

1 The length of lipoteichoic acid polymers controls *Staphylococcus aureus* cell size and
2 envelope integrity

3

4 Anthony R. Hesser,^a Leigh M. Matano,^{a*} Christopher R. Vickery,^{a*} B. McKay Wood,^{a*}
5 Ace George Santiago,^a Heidi G. Morris,^{a*} Truc Do,^{a*} Richard Losick,^b and Suzanne
6 Walker^{a#}

7

8 ^aDepartment of Microbiology, Harvard Medical School, Boston, Massachusetts, USA

9 ^bDepartment of Molecular and Cellular Biology, Harvard University, Cambridge,
10 Massachusetts, USA

11

12 Running Head: LTA polymer length controls cell growth

13

14 #Address correspondence to Suzanne Walker, suzanne_walker@hms.harvard.edu.

15 *Present address: Leigh M. Matano, Department of Medicine, Brigham and Women's
16 Hospital, Boston, Massachusetts, USA. Christopher R. Vickery, DoubleRainbow
17 Biosciences, Inc., Cambridge, Massachusetts, USA. B. McKay Wood, Sanofi Genzyme,
18 Cambridge, Massachusetts, USA. Heidi G. Morris, Applied BioMath, Cambridge,
19 Massachusetts, USA. Truc Do, Department of Chemical and Biological Engineering,
20 Princeton University, Princeton, New Jersey, USA.

21 Anthony R. Hesser, Leigh M. Matano, and Christopher R. Vickery contributed equally to
22 this work. Anthony R. Hesser completed the research and wrote the manuscript and on
23 this basis is listed first; remaining author order was determined alphabetically.

24 **ABSTRACT**

25 The opportunistic pathogen *Staphylococcus aureus* is protected by a cell envelope
26 that is crucial for viability. In addition to peptidoglycan, lipoteichoic acid (LTA) is an
27 especially important component of the *S. aureus* cell envelope. LTA is an anionic polymer
28 anchored to a glycolipid in the outer leaflet of the cell membrane. It was known that
29 deleting the gene for UgtP, the enzyme that makes this glycolipid anchor, causes cell
30 growth and division defects. In *Bacillus subtilis*, growth abnormalities from the loss of *ugtP*
31 have been attributed to the absence of the encoded protein, not to loss of its enzymatic
32 activity. Here, we show that growth defects in *S. aureus* *ugtP* deletion mutants are due to
33 the long, abnormal LTA polymer that is produced when the glycolipid anchor is missing
34 from the outer leaflet of the membrane. Dysregulated cell growth leads to defective cell
35 division, and these phenotypes are corrected by mutations in the LTA polymerase, *ItaS*,
36 that reduce polymer length. We also show that *S. aureus* mutants with long LTA are
37 sensitized to cell wall hydrolases, beta-lactam antibiotics, and compounds that target
38 other cell envelope pathways. We conclude that control of LTA polymer length is
39 important for *S. aureus* physiology and promotes survival under stressful conditions,
40 including antibiotic stress.

41

42 **IMPORTANCE**

43 Methicillin-resistant *Staphylococcus aureus* (MRSA) is a common cause of
44 community- and hospital-acquired infections and is responsible for a large fraction of
45 deaths caused by antibiotic-resistant bacteria. *S. aureus* is surrounded by a complex cell
46 envelope that protects it from antimicrobial compounds and other stresses. Here we show

47 that controlling the length of an essential cell envelope polymer, lipoteichoic acid, is critical
48 for controlling *S. aureus* cell size and cell envelope integrity. We also show that genes
49 involved in LTA length regulation are required for resistance to beta-lactam antibiotics in
50 MRSA. The proteins encoded by these genes may be targets for combination therapy
51 with an appropriate beta-lactam.

52

53 **INTRODUCTION**

54 The bacterial cell envelope is a barrier that protects bacteria from unpredictable
55 and often hostile environments. In Gram-positive bacteria, such as *Staphylococcus*
56 *aureus*, the cell envelope comprises the cell membrane and a thick peptidoglycan (PG)
57 layer that is decorated with a variety of proteins and polymers important for viability and
58 virulence. Among these polymers are teichoic acids, which are negatively charged and
59 divided into two classes based on their subcellular localization. One class, wall teichoic
60 acids (WTA), are covalently linked to PG; the other class, lipoteichoic acids (LTA), are
61 associated with the cell membrane through a glycolipid anchor (1). WTA and LTA play
62 partially redundant roles in cell envelope integrity and cannot be deleted simultaneously
63 (2-4).

64 In *S. aureus*, both WTA and LTA have been implicated in the control of cell
65 morphology and division (3, 5, 6), virulence (7-14), osmoregulation (15-18), antimicrobial
66 resistance (6, 19-22), and spatiotemporal regulation of cell wall enzymes (23-27).
67 However, LTA is more important than WTA for cell viability. *S. aureus* can grow under
68 standard laboratory conditions without WTA (28), but cells lacking lipoteichoic acid

69 synthase (LtaS), the enzyme that assembles LTA on the cell surface, are not viable and
70 rapidly acquire suppressor mutations (3, 5, 16, 29, 30).

