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Abstract 

 
Associations between genotype and phenotype derive from four sources: direct genetic effects, indirect 

genetic effects from relatives, population stratification, and correlations with other variants affecting the 

phenotype through assortative mating. Genome-wide association studies (GWAS) of unrelated individuals 

have limited ability to distinguish the different sources of genotype-phenotype association, confusing 

interpretation of results and potentially leading to bias when those results are applied 3 in genetic prediction 

of traits, for example. With genetic data on families, the randomisation of genetic material during meiosis can 

be used to distinguish direct genetic effects from other sources of genotype-phenotype association. Genetic 

data on siblings is the most common form of genetic data on close relatives. We develop a method that takes 

advantage of identity-by-descent sharing between siblings to impute missing parental genotypes. Compared to 

no imputation, this increases the effective sample size for estimation of direct genetic effects and indirect 

parental effects by up to one third and one half respectively. We develop a related method for imputing 

missing parental genotypes when a parent-offspring pair is observed. We provide the imputation methods in a 

software package, SNIPar (single nucleotide imputation of parents), that also estimates genome-wide direct 

and indirect effects of SNPs. We apply this to a sample of 45,826 White British individuals in the UK Biobank 

who have at least one genotyped first degree relative. We estimate direct and indirect genetic effects for ~5 

million genome-wide SNPs for five traits. We estimate the correlation between direct genetic effects and 

effects estimated by standard GWAS to be 0.61 (S.E. 0.09) for years of education, 0.68 (S.E. 0.10) for 

neuroticism, 0.72 (S.E. 0.09) for smoking initiation, 0.87 (S.E. 0.04) for BMI, and 0.96 (S.E. 0.01) for height. 

These results suggest that GWAS based on unrelated individuals provides an inaccurate picture of direct 

genetic effects for certain human traits.  

 

Introduction 

 

Genome-wide association studies (GWAS) have found thousands of associations between 

genetic variants and human traits1 and have enabled the prediction of human traits from 

genetic data through the use of polygenic scores2. GWAS typically estimate the additive 

effect of an allelic substitution at a single nucleotide polymorphism (SNP) by regression of 

individuals9 phenotypes onto the number of copies of an allele (genotype) that they carry.  

 

Multiple different phenomena can contribute to the effects estimated by GWAS applied to 

unrelated individuals3, which we refer to as 8population effects9, since they reflect the 

overall genotype-phenotype association in the population. The causal effect of inheriting a 

particular allele, called the direct genetic effect, contributes to population effect estimates. 

However, indirect genetic effects 3 effects of genetic variants in one individual that affect 

the trait of another through the environment 3 from relatives, such as parents, can also 
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contribute to population effect estimates. Such effects have been shown to be important 

for educational attainment4,5. Both direct and indirect genetic effects are causal effects of 

alleles, due to their presence in the phenotyped individual and/or relatives. It is also 

possible for the causal effect of an allele to be magnified by assortative mating with respect 

to a correlated phenotype, which induces correlations between causal alleles at different 

genomic locations3,4. In addition to causal effects, non-causal associations between 

genotype and phenotype due to population stratification can contribute to population 

effect estimates6,7. Population stratification occurs when different subpopulations within 

the GWAS sample have different mean trait values, inducing correlations between SNPs that 

are differentiated between the subpopulations and the trait.  

 

Decomposing the population effects estimated by GWAS into the different components is 

important for interpreting and applying GWAS results. For example, polygenic prediction of 

educational attainment (EA) leverages indirect genetic effects from parents5,8. Thus, any 

potential application of genetic prediction of EA should take account of the fact that a 

substantial fraction of the predictive ability of the score derives from prediction of the 

family environment, rather than 8innate9 abilities of the child. It has also been shown that 

indirect effects and assortative mating can lead to spurious inference in Mendelian 

Randomisation, and that this can be remedied by using unbiased estimates of direct genetic 

effects9. Further, subtle population stratification effects in GWAS of height resulted in 

spurious inference of selection on height in Europe7,10, highlighting the need for 

stratification free estimates of direct genetic effects on traits.  

 

Direct genetic effects can be separated from other sources of genotype-phenotype 

association by taking advantage of the randomisation of genetic material that occurs during 

meiosis, which is independent of the environment8,11313. The offspring genotype varies 

randomly around the expectation given the genotype of the mother and father due to 

segregation of genetic material in the parents during meiosis. Thus, analysis of parent-

offspring trios can be used to estimate direct genetic effects separately from indirect 

genetic effects and confounding effects8,14. However, large samples with genetic data on 

individuals and both parents are not widely available. A less powerful approach uses genetic 

differences between siblings, which are also a consequence of random segregations in the 

parents during meiosis, to estimate direct genetic effects. This approach has been more 

widely applied due to the greater availability of large samples of genotyped sibling 

pairs5,7,15,16.  

