, 2020) and rr2: :R2 (lves & Li, 2018) for
212  Imsand rsqg::rsqg.partial (Zhang, 2020) for linear models and generalized linear models (glm).
213 Note that partial R? is different from part (semi-partial) R? (partial R? > part R?), since it represents the
214  unique variance explained by a particular predictor but after removing (‘partialling out’) the variance
215  explained by the other predictors (Yeatts et al., 2017, Figure 1). The ppcor package calculates semi-
216 partial and partial correlations, but does not work on fitted GLM or GLMM models (Kim, 2015). The
217  package yhat features functions for commonality analyses in glms (Nimon, Oswald & Roberts,
218  2020). None of these packages estimates part R? for mixed-effects models that we focus on here.
219  Several packages estimate (marginal) R? as the variance explained by all fixed effects in linear mixed-
220  effects models. This includes performance::r2 nakagawa (Lidecke et al, 2020),
221 MuMIn: :r.squaredGLMM (Barton, 2019), and rptR: : rpt (Stoffel, Nakagawa & Schielzeth, 2017).
222 These packages do not allow to estimate part R?. The only versatile package to estimate part R? from
223  linear mixed-models is r2g1mm (Jaeger, 2017). The function r2glmm: : r2beta computes part R?
224 from Imer, Ime and glmmPQL model fits (also for linear models Im and glm) based on Wald statistics.
225  However, it does neither support 1me4: : glmer for generalized linear model fits nor does it allow
226 to estimate R? for combinations of predictors. Furthermore, it does not estimate structure
227  coefficients, inclusive R? or part R? for multilevel factors as a unit.

228
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229  Features of partR2

230 partR2 takes a fitted (generalized) linear mixed-model (GLMM), from the popular mixed model
231 package 1me4 (Bates etal., 2015) and estimates part R? by iteratively removing fixed effects (Nimon
232 et al,, 2008). The specific fixed effects of interest are specified by the partvars and/or by the
233  partbatch argument. The package estimates part R? for all predictors specified in partvars
234 individually and in all possible combinations (the maximum level of combinations can be set by the
235 max_level argument). A custom specification of fixed effects of interest saves computation time as
236  compared to an all-subset specification and is therefore required in partR2.

237 The central function partR2 will work for Gaussian, Poisson and binomial GLMMs. Since the model
238  fitis done externally, there is no need to supply a family argument. For non-Gaussian GLMMs, the
239  package estimates link-scale R? (sensu Nakagawa & Schielzeth, 2013). We implement parametric
240  bootstrapping to quantify sampling variance and thus uncertainty in the estimates. Parametric
241  bootstrapping works through repeated model fitting on simulated data based on fitted values
242  (Faraway, 2015). The number of bootstrap iterations is controlled by the nboot argument. We
243  recommend a low number of nboot for testing purposes and a large number (e.g. nboot = 1000)
244 for the final analysis.

245  The package returns an object of class partR2 that contains elements for part R?, inclusive R?,
246  structure coefficients, beta weights (standardized regression slopes), bootstrapping iterations and
247 some other information. An extended summary, thatincludes inclusive R?, structure coefficients and
248  beta weights can be viewed using the summary function. The forestplot function shows a
249  graphical representation of the variance explained by individual predictors and sets of predictors
250  along with their bootstrapping uncertainties. All computations can be parallelized across many cores
251 based on the future and furrr packages (Vaughan & Dancho, 2018; Bengtsson, 2020). An

252  extended vignette with details on the complete functionality accompanies the package.

253

254  Example with Gaussian data

255  We use an example dataset with hormone data collected from a population of captive guinea pigs
256  to illustrate the features of partR2. The dataset contains testosterone measurements of 31 male
257  guinea pigs, each measured at 5 time points (age between 120 and 240 days at 30-day intervals).
258  We analyze log-transformed testosterone titers and fit male identity as a random effect. As covariates
259  the dataset contains the time point of measurement and a rank index derived from behavioral

260  observations around the time of measurement (Mutwill et al., in prep.).
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261  Rank and Time are correlated in the dataset (r = 0.40), since young individuals are typically low rank,
262  while olderindividuals tend to hold a high rank. Time might be fitted as a continuous predictor or as
263  afactor with five levels. Here we present the version of a factorial predictor to illustrate the estimation
264  of part R? for interactions terms. Hence, an interaction between time and rank will also be fitted.
265 First, the package needs to be loaded (after successful installation) in an R session (R Core Team,
266  2019). The package comes with the guinea pig dataset that also needs to be loaded using the data
267  function.