71 The usual glycolipid anchor and the starting unit for LTA is diglucosyl-diacylglycerol
72 (Glc₂DAG), which is synthesized from UDP-glucose and diacylglycerol (DAG) by the
73 glycosyltransferase UgtP (also called YpfP) (Fig. 1A-B) (31, 32). Glc₂DAG is exported to
74 the cell surface by LtaA (10). The lipoteichoic acid polymerase is LtaS, a polytopic
75 membrane protein with an extracellular domain that contains the active site (4, 33). LtaS
76 transfers phosphoglycerol units derived from phosphatidylglycerol (Ptd-Gro) to the
77 Glc₂DAG starter unit, producing DAG as a byproduct (5, 34, 35). DAG is recycled to Ptd-
78 Gro by a salvage pathway (36). LTA is heavily decorated with D-alanyl residues, a
79 modification of teichoic acids that is important in autolysin regulation and has also been
80 implicated in *S. aureus* virulence (8, 12, 13, 19). Notably, deleting the glycosyltransferase
81 gene *ugtP* or the genes encoding the enzymes that produce UDP-glucose, its substrate,
82 does not result in the loss of LTA, although such mutations result in morphological and
83 fitness defects (10, 11, 32). Instead, LtaS uses Ptd-Gro rather than Glc₂DAG as the lipid
84 starter unit for LTA assembly.

85 In *Bacillus subtilis*, deleting *ugtP* or the genes for the enzymes that produce UDP-
86 glucose also results in morphological defects (37-40). In one study, *ugtP* mutant cells
87 were shown to be shorter than wild type cells, and it was proposed that UgtP is a nutrient
88 sensor that negatively regulates cytokinesis in a manner that depends on UDP-glucose
89 levels (38). In this model, under nutrient-rich conditions, high levels of UDP-glucose
90 localize UgtP to the cytokinetic ring and inhibit FtsZ polymerization or constriction, which
91 delays cell division to provide cells time to grow to a larger size (38, 41). $\Delta ugtP$ cells are

92 therefore small because UgtP is not present to slow cell division. Other studies in *B.*
93 *subtilis* are not consistent with a role for UgtP in nutrient sensing because mutant cells
94 were found to be enlarged in its absence or to have shape rather than size alterations
95 (39, 40).

96 UgtP evidently does not act to increase cell size in *S. aureus* because $\Delta ugtP$
97 mutant cells are larger, rather than smaller, than those of the wild type (32). Like other *S.*
98 *aureus* cells that grow too large (6, 42-45), the mutant cells have cell division defects such
99 as multiple and misplaced septa (32). While these defects may result directly from the
100 loss of the *ugtP* gene product, the $\Delta ugtP$ deletion is pleiotropic and causes multiple
101 effects, including the absence of the disaccharide anchor Glc₂DAG and an abnormal
102 lengthening of LTA polymers (Fig. 1C, Fig. S1A) (10). Whether increased cell size and
103 dysregulated cell division directly result from the loss of the *ugtP* gene product, from the
104 loss of intracellular Glc₂DAG, or from the abnormally long LTA polymers has been
105 unclear.

106 Mutants lacking *ItaA*, which encodes the flippase that exports Glc₂DAG to the cell
107 surface, provide a means to distinguish among these possibilities. $\Delta itaA$ mutants express
108 UgtP and synthesize intracellular Glc₂DAG, but are unable to export it efficiently (10). The
109 LTA polymers produced by $\Delta itaA$ mutants are longer than those of the wild type but
110 shorter than those of $\Delta ugtP$ mutant cells (Fig. 1C), being a heterogeneous mixture in
111 which some polymers are assembled on Ptd-Gro and some on Glc₂DAG (which is
112 exported to the cell surface by an alternative, unknown mechanism) (10). We
113 hypothesized that if the defects observed in $\Delta ugtP$ cells were caused by the abnormally
114 long LTA polymers, we should observe alterations in cell size and division in $\Delta itaA$ mutant

115 cells, although perhaps less pronounced due to the intermediate polymer length caused
116 by the $\Delta ltaA$ mutation.

117 Here we show that the production of long, abnormal LTA is sufficient to alter cell
118 size and lead to cell division defects. We also report that LTA pathway mutants with these
119 morphological defects are highly susceptible to beta-lactam antibiotics and PG
120 hydrolases and are dependent on other cell envelope pathways that are dispensable in
121 wild type strains. We used an inhibitor of one of these pathways to select for suppressor
122 mutations in $\Delta ugtP$ strains and found that most of the suppressor mutations were located
123 in the LTA polymerase, *ltaS*, and caused a reduction in LTA polymer length. Polymer
124 abundance was frequently decreased as well, in some cases to almost undetectable
125 levels. The *ltaS* suppressor mutations partially reversed the cell size and division
126 abnormalities caused by the $\Delta ugtP$ mutation. Taken together, these studies indicate LTA
127 length and abundance plays a crucial role in controlling cell size and cell envelope
128 integrity in *S. aureus*.

129

130 **RESULTS**

131 **$\Delta ugtP$ and $\Delta ltaA$ mutants are larger than wild type cells and have cell division
132 defects**

133 A previous study in *S. aureus* reported that $\Delta ugtP$ cells are larger than wild type
134 cells and have other morphological defects (32), but $\Delta ltaA$ mutant cells have not been
135 examined in detail. We compared the morphology of otherwise isogenic wild type, $\Delta ltaA$,
136 and $\Delta ugtP$ strains by transmission electron microscopy (TEM) and quantified cell size
137 using brightfield and epifluorescence microscopy after staining with a membrane dye.