 

Genetic data on siblings contains information about the genotypes of the parents of the 

siblings. We develop a method for imputing missing parental genotypes from sibling 

genotypes. This method takes advantage of the fact that, given knowledge of whether 

siblings inherited the same or different alleles from each parent --- i.e., given knowledge of 

the identity-by-descent (IBD) states of the siblings9 alleles --- the parental alleles that have 

been observed in the siblings can be determined. Unlike methods based on differences 

between sibling genotypes, our method can provide unbiased estimates of indirect genetic 

effects from siblings and distinguish them from direct effects and indirect genetic effects 

from parents.  
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We also show that imputing the missing parent9s genotype when genotypes are available 

for a phenotyped individual (proband) and one of the proband9s parents enables unbiased 

estimation of direct genetic effects. We provide the methods for imputing missing parental 

genotypes in a software package, SNIPar (single nucleotide imputation of parents), that can 

also infer genome-wide direct and indirect effects of SNPs. The software package models 

phenotypic correlations within-families and can also be applied to samples of probands with 

both parents genotyped.   

 

We apply our methods to 45,826 White British individuals in the UK Biobank with at least 

one genotyped parent or sibling. We estimated direct and indirect genetic effects for ~5 

million genome-wide SNPs for educational attainment, height, body mass index (BMI), 

neuroticism, and smoking initiation. We use the resulting direct effect estimates to estimate 

the genetic correlation between direct genetic effects and population effects for each of the 

traits. Our findings suggest that for certain traits, SNP effects estimated from standard 

GWAS provide inaccurate estimates of direct genetic effects.  

 

Results 

 

Imputing parental genotypes from sibling genotypes 

 

Given genotype observations at a single SNP for a sibling pair, the number of parental alleles 

that have been observed depends upon the whether the siblings have inherited the same or 

different alleles from each parent, i.e. the IBD states of the alleles (Figure 1).  

 

 

 
Figure 1 Imputation of parental genotype from sibling genotype. Here we illustrate how, given knowledge of the IBD state 

between the siblings9 alleles, the combined maternal and paternal genotype of the parents of the siblings can be imputed. If 

the siblings do not share any alleles identical-by-descent (IBD), then all four parental alleles are observed (IBD 0). If the 

siblings share one allele by descent from their parents, then three parental alleles are observed, and one allele is 

unobserved (IBD 1). If the siblings share both alleles by descent from their parents, then only two parental alleles are 

observed and two are unobserved (IBD 2).  

Since parent-of-origin of alleles cannot be determined from sibling data alone, we impute 

the sum of maternal and paternal genotypes.  Let �par(i) =	�m(i) + �p(i) be the sum of the 
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genotype of the mother (�m(i)) and the genotype of the father (�p(i)) in family �, and let �i1 

and �i2	be the genotypes of the two siblings. We compute E[�par(i)|�i1, �i2, IBD*], where 

IBD*  is the IBD state of the two siblings. Since all four alleles are observed in IBD state 0, we 

have that  

E[�par(i)|�i1, �i2, IBD* = 0] = �i1 + �i2. 

 

When we do not observe a parental allele, we impute it using the population allele 

frequency, �. Therefore, 

E[�par(i)|�i1, �i2, IBD* = 2] = �i1 + 2�. 
 

When the siblings share one allele by descent from their parents, it is necessary to know 

which allele is shared to use all of information in the siblings9 genotypes. Let �*+¬- be the 

binary genotype (presence/non-presence) of the allele in sibling 2 that is not shared IBD 

with sibling 1.  We therefore have 

 

E[�par(i)|�i1, �i2, IBD* = 1] = �i1 + �*+¬- + �. 

 

Without phased data, it is impossible to determine which allele is shared when both siblings 

are heterozygous and in IBD state 1. However, it can be shown that with un-phased data 

(Supplementary Note) 

 

E[�par(i)|�i1 = 1, �i2 = 1, IBD* = 1] = 1 + 2�. 

 

It is therefore possible to perform the imputation without access to phased genotypes, but 

there is a loss of information compared to imputation with phased genotypes when both 

siblings are heterozygous and in IBD state 1 (Supplementary Note). We generalise the 

imputation procedure to families with more than two observed sibling genotypes in the 

Supplementary Note.  

 

By using the population allele frequencies to impute the unobserved parental alleles, we are 

assuming that parental alleles are uncorrelated. Apart from in samples exhibiting very 

strong structure or inbreeding, the correlations between parental alleles at individual SNPs 

will be very weak, so this assumption will be approximately correct.   

 

Estimating effects using sibling and imputed parental genotypes 

 

We consider a model for the effect of a SNP on the traits of two siblings that includes both 

direct genetic effects and indirect genetic effects from parents and siblings. Let �ij be the 

phenotype of sibling � in family �. Then 

 

�i1 = ��i1 + �-�i2 + �/�p(i) + �0�m(i) + �i1; �i2 = ��i2 + �-�i1 + �/�p(i) + �0�m(i) + �i2; 
 

where � is the direct effect of the SNP and �- is the indirect genetic effect from the sibling. 

Offspring genotypes are conditionally independent of environmental effects given parental 

genotypes. Therefore, estimates of direct effects and indirect genetic effects from fitting 
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this model are unbiased (Supplementary Note)11. Any correlation between the siblings9 

genotypes and other factors affecting the trait are captured by the parental genotypes. 

Thus, �/ and �0 capture indirect genetic effects from the father and mother respectively, in 

addition to any confounding due to population stratification and any magnification of direct 

and sibling indirect genetic effects due to assortative mating11 (Supplementary Note). We 

will refer to �/	 and �0 as 8parental effects9, even though they can reflect phenomena other 

than indirect genetic effects from parents. Further, the residuals �i1 and �i2	are uncorrelated 

with the genotypes of the siblings and parents, but may be correlated with each other 

(Supplementary Note). Note that standard GWAS methods that regress proband phenotype 

onto proband genotype are expected to estimate � + �-/2 + (�/ + �0)/2, which we refer 

to as 8population effects9.  