268

269 library(partR2)

270 data (GuineaPigs)

271

272 A single record contains missing values for testosterone measurements. Missing records can be
273  problematicto handlein partR2 and are better removed prior to the analysis. We also log-transform
274  the response and convert Time to a factor and filter for the first three time points to simplify the

275  output.

276
277 GuineaPigs <- subset (GuineaPigs,

278 !is.na(Testo) & !is.na(Rank) & (Time %in% c(1,3,5)))
279 GuineaPigs$TestoTrans <- log(GuineaPigs$Testo)

280 GuineaPigs$Time <- factor (GuineaPigs$Time)
281

282  We then fit a linear mixed effects model using 1mer from the 1me4 package (Bates et al., 2015).
283  Further exploration of the data and model checks are omitted here for simplicity, but are advisable

284  inreal data analysis.

285
286 library (lme4)

287 mod <- Imer (TestoTrans ~ Rank * Time + (1|MaleID), data=GuineaPigs)
288

289 The partR2 analysis takes the Imer model fit (an merMod object) and a character vector partvars
290  indicating the fixed effects to be evaluated. Interactions are specified with the colon syntax (see the

291  package's vignette for further details).
292
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res <- partR2(mod, partvars = c("Rank", "Time", "Rank:Time"),

nboot=100)

The function returns a partR2 object. The print function reports the part coefficients of
determination and a more extensive summary can be viewed with the summary function which also

shows inclusive R?, structure coefficients and beta weights (standardized slopes) (Figure 2).

print (res)

summary (res, round to = 2)

R2 (marginal) and 95% CI for the full model:
R2  CI_lower CI_upper ndf
0.17 0.09 0.36 6

Part (semi-partial) R2:

Predictor(s) R2  CI_lower CI_upper ndf
Model 0.17 0.09 0.36 6
Rank 0.00 0.00 0.18 6
Time 0.02 0.00 0.20 4
Rank:Time 0.04 0.00 0.21 4
Rank+Time 0.02 0.00 0.20 4
Rank+Rank:Time 0.16 0.08 0.34 3
Time+Rank:Time 0.04 0.00 0.22 2
Rank+Time+Rank:Time 0.17 0.09 0.36 1

Inclusive R2 (SC™2 * R2):
Predictor IR2 CI_lower CI_upper

Rank 0.13 0.03 0.26
Time3 0.00 0.00 0.04
Time5 0.00 0.00 0.04
Rank:Time3 0.05 0.01 0.13
Rank:Time5 0.01 0.00 0.07

Structure coefficients r(Yhat,x):
Predictor SC CI_lower CI_upper

Rank 0.87 0.56 0.94
Time3 0.14 -0.18 0.43
Time5 0.16 -0.26 0.48

Rank:Time3 0.56 0.22 0.75
Rank:Time5 0.28 -0.14 0.57

Beta weights (standardised estimates)
Predictor BW CI_lower CI_upper

Rank 0.50 -0.08 0.94
Time3 -0.19 -0.53 0.14
Time5 0.17 -0.20 0.55

Rank:Time3 0.17 -0.36 0.83
Rank:Time5 -0.36 -0.95 0.38

Figure 2: Summary output for example data analysis with Gaussian data (guinea pig analysis).
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305  Thevariances appear largely additive, since combinations of predictors explain about the sum of the
306  variance explained by individual predictors. The main components of the partR2 object can be
307  accessed forfurther processing as res$R2 for part R? (with point estimates and confidence intervals),

308 res$ScC for structure coefficients, res$IR2 forinclusive R? and res$BW for beta weights.

309

310 Dealing with interactions

311  Models with interactions are problematic, because the variance explained by a main factor can be
312  estimated in multiple ways (Figure 3) and because of the internal parametrization of the model

313 matrix.

