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Abstract

Associations between genotype and phenotype derive from four sources: direct genetic effects, indirect
genetic effects from relatives, population stratification, and correlations with other variants affecting the
phenotype through assortative mating. Genome-wide association studies (GWAS) of unrelated individuals
have limited ability to distinguish the different sources of genotype-phenotype association, confusing
interpretation of results and potentially leading to bias when those results are applied — in genetic prediction
of traits, for example. With genetic data on families, the randomisation of genetic material during meiosis can
be used to distinguish direct genetic effects from other sources of genotype-phenotype association. Genetic
data on siblings is the most common form of genetic data on close relatives. We develop a method that takes
advantage of identity-by-descent sharing between siblings to impute missing parental genotypes. Compared to
no imputation, this increases the effective sample size for estimation of direct genetic effects and indirect
parental effects by up to one third and one half respectively. We develop a related method for imputing
missing parental genotypes when a parent-offspring pair is observed. We provide the imputation methods in a
software package, SNIPar (single nucleotide imputation of parents), that also estimates genome-wide direct
and indirect effects of SNPs. We apply this to a sample of 45,826 White British individuals in the UK Biobank
who have at least one genotyped first degree relative. We estimate direct and indirect genetic effects for ~5
million genome-wide SNPs for five traits. We estimate the correlation between direct genetic effects and
effects estimated by standard GWAS to be 0.61 (S.E. 0.09) for years of education, 0.68 (S.E. 0.10) for
neuroticism, 0.72 (S.E. 0.09) for smoking initiation, 0.87 (S.E. 0.04) for BMI, and 0.96 (S.E. 0.01) for height.
These results suggest that GWAS based on unrelated individuals provides an inaccurate picture of direct
genetic effects for certain human traits.

Introduction

Genome-wide association studies (GWAS) have found thousands of associations between
genetic variants and human traits® and have enabled the prediction of human traits from
genetic data through the use of polygenic scores?. GWAS typically estimate the additive
effect of an allelic substitution at a single nucleotide polymorphism (SNP) by regression of
individuals’ phenotypes onto the number of copies of an allele (genotype) that they carry.

Multiple different phenomena can contribute to the effects estimated by GWAS applied to
unrelated individuals?, which we refer to as ‘population effects’, since they reflect the
overall genotype-phenotype association in the population. The causal effect of inheriting a
particular allele, called the direct genetic effect, contributes to population effect estimates.
However, indirect genetic effects — effects of genetic variants in one individual that affect
the trait of another through the environment — from relatives, such as parents, can also
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contribute to population effect estimates. Such effects have been shown to be important
for educational attainment*®. Both direct and indirect genetic effects are causal effects of
alleles, due to their presence in the phenotyped individual and/or relatives. It is also
possible for the causal effect of an allele to be magnified by assortative mating with respect
to a correlated phenotype, which induces correlations between causal alleles at different
genomic locations®#. In addition to causal effects, non-causal associations between
genotype and phenotype due to population stratification can contribute to population
effect estimates®’. Population stratification occurs when different subpopulations within
the GWAS sample have different mean trait values, inducing correlations between SNPs that
are differentiated between the subpopulations and the trait.

Decomposing the population effects estimated by GWAS into the different components is
important for interpreting and applying GWAS results. For example, polygenic prediction of
educational attainment (EA) leverages indirect genetic effects from parents>®. Thus, any
potential application of genetic prediction of EA should take account of the fact that a
substantial fraction of the predictive ability of the score derives from prediction of the
family environment, rather than ‘innate’ abilities of the child. It has also been shown that
indirect effects and assortative mating can lead to spurious inference in Mendelian
Randomisation, and that this can be remedied by using unbiased estimates of direct genetic
effects®. Further, subtle population stratification effects in GWAS of height resulted in
spurious inference of selection on height in Europe’-1°, highlighting the need for
stratification free estimates of direct genetic effects on traits.

Direct genetic effects can be separated from other sources of genotype-phenotype
association by taking advantage of the randomisation of genetic material that occurs during
meiosis, which is independent of the environment®713, The offspring genotype varies
randomly around the expectation given the genotype of the mother and father due to
segregation of genetic material in the parents during meiosis. Thus, analysis of parent-
offspring trios can be used to estimate direct genetic effects separately from indirect
genetic effects and confounding effects®'#. However, large samples with genetic data on
individuals and both parents are not widely available. A less powerful approach uses genetic
differences between siblings, which are also a consequence of random segregations in the
parents during meiosis, to estimate direct genetic effects. This approach has been more
widely applied due to the greater availability of large samples of genotyped sibling
pairs>7/15.16,

Genetic data on siblings contains information about the genotypes of the parents of the
siblings. We develop a method for imputing missing parental genotypes from sibling
genotypes. This method takes advantage of the fact that, given knowledge of whether
siblings inherited the same or different alleles from each parent --- i.e., given knowledge of
the identity-by-descent (IBD) states of the siblings’ alleles --- the parental alleles that have
been observed in the siblings can be determined. Unlike methods based on differences
between sibling genotypes, our method can provide unbiased estimates of indirect genetic
effects from siblings and distinguish them from direct effects and indirect genetic effects
from parents.
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We also show that imputing the missing parent’s genotype when genotypes are available
for a phenotyped individual (proband) and one of the proband’s parents enables unbiased
estimation of direct genetic effects. We provide the methods for imputing missing parental
genotypes in a software package, SNIPar (single nucleotide imputation of parents), that can
also infer genome-wide direct and indirect effects of SNPs. The software package models
phenotypic correlations within-families and can also be applied to samples of probands with
both parents genotyped.