 

Many previous analyses of family data regressed the difference in sibling phenotype onto 

the difference in sibling genotype5,7,16. In our model, this corresponds to:  

 

�i1 2 �i2 = (� 2 �-)(�i1 2 �i2) + �i1 2 �i2. 

 

This method is expected to yield unbiased estimates of � 2 �-	(see our companion paper for 

further details17). The difference between sibling phenotypes forms one axis of information, 

but there is an orthogonal axis of information: the sum of the sibling phenotypes, which is 

uncorrelated with the difference between sibling phenotypes. In our model, this 

corresponds to:   

 

�i1 + �i2 = (� + �-)(�i1 + �i2) + 2�/�p(i) + 2�0�m(i) + �i1 + �i2. 
 

However, for this axis, regression on observed sibling genotypes alone cannot separate 

direct genetic effects from parental effects. To separate direct genetic effects from parental 

effects, the imputed parental genotypes derived above can be used. Let �@par(i) be the 

parental genotype imputed from sibling genotypes and IBD information, then, by 

performing the regression 

�i1 + �i2	~(�i1 + �i2) + �@par(i) 
 

one obtains estimates of � + �- and the combined parental effect (�/ + �0). These 

estimates can then be combined with the estimate of � 2 �- from differences between 

siblings to produce separate estimates of � and �-. We note that the regressions outlined 

above do not generalise well to samples with families with different numbers of siblings and 

missing phenotype observations. For applications to real data and in our software package, 

we use a more flexible linear mixed model approach that models correlations between 

siblings9 phenotypes (Methods and Supplementary Note). Further, we prove that the 

method we propose gives estimates of the effects that converge to the true values 

(Supplementary Note).  

 

While our method is able to distinguish indirect genetic effects from siblings from direct 

genetic effects, more precise estimates of direct genetic effects can be obtained by 

assuming that �- = 0 (Supplementary Note), at the cost of some bias if �- b 0 (see our 

companion paper for details17). For the following results, we make the assumption that  

�- = 0 unless otherwise stated.  
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 6 

 

By using imputed parental genotypes, more precise estimates of � can be produced than 

from using sibling differences alone: in the Supplementary Note, we show that by using 

imputed parental genotypes derived from phased IBD data, the effective sample size for 

estimation of � is increased by a factor of 2(2 + �)/(3 + 3�), where r is the correlation of 

the siblings9 residuals, which will be approximately equal to their phenotypic correlation for 

polygenic traits. For � > 0, this has a maximum of 4/3 at � = 0, corresponding to an 

effective sample size gain of 1/3rd (Figure 2). 

 
Figure 2 Relative efficiency for estimation of direct and parental effects using different imputation methods. We compare 

the theoretical effective sample size for estimation of direct genetic effects and combined parental effects from three 

imputation methods: one that does not use identity-by-descent (IBD) segments (blue)18, one that uses un-phased IBD 

segments (red), and one that uses phased IBD segments (black). Effective sample size is measured relative to that from 

using sibling genotypes alone without any imputation and assuming that we have a sample of independent families with 

two genotyped and phenotyped siblings in each family (Supplementary Note). A) Effective sample size for estimation of the 

direct genetic effect of an allele with frequency 20% as a function of correlation between siblings9 residuals, which is 

approximately equal to phenotypic correlation for polygenic traits. B) Effective sample size for estimation of direct genetic 

effects as a function of allele frequency when the correlation between siblings9 residuals is zero. (Results follow a similar 

pattern for other sibling correlations.) For imputation with un-phased IBD, when both siblings are heterozygous and share 

one allele IBD, exactly which parental alleles have been observed cannot be determined (Figure 1), so the imputation 

averages over the two possibilities. When imputing without using IBD segments at all, uncertainty in inference of observed 

parental alleles increases rapidly with allele frequency. When phased IBD information is used, the parental alleles that have 

been observed can always be determined, so the relative efficiency does not depend upon allele frequency. C) The same as 

A but for average parental effects. D) The same as for B but for average parental effects.  
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For estimation of parental effects, using parental genotypes imputed from sibling genotypes 

and phased IBD data increases effective sample size by a factor of 3(2+r)/(4+4r) compared 

to using sibling genotypes alone. For estimation of both direct and parental effects, the gain 

is somewhat lower when un-phased identity-by-descent data is used, depending upon allele 

frequency and � (Figure 2 and Supplementary Note).  

 

Imputing a missing parental genotype from a parent-offspring pair 

 

Consider imputing the genotype of a father whose genotype is unobserved given 

observations of the proband and the mother9s genotype. More formally, we impute the 

missing paternal genotype as the expectation given the proband and mother9s genotype: 

�@p(i)=	E[�p(i)|�*1, �m(i)]. It is trivial to infer which allele was inherited from the father 

except when both proband and mother are heterozygous. For example, if the parental 

genotype is AA and the proband genotype is AT, then the T allele must have been inherited 

from the missing parent. This means that one half of the paternal genotype can be inferred 

exactly, and the expectation of the other half is given by the population allele frequency. 