(A) Main effect and interaction alone

Generic syntax
mod <- Ilmer(Y ~ X1 * X2 + (1|RE),
data)
partR2 (mod, partvars = c('X1',
'X2', 'X1:X2'), data)
Components estimated
= X

.Xz

o Xi:Xe Predictor X1 Predictor Xz

(B) Main effects with their interaction

Generic syntax
mod <- Imer(Y ~ X1 * X2 + (1|RE),
data)
partR2 (mod, partbatch =
list (X1 = c('X1', 'X1:X2'),
X2 = c('X2', 'X1:X2'")),
data)

Components estimated

.% Xz Predictor X1

Predictor X2

Interaction Xint

(C) Main effect priority

Generic syntax
modl <- lmer(Y ~ X1 * X2 + (1|RE),
data)
partl <- partR2(mod, partvars =
c('X1:X2'), data)
mod2 <- lmer(Y ~ X1 + X2 + (1|RE),
data)
part2 <- partR2(mod2, partvars =
c('X1','X2'), data)
mergeR2 (partl, part2)

Components estimated

= X Predictor X1
. X2
e Xi: X2 Interaction Xint

314

315 Figure 3: Conceptual framework for dealing with interactions. An interaction is the product of two main
316  effects and thus often correlated with each of the main effects. The figure shows three options for estimating
317  the part R? for main effects that are involved in an interaction.
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318  The model output above shows the number of parameters fitted in each model (Figure 2, each row
319  intheR2 partrefersto areduced model). Inthe print and summary outputthisis visible as a column
320 labelled 'ndf'. A close inspection shows that the removal of rank did not change the number of
321 parameters (6 for the full model, 6 for the model excluding rank). This is because the model matrix
322 is reparametrized in the reduced model and 1mer will fit three terms for the interaction (here
323 Timel:Rank, Time3:Rank, Time5:Rank) rather than just two for the interaction in the full model.
324  Dummy coding of the factor can be usefully combined with centering of dummy coded variables
325 (Schielzeth, 2010) and gives more control over this re-parametrisation. It allows for example to
326  estimate the part R? for the average effect of Rank by constraining the average Rank effect to zero,

327 so that only the two contrasts are fitted (here Time3:Rank, Time5:Rank):

328
329 GuineaPigs <- cbind(GuineaPigs, model.matrix(~ 0 + Time,

330 data=GuineaPigs))

331 GuineaPigs$Time3 <- GuineaPigs$Time3 - mean (GuineaPigsS$Time3)

332 GuineaPigs$Time5 <- GuineaPigs$Time5 - mean (GuineaPigsS$Time5)

333

334  The model can then be fitted with dummy predictors. Since the usual specification in partR2 via
335 partvars would fit all possible combinations, including combinations of the different Time terms,
336  such aruncan take along time. However we are mostly interested in fitting and removing all dummy
337  predictors at a time. The package therefore features an additional argument partbatch to specify
338  a list of character vectors containing the sets of predictors that should always be kept together. In
339 the example, the list has two elements, a character vector for the dummy-coded main effects and a
340  character vector for the interaction terms. The analysis yields part R? for two batches of predictors as

341 well as Rank and their combinations.

342
343 mod <- lmer (TestoTrans ~ (Time3 + Time5) * Rank + (1|MalelD),

344 data=GuineaPigs)

345 batch <- c("Time3", "Time5")

346 partR2 (mod, partvars=c ("Rank"), partbatch=list (Time=batch,
347 "Time:Rank = pastel (batch, ":Rank")), nboot=100)

348
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349  This, however, is only one way of dealing with interactions (Option A in Figure 3). It represents the
350  variance uniquely explained by main effects even in the presence of an interaction. Since interactions
351  are the products of main effects, interaction terms are typically correlated with main effects and the
352  part R? calculated above might not represent a biologically relevant quantity. There are two
353  alternative ways of how to deal with interactions. Both are possible in partR2, but since
354 requirements differ between applications, we do notimplement one with priority.