We apply our methods to 45,826 White British individuals in the UK Biobank with at least
one genotyped parent or sibling. We estimated direct and indirect genetic effects for ~5
million genome-wide SNPs for educational attainment, height, body mass index (BMl),
neuroticism, and smoking initiation. We use the resulting direct effect estimates to estimate
the genetic correlation between direct genetic effects and population effects for each of the
traits. Our findings suggest that for certain traits, SNP effects estimated from standard
GWAS provide inaccurate estimates of direct genetic effects.

Results

Imputing parental genotypes from sibling genotypes

Given genotype observations at a single SNP for a sibling pair, the number of parental alleles
that have been observed depends upon the whether the siblings have inherited the same or
different alleles from each parent, i.e. the IBD states of the alleles (Figure 1).

IBD O IBD 1 IBD 2

father mother father mother father mother

AT TIA]| AT T|T| AT AT

AT TIA AT AT ||AIT AT
sibling 1 sibling 2 sibling 1 sibling 2 sibling 1 sibling 2
Implied parental genotype Implied parental genotype Implied parental genotype

ATIAIT AT|T|? AT|?|?

Figure 1 Imputation of parental genotype from sibling genotype. Here we illustrate how, given knowledge of the IBD state
between the siblings’ alleles, the combined maternal and paternal genotype of the parents of the siblings can be imputed. If
the siblings do not share any alleles identical-by-descent (IBD), then all four parental alleles are observed (IBD 0). If the
siblings share one allele by descent from their parents, then three parental alleles are observed, and one allele is
unobserved (IBD 1). If the siblings share both alleles by descent from their parents, then only two parental alleles are
observed and two are unobserved (IBD 2).

Since parent-of-origin of alleles cannot be determined from sibling data alone, we impute
the sum of maternal and paternal genotypes. Let gpariy = 9ma) + 9pq) b€ the sum of the
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genotype of the mother (gy,;)) and the genotype of the father (g,;)) in family i, and let g;;
and gj, be the genotypes of the two siblings. We compute E[g,ar(i)gi1, iz, IBD;], where
IBD; is the IBD state of the two siblings. Since all four alleles are observed in IBD state 0, we
have that

E[gparay|9i1, g2, IBD; = 0] = gi1 + giz-

When we do not observe a parental allele, we impute it using the population allele
frequency, f. Therefore,

E[gpara)|9i1, 92, IBD; = 2] = gi1 + 2f.

When the siblings share one allele by descent from their parents, it is necessary to know
which allele is shared to use all of information in the siblings’ genotypes. Let g;3° be the

binary genotype (presence/non-presence) of the allele in sibling 2 that is not shared IBD
with sibling 1. We therefore have

E[gpar|gi1, iz, IBD; = 1] = gis + 955" +

Without phased data, it is impossible to determine which allele is shared when both siblings
are heterozygous and in IBD state 1. However, it can be shown that with un-phased data
(Supplementary Note)

E[gpar(i)lgil =1,g9i, =1,IBD; = 1] =1+ Zf

It is therefore possible to perform the imputation without access to phased genotypes, but
there is a loss of information compared to imputation with phased genotypes when both
siblings are heterozygous and in IBD state 1 (Supplementary Note). We generalise the
imputation procedure to families with more than two observed sibling genotypes in the
Supplementary Note.

By using the population allele frequencies to impute the unobserved parental alleles, we are
assuming that parental alleles are uncorrelated. Apart from in samples exhibiting very
strong structure or inbreeding, the correlations between parental alleles at individual SNPs
will be very weak, so this assumption will be approximately correct.

Estimating effects using sibling and imputed parental genotypes

We consider a model for the effect of a SNP on the traits of two siblings that includes both
direct genetic effects and indirect genetic effects from parents and siblings. Let ¥;; be the

phenotype of sibling j in family i. Then

Yii = 89 + 1592 + BpIpa) + BmIm@) T €it;
Yio = 8912 + Ns9i1 + BpIpa) + BmIm@) T €i2;

where § is the direct effect of the SNP and 7 is the indirect genetic effect from the sibling.
Offspring genotypes are conditionally independent of environmental effects given parental
genotypes. Therefore, estimates of direct effects and indirect genetic effects from fitting
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this model are unbiased (Supplementary Note)'!. Any correlation between the siblings’
genotypes and other factors affecting the trait are captured by the parental genotypes.
Thus, B, and B, capture indirect genetic effects from the father and mother respectively, in
addition to any confounding due to population stratification and any magnification of direct
and sibling indirect genetic effects due to assortative mating!! (Supplementary Note). We
will refer to 8, and B, as ‘parental effects’, even though they can reflect phenomena other
than indirect genetic effects from parents. Further, the residuals €;; and €, are uncorrelated
with the genotypes of the siblings and parents, but may be correlated with each other
(Supplementary Note). Note that standard GWAS methods that regress proband phenotype
onto proband genotype are expected to estimate § + n,/2 + (B, + Bm)/2, which we refer
to as ‘population effects’.