When both mother and proband are heterozygous, E[�p(i)|�*1, �m(i)] can be computed by 

averaging over the two possible inheritance patterns (Table 1 and Supplementary Note). 

 
Table 1 The imputed parental genotype as a function of the proband and maternal genotype: �"p(i)=	E[�p(i)'�%&, �m(i)) for 

an allele with frequency � 

   �m(i)  

  0 1 2 

 0 f f - 

�i1 1 1+f 2f f 

 2 - 1+f 1+f 

  

This approach is generalised to the case when multiple full-sibling offspring of the observed 

parent are genotyped in the Supplementary Note. We note that more sophisticated 

methods for phasing and determination of parent-of-origin could be applied to improve the 

imputation in the case when both parent and proband are heterozygous. However, in this 

paper, we consider this simple imputation method as it is easy to apply to un-phased 

genotype data on parent-offspring pairs for very large numbers of SNPs.   

 

Estimating direct and indirect genetic effects using proband and (imputed) parental 

genotypes 

 

Consider a sample of families where the genotype of the proband and its mother have been 

observed but the father9s genotype is unobserved.  We show that performing the regression 

 

�i1~�*1 + �@p(i) + �m(i) 
 

produces estimates of �, �/, and �0 that converge to their true values (Supplementary 

Note). This is a consequence of a general proof that we provide for the consistency of least 

squares estimates of regression coefficients when unobserved covariates are imputed as the 

conditional expectation given the observed covariates.  
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The effective sample size for estimation of direct genetic effects relative to complete 

observation of parental genotypes increases from a minimum of 1/6 when minor allele 

frequency (MAF) is 0.5 to a maximum of 0.5 as MAF approaches 0 (Supplementary Note and 

Supplementary Figure 1). The loss in precision compared to complete information is greater 

when the heterozygosity is higher due to an inability to infer which allele has been inherited 

from the missing parent when both parent and proband are heterozygous.  

 

Imputing missing parental genotypes in UK Biobank 

 

We applied our methods to the subsample of the UK Biobank with predominantly white 

British ancestry19. Using KING20, we identified 17,296 families with at least two genotyped 

full siblings but no parents genotyped, giving a total of 19,329 sibling pairs. We inferred un-

phased IBD segments for these sibling pairs using KING (Methods). We chose to use un-

phased IBD segments as the computational costs of inferring phase for millions of SNPs are 

high.  

 

We validated the IBD inference using 31 families with two siblings and both parents 

genotyped, where the IBD state can be determined exactly except when both siblings are 

heterozygous, finding that the IBD state at 98.4% of SNPs was called correctly (Methods and 

Supplementary Table 1). We imputed the missing parental genotypes using the IBD 

segments produced by KING and the procedure outlined above for ~5 million SNPs with 

INFO>0.99 and MAF>1% (Methods). We validated that the imputed parental genotypes 

were approximately unbiased estimates of parental genotypes by comparing imputed to 

observed genotypes in 31 families with two siblings and both parents genotyped, where the 

imputation was performed ignoring the observed parental genotypes (Methods).   

 

We identified a further 4,418 families with one parent and at least one offspring genotyped, 

and imputed the missing parental genotypes for each family. We validated that the 

imputations were approximately unbiased by comparing observed to imputed parental 

genotypes for 893 families with both parents genotyped, where the imputation was 

performed ignoring one of the observed parents9 genotypes (Methods).  

 

Simulations in UK Biobank 

 

We simulated traits for the 17,296 families in the UK Biobank with at least two genotyped 

siblings but no genotyped parents. We chose 10,000 SNPs randomly from the SNPs with 

INFO>0.99 and MAF>1% to use as causal SNPs. Let /2+  be the proportion of phenotypic 

variance explained by direct genetic effects. We simulated a trait affected by only direct 

genetic effects and noise, with /2+ = 40% (Methods).  

 

Let /3+  be the proportion of phenotypic variance due to parental effects. For a trait affected 

by direct and parental effects, the fraction of phenotypic variance explained by population 

effects, /4+ , depends on /2+,  /3+ , and �23, the correlation between direct and parental 

effects: /4+ = /2+ + /3+ + 2�23H/2+/3+ . This is because population effects are the sum of 

direct and average parental effects.  
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We simulated 40 independent replicates of a trait affected by both direct genetic effects 

and parental effects (Methods), with /2+ j 14.4%,  /3+ j 14.4%,  �23 = 0.5, so that /4+ j
43.2%. Since there are only a small number of families where both parents are genotyped 

in the UK Biobank, we used the imputed parental genotypes in place of observed parental 

genotypes for this simulation.  In expectation, this should give the same estimated parental 

effects as using observed parental genotypes (Supplementary Note). The correlation 

between direct and population effects, �24 , is equal to 

�24 = H5!"
5#" + �23H5$"

5#" , 

implying a correlation of 0.866 between direct and population effects for the simulated 

trait.  