355  One way to think about variance explained by main effects and their interactions is to pool the
356  variance explained by a main effect with the variance explained by interactions that the term is
357  involvedin(Option B in Figure 3). In the guinea pig example, for instance, Rank might be considered
358  important either as a main effect or in interaction with time and we might want to estimate the total
359  effect of rank. This can be done for the guinea pig dataset by using partbatch:

360
361 mod <- lmer (Testo ~ Time * Rank + (1|MaleID), data=GuineaPigs)

362 partR2 (mod, partbatch = list(Time=c("Time", "Time:Rank"),

363 Rank=c ("Rank", "Time:Rank")), nboot=100)

364

365 A third, which we think usually preferable option is to prioritize main effects by assigning the
366  proportion of variance that is explained by a main effect together with the variance jointly explained
367  with its interaction to the main effect (Option C in Figure 3). This implies that part R? for a main effect
368 is estimated when its own interaction is excluded from the model (modl and partl below). The

369  variance explained by the interaction is then estimated in a separate model (mod2 and part2 below).

370  We have implemented a helper function mergeR2 that allows to merge two partR2 runs.

371
372 modl <- Imer (Testo ~ Time * Rank + (1|MaleID), data=GuineaPigs)

373 partl <- partR2(modl, partvars = c("Time:Rank"), nboot=100)

374 mod2 <- lmer (Testo ~ Time + Rank + (1|MaleID), data=GuineaPigs)
375 part2 <- partR2(mod2, partvars = c("Time", "Rank"), nboot=100)
376 mergeR2 (partl, part2)

377

378  All these results can be viewed by print, summary and plotted by forestplot. It is important to
379  bearin mind the differences in the interpretation as illustrated in Figure 3.

380
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381  An example with proportion data

382  As anexample for proportion data, we analyze a dataset on spatial variation in color morph ratios in
383  a color-polymorphic species of grasshopper. Individuals of this species occur either in a green or a
384  brown color variant and the dataset contains counts of brown and green individuals (separated for
385  females and males) from 42 sites sampled in the field (Dieker et al., 2018). Site identity will be fitted
386  as a random effect. As covariates the dataset contains a range of Bioclim variable that describe
387  various aspects of ecologically relevant climatic conditions (Karger et al., 2017). The aim is to identify
388  the climatic conditions that favour one or the other colour variant.

389  Wefirstload the grasshopper dataset. We standardise all Bioclim variables using the scale function
390 and add an observation-level counter that will be used as an observation-level random effect (OLRE)
391  to account for overdispersion (Harrison, 2014).

392

393 data (Grasshoppers)

394 for (1 in which(substr (colnames (Grasshoppers),1,3)=="Bio")) {
395 Grasshoppers[,i] <- scale(Grasshoppers[,i])
396 }

397 Grasshoppers$SOLRE <- 1l:nrow(Grasshoppers)

398

399  We first fit a GLMM with binomial error structure and logit link using the glmer function from the
400 1me4 package (Bates et al., 2015). A previous analysis has shown that the first principle component
401  of the Bioclim data explains a small, but significant part of variation in morph ratios (Dieker et al.,
402 2018). For illustration, we use the four Bioclim variables that show a loading of more than 0.30 on

403  the first principle component.
404

405 mod <- glmer (cbind (nGreen, nBrown) ~ Bio7 + Biol4 + Biol7 + Biol9 +
406 (1/SiteID) + (1|OLRE), data=Grasshoppers, family="binomial")
407 res <- partR2(mod, partvars=c("Bio7", "Biol4", "Biol7", "Biol9"),
408 max_ level = 1, nboot=100)

409
410  The summary output informs us (at the bottom) that there have been warnings in the bootstrapping

411  processes. This is not unusual since bootstrapping frequently generates data, for which one of the
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412  parameters is estimated at the boundary (in particular if one of the variance components is very
413  small). The results can be visualised using the forestplot function (Figure 4). Plotting is based on
414 ggplot2 (Wickham, 2016), and multiple forest plots can easily be assembled using the patchwork

415  package (Pedersen, 2020). Forest plots show the effect sizes graphically and can be set to either

416 show part R? when type = "R2" (the default), inclusive R> when type = "IR2", structure
417 coefficients when type = "sC", and beta weights (standardized model estimates) with type =
418  "BuW".