138 Compared with wild type, $\Delta ltaA$ cells appeared larger by TEM and $\Delta ugtP$ cells were clearly
139 larger (Fig. 1D). Quantification of cell size confirmed these observations: cell volume
140 increased from $0.72 \pm 0.14 \mu\text{m}^3$ for wild type to $1.26 \pm 0.38 \mu\text{m}^3$ for $\Delta ltaA$ and 1.98 ± 0.59
141 μm^3 for $\Delta ugtP$ (Fig. 1E, Fig. S1B). $\Delta ltaA$ and $\Delta ugtP$ cells also displayed cell division
142 defects, including multiple and misplaced septa (Fig. S1C-D). Only 2.1% (n = 536) of wild
143 type cells had these defects compared with 7.3% (n = 518) for $\Delta ltaA$ cells and 18.9% (n
144 = 55) for $\Delta ugtP$ cells (Fig. 1F). Furthermore, $\Delta ltaA$ and $\Delta ugtP$ cells were more commonly
145 observed without partial or complete septa, indicating that they spend a longer time
146 growing prior to initiating septal synthesis (Fig. 1G, Fig. S1E). These shared phenotypes
147 of $\Delta ltaA$ and $\Delta ugtP$ mutants indicate that control over cell growth and division is adversely
148 affected when LTA is abnormally long and assembled on a Ptd-Gro, rather than on a
149 Glc₂DAG, membrane anchor. An important challenge for the future will be to elucidate the
150 mechanism by which LTA polymer length influences cell size and division.

151

152 **$\Delta ugtP$ and $\Delta ltaA$ mutants are more susceptible to lytic enzymes than wild type**

153 Given the established connection between teichoic acids and enzymes that act on
154 the cell wall, we used $\Delta ltaA$ and $\Delta ugtP$ mutants to probe whether production of abnormal
155 LTA causes susceptibility to lytic enzymes that degrade peptidoglycan. Sle1 is an
156 amidase native to *S. aureus* that hydrolyzes the amide bond between N-acetylmuramic
157 acid and the stem peptide of PG (46). Lysostaphin is an endopeptidase produced in other
158 *Staphylococci* spp. that hydrolyzes the peptide cross bridges between PG strands (47,
159 48). We found that $\Delta ltaA$ and $\Delta ugtP$ mutants were substantially more susceptible to these
160 enzymes than were wild type cells (Fig. 1H, Fig. S1F), indicating that cells that make long,

161 abnormal LTA have alterations in their cell envelope that cause increased susceptibility
162 to enzymes that hydrolyze PG.

163

164 ***ΔugtP* and *ΔItaA* MRSA mutants are sensitized to beta-lactam antibiotics**

165 Previous work has shown that when WTA is removed, methicillin-resistant *S.*
166 *aureus* (MRSA) becomes susceptible to some beta-lactam antibiotics, including oxacillin
167 (6). WTA-null cells also have cell size and division defects that resemble those that we
168 observed for *ΔItaA* and *ΔugtP* (6). These observations prompted us to test whether
169 deleting *ItaA* or *ugtP* in a MRSA background also affected beta-lactam susceptibility.
170 Although the minimum inhibitory concentration (MIC) for oxacillin was only modestly
171 decreased when *ItaA* or *ugtP* was deleted in a methicillin-sensitive background, it
172 decreased by 8-fold and 64-fold for *ΔItaA* and *ΔugtP* mutants, respectively, in MRSA (Fig.
173 1I, Fig. S1G). By contrast, there was little to no change in the MICs of antibiotics that
174 primarily affect peptidoglycan polymerization (moenomycin and vancomycin) rather than
175 crosslinking. The susceptibility of *ΔItaA* and *ΔugtP* to beta-lactams provides further
176 evidence that these mutants have cell wall alterations.

177

178 ***ΔugtP* and *ΔItaA* mutants lyse when teichoic acid D-alanylation is blocked**

179 We found in previous work that *ΔugtP* cells become reliant on a tailoring
180 modification of LTA called D-alanylation in which D-alanyl esters are attached to the C2
181 hydroxyl groups of the phosphoglycerol repeats of LTA (49). This modification, although
182 dispensable in wild type strains, is important in resistance to cationic antimicrobial
183 peptides and aminoglycosides (15, 19), and has been linked to regulation of autolysin

184 function (50). We previously identified two structurally unrelated inhibitors, DBI-1 and
185 amsacrine (amsa), that inhibit DltB, an essential component of the D-alanylation pathway
186 (Fig. 1B, Fig. 2A) (49, 51). Using spot titre assays, we found here that $\Delta ltaA$ strains, like
187 $\Delta ugtP$ strains, are susceptible to both DltB inhibitors (Fig. 2B, Fig. S2A). This susceptibility
188 provides additional evidence that the production of abnormal, long LTA causes defects
189 that result in conditional essentiality of other cell envelope modifications.

190 Terminal phenotypes can provide insight into processes that lead to cell death. We
191 therefore used TEM to compare the phenotypes of wild type, $\Delta ltaA$, and $\Delta ugtP$ cells
192 treated with the DltB inhibitor amsa. Fields of untreated and treated wild type cells
193 appeared similar by TEM, but there were large numbers of cell ghosts and fragments in
194 images of the treated $\Delta ltaA$ and $\Delta ugtP$ mutants (Fig. 2C, Fig. S2B). Moreover, when we
195 monitored biomass by optical density after treatment with inhibitor, we observed that the
196 mutants stopped growing and then the optical density dropped (Fig. 2C, Fig. S2C-D). The
197 TEM images of the untreated $\Delta ugtP$ mutants also showed qualitatively more lysis than
198 wild type cells. Taken together, our findings show that $\Delta ltaA$ and $\Delta ugtP$ cells have a
199 greater propensity to lyse than wild type cells, and they undergo catastrophic lysis when
200 D-alanylation is inhibited. We infer that D-alanylation negatively regulates the activity of
201 cell wall hydrolases.