Many previous analyses of family data regressed the difference in sibling phenotype onto
the difference in sibling genotype®’:18. In our model, this corresponds to:

Yii =Y = (6 —15)(gi1 — 9i2) + €11 — €in.

This method is expected to yield unbiased estimates of § — 75 (see our companion paper for
further details’). The difference between sibling phenotypes forms one axis of information,
but there is an orthogonal axis of information: the sum of the sibling phenotypes, which is
uncorrelated with the difference between sibling phenotypes. In our model, this
corresponds to:

Yii + Y = (6 +15)(gin + gi2) + 2BpIpiy T 2BmIme) + €11 + Eiz-

However, for this axis, regression on observed sibling genotypes alone cannot separate
direct genetic effects from parental effects. To separate direct genetic effects from parental
effects, the imputed parental genotypes derived above can be used. Let gy, be the
parental genotype imputed from sibling genotypes and IBD information, then, by
performing the regression

Yii + Y2 ~(gi1 + gi2) + Gpar(i)

one obtains estimates of § + 7, and the combined parental effect (8, + f,,). These
estimates can then be combined with the estimate of § — 7, from differences between
siblings to produce separate estimates of 6 and n;. We note that the regressions outlined
above do not generalise well to samples with families with different numbers of siblings and
missing phenotype observations. For applications to real data and in our software package,
we use a more flexible linear mixed model approach that models correlations between
siblings’ phenotypes (Methods and Supplementary Note). Further, we prove that the
method we propose gives estimates of the effects that converge to the true values
(Supplementary Note).

While our method is able to distinguish indirect genetic effects from siblings from direct
genetic effects, more precise estimates of direct genetic effects can be obtained by
assuming that n, = 0 (Supplementary Note), at the cost of some bias if n5 # 0 (see our
companion paper for details!’). For the following results, we make the assumption that
ns = 0 unless otherwise stated.
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By using imputed parental genotypes, more precise estimates of § can be produced than
from using sibling differences alone: in the Supplementary Note, we show that by using
imputed parental genotypes derived from phased IBD data, the effective sample size for
estimation of § is increased by a factor of 2(2 + r)/(3 + 3r), where r is the correlation of
the siblings’ residuals, which will be approximately equal to their phenotypic correlation for
polygenic traits. For r > 0, this has a maximum of 4/3 at r = 0, corresponding to an
effective sample size gain of 1/3" (Figure 2).
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Figure 2 Relative efficiency for estimation of direct and parental effects using different imputation methods. We compare
the theoretical effective sample size for estimation of direct genetic effects and combined parental effects from three
imputation methods: one that does not use identity-by-descent (IBD) segments (blue)8, one that uses un-phased IBD
segments (red), and one that uses phased IBD segments (black). Effective sample size is measured relative to that from
using sibling genotypes alone without any imputation and assuming that we have a sample of independent families with
two genotyped and phenotyped siblings in each family (Supplementary Note). A) Effective sample size for estimation of the
direct genetic effect of an allele with frequency 20% as a function of correlation between siblings’ residuals, which is
approximately equal to phenotypic correlation for polygenic traits. B) Effective sample size for estimation of direct genetic
effects as a function of allele frequency when the correlation between siblings’ residuals is zero. (Results follow a similar
pattern for other sibling correlations.) For imputation with un-phased IBD, when both siblings are heterozygous and share
one allele IBD, exactly which parental alleles have been observed cannot be determined (Figure 1), so the imputation
averages over the two possibilities. When imputing without using IBD segments at all, uncertainty in inference of observed
parental alleles increases rapidly with allele frequency. When phased IBD information is used, the parental alleles that have
been observed can always be determined, so the relative efficiency does not depend upon allele frequency. C) The same as
A but for average parental effects. D) The same as for B but for average parental effects.
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For estimation of parental effects, using parental genotypes imputed from sibling genotypes
and phased IBD data increases effective sample size by a factor of 3(2+r)/(4+4r) compared
to using sibling genotypes alone. For estimation of both direct and parental effects, the gain
is somewhat lower when un-phased identity-by-descent data is used, depending upon allele
frequency and r (Figure 2 and Supplementary Note).

Imputing a missing parental genotype from a parent-offspring pair

Consider imputing the genotype of a father whose genotype is unobserved given
observations of the proband and the mother’s genotype. More formally, we impute the
missing paternal genotype as the expectation given the proband and mother’s genotype:
Ipiy= Elgpai)| i1, Gml- 1t is trivial to infer which allele was inherited from the father
except when both proband and mother are heterozygous. For example, if the parental
genotype is AA and the proband genotype is AT, then the T allele must have been inherited
from the missing parent. This means that one half of the paternal genotype can be inferred
exactly, and the expectation of the other half is given by the population allele frequency.
When both mother and proband are heterozygous, E[g,i)|gi1, 9m(i)] can be computed by
averaging over the two possible inheritance patterns (Table 1 and Supplementary Note).