 

We estimated direct and average parental effects by regressing the phenotype onto the 

proband and imputed parental genotype using our mixed model approach to model 

phenotypic correlations between siblings (Methods). We did this for each trait replicate for 

~5 million SNPs with INFO>0.99 and MAF>1%. We confirmed that direct effect estimates 

were approximately unbiased for the trait affected by direct genetic effects alone, obtaining 

a regression coefficient of 0.988 (S.E. 0.015) for regression of direct effect estimates onto 

direct effects. For the trait affected by both direct and parental effects, we obtained a 

regression coefficient of 0.994 (S.E. 0.003) from regressing direct effect estimates onto 

direct effects; and a regression coefficient of 1.001 (S.E. 0.003) from regressing parental 

effect estimates onto parental effects. These results indicate that our method produces 

approximately unbiased estimates of direct and parental effects for each SNP.  

 

For the trait affected by both direct and parental effects, we used LD-score regression 

(LDSC)21 to estimate the genetic correlation between direct and parental effects and 

between direct and population effects (Methods). Across the 40 replicates, our average 

estimate of the genetic correlation between direct and parental effects was 0.497 (S.E. 

0.028), very close to the true value of 0.5; the average estimate of the genetic correlation 

between direct and population effects was 0.888 (S.E. 0.004). These results indicate that LD-

score regression can give approximately unbiased estimates of the genetic correlation 

between direct and parental effects, and between direct and population effects. This is 

despite the fact that estimates of the variance explained by direct and parental effects 

showed bias (Supplementary Table 2). This is similar to other reports indicating that LDSC 

produces more reliable estimates of genetic correlations than of variance components22.  

 

Genome-wide estimation of direct and indirect genetic effects for five traits 

 

We used a sample of 45,826 White British individuals with at least one genotyped sibling or 

parent, where missing parental genotypes were imputed, to estimate direct and indirect 

(sibling, paternal, maternal, and average parental) genetic effects of ~5 million SNPs 

(MAF>1%) on height, BMI, educational attainment (years), neuroticism score, and whether 

an individual has ever smoked (<ever-smoked=) (Methods). Traits were adjusted for 40 

genetic principal components before SNP effects were estimated.  
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From the genome-wide estimates of SNP effects, we did not find evidence for a substantial 

contribution from indirect genetic effects from siblings (Supplementary Table 3), but power 

for this analysis was limited. In our companion paper, we found no evidence for substantial 

indirect genetic effects from siblings using a more powerful analysis of polygenic scores17. 

Therefore, in order to increase precision of estimates of direct and parental effects, we 

estimated effects assuming that indirect genetic effects from siblings were zero.  

 

 
Figure 3. Estimates of genetic correlation between direct effects and population effects. The estimate is given along with 

the 95% confidence interval. Population effects include direct effects, indirect effects from relatives, magnification due to 

assortative mating, and bias due to population stratification. Estimates were derived from applying LD-score regression to 

direct and population effect estimates, derived from a sample of White British individuals from the UK Biobank, for ~5 

million SNPs with MAF>1% (Methods). Traits were adjusted for 40 genetic principal components prior to analysis.  

 

At these sample sizes, power is limited for analysis of direct and indirect genetic effects of 

individual SNPs. We therefore focused on estimating the genome-wide correlation between 

direct genetic effects and population effects using LD-score regression (LDSC) (Methods). 

This measures the degree to which population effect estimates are biased by indirect 

genetic effects and population stratification. This correlation reflects the relative amount of 

signal in population effects coming from direct genetic effects and the correlation between 

direct and average parental effects. The correlation can also be expressed in terms of the 

ratio �23 = /2+//3+: 

�24 = 67!$89!$
:187!$8+9!$67!$

. 

We plot �24 as a function of �23  for various values of �23  in Figure 4. This shows that, in 

order for the correlation between direct and GWAS effects to be substantially below one, 
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the correlation between direct and parental effects must be substantially below one, and 

that the phenotypic variance explained by direct effects cannot be many times larger than 

the variance explained by parental effects.  

 

 
Figure 4 The correlation between direct and population effects. The correlation between direct and population effects 

(estimated from GWAS on unrelated individuals), ���, can be expressed as a function of ��� = /
�

2//�
2, the ratio between 

the phenotypic variance explained by direct effects and by parental effects, and ���, the correlation between direct and 

parental effects (see above). Here we plot ��� as a function of �,- for various values of �,-. 

The estimated genetic correlation between direct and population effects ranged from 0.61 

(S.E. 0.093) for EA to 0.96 (S.E. 0.015) for height (Supplementary Table 4 and Figure 3). All of 

the genetic correlation estimates were statistically significantly below 1 (P<0.005, one-sided 

Z-test). We also estimated genetic correlations between direct and parental effects, but 

these estimates had low precision (Supplementary Table 4). We obtained consistent results 

from estimates of the genetic correlation between direct effect estimates and publicly 

available GWAS summary statistics (Supplementary Table 5).  
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Figure 5 Relative effective sample size for estimation of direct genetic effects for five traits. We show the effective 

sample size for estimation of direct genetic effects when using parental genotypes imputed from sibling genotypes and un-

phased identity-by-descent (IBD) information relative to the effective sample size when using genetic differences between 

siblings alone (Methods). We show the relative effective sample size for SNPs with minor allele frequency (MAF) between 

1% and 2% (squares), and for SNPs with MAF between 49% and 50% (triangles). As expected from theory (Supplementary 

Note and Figure 2), the relative effective sample size diminishes with increasing phenotypic correlation between siblings. 