202

203 **Reducing LTA length and abundance suppresses lethality of D-alanylation
204 inhibitors**

205 Because suppressor analysis can provide clues to the underlying basis of a defect,
206 we selected for suppressor mutations of amsa lethality in a $\Delta ugtP$ strain. Whole genome

207 sequencing of one suppressor showed a mutation in *ltaS* that resulted in a leucine
208 substitution at F93, and we found that LTA produced by this mutant was shorter and less
209 abundant than in the parent strain (see below). We raised additional amsa-resistant
210 mutants from multiple independent cultures in a few distinct *ugtP* null strains, all of which
211 could be complemented (Fig. S3A). Targeted sequencing of *ltaS* showed that mutations
212 in this gene accounted for 75% of the 64 resistant colonies tested. Notably, only three of
213 the mutations resulted in premature stop codons. In all other mutants, the reading frame
214 of *ltaS* was maintained, suggesting that at least partial function of the encoded protein
215 was retained.

216 To assess whether the activity of LtaS was affected by the *ltaS* mutations, we
217 selected 14 strains that contained mutations spanning different regions of the encoded
218 enzyme (Fig. 3A, Fig. S3B) and evaluated the abundance and length of their LTA. LtaS
219 contains five predicted transmembrane (TM) helices and a C-terminal extracellular
220 domain that contains the active site (4, 33). Three mutants contained 18 base-pair
221 insertions that resulted in the insertion of six amino acids in the extracellular loop between
222 TM1 and TM2. The other eleven mutants contained single amino acid substitutions in
223 another extracellular loop, in the “helical linker” region, or in the extracellular domain. For
224 the mutants for which LTA was detectable by Western blot, we found that it was shorter
225 than that in the *ugtP* parent strain and was typically much less abundant (Fig. 3B). For
226 some mutants, LTA was undetectable. Targeted sequencing did not identify suppressor
227 mutations known to restore viability to *ltaS* knockouts (16, 29, 30). Moreover, whole
228 genome sequencing of a subset of strains did not identify any shared mutations in other
229 genes (Fig. S3C). Taken together, these results suggested that suppression of the

230 lethality caused by loss of D-alanylation in $\Delta ugtP$ was a direct result of the reduced LTA
231 length and abundance.

232 Consistent with this conclusion, we found that a $\Delta ugtP \Delta itaS$ double deletion strain
233 was not susceptible to amsa because it does not produce LTA (Fig. 3C). This strain
234 contains a hypomorphic mutation in *gdpP* (*gdpP**). GdpP is a cyclic-di-AMP
235 phosphodiesterase and this mutation results in increased cellular levels of cyclic-di-AMP,
236 a second messenger implicated in osmoregulation (52). The accumulation of cyclic-di-
237 AMP allows growth in the absence of *itaS* (16). We therefore confirmed that a $\Delta ugtP$
238 *gdpP::Tn* double mutant remained sensitive to amsa and produced LTA resembling that
239 of a $\Delta ugtP$ single mutant (Fig. 3C, Fig. S4A-B). Therefore, amsa resistance in the $\Delta ugtP$
240 $\Delta itaS$ double mutant was not due to *gdpP**, but rather to the absence of LTA.

241 To verify that amsa resistance in the suppressor strains was indeed caused by the
242 *itaS* mutations, we constructed strains expressing inducible copies of three *itaS* mutant
243 alleles (Ins3, F93L, and L181S) or the wild type allele. These mutations are found in
244 extracellular loops of the transmembrane domain (Ins3, F93L) or in the linker region
245 between the transmembrane domain and the extracellular domain (L181S). We then
246 deleted the chromosomal copy of *itaS* and introduced marked deletions of *itaA* or *ugtP*
247 into each strain (Fig. 4A). The strains required inducer for growth, indicating that the
248 mutant *itaS* alleles, like the wild type allele, performed an essential function (Fig. 4A).
249 Strains expressing the *itaS* mutants grew on amsa and DBI-1 regardless of whether *itaA*
250 or *ugtP* were present; however, strains expressing *itaS^{wt}* in a $\Delta itaA$ or $\Delta ugtP$ background
251 did not grow (Fig. 4A, Fig. S5A-B). Growth curves showed that amsa-treated cells
252 expressing *itaS^{wt}* in the $\Delta ugtP$ background underwent growth arrest followed by lysis,

253 while cells expressing the *ItaS* mutants continued to grow (Fig. 4B). For two of the
254 mutants, *ItaS*^{F93L} and *ItaS*^{L181S}, growth rates in amsa were comparable to the untreated
255 controls, but the *ItaS*^{Ins3} mutant was growth-impaired. This mutant also reached only 20%
256 of the optical density of the other mutants in overnight cultures. Despite differences in
257 fitness, the reconstructed mutants confirmed that the selected *ItaS* mutations are
258 necessary and sufficient to confer resistance to D-alanylation inhibitors in a Δ *ugtP*
259 background.