Table 1 The imputed parental genotype as a function of the proband and maternal genotype: §,,;)=E[g p(/)| Ji1» Im (/)] for
an allele with frequency f

Im(i)
| o 1 2
0o f f -
gin |1 1+ 2f f
2 - 1+ 1+f

This approach is generalised to the case when multiple full-sibling offspring of the observed
parent are genotyped in the Supplementary Note. We note that more sophisticated
methods for phasing and determination of parent-of-origin could be applied to improve the
imputation in the case when both parent and proband are heterozygous. However, in this
paper, we consider this simple imputation method as it is easy to apply to un-phased
genotype data on parent-offspring pairs for very large numbers of SNPs.

Estimating direct and indirect genetic effects using proband and (imputed) parental
genotypes

Consider a sample of families where the genotype of the proband and its mother have been
observed but the father’s genotype is unobserved. We show that performing the regression

Yii~gi1 + 9oy T Ima

produces estimates of §, 8, and B, that converge to their true values (Supplementary
Note). This is a consequence of a general proof that we provide for the consistency of least
squares estimates of regression coefficients when unobserved covariates are imputed as the
conditional expectation given the observed covariates.
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The effective sample size for estimation of direct genetic effects relative to complete
observation of parental genotypes increases from a minimum of 1/6 when minor allele
frequency (MAF) is 0.5 to a maximum of 0.5 as MAF approaches 0 (Supplementary Note and
Supplementary Figure 1). The loss in precision compared to complete information is greater
when the heterozygosity is higher due to an inability to infer which allele has been inherited
from the missing parent when both parent and proband are heterozygous.

Imputing missing parental genotypes in UK Biobank

We applied our methods to the subsample of the UK Biobank with predominantly white
British ancestry®®. Using KING?, we identified 17,296 families with at least two genotyped
full siblings but no parents genotyped, giving a total of 19,329 sibling pairs. We inferred un-
phased IBD segments for these sibling pairs using KING (Methods). We chose to use un-
phased IBD segments as the computational costs of inferring phase for millions of SNPs are
high.

We validated the IBD inference using 31 families with two siblings and both parents
genotyped, where the IBD state can be determined exactly except when both siblings are
heterozygous, finding that the IBD state at 98.4% of SNPs was called correctly (Methods and
Supplementary Table 1). We imputed the missing parental genotypes using the IBD
segments produced by KING and the procedure outlined above for ~5 million SNPs with
INFO>0.99 and MAF>1% (Methods). We validated that the imputed parental genotypes
were approximately unbiased estimates of parental genotypes by comparing imputed to
observed genotypes in 31 families with two siblings and both parents genotyped, where the
imputation was performed ignoring the observed parental genotypes (Methods).

We identified a further 4,418 families with one parent and at least one offspring genotyped,
and imputed the missing parental genotypes for each family. We validated that the
imputations were approximately unbiased by comparing observed to imputed parental
genotypes for 893 families with both parents genotyped, where the imputation was
performed ignoring one of the observed parents’ genotypes (Methods).

Simulations in UK Biobank

We simulated traits for the 17,296 families in the UK Biobank with at least two genotyped
siblings but no genotyped parents. We chose 10,000 SNPs randomly from the SNPs with
INFO>0.99 and MAF>1% to use as causal SNPs. Let h§ be the proportion of phenotypic
variance explained by direct genetic effects. We simulated a trait affected by only direct
genetic effects and noise, with h3 = 40% (Methods).

Let h[% be the proportion of phenotypic variance due to parental effects. For a trait affected
by direct and parental effects, the fraction of phenotypic variance explained by population
effects, h2, depends on hg, hf;, and 7sp, the correlation between direct and parental

effects: h2 = h3 + hf; + 2155 /h%hf;. This is because population effects are the sum of

direct and average parental effects.
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We simulated 40 independent replicates of a trait affected by both direct genetic effects
and parental effects (Methods), with hfg ~ 14.4%, hf; ~ 14.4%, rsp = 0.5, so that hZ =~
43.2%. Since there are only a small number of families where both parents are genotyped
in the UK Biobank, we used the imputed parental genotypes in place of observed parental
genotypes for this simulation. In expectation, this should give the same estimated parental
effects as using observed parental genotypes (Supplementary Note). The correlation
between direct and population effects, r5,, is equal to

2
_ fhﬁ /hﬁ
Tsa = \|hz + 75p h2’

implying a correlation of 0.866 between direct and population effects for the simulated
trait.

