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Abstract

Virus neutralization remains the gold standard for determining antibody efficacy.
Therefore, a high-throughput assay to measure SARS-CoV-2 neutralizing antibodies is urgently
needed for COVID-19 serodiagnosis, convalescent plasma therapy, and vaccine development.
Here we report on a fluorescence-based SARS-CoV-2 neutralization assay that detects SARS-
CoV-2 neutralizing antibodies in COVID-19 patient specimens and yields comparable results to
plague reduction neutralizing assay, the gold standard of serological testing. Our approach
offers a rapid platform that can be scaled to screen people for antibody protection from COVID-

19, a key parameter necessary to safely reopen local communities.

Text

The ongoing coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), first reported in Wuhan, China in late
20192, As of May 18, 2020, COVID-19 has caused 4.8 million confirmed infections and over
318,028 deaths worldwide (https://www.worldometers.info/coronavirus/). Many areas of the
world have been in lockdown mode to curb the viral transmission, but the reality is that COVID-
19 is here to stay until a safe and efficacious vaccine becomes available. The pandemic’s
catastrophic economic impact is pushing governments to reopen their economies, and this
creates a public health quandary. At this time, our only option is to minimize viral transmission
through social distancing and contact tracing, which relies on the diagnosis of viral RNA through
RT-PCR (https://www.fda.gov/media/134922/download). Proper public health policy would be
greatly enhanced if we had a reliable and facile assay to measure the immune protection among

COVID-19 recovered patients.

Coronavirus infections typically induce neutralizing antibody responses®. The
seroconversion rates in COVID-19 patients are 50% and 100% on day 7 and 14 post symptom
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onset, respectively®. Given the unknown scale of asymptomatic infections, there is a pressing
need for serological diagnosis to determine the real number of infections. Such information is
essential for defining the case-fatality rate and for making the policy on the scale and duration of
social lockdowns. The serological assays are also required to identify donors with high-titers for
convalescent plasma for therapy, and to define correlates of protection from SARS-CoV-2.
While viral RNA-based testing for active infection is the current standard, surveying antibody

protection is a necessary part of any return to social normality.

For serodiagnosis, several COVID-19 assay platforms have achieved FDA emergency
use authorizations (EUA), including ELISA® (https://www.fda.gov/imedia/137029/download),
lateral flow immunoassay (https://www.fda.gov/media/136625/download), and Microsphere
Immunoassay (https://www.fda.gov/media/137541/download). These assays measure antibody
binding to SARS-CoV-2 spike protein. Since not all spike-binding antibodies can block viral
infection, these assay platforms do not functionally measure antibody inhibition of SARS-CoV-2
infection. An ideal serological assay should measure neutralizing antibody levels, which should
predict protection from reinfection. Conventionally, neutralizing antibodies are measured by
plague reduction neutralization test (PRNT). Although PRNT and ELISA results generally
corelate with each other, the lack of complete fidelity of ELISA continues to make PRNT the
gold-standard for determining immune protection®’. However, due to its low throughput, PRNT
is not practical for large scale serodiagnosis and vaccine evaluation. This is a major gap for

COVID-19 surveillance and vaccine development.

To address the above gap, we developed a fluorescence-based assay that rapidly and
reliably measures neutralization of a reporter SARS-CoV-2 by antibodies from patient
specimens. The assay was built on a stable mNeonGreen SARS-CoV-2 where the
mNeonGreen gene was engineered at the OFR7 of the viral genome®. Fig. la depicts the

flowchart of the reporter neutralization assay in a 96-well format. Briefly, patient sera were
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serially diluted and incubated with the reporter virus. After incubation at 37°C for 1 h, Vero E6
cells (pre-seeded in a 96-well plate) were infected with the virus/serum mixtures at a multiplicity
of infection (MOI) of 0.5. At 16 h post-infection, the mNeonGreen-positive cells were quantitated
using a high-content imaging reader (Fig. 1a). Forty COVID-19 serum specimens from RT-PCR-
confirmed patients and ten non-COVID-19 serum samples (archived before COVID-19
emergence) were analyzed using the reporter virus. After reporter viral infection, the cells turned
green in the absence of serum (Fig. 1b, bottom panel); in contrast, incubation of the reporter
virus with COVID-19 patient serum decreased the number of fluorescent cells (top panel). A
dose response curve was obtained between the number of fluorescent cells and the fold of
serum dilution (Fig. 1c), which allowed for determination of the dilution fold that neutralized 50%
of fluorescent cells (NTsp). The reporter assay rapidly diagnosed fifty specimens in less than 20
h: all forty COVID-19 sera (specimens 1-40) showed positive NTs, of 80 to 5152, and all ten

non-COVID-19 sera (specimens 41-50) showed negative NTs, of <20 for (Fig. 1d).