260 Access to a set of otherwise isogenic strains expressing different *ItaS* alleles
261 allowed us to directly compare the impact of altering LTA length and abundance without
262 confounding effects of other genetic differences. In the wild type background, we found
263 that LTA was undetectable for *ItaS*^{Ins3}; for the other two *ItaS* mutant alleles, LTA was
264 shorter and the signal was much less intense than for cells expressing *ItaS*^{wt} (Fig. 4C). In
265 the Δ *ugtP* background, LTA was nearly undetectable for *ItaS*^{Ins3} but appeared similar in
266 length to *ItaS*^{wt}. The other two mutants showed greatly reduced LTA signal intensity and
267 appeared shorter in length than *ItaS*^{wt}. Overall, these results confirmed that reducing LTA
268 length or greatly reducing abundance in cells that produce long, abnormal LTA confers
269 resistance to D-alanylation inhibitors. A question for future work is how D-alanylation
270 protects cells from the lethality of long LTA polymers.

271

272 **Suppressors with low LTA retain the ability to produce large amounts of DAG**

273 We noted that most of the *ItaS* mutant genes with suppressor mutations
274 maintained the reading frame, yet the LTA levels in the mutants were typically low. LtaS
275 produces DAG in addition to LTA, with one molecule of DAG produced during each round

276 of elongation (Fig. 1B-C). DAG is generally thought to be a byproduct of LTA synthesis
277 that serves mainly as a feedstock for glycolipid synthesis and for a recycling pathway that
278 leads to more Ptd-Gro (53-55). To verify that the *ItaS* mutants retained the ability to
279 produce appreciable amounts of DAG and to assess the correlation between DAG and
280 LTA levels, we purified and reconstituted *LtaS*^{wt}, *LtaS*^{Ins3}, *LtaS*^{F93L}, and *LtaS*^{L181S} in
281 proteoliposomes and quantified DAG production (Fig. S6A). As reported previously,
282 *LtaS*^{wt} made abundant LTA polymer in this system (56), but LTA was low to undetectable
283 for the three mutants (Fig. S6B). However, all the mutants retained the capability to
284 produce considerable amounts of DAG, ranging from ~20% of *LtaS*^{wt} levels for *LtaS*^{Ins3} to
285 levels comparable to *LtaS*^{wt} for *LtaS*^{L181S} (Fig. S6C). Because these are technically
286 challenging assays, we only measured endpoints so relative DAG levels should be
287 interpreted cautiously. Nonetheless, and with this caveat in mind, it appeared that the
288 mutants produced more DAG than expected based on the LTA polymer detected,
289 suggesting that DAG production may be partially uncoupled from LTA synthesis.

290

291 **Reducing LTA length and abundance partially corrects cell size and division
292 defects and protects against peptidoglycan hydrolases**

293 With our set of otherwise isogenic strains expressing *ItaS* variants, we next
294 examined whether the *ItaS* suppressor mutations corrected other defects of $\Delta ugtP$. We
295 found that the rebuilt strain expressing *LtaS*^{wt} in the $\Delta ugtP$ background was highly
296 susceptible to both Sle1 and lysostaphin, but strains expressing *ItaS* variants were not
297 (Fig. 4D, Fig. S7). We also quantified cell morphology by microscopy and found that cells
298 expressing *LtaS*^{F93L} or *LtaS*^{L181S} in the $\Delta ugtP$ background were 46% and 88% as large,

299 respectively, as cells expressing *ItaS*^{wt} (Fig. 4E). These mutants had correspondingly
300 fewer cell division defects (Fig. 4F). Although *ItaS*^{F93L} and *ItaS*^{L181S} produce LTA of similar
301 length, *ItaS*^{F93L} corrected size and division defects to a greater extent compared to
302 *ItaS*^{L181S}. We attribute this observation to the difference in LTA abundance produced by
303 these two strains. The abundance of LTA in *ItaS*^{F93L} more closely matched the abundance
304 of LTA in the wild type strain, suggesting that the limited amount of LTA in *ItaS*^{L181S} may
305 be insufficient to promote proper growth and division, as seen in *ItaS* depletion strains
306 that grow abnormally large before lysing (5). Therefore, there may be both an ideal LTA
307 length and abundance for optimal growth. The *ItaS*^{Ins3} mutant could not be quantified due
308 to severe clumping and morphological aberrations. Nevertheless, the results for the other
309 mutants allow us to conclude that reducing LTA length and abundance partially corrects
310 the cell size and division defects of Δ *ugtP* mutant cells and also confers protection against
311 PG hydrolases.

312

313 **Suppressors with low LTA have high WTA levels**

314 Despite producing LTA at levels substantially below wild type levels, the *ItaS*
315 mutants we selected were viable and relatively healthy. Moreover, two grew similarly to
316 the wild type (Fig. 4B). Because LTA and WTA have partially overlapping roles, we
317 hypothesized that there may be compensatory changes in WTA abundance in the *ItaS*
318 mutants that contribute to their fitness. To address this question, we treated purified
319 sacculi with strong acid to release orthophosphate from WTA and quantified it. We found
320 that sacculi from strains expressing the mutant *ItaS* alleles contained two to three times
321 as much phosphate as sacculi from the strain expressing *ItaS*^{wt}, consistent with a large

322 increase in WTA (Fig. 4G). PAGE analysis of WTA polymers liberated from purified
323 sacculi with base showed modest increases in WTA length in the strains expressing *ItaS*
324 mutant alleles (Fig. S8). We conclude that *S. aureus* adapts to a reduction in LTA by
325 increasing WTA. Previous work has shown that WTA positively regulates cell wall
326 crosslinking (26). Moreover, WTA is known to decrease susceptibility to PG hydrolases
327 (23, 25). Therefore, we surmise that increased WTA levels and the concomitant changes
328 in cell wall structure lead to the decreased susceptibility of our *ItaS* mutant strains to cell
329 wall hydrolases.