We estimated direct and average parental effects by regressing the phenotype onto the
proband and imputed parental genotype using our mixed model approach to model
phenotypic correlations between siblings (Methods). We did this for each trait replicate for
~5 million SNPs with INFO>0.99 and MAF>1%. We confirmed that direct effect estimates
were approximately unbiased for the trait affected by direct genetic effects alone, obtaining
a regression coefficient of 0.988 (S.E. 0.015) for regression of direct effect estimates onto
direct effects. For the trait affected by both direct and parental effects, we obtained a
regression coefficient of 0.994 (S.E. 0.003) from regressing direct effect estimates onto
direct effects; and a regression coefficient of 1.001 (S.E. 0.003) from regressing parental
effect estimates onto parental effects. These results indicate that our method produces
approximately unbiased estimates of direct and parental effects for each SNP.

For the trait affected by both direct and parental effects, we used LD-score regression
(LDSC)?! to estimate the genetic correlation between direct and parental effects and
between direct and population effects (Methods). Across the 40 replicates, our average
estimate of the genetic correlation between direct and parental effects was 0.497 (S.E.
0.028), very close to the true value of 0.5; the average estimate of the genetic correlation
between direct and population effects was 0.888 (S.E. 0.004). These results indicate that LD-
score regression can give approximately unbiased estimates of the genetic correlation
between direct and parental effects, and between direct and population effects. This is
despite the fact that estimates of the variance explained by direct and parental effects
showed bias (Supplementary Table 2). This is similar to other reports indicating that LDSC
produces more reliable estimates of genetic correlations than of variance components??.

Genome-wide estimation of direct and indirect genetic effects for five traits

We used a sample of 45,826 White British individuals with at least one genotyped sibling or
parent, where missing parental genotypes were imputed, to estimate direct and indirect
(sibling, paternal, maternal, and average parental) genetic effects of ~5 million SNPs
(MAF>1%) on height, BMI, educational attainment (years), neuroticism score, and whether
an individual has ever smoked (“ever-smoked”) (Methods). Traits were adjusted for 40
genetic principal components before SNP effects were estimated.
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From the genome-wide estimates of SNP effects, we did not find evidence for a substantial
contribution from indirect genetic effects from siblings (Supplementary Table 3), but power
for this analysis was limited. In our companion paper, we found no evidence for substantial
indirect genetic effects from siblings using a more powerful analysis of polygenic scores?’.
Therefore, in order to increase precision of estimates of direct and parental effects, we
estimated effects assuming that indirect genetic effects from siblings were zero.
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Figure 3. Estimates of genetic correlation between direct effects and population effects. The estimate is given along with
the 95% confidence interval. Population effects include direct effects, indirect effects from relatives, magnification due to
assortative mating, and bias due to population stratification. Estimates were derived from applying LD-score regression to
direct and population effect estimates, derived from a sample of White British individuals from the UK Biobank, for ~5
million SNPs with MAF>1% (Methods). Traits were adjusted for 40 genetic principal components prior to analysis.

At these sample sizes, power is limited for analysis of direct and indirect genetic effects of
individual SNPs. We therefore focused on estimating the genome-wide correlation between
direct genetic effects and population effects using LD-score regression (LDSC) (Methods).
This measures the degree to which population effect estimates are biased by indirect
genetic effects and population stratification. This correlation reflects the relative amount of
signal in population effects coming from direct genetic effects and the correlation between
direct and average parental effects. The correlation can also be expressed in terms of the
ratio Rsp = h3/hj:
_ __ JRsptrep
Ysa — .
\/1+R55+2r53\/m

We plot 75, as a function of Rsp for various values of 54 in Figure 4. This shows that, in
order for the correlation between direct and GWAS effects to be substantially below one,
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the correlation between direct and parental effects must be substantially below one, and
that the phenotypic variance explained by direct effects cannot be many times larger than
the variance explained by parental effects.

o_|
T | rg=075
©_| 0.5
o
0.25
(]
|
réa 0
<
< |
(QV
|
o
° 4 | | | |
0.0 05 1.0 1.5 2.0
Rss

Figure 4 The correlation between direct and population effects. The correlation between direct and population effects
(estimated from GWAS on unrelated individuals), rs,, can be expressed as a function of Rgp = h;/hfg, the ratio between
the phenotypic variance explained by direct effects and by parental effects, and sz, the correlation between direct and

parental effects (see above). Here we plot 15, as a function of R for various values of 15p.

The estimated genetic correlation between direct and population effects ranged from 0.61
(S.E. 0.093) for EA to 0.96 (S.E. 0.015) for height (Supplementary Table 4 and Figure 3). All of
the genetic correlation estimates were statistically significantly below 1 (P<0.005, one-sided
Z-test). We also estimated genetic correlations between direct and parental effects, but
these estimates had low precision (Supplementary Table 4). We obtained consistent results
from estimates of the genetic correlation between direct effect estimates and publicly
available GWAS summary statistics (Supplementary Table 5).
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Figure 5 Relative effective sample size for estimation of direct genetic effects for five traits. We show the effective
sample size for estimation of direct genetic effects when using parental genotypes imputed from sibling genotypes and un-
phased identity-by-descent (IBD) information relative to the effective sample size when using genetic differences between
siblings alone (Methods). We show the relative effective sample size for SNPs with minor allele frequency (MAF) between
1% and 2% (squares), and for SNPs with MAF between 49% and 50% (triangles). As expected from theory (Supplementary
Note and Figure 2), the relative effective sample size diminishes with increasing phenotypic correlation between siblings.
For SNPs with MAF between 1% and 2%, the gain in effective sample size is slightly below the gain that would be expected
given access to phased IBD data (Supplementary Note), shown by the solid black curve. For SNPs with MAF between 49%
and 50%, the relative effective sample size as a function of the phenotypic correlation between siblings fits well our
theoretical result for a SNP with MAF 49.5% (dashed black curve). The gap between the points for MAF 1-2% and MAF 49-
50% is due to increased heterozygosity in the more common SNPs, which results in ambiguity in imputation without access
to phased IBD data. Trait Abbreviations: BMI, body mass index; EA, educational attainment (years).