For SNPs with MAF between 1% and 2%, the gain in effective sample size is slightly below the gain that would be expected 

given access to phased IBD data (Supplementary Note), shown by the solid black curve. For SNPs with MAF between 49% 

and 50%, the relative effective sample size as a function of the phenotypic correlation between siblings fits well our 

theoretical result for a SNP with MAF 49.5% (dashed black curve). The gap between the points for MAF 1-2% and MAF 49-

50% is due to increased heterozygosity in the more common SNPs, which results in ambiguity in imputation without access 

to phased IBD data. Trait Abbreviations: BMI, body mass index; EA, educational attainment (years).  

We estimated the gain in effective sample from using parental genotypes imputed from 

sibling genotypes and un-phased IBD information (Figure 5). In the families with at least two 

genotyped siblings but no genotyped parents, we estimated direct genetic effects using 

genetic differences between siblings (Methods). In the same sample of families, we 

compared the standard errors for direct genetic effect estimates from using genetic 

differences between siblings and from using our method. The gain in effective sample size 

depends upon both allele frequency and correlation between sibling residuals 

(Supplementary Note and Figure 2), so varies from SNP to SNP and from trait to trait. For 

example, the median gain for SNPs with MAF between 1% and 2% was 25.5% for 

neuroticism, where the sibling correlation is 0.14; whereas the median gain for SNPs with 

MAF between 49% and 50% was 6.8% for height, where the sibling correlation is 0.52.   
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Discussion 

 

Many datasets contain genotype information on siblings but not on the parents of the 

siblings, and many studies have used genetic differences between siblings to estimate direct 

genetic effects and to remove bias due to population stratification7,16,23. However, these 

methods do not use all of the information in sibling genotypes. We have shown that, by 

imputing parental genotypes using IBD information, one can substantially increase the 

information available for estimation of direct and indirect genetic effects (Figure 2 and 

Supplementary Note), and one can separately identify direct genetic effects and indirect 

effects from siblings. While it is possible to impute parental genotypes without using IBD 

information18, we showed that this gains little compared to using IBD information in nearly 

all scenarios. We also developed a method for imputing the genotype of the missing parent 

from a parent-offspring pair and showed that one can thereby obtain unbiased estimates of 

direct genetic effects (Supplementary Note).   

 

We imputed missing parental genotypes from siblings and un-phased IBD information and 

from parent-offspring pairs in a sample of 45,826 White British individuals from the UK 

Biobank. Using the imputed parental genotypes, we estimated direct and indirect genetic 

effects of ~5 million SNPs on educational attainment, BMI, height, neuroticism, and 

whether an individual has ever smoked. We did not use phased IBD information due to 

computational costs of phasing millions of SNPs. However, the methods and software we 

developed could be easily adapted to phased data, thereby gaining additional information 

for estimation of direct and indirect genetic effects (Figure 2 and Supplementary Note). 

Furthermore, our method can be applied to analyse polygenic scores, as we show in our 

companion paper17.  

 

Population effects, estimated from GWAS in unrelated individuals, capture direct effects 

and indirect effects from relatives, population stratification effects, and magnification of 

effects due to assortative mating3. While recent studies have indicated that population 

stratification has affected GWAS studies even after correction for genetic principal 

components7,10, questions remain about the overall magnitude of bias. One way to quantify 

how large the bias in population effect estimates is relative to the signal from direct genetic 

effects is through measuring the correlation between direct and population effects.  

 

Our results show that population effects are biased estimates of direct effects for all five 

traits analysed. Any bias in effects on height is likely to be small, but the bias could be 

substantial for EA, BMI, neuroticism, and whether an individual has ever smoked. It is 

unlikely that indirect genetic effects alone could explain this for a trait like EA, where the 

parental phenotype that affects offspring EA is likely to be substantially genetically 

correlated with offspring EA, leading to correlation between direct and parental effects. 

Population stratification effects are more likely to be uncorrelated with direct effects, so are 

a more likely explanation for these results. Nevertheless, our results are consistent with 

near zero correlations between direct and non-direct components, along with substantial 

non-direct components (Figure 4 and Supplementary Table 4). Further studies including 

large numbers of first-degree relative pairs will be needed to see if this result holds in other 

datasets and to get more precise estimates. Larger sample sizes would also enable 

decomposition of genetic relations between traits into direct and non-direct components3.  
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If population effects are not highly correlated with direct effects, this has important 

implications for the potential of genetic prediction in different scenarios. For example, 

prediction of trait differences between embryos relies on genetic variation within a family, 

where only direct genetic effects are relevant. If direct genetic effects are not highly 

correlated with population effect estimates, then embryo selection based on population 

effect estimates will perform poorly relative to using direct effects24. Other implications may 

depend upon the source of the bias in population effect estimates. If it is primarily 

population stratification, then this may affect portability of genetic prediction both across 

populations25,26 and within populations16. If it is primarily indirect genetic effects, then this 

implies that substantial gains in predictive ability could be obtained from models that 

incorporate direct and indirect genetic effects along with genotypes of parents and siblings.  