330

331 **DISCUSSION**

332 The principal goals of this investigation were to elucidate the roles of *ugtP* and
333 LTA length in *S. aureus* cell growth and division and to identify mechanisms contributing
334 to cell viability when LTA levels are low. First, by comparing multiple phenotypes of Δ *ItaA*
335 and Δ *ugtP* mutants, we showed that cells producing long, abnormal LTA have cell growth
336 and division defects and are also more susceptible to cell lysis than the wild type. Second,
337 we showed that suppressor mutations in *ItaS* that reduced LTA length and abundance
338 corrected these defects. Third, by comparing otherwise isogenic *ItaS* mutants that make
339 either high or low levels of LTA, we showed that WTA levels correlated inversely with LTA
340 levels. It is likely that the increased abundance of WTA partially compensated for low
341 levels of LTA.

342 Previous work has shown that *S. aureus* Δ *ugtP* mutants, which make long LTA,
343 grow larger than normal (32). In *B. subtilis*, *ugtP* is also important in cell growth and
344 division, although its absence leads to decreased cell size in some reports (37, 38). *B.*

345 *subtilis* UgtP is proposed to function as a nutrient sensor that, when present with sufficient
346 UDP-glucose, slows Z-ring assembly so that cells grow to a larger size prior to division.
347 Our results show that such a mechanism does not operate in *S. aureus*. First, Δ ugtP
348 mutant cells spend a longer time growing before initiating septal synthesis and
349 consequently are larger rather than smaller than the wild type. Second, Δ ltaA mutants are
350 also larger than wild type even though they express *ugtP* and produce intracellular
351 Glc₂DAG. Therefore, dysregulated cell growth in LTA pathway mutants upstream of the
352 LtaS polymerase is not due to the absence of the proteins or their products, but rather to
353 the production of abnormally long LTA. Consistent with this conclusion, cell growth
354 defects were reduced in a Δ ugtP mutant background by mutations in *ltaS* that reduced
355 LTA length.

356 Previous work has shown that cell division defects result when *S. aureus* cells grow
357 larger than normal (6, 42-45). Consistent with these findings, we observed a remarkable
358 correlation between cell size and frequency of cell division defects for the mutants studied
359 here. For example, Δ ltaA mutants were substantially smaller than Δ ugtP mutants, and we
360 found that Δ ltaA mutants had 50% fewer cell division defects. Moreover, *ltaS* mutations
361 that reduced cell size in a Δ ugtP background had fewer cell division defects, with the
362 magnitudes of the reduction in size and the reduction in division defects tracking closely.
363 We have therefore concluded that the cell division defects observed in Δ ugtP and Δ ltaA
364 mutants are due to dysregulated coordination between cell growth and division.

365 We have shown that *S. aureus* WTA levels increase substantially when LTA levels
366 are low. This finding is reminiscent of findings in *Streptococcus pneumoniae* showing that
367 levels of WTA and LTA are inversely regulated (57). *S. pneumoniae* synthesizes both

368 forms of teichoic acid through the same pathway, with the outcome distinguished only by
369 a final ligation step where the polymer precursor is transferred to PG or to a glycolipid
370 (58). In *S. pneumoniae*, LTA synthesis predominates during exponential growth, but there
371 is a switch to predominantly WTA synthesis as cells approach stationary phase. *S. aureus*
372 WTA and LTA are synthesized by different pathways with only the D-alanine tailoring
373 modification as a shared feature. Nevertheless, there appears to be a mechanism to
374 redistribute resources between the WTA and LTA pathways when one is lacking.
375 Although LTA and WTA share some functions and act synergistically to maintain cell
376 envelope integrity, their spatial localization is different. LTA is located between the
377 membrane and the inner layer of PG and WTA extends from the inner layer of PG beyond
378 the outer layer. Consistent with this difference in localization, we have found that
379 producing long, abundant LTA tends to promote cell lysis whereas producing abundant
380 WTA tends to limit cell lysis. Given this evidence that physiological roles of LTA and WTA
381 in *S. aureus* are not identical, it would not be surprising to find that regulatory mechanisms
382 exist to control the relative abundance of these polymers.

383 Expression of normal LTA is critical for *S. aureus* virulence. Previous work has
384 shown that strains lacking *ltaA* or *ugtP* have attenuated pathogenicity (10, 11). While the
385 physiological basis of this attenuation is not known, in light of our data on the susceptibility
386 of $\Delta ltaA$ and $\Delta ugtP$ to PG hydrolases, it may involve an increased sensitivity to host lytic
387 enzymes. We have shown here that the defects caused by expression of long, abnormal
388 LTA also result in increased susceptibility of MRSA to beta-lactam antibiotics. We
389 therefore anticipate that inhibitors of enzymes that act upstream of LtaS will have
390 therapeutic potential, particularly if used in combination with an appropriate beta-lactam.

391 Future work will focus on identifying such inhibitors and elucidating the mechanism for
392 glycolipid-dependent control of LTA polymer length.