We estimated the gain in effective sample from using parental genotypes imputed from
sibling genotypes and un-phased IBD information (Figure 5). In the families with at least two
genotyped siblings but no genotyped parents, we estimated direct genetic effects using
genetic differences between siblings (Methods). In the same sample of families, we
compared the standard errors for direct genetic effect estimates from using genetic
differences between siblings and from using our method. The gain in effective sample size
depends upon both allele frequency and correlation between sibling residuals
(Supplementary Note and Figure 2), so varies from SNP to SNP and from trait to trait. For
example, the median gain for SNPs with MAF between 1% and 2% was 25.5% for
neuroticism, where the sibling correlation is 0.14; whereas the median gain for SNPs with
MAF between 49% and 50% was 6.8% for height, where the sibling correlation is 0.52.
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Discussion

Many datasets contain genotype information on siblings but not on the parents of the
siblings, and many studies have used genetic differences between siblings to estimate direct
genetic effects and to remove bias due to population stratification”'423, However, these
methods do not use all of the information in sibling genotypes. We have shown that, by
imputing parental genotypes using IBD information, one can substantially increase the
information available for estimation of direct and indirect genetic effects (Figure 2 and
Supplementary Note), and one can separately identify direct genetic effects and indirect
effects from siblings. While it is possible to impute parental genotypes without using IBD
information'8, we showed that this gains little compared to using IBD information in nearly
all scenarios. We also developed a method for imputing the genotype of the missing parent
from a parent-offspring pair and showed that one can thereby obtain unbiased estimates of
direct genetic effects (Supplementary Note).

We imputed missing parental genotypes from siblings and un-phased IBD information and
from parent-offspring pairs in a sample of 45,826 White British individuals from the UK
Biobank. Using the imputed parental genotypes, we estimated direct and indirect genetic
effects of ~5 million SNPs on educational attainment, BMI, height, neuroticism, and
whether an individual has ever smoked. We did not use phased IBD information due to
computational costs of phasing millions of SNPs. However, the methods and software we
developed could be easily adapted to phased data, thereby gaining additional information
for estimation of direct and indirect genetic effects (Figure 2 and Supplementary Note).
Furthermore, our method can be applied to analyse polygenic scores, as we show in our
companion paper?’.

Population effects, estimated from GWAS in unrelated individuals, capture direct effects
and indirect effects from relatives, population stratification effects, and magnification of
effects due to assortative mating3. While recent studies have indicated that population
stratification has affected GWAS studies even after correction for genetic principal
components’*0, questions remain about the overall magnitude of bias. One way to quantify
how large the bias in population effect estimates is relative to the signal from direct genetic
effects is through measuring the correlation between direct and population effects.

Our results show that population effects are biased estimates of direct effects for all five
traits analysed. Any bias in effects on height is likely to be small, but the bias could be
substantial for EA, BMI, neuroticism, and whether an individual has ever smoked. It is
unlikely that indirect genetic effects alone could explain this for a trait like EA, where the
parental phenotype that affects offspring EA is likely to be substantially genetically
correlated with offspring EA, leading to correlation between direct and parental effects.
Population stratification effects are more likely to be uncorrelated with direct effects, so are
a more likely explanation for these results. Nevertheless, our results are consistent with
near zero correlations between direct and non-direct components, along with substantial
non-direct components (Figure 4 and Supplementary Table 4). Further studies including
large numbers of first-degree relative pairs will be needed to see if this result holds in other
datasets and to get more precise estimates. Larger sample sizes would also enable
decomposition of genetic relations between traits into direct and non-direct components3.
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If population effects are not highly correlated with direct effects, this has important
implications for the potential of genetic prediction in different scenarios. For example,
prediction of trait differences between embryos relies on genetic variation within a family,
where only direct genetic effects are relevant. If direct genetic effects are not highly
correlated with population effect estimates, then embryo selection based on population
effect estimates will perform poorly relative to using direct effects?*. Other implications may
depend upon the source of the bias in population effect estimates. If it is primarily
population stratification, then this may affect portability of genetic prediction both across
populations?>26 and within populations®. If it is primarily indirect genetic effects, then this
implies that substantial gains in predictive ability could be obtained from models that
incorporate direct and indirect genetic effects along with genotypes of parents and siblings.