 

Collection of genetic data on large numbers of families is inevitable as sample sizes grow 

larger. However, the size of these samples is dwarfed by the samples of distantly related 

individuals. We see individual level data as one possible pattern of missing data in a vision 

for human genetic analysis that treats the nuclear family as the fundamental unit of analysis 

rather than the individual17. Individual level data, along with other missing data patterns, 

can be used to increase the precision of estimates of direct and indirect/parental effects 

using a form of multivariate meta-analysis17 (Supplementary Note). We see such methods as 

the start of a suite of methods that can powerfully analyse and combine information from 

different patterns of observed genetic data from families to build a richer and more 

accurate picture of the role of genetics in human trait variation.  
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Software 

 

The software used in this paper is available as a Python package with command line tools at 

https://github.com/AlexTISYoung/SNIPar with documentation at 

https://sibreg.readthedocs.io/en/master/. We recommend reading the guide 

(https://sibreg.readthedocs.io/en/master/guide.html) and working through the tutorial 

(https://sibreg.readthedocs.io/en/master/tutorial.html). 

 

The code is written in C/Python and is multi-threaded. To give a sense of runtime, we give 

runtimes for analysing the genotyping array SNPs on chromosome 1 in the UK Biobank 

using a single thread for computation. To impute all of the SNPs on chromosome 1 on the 

UK Biobank array (~58,000) for around 20,000 families took around 40 minutes. To estimate 

the effects for ~50,000 SNPs and a sample of around ~40,000 individuals, it took around 18 

minutes. These runtimes could be reduced substantially by increasing the number of threads.  

 

Data  

 

Full summary statistics for direct and indirect effects will be released on publication.  

 

Methods  

 

UK Biobank sample 

 

We used the UK Biobank sample that had been identified by UK Biobank to have 

predominantly White British ancestry19. We filtered out individuals identified by UK Biobank 

to have excess relatives, excess heterozygosity, or sex chromosome aneuploidy. We used 

the kinship coefficients computed by UK Biobank to identify individuals with a first degree 

relative, where a first degree relation is defined as a kinship coefficient of 0.177 and 

above20.  

 

We extracted the genotypes for that subsample of the UK Biobank, removing SNPs with 

missingness above 5%. We used KING20 with the '--related --degree 1' options  to infer the 

sibling and parent-offspring relations within that set of individuals. We identified 157 

duplicates/monozygotic twins and removed one from each pair from further analyses. We 

identified 17,296 families with at least two siblings, giving a total of 19,329 sibling pairs. The 

maximum number of siblings in a family was 6, and 913 families had more than two siblings. 

We used age and sex information to determine the father/mother in each inferred parent-

offspring relation, requiring parents to have a reported age at least 12 years higher than 

their inferred child; parent-offspring relations with a lower reported age difference were 

removed from further analyses. We identified 4,418 families with at least one parent and 

one child genotyped; 736 families had at least one child and the father genotyped but not 

the mother genotyped; 2,798 families had at least one child and the mother but not the 

father genotyped; 893 families had at least one child and both parents genotyped. We 

identified 31 families with two children and both parents genotyped, 8quads9.  
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UK Biobank phenotypes 

 

We performed family based GWAS on educational attainment (EA); standing height (Data 

Field 50); body mass index (BMI) (Data Field 21001); neuroticism score (Data Field 20127); 

and whether an individual answered that they had ever smoked or not (Data Field 20160), 

encoded as a binary variable. For EA, we converted the answers to the qualifications 

question (Data Field 6138) to years of education according to the method used in previous 

GWAS of EA23. For all traits, we regressed out age, age2, age3, sex, and interactions between 

sex and age, age2, age3, along with the 40 genetic principal components provided by UK 

Biobank. For quantitative traits measured on a continuous scale (height and BMI), we 

performed an inverse normal transformation on the residuals separately for males and 

females and then combined the male and female samples.  

 

IBD inference and imputation in UK Biobank 

 

We inferred IBD segments between all first degree relatives using the KING --ibdsegs option. 

We confirmed the accuracy of the IBD segment inference by using the 31 white British 

families where two siblings and both of their parents have been genotyped. When both 

parents are heterozygous, the IBD state of the siblings is equal to 2 minus the absolute 

difference in the siblings9 genotypes, except when both siblings are heterozygous 

(Supplementary Note). We smoothed the true IBD inferred from the quads to account for 

genotyping errors: if the IBD state at a SNP differed from its two immediately adjacent 

neighbours, and both adjacent neighbours had the same IBD state, we changed the IBD 

state of the SNP to be the same as its neighbours. We computed the fraction of sites 

inferred to be IBD 0, 1, and 2 given the true IBD state (Supplementary Table 1). The overall 

probability of inferring the correct IBD state was estimated to be 98.4%.  

 

We imputed missing parental genotypes for the bi-allelic SNPs with INFO>0.99 and 

MAF>1%. We used hard-call genotypes with a stringent INFO threshold so that any influence 

of genotype errors on the imputation procedure would be minimal.  We examined the bias 

in the imputed parental genotypes by performing the imputation for the 31 families with 

two genotyped siblings and both parents genotyped (ignoring the parental genotypes), 

allowing us to compare the imputed parental genotypes to the observed parental 

genotypes. If the imputation is unbiased, then the regression coefficient of the imputed 

parental genotypes onto the observed parental genotypes should be 1. This is because the 

covariance between the imputed parental genotypes and the observed parental genotypes 

should be equal to the variance of the imputed parental genotypes (Supplementary Note). 

Using 166,587,490 SNP observations, we estimated the regression coefficient to be 0.996. 