393

394 **MATERIALS AND METHODS**

395 **General information.** Chemicals and reagents were purchased from Sigma-
396 Aldrich unless otherwise indicated. Oligonucleotides were purchased from Integrated
397 DNA Technologies. Detergents were purchased from Anatrace. Restriction enzymes
398 were purchased from New England Biolabs. *Staphylococcus aureus* strains were grown
399 with shaking at 30°C unless otherwise indicated in tryptic soy broth (TSB, Beckton
400 Dickinson Biosciences) or cation-adjusted Mueller Hinton Broth 2 (MHB2). *Escherichia*
401 *coli* strains were grown at 37°C with shaking in LB broth, Miller (LB, Beckton Dickinson
402 Biosciences). Growth on solid medium used the appropriate broth plus 1.5% w/v agar
403 (Beckton Dickinson Biosciences). When required, antibiotics were used at the following
404 concentrations: 50 µg/mL kanamycin, 50 µg/mL neomycin, 10 µg/mL erythromycin, 10
405 µg/mL chloramphenicol, 3 µg/mL tetracycline, 100 µg/mL carbenicillin. Anhydrotetracycline
406 was used at 400 nM. *S. aureus* genomic DNA was isolated using a Wizard Genomic DNA
407 Purification Kit (Promega). Genomic DNA from *S. aureus* RN4220 or isolated amsacrine-
408 resistant mutants was used as a template in PCR reactions to amplify *S. aureus* genes.

409 **Strain construction.** To construct strains with atc-inducible, integrated copies of
410 genes via pTP63, plasmids were electroporated into *S. aureus* RN4220 containing the
411 pTP44 plasmid. Transformants were selected on chloramphenicol at 30°C. Marked
412 deletions, marked transposon insertions, and atc-inducible genes were transduced via
413 φ85 bacteriophage as described previously (59).

414 **Analysis of LTA length by Western blot.** Overnight cultures grown in TSB were
415 diluted in fresh TSB and grown to an approximate OD₆₀₀ of 0.8. 0.5 mL of each culture
416 (normalized by OD₆₀₀) were harvested by centrifugation and suspended in 50 µL of a
417 solution containing 50 mM Tris pH 7.4, 150 mM NaCl, and 200 µg/mL lysostaphin (from
418 *Staphylococcus staphylolyticus*, AMBI Products). The cells were incubated at 37°C for 10
419 minutes, diluted with one volume of 4X sodium dodecyl sulfate (SDS)-PAGE loading
420 buffer, and boiled for 30 minutes. Samples were centrifuged for 10 minutes at 16,000 x g
421 to pellet any insoluble material. The supernatant was diluted with one volume of water
422 and treated with 0.5 µL of 20 mg/mL proteinase K (New England Biolabs) at 50°C for 2
423 hours. Samples were separated on 4-20% Mini-PROTEAN TGX acrylamide gels (Bio-
424 rad) with a running buffer consisting of 5 g/L Tris base, 15 g/L glycine, and 1 g/L SDS and
425 transferred to a PVDF membrane. Western blots were performed as described previously
426 (56).

427 **Transmission electron microscopy.** Overnight cultures grown in TSB were
428 diluted in fresh TSB and grown to mid-log phase. Cells were treated with DMSO or 16
429 µg/mL amsacrine for 4 hours at 30°C, added to an equal volume of fixative solution
430 (1.25% formaldehyde, 2.5% glutaraldehyde, 0.03% picric acid in 100 mM sodium
431 cacodylate pH 7.4), and pelleted for fixation. Samples were prepared for TEM by the
432 Harvard Medical School Electron Microscopy Facility and images were captured on a
433 JEOL 1200EX instrument.

434 **Microscopy.** Overnight cultures grown in TSB were diluted in fresh TSB and
435 grown to an approximate OD₆₀₀ of 0.5. To stain the cell membrane, FM 4-64
436 (ThermoFisher Scientific) was added at a final concentration of 5 µg/mL to 1 mL of culture

437 for 5 minutes at room temperature. Cells were pelleted at 4,000g for 1 minute, washed
438 with PBS pH 7.4 (50 mM sodium phosphate pH 7.4, 150 mM NaCl), and suspended in
439 100 μ L of PBS pH 7.4. A 1 μ L aliquot of cells was spotted on top of a 2% agarose gel pad
440 mounted on a glass slide. A 1.5 mm cover slip was placed over the cells and sealed with
441 wax before imaging.

442 The cells were imaged at 30°C as described previously (45). For each field of view,
443 3 images were taken: 1) phase-contrast, 2) brightfield, and 3) fluorescence. The phase-
444 contrast and brightfield images were acquired at 100 ms camera exposure while the
445 fluorescence image was acquired at 500 ms. The brightfield images were used for cell
446 segmentation for quantitative image analyses. Fluorescence images were used to detect
447 division defects and sort cells as depicted in (FIG S1C).

448 Image segmentation, cell volume quantification, and cellular phenotype
449 classification were performed as described previously (45). Cell volumes were calculated
450 from cells lacking visible septa. 600-1000 cells of each strain were quantified. A two-tailed
451 Mann-Whitney U nonparametric test was used to calculate the p-value for the differences
452 in distribution of cell sizes among strains. 300-600 cells of each strain were assessed for
453 cell division phenotypes.