Collection of genetic data on large numbers of families is inevitable as sample sizes grow
larger. However, the size of these samples is dwarfed by the samples of distantly related
individuals. We see individual level data as one possible pattern of missing data in a vision
for human genetic analysis that treats the nuclear family as the fundamental unit of analysis
rather than the individual'’. Individual level data, along with other missing data patterns,
can be used to increase the precision of estimates of direct and indirect/parental effects
using a form of multivariate meta-analysis!’ (Supplementary Note). We see such methods as
the start of a suite of methods that can powerfully analyse and combine information from
different patterns of observed genetic data from families to build a richer and more
accurate picture of the role of genetics in human trait variation.
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Software

The software used in this paper is available as a Python package with command line tools at
https://github.com/AlexTISY oung/SNIPar with documentation at
https://sibreg.readthedocs.io/en/master/. We recommend reading the guide
(https://sibreg.readthedocs.io/en/master/guide.html) and working through the tutorial
(https://sibreg.readthedocs.io/en/master/tutorial.html).

The code is written in C/Python and is multi-threaded. To give a sense of runtime, we give
runtimes for analysing the genotyping array SNPs on chromosome 1 in the UK Biobank
using a single thread for computation. To impute all of the SNPs on chromosome 1 on the
UK Biobank array (~58,000) for around 20,000 families took around 40 minutes. To estimate
the effects for ~50,000 SNPs and a sample of around ~40,000 individuals, it took around 18
minutes. These runtimes could be reduced substantially by increasing the number of threads.

Data
Full summary statistics for direct and indirect effects will be released on publication.
Methods

UK Biobank sample

We used the UK Biobank sample that had been identified by UK Biobank to have
predominantly White British ancestry®. We filtered out individuals identified by UK Biobank
to have excess relatives, excess heterozygosity, or sex chromosome aneuploidy. We used
the kinship coefficients computed by UK Biobank to identify individuals with a first degree
relative, where a first degree relation is defined as a kinship coefficient of 0.177 and
above?°,

We extracted the genotypes for that subsample of the UK Biobank, removing SNPs with
missingness above 5%. We used KING?° with the '--related --degree 1' options to infer the
sibling and parent-offspring relations within that set of individuals. We identified 157
duplicates/monozygotic twins and removed one from each pair from further analyses. We
identified 17,296 families with at least two siblings, giving a total of 19,329 sibling pairs. The
maximum number of siblings in a family was 6, and 913 families had more than two siblings.
We used age and sex information to determine the father/mother in each inferred parent-
offspring relation, requiring parents to have a reported age at least 12 years higher than
their inferred child; parent-offspring relations with a lower reported age difference were
removed from further analyses. We identified 4,418 families with at least one parent and
one child genotyped; 736 families had at least one child and the father genotyped but not
the mother genotyped; 2,798 families had at least one child and the mother but not the
father genotyped; 893 families had at least one child and both parents genotyped. We
identified 31 families with two children and both parents genotyped, ‘quads’.
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UK Biobank phenotypes

We performed family based GWAS on educational attainment (EA); standing height (Data
Field 50); body mass index (BMI) (Data Field 21001); neuroticism score (Data Field 20127);
and whether an individual answered that they had ever smoked or not (Data Field 20160),
encoded as a binary variable. For EA, we converted the answers to the qualifications
guestion (Data Field 6138) to years of education according to the method used in previous
GWAS of EA?3, For all traits, we regressed out age, age?, age®, sex, and interactions between
sex and age, age?, age3, along with the 40 genetic principal components provided by UK
Biobank. For quantitative traits measured on a continuous scale (height and BMI), we
performed an inverse normal transformation on the residuals separately for males and
females and then combined the male and female samples.

IBD inference and imputation in UK Biobank

We inferred IBD segments between all first degree relatives using the KING --ibdsegs option.
We confirmed the accuracy of the IBD segment inference by using the 31 white British
families where two siblings and both of their parents have been genotyped. When both
parents are heterozygous, the IBD state of the siblings is equal to 2 minus the absolute
difference in the siblings’ genotypes, except when both siblings are heterozygous
(Supplementary Note). We smoothed the true IBD inferred from the quads to account for
genotyping errors: if the IBD state at a SNP differed from its two immediately adjacent
neighbours, and both adjacent neighbours had the same IBD state, we changed the IBD
state of the SNP to be the same as its neighbours. We computed the fraction of sites
inferred to be IBD 0, 1, and 2 given the true IBD state (Supplementary Table 1). The overall
probability of inferring the correct IBD state was estimated to be 98.4%.

We imputed missing parental genotypes for the bi-allelic SNPs with INFO>0.99 and
MAF>1%. We used hard-call genotypes with a stringent INFO threshold so that any influence
of genotype errors on the imputation procedure would be minimal. We examined the bias
in the imputed parental genotypes by performing the imputation for the 31 families with
two genotyped siblings and both parents genotyped (ignoring the parental genotypes),
allowing us to compare the imputed parental genotypes to the observed parental
genotypes. If the imputation is unbiased, then the regression coefficient of the imputed
parental genotypes onto the observed parental genotypes should be 1. This is because the
covariance between the imputed parental genotypes and the observed parental genotypes
should be equal to the variance of the imputed parental genotypes (Supplementary Note).
Using 166,587,490 SNP observations, we estimated the regression coefficient to be 0.996.
This shows the imputation from the siblings based upon the imputed genotypes is very close
to unbiased genome-wide.