This shows the imputation from the siblings based upon the imputed genotypes is very close 

to unbiased genome-wide.  

 

We imputed the missing parent9s genotype from the observed parent and full sibling 

offspring using the procedure outlined above and in the Supplementary Note. To check the 

imputation, we set one parent missing from the 893 families with both parents genotyped, 

and we imputed the missing parent using the observed parent and offspring genotypes. The 

coefficient from regression of the observed parental genotype onto the imputed parental 

genotype was 0.995, indicating the imputation was approximately unbiased.  
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Linear Mixed Model  

 

Phenotype observations from the same family are correlated through both shared genetic 

factors and shared environmental factors. In order to obtain efficient estimates of SNP 

effects from phenotypic observations from multiple members of the same family, the 

phenotypic correlations between members of the same family should be modelled. One 

way to do this is within a linear mixed model where the mean phenotype within each family 

is modelled as a random effect. Let �*;  be the mean-centred phenotype of individual � in 

family �, then 

 

�*; = �*;� + �* + �*;;  �*~�(0, �<+);  �*;~�(0, �=+); 
 

where �*;  are the mean-centered observed/imputed genotypes of individual � in family �; � 

is the vector of effects; �*  is the mean in family �, which we model as a mean-zero normally 

distributed random effect with variance �<+, independent for each family; and �*;  is the 

residual for individual � in family �, independent for each individual. This implies that, 

conditional on �, the correlation between individuals in the same family is �<+/(�<+ + �=+). 
 

For estimation of the effects of genome-wide SNPs, we first infer the variance components 

�<+ and �=+ by maximum likelihood for a null model without any SNP effects (Supplementary 

Note). We then fix the variance components at their maximum likelihood estimate for 

estimation of the SNP effects. Given the variance components, the maximum likelihood 

estimate of the vector of effects for a SNP can be obtained analytically in O(n) computations 

by summing over n families (Supplementary Note). Our software package, SNIPar, performs 

genome-wide estimation of direct and indirect effects from observed proband and sibling 

genotypes and observed/imputed parental genotypes.  

  

Estimation of Effects 

 

We estimated effects for all variants with INFO>0.99 and MAF>1% using the above linear 

mixed model. Note that although 8ever-smoked9 was a binary variable, we used a linear 

model, as in previous GWAS of smoking behaviour27. To enable estimation under different 

models from one analysis of the data, for each SNP, we formed summary statistics from 

fitting the linear mixed model corresponding to the �>� matrix and �>� vector in standard 

multivariate linear regression. For the subsample of families with at least two genotyped 

siblings and no parents genotyped, the � matrix had columns corresponding to the 

proband's genotype, the mean genotype of the proband's siblings, and the imputed 

parental genotype. Let	� be the vector of phenotype observations and let £ = Var(�) be 

the phenotypic covariance matrix, then the estimate of the parameters under the full model 

with direct, sibling, and parental effects is the solution to the linear system: 

 

�>£?1��@ = �>£?1� 

 

The estimate under the model without sibling effects is obtained by dropping the rows and 

columns corresponding to the genotype of the proband's sibling from �>£?1� and �>£?1�. 

Standard GWAS estimates are obtained by using only the rows and columns corresponding 
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to the proband genotype. Note that this method assumes that the variance contribution of 

each SNP is a very small fraction of the phenotypic variance, so that the residual variance 

changes only negligibly when certain effects are dropped from the model for each SNP.  

 

For the subsample of families with one parent genotyped, the � matrix has columns 

corresponding to proband genotype, (imputed) paternal, and (imputed) maternal 

genotypes. For the subsample with both parents genotyped, the � matrix has columns 

corresponding to proband genotype, paternal genotype, and maternal genotype. We did 

not fit indirect genetic effects from siblings for these subsets of families because only a 

small fraction of these families had more than one genotyped sibling.  

 

Direct effect estimates from the different subsamples were combined using fixed effects 

meta-analysis. Indirect sibling effects were estimated from the subsample of families with at 

least two siblings genotyped and no parents genotyped. For parental effects, we used the 

multivariate meta-analysis method outline in the Supplementary Note to get meta-analysis 

estimates of maternal and paternal effects separately, and we took the average of those 

estimates to give meta-analysis estimates of the average parental effect.  

 

For the subset of families with at least two siblings genotyped but no parents genotyped, we 

also implemented the difference in sibling genotypes method. We computed the mean 

genotype of the siblings in each family gU *, and fit the linear mixed model:  

 

�*; = �(g*; 2 gU *) + �gU* + �* + �*;, 

 

where � captures both direct and parental effects.  

 

LD Score Regression Analysis 

 

To apply LD-score regression to direct, indirect, and population effects, we adjusted the 

sample size input to LD-score regression to reflect the effective sample size for each effect 

at each SNP. Note that the effective sample size is considerably smaller for estimation of 

direct and indirect effects than for population effects. Let �W	be the effect estimate for a SNP 

with allele frequency � and with sampling variance	Var(�W). We estimated the effective 

sample size, �eff, to be 

�eff =	 B"
+C(1?C)Var(3E), 

where �+ is the phenotypic variance.  

 

For the genetic correlation analysis, we used direct effects and parental effects estimated 

assuming that indirect effects from siblings are absent.   
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