To validate the reporter virus neutralization results, we performed the conventional
PRNT on the same set of patient specimens. In agreement with the reporter virus results, the
forty positive sera showed PRNT5, of 40 to 3200, and the ten negative sera exhibited PRNT5, of
<20 (Fig. 1d). A strong correlation was observed between the reporter virus and PRNT results,
with a correlation efficiency R? of 0.9 (Fig. 1e). The results demonstrate that when diagnosing
patient specimens, the reporter virus assay delivers neutralization results comparable to the

PRNT assay, the gold standard of serological testing.

Next, we evaluated the specificity of reporter neutralization assay using potentially cross-
reactive sera and interfering substances (Table 1). Two groups of specimens were tested for
cross reactivity. Group | included 138 clinical sera from patients with antigens or antibodies
against different viruses, bacteria, and parasites. Group Il consisted of 19 samples with albumin,

elevated bilirubin, cholesterol, rheumatoid factor, and autoimmune nuclear antibodies. None of
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76  the specimens cross neutralized mNeonGreen SARS-CoV-2 (Table 1), including the four
77  common cold coronaviruses (NL63, 229E, OC43, and HUK1). The latter result is consistent with
78  the recent reports that sera from common cold coronavirus patients did not cross react with
79  SARS-CoV-2>°. However, more specimens are required to further validate the cross reactivity,
80  particularly between SARS-CoV-2 and other human coronaviruses, including SARS-CoV-1 and

81 MERS-CoV.

82 In this study, we developed a rapid fluorescence-based high-throughput assay for
83 COVID-19 serodiagnosis. The reporter virus assay is superior to antigen/antibody binding
84  assays because it measures functional SARS-CoV-2 neutralizing activity in the specimens.
85  When diagnosing patient sera, the reporter virus assay generated NTs, values comparable to
86 the conventional PRNT assay. Compared with the PRNT assay, our reporter neutralization test
87  has shortened the assay turnaround time by several days and increased the testing capacity to
88  high throughput. Previously, lentiviruses or vesicular stomatitis virus (VSV) pseudotyped with
89  SARS-CoV-2 spike protein have been reported for neutralization assays'®. One weakness of the
90 spike pseudotyped assay is that it lacks the same composition of an actual virion, including the
91 SARS-CoV-2 M or E proteins. In addition, the spike protein conformation, either the trimer or
92  monomer, may be different in the pseudotypted virus as compared with the authentic SARS-
93  CoV-2 virion.

94 Since mNeonGreen SARS-CoV-2 is stable and replicates like wild-type virus, our
95  reporter neutralization assay provides an ideal model for high-throughput serological testing. As
96 the mNeonGreen SARS-CoV-2 grows to >10’ PFU/ml in cell culture®, the reporter virus can be
97  easily scaled up for testing large sample volumes. Besides mNeonGreen, we have begun to
98 develop other reporter SARS-CoV-2 (e.g., luciferase or mCherry) that can also be used for such
99  serological testing. Although the current study performed the assay in a 96-well format, the

100 assay can be readily adapted to 384- and 1536-well formats. Despite the strengths of high
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101  throughput and reliability, the current reporter neutralization assay must be performed in
102  biosafety level 3 (BSL3) containment. Efforts are ongoing to engineer an attenuated version of
103  SARS-CoV-2 so that the assay could be performed at a BSL2 facility. Nevertheless, the
104 mNeonGreen reporter assay offers a rapid, high-throughput platform to test COVID-19 patient
105  sera not previously available.