419

420 pl <- forestplot(res, type = "R2")

421 p2 <- forestplot(res, type = "IR2")

422 p3 <- forestplot(res, type = "SC")

423 p4 <- forestplot(res, type = "BW")

424

425 library (patchwork)

426 (pl + p2) / (p3 + p4) + plot annotation(tag levels = "A",
427 tag prefix = " (", tag suffix = ")")
428
(A) , (B) ,
Model ' o Bio7 —O——
Bio7 O———— o
| Biold +—O——m———
Biol4 F-O——m——— :
! Bio17
Biol7 —O——— !
Bolg O— Biol9 —O——m—
0000 0025 0050 0.075 000 002 004 006 0.08
R? and CI Inclusive R? and CI
(©) , (D) :
Bio7 | —O— Bio7 o
1 1
Bio14 —O——+ Bio14 —_—
1 1
1 1
Bio17 —O—— Biol7 ——O—
1 1
Biol9 —O— Bio19 —Llo—
40 -05 00 05 3 2 4 0 1 2
Structure coefficients and ClI Beta weights and Cl

429

430 Figure 4: Comparison of part R? for individual predictors (A), inclusive R? (B), structure coefficients
431  (C) and beta weights (D) for an example dataset with proportion data from grasshoppers.
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432 A comparison of part R?, inclusive R?, structure coefficients beta weights shows the different insights
433 that can be gained from these different summaries of the model fit (Figure 3). In this case, three of
434  the Bioclim variables (Bio14, Bio17, Bio19) are highly positively correlated (r = 0.93), while a fourth
435  one (Bio7) is moderately negatively correlated to all three of them (r < -0.63). Part R? are thus low,
436  because none of the parameters uniquely explains a large share of the variance. Bio17 seems to be
437  the best predictor of morph ratios, with the largest (negative) beta weight, largest part R?, largest
438  structure coefficients and largest inclusive R?. Beta weights for the two positively correlated (but
439  slightly weaker) predictors, Bio714 and Bio19, switch sign as is not unusual for collinear predictors.
440  This means that after accounting for the effect of Bio17, they contribute positively to prediction.
441  However, structure coefficients show that both variables load negatively on the linear predictor, as
442  does Biol7.

443

444  Challenges

445  Usingtransformation or functions in the formula argument can lead to issues with matching the terms
446  of the model with the partvars argument of partR2. It is therefore important that the names in
447  partvars match exactly the terms in the merMod object. However, any complications are easily
448  circumvented by implementing the transformations before fitting the model and storing them in the
449  data frame used in the analysis. It is also worth to be aware that unusual names may cause
450  complications and renaming can offer an easy solution.

451  We have repeatedly seen model outputs where the point estimate does not fall within the confidence
452  interval. This mightseem like in the bug in the package, butin our experience usually indicates issues
453  with the data and/or the model. In fact, parametric bootstrapping can be seen as a limited form of
454 posterior predictive model checks (Gelman & Hill, 2006). If generating new data from the fitted
455  model (as done with parametric bootstrapping) results in data that are dissimilar to the original data,
456  then the model is probably not a good fit to the data.

457  Bootstrap iterations can sometimes yield slightly negative estimates of part R?, in particular if the
458  variance explained by a predictor is low. These negative estimates happen in mixed-effects models,
459  because estimates of random-effect variance might change when a predictor is removed and this
460 can lead to a slight decrease in the residual variance, and hence a proportional increase in R?(see
461  also Rights & Sterba, 2019). By default, partR2 sets negative R? values to 0, but this can be changed
462 by setting allow neg_ r2 to TRUE. It also happens that inclusive R? is estimated slightly lower than

463  part R? when the contribution of a particular predictor is very large. We consider both cases as


https://doi.org/10.1101/2020.07.26.221168
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.26.221168; this version posted March 25, 2021. The copyright holder for this preprint

464
465
466
467
468
469
470

471

472
473
474

475
476

477

478
479

480

481

482

483

484

485

486

487

488

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

sampling error that should serve as a reminder that variance components are estimated with
relatively large uncertainly and minor differences should not be over-interpreted.

A warning needs to be added for the estimation of R? (and, in fact, also repeatability R) from small
datasets. In particular if the number of levels of random effect is low, variance components might be
slightly overestimated (Xu, 2003). This issue applies similarly to the variance explained by fixed

effects, in particular if the number of predictors is large relative to the number of data points.

Code and data availability

The current stable version of partR2 can be downloaded from CRAN (https://cran.r-

project.org/web/packages/partR2/index.html) and the development version can be obtained from

GitHub (https://github.com/mastoffel/partR2). The data used in the examples is part of the package.
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