We imputed the missing parent’s genotype from the observed parent and full sibling
offspring using the procedure outlined above and in the Supplementary Note. To check the
imputation, we set one parent missing from the 893 families with both parents genotyped,
and we imputed the missing parent using the observed parent and offspring genotypes. The
coefficient from regression of the observed parental genotype onto the imputed parental
genotype was 0.995, indicating the imputation was approximately unbiased.
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Linear Mixed Model

Phenotype observations from the same family are correlated through both shared genetic
factors and shared environmental factors. In order to obtain efficient estimates of SNP
effects from phenotypic observations from multiple members of the same family, the
phenotypic correlations between members of the same family should be modelled. One
way to do this is within a linear mixed model where the mean phenotype within each family
is modelled as a random effect. Let Y;; be the mean-centred phenotype of individual j in
family i, then

Yij = Xija + w; + €555 w;~N(0,0%); €;;~N(0,02);

where X;; are the mean-centered observed/imputed genotypes of individual j in family i; a
is the vector of effects; u; is the mean in family i, which we model as a mean-zero normally
distributed random effect with variance 67, independent for each family; and €;; is the
residual for individual j in family i, independent for each individual. This implies that,
conditional on X, the correlation between individuals in the same family is 62 /(cZ + a2).

For estimation of the effects of genome-wide SNPs, we first infer the variance components
oZ and 62 by maximum likelihood for a null model without any SNP effects (Supplementary
Note). We then fix the variance components at their maximum likelihood estimate for
estimation of the SNP effects. Given the variance components, the maximum likelihood
estimate of the vector of effects for a SNP can be obtained analytically in O(n) computations
by summing over n families (Supplementary Note). Our software package, SNIPar, performs
genome-wide estimation of direct and indirect effects from observed proband and sibling
genotypes and observed/imputed parental genotypes.

Estimation of Effects

We estimated effects for all variants with INFO>0.99 and MAF>1% using the above linear
mixed model. Note that although ‘ever-smoked’ was a binary variable, we used a linear
model, as in previous GWAS of smoking behaviour?’. To enable estimation under different
models from one analysis of the data, for each SNP, we formed summary statistics from
fitting the linear mixed model corresponding to the X7 X matrix and XY vector in standard
multivariate linear regression. For the subsample of families with at least two genotyped
siblings and no parents genotyped, the X matrix had columns corresponding to the
proband's genotype, the mean genotype of the proband's siblings, and the imputed
parental genotype. Let Y be the vector of phenotype observations and let £ = Var(Y) be
the phenotypic covariance matrix, then the estimate of the parameters under the full model
with direct, sibling, and parental effects is the solution to the linear system:

XTy=1Xa = X"y 1y
The estimate under the model without sibling effects is obtained by dropping the rows and

columns corresponding to the genotype of the proband's sibling from X7X~1X and XTx~1Y.
Standard GWAS estimates are obtained by using only the rows and columns corresponding
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to the proband genotype. Note that this method assumes that the variance contribution of
each SNP is a very small fraction of the phenotypic variance, so that the residual variance
changes only negligibly when certain effects are dropped from the model for each SNP.

For the subsample of families with one parent genotyped, the X matrix has columns
corresponding to proband genotype, (imputed) paternal, and (imputed) maternal
genotypes. For the subsample with both parents genotyped, the X matrix has columns
corresponding to proband genotype, paternal genotype, and maternal genotype. We did
not fit indirect genetic effects from siblings for these subsets of families because only a
small fraction of these families had more than one genotyped sibling.

Direct effect estimates from the different subsamples were combined using fixed effects
meta-analysis. Indirect sibling effects were estimated from the subsample of families with at
least two siblings genotyped and no parents genotyped. For parental effects, we used the
multivariate meta-analysis method outline in the Supplementary Note to get meta-analysis
estimates of maternal and paternal effects separately, and we took the average of those
estimates to give meta-analysis estimates of the average parental effect.

For the subset of families with at least two siblings genotyped but no parents genotyped, we

also implemented the difference in sibling genotypes method. We computed the mean
genotype of the siblings in each family g;, and fit the linear mixed model:

Yij = 6(8ij — 8:) + bgi + 1 + €4,
where b captures both direct and parental effects.

LD Score Regression Analysis

To apply LD-score regression to direct, indirect, and population effects, we adjusted the
sample size input to LD-score regression to reflect the effective sample size for each effect
at each SNP. Note that the effective sample size is considerably smaller for estimation of
direct and indirect effects than for population effects. Let ,5’ be the effect estimate for a SNP
with allele frequency f and with sampling variance Var(B). We estimated the effective

sample size, N,g, to be

o2

Nygjp= ——
off = 2r(-fyvar(®)’
where a2 is the phenotypic variance.

For the genetic correlation analysis, we used direct effects and parental effects estimated
assuming that indirect effects from siblings are absent.
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