106 Because neutralizing titer is a key parameter to predict immunity, the reporter
107  neutralization assay should be useful for high-throughput evaluation of COVID-19 vaccines and
108 for identification of high neutralizing convalescent plasma for therapy. Indeed, treatment of
109 severe COVID-19 patients with convalescent plasma shows clinical benefits''. For vaccine
110 development, a standardized neutralizing assay will facilitate down selection of various
111 candidates for clinical development. Furthermore, the reporter assay could be used over time to
112  monitor the waning of protective neutralizing titers in COVID-19 patients and to study the
113  correlates of protection from SARS-CoV-2. Thus, the ability to rapidly measure neutralizing
114  antibody levels in populations is essential for guiding policymakers to reopen the economy and
115  society, deploy healthcare workers, and prepare for SARS-CoV-2 reemergence.

116
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Figure 1. A high-throughput neutralizing antibody assay for COVID-19 diagnosis. (a)

Assay flowchart. mMNeonGreen SARS-CoV-2 was neutralized with COVID-19 patient sera. Vero

E6 cells were infected with the reporter virus/serum mixture with

an MOI of 0.5. The

fluorescence of infected cells was quantified to estimate the NTso value for each serum. (b)

Representative images of reporter virus-infected Vero E6 cells. Images for a positive

neutralizing serum (top panel) and no serum control (bottom panel) are presented. (c)

Neutralization curves. Representative neutralization curves are presented for three positive sera

and one negative sera. (d) Summary of NTso values of fifty patient sera.

The NTso values from

both reporter virus and conventional PRNT assays are presented. (e) Correlation analysis of
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161 NTs values between the reporter virus and PRNT assays. The correlation efficiency R is

162 indicated.
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163  Table 1. Cross reactivity of mNeonGreen SARS-CoV-2 neutralization assay
164

*Immune sera and "interfering substances Sample Cross reactivity
number

Anti-Chikungunya virus
Cryptococcus neoformans antigen
Anti-Cytomegalovirus
Anti-Dengue virus
Anti-Epstein Barr Virus: capsid or nuclear antigen
Anti-Hepatitis A virus
Anti-Hepatitis B virus: surface antigen
Anti-Hepatitis C virus
Anti-Herpes simplex virus 1
Anti-Herpes simplex virus 2
Human coronavirus 229E
Human coronavirus HKU1
Human coronavirus NL63
Human coronavirus OC43
Anti-Human immunodeficiency virus 1
Human rhinovirus
Influenza B virus
Anti-Measles virus
Anti-Mumps virus
Parainfluenza virus 2
Parainfluenza virus 4
Anti-Parvovirus B19
Anti-Rubella virus
Anti-Syphilis
Anti-Toxoplasma
Anti-Typhus Fever
Varicella zoster virus
West Nile Virus
Anti-Yellow fever virus: vaccination
Anti-Zika virus
"Albumin (4.5 g/dL)

"Elevated bilirubin conjugated (>0.4 mg/dL)
*Elevated bilirubin unconjugated (>0.8 mg/dL)
*Elevated cholesterol (>200 mg/dL)
"Elevated rheumatoid factor (>100 IU/mL)
"Nuclear antibodies

MwwwwwhNow(EiR NS osR(R|a|N(N W (N D R Wk (oNw Do o|o|o|n| s
ololo|lo|lo|lo|lo|lo|lo|lo|lo|lo|lo|lo|lo|lo|lo|o|lo|lo|lo|lololo|lo|lo|lo|lo|lo|o|o|o|o|o|o|o

165

166  *Atotal of 138 sera with antigens or antibodies against different infections (or immunizations)
167  were tested against mNeonGreen SARS-CoV-2 neutralization assay. The immune sera are
168 listed in alphabetical order.

169 “Tested interfering substances and autoimmune disease nuclear antibodies.

10
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170  Methods

171 mNeonGreen SARS-CoV-2. The virus stock of mNeonGreen SARS-CoV-2 was
172  produced using an infectious cDNA clone of SARS-CoV-2 in which the ORF7 of the viral
173  genome was replaced with reporter mNeonGreen gene®. After rescued from the genome-length
174  viral RNA-electroporated cells, the viral stock was prepared by amplifying the mNeonGreen
175  SARS-CoV-2 on Vero E6 cells for one or two rounds. The titer of the virus stock was determined
176 by a standard plaque assay.

177 Human sera and interfering substances. All suman serum specimens were obtained
178  at the University of Texas Medical Branch (UTMB). All specimens were de-identified from
179  patient information. A total of forty de-identified convalescent sera from COVID-19 patients
180  (confirmed with viral RT-PCR positive) were tested in this study. Ten non-COVID-19 sera,
181  collected before COVID-19 emergence'*'®, were also tested in the reporter virus and PRNT
182  assays. For testing cross reactivity, a total of 138 de-identified specimens from patients with
183  antigens or antibodies against different viruses, bacteria, and parasites were tested in the
184 mNeonGreen SARS-COV-2 neutralization assay (Table 1). For testing interfering substances,
185 nineteen de-identified serum specimens with albumin, elevated bilirubin, cholesterol, rheumatoid
186 factor, and autoimmune nuclear antibodies were tested in the reporter neutralization assay. All
187 human sera were heat-inactivated at 56°C for 30 min before testing.

188 mNeonGreen SARS-CoV-2 reporter neutralization assay. Vero E6 cells (1.2x10% in
189 50 pl of DMEM (Gibco) containing 2% FBS (Hyclone) and 100 U/ml Penicillium-Streptomycin
190 (P/S; Gibco) were seeded in each well of black uCLEAR flat-bottom 96-well plate (Greiner Bio-
191 one™). The cells were incubated overnight at 37°C with 5% CO,. On the following day, each
192  serum was 2-fold serially diluted in 2% FBS and 100 U/ml P/S DMEM, and incubated with
193  mNeonGreen SARS-CoV-2 at 37°C for 1 h. The virus-serum mixture was transferred to the
194  Vero E6 cell plate with the final multiplicity of infection (MOI) of 0.5. For each serum, the starting
195  dilution was 1/20 with nine 2-fold dilutions to the final dilution of 1/5120. After incubating the

11
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196 infected cells at 37°C for 16 h, 25 pl of Hoechst 33342 Solution (400-fold diluted in Hank’s
197 Balanced Salt Solution; Gibco) were added to each well to stain cell nucleus. The plate was
198 sealed with Breath-Easy sealing membrane (Diversified Biotech), incubated at 37°C for 20 min,
199  and quantified for mNeonGreen fluorescence on Cytation™ 7 (BioTek). The raw images (2x2
200 montage) were acquired using 4x objective, processed, and stitched using the default setting.
201  The total cells (indicated by nucleus staining) and mNeonGreen-positive cells were quantified
202  for each well. Infection rates were determined by dividing the mNeonGreen-positive cell number
203  to total cell number. Relative infection rates were obtained by normalizing the infection rates of
204  serum-treated groups to those of non-serum-treated controls. The curves of the relative
205 infection rates versus the serum dilutions (log10 values) were plotted using Prism 8 (GraphPad).
206 A nonlinear regression method was used to determine the dilution fold that neutralized 50% of
207  mNeonGreen fluorescence (NTsy). Each serum was tested in duplicates. All mNeonGreen

208  SARS-CoV-2 reporter neutralization assay was performed at the BSL-3 facility at UTMB.

209 Plaque reduction neutralization test (PRNT). Vero E6 cells (1.2x10° per well) were
210 seeded to 6-well plates. On the following day, 100 PFU of infectious clone-derived wild-type
211  SARS-CoV-2 was incubated with serially diluted serum (total volume of 200 ul) at 37°C for 1 h.
212 The virus-serum mixture was added to the pre-seeded Vero E6 cells. After 1 h 37°C incubation,
213 2 ml of 2% high gel temperature agar (SeaKem) in DMEM containing 5% FBS and 1% P/S was
214 added to the infected cells. After 2 days of incubation, 2 ml neutral red (1 g/l in PBS; Sigma)
215 was added to the agar-covered cells. After another 5-h incubation, neutral red was removed.
216  Plaques were counted for NTs, calculation. Each serum was tested in duplicates. The PRNT

217  assay was performed at the BSL-3 facility at UTMB.

218 Statistical analysis. The correlation of the NTso values from mNeonGreen reporter
219 SARS-CoV-2 assay and the PRNTs, values from plaque neutralization assay was analyzed

220  using a linear regression model in the software Prism 8 (GraphPad).
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Data availability

The results presented in the study are available upon request from the corresponding
authors. The mNeonGreen reporter SARS-CoV-2 has been deposited to the World Reference
Center for Emerging Viruses and Arboviruses (https://www.utmb.edu/wrceva) at UTMB for

distribution.
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