454 **Expression and purification of MBP-Sle1.** *S. aureus* Sle1 (SAOUHSC_00427)
455 was cloned into the NdeI and BamHI sites of pMAL-c5X (New England Biolabs) with
456 primers oTD22 and oTD23 and transformed into *E. coli* NEB Express cells. An overnight
457 culture grown at 30°C was used to inoculate fresh media and the culture was grown at
458 37°C to an approximate OD₆₀₀ of 0.5. Cultures were cooled on ice and induced with 0.3
459 mM IPTG at 16°C overnight. Cells were pelleted at 3,600g for 15 minutes at 4°C,

460 suspended in lysis buffer (20 mM Tris pH 7.2, 200 mM NaCl, 10% glycerol) plus 1 mM
461 dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, 100 µg/mL lysozyme, and 100 µg/mL
462 DNase, and lysed with 3 passages through an EmulsiFlex-C3 cell disruptor (Avestin). All
463 subsequent steps were performed at 4°C. Insoluble material was pelleted at 119,000g for
464 35 minutes and the supernatant was bound to amylose resin (New England Biolabs). The
465 resin was washed with lysis buffer and eluted with lysis buffer plus 10 mM maltose. The
466 elution was concentrated with a 30 kDa MWCO spin concentrator (EMD Millipore) and
467 further purified on a Superdex 200 Increase 10/300 GL (GE Life Sciences) equilibrated in
468 lysis buffer. Appropriate fractions were concentrated, flash frozen with liquid nitrogen, and
469 stored at -80°C.

470 **Whole cell lytic assays.** Overnight cultures grown in TSB were diluted in fresh
471 TSB and grown to an approximate OD₆₀₀ of 3. 1.5 mL of culture (normalized by OD₆₀₀)
472 were harvested by centrifugation, washed with PBS pH 7.2, and suspended in 1.6 mL of
473 PBS pH 7.2. 75 µL of cell suspension were added to 75 µL of 25 nM lysostaphin, 250-
474 500 nM purified Sle1, or PBS pH 7.2. Samples were incubated at 25°C with shaking in a
475 SpectraMax Plus 384 microplate reader and OD₆₀₀ was monitored over time.

476 **Minimum inhibitory concentration (MIC) determination.** Overnight cultures
477 grown in TSB were diluted in fresh MHB2 (without antibiotics) and grown to an
478 approximate OD₆₀₀ of 0.8. Cultures were diluted with media to an OD₆₀₀ of 0.001 and 146-
479 147 µL were added to each well of a 96-well plate. 3-4 µL of a compound dilution series
480 were added, and cultures were grown with shaking at 37°C for 18 hours. Each condition
481 was tested in technical triplicates and the MIC was determined as the lowest
482 concentration that prevented growth.

483 **Spot dilutions.** Overnight cultures of each strain grown in TSB were diluted in
484 fresh TSB and grown to an approximate OD₆₀₀ of 0.8. Cultures were normalized to an
485 OD₆₀₀ of 0.1, a 10-fold dilution series from 10⁻¹ to 10⁻⁶ was created, and dilutions were
486 spotted on TSB agar containing any desired compounds. Strains growth with
487 anhydrotetracycline were washed once with TSB before diluting. Plates were incubated
488 at 30°C and imaged the next day with a Nikon D3400 DSLR camera fitted with an AF
489 Micro-Nikkor 60 mm f/2.8D lens.

490 **Growth curves.** Overnight cultures of each strain grown in TSB were diluted in
491 fresh TSB and grown to an approximate OD₆₀₀ of 0.8. Cultures were diluted to an OD₆₀₀
492 of 0.03 and amsacrine or DBI-1 (in DMSO) were added at a final concentration of 10
493 μg/mL. DMSO was added to untreated control cultures at a final concentration of 2%.
494 Cultures were grown at 30°C with shaking in a SpectraMax Plus 384 microplate reader
495 (Molecular Devices) and OD₆₀₀ was monitored over time.

496 **Raising amsacrine resistant mutants.** Amsacrine resistant mutants were raised
497 strains SEJ1 *ugtP::tn*, HG003 *ugtP::tn*, RN4220 Δ *ugtP*, and SEJ1 Δ *ugtP::kan*. For
498 mutants in the SEJ1 *ugtP::tn* background, 50 μL of undiluted overnight cell culture was
499 plated on TSB agar plus 6 μg/mL amsacrine at 30°C for two days. For mutants in
500 backgrounds SEJ1 Δ *ugtP::kan*, HG003 *ugtP::tn*, RN4220 Δ *ugtP*, overnight cultures were
501 diluted in TSB and grown at 30°C to an OD₆₀₀ of 1.0. 1 mL of this culture was harvested,
502 suspended in 100 μL fresh TSB, and plated on TSB agar plus 10 μg/mL amsacrine at
503 30°C for two days. Multiple independent cultures were used to increase the diversity of
504 mutants. Whole-genome sequencing of select mutants was performed with an Illumina
505 MiSeq as described previously (45).

506 **Construction of strains with anhydrotetracycline-inducible *ItaS* alleles.** Wild
507 type, Ins3, F93L, and L181S LtaS variants were cloned from the genomic DNA of RN4220
508 or their respective suppressor mutants into pTP63 with primers iLtaS_1 and iLtaS_2 and
509 electroporated into RN4220 bearing pTP44 for integration (44). Each resulting strain was
510 transduced with ϕ 85 lysate from a strain with an erythromycin-marked *ItaS* deletion.
511 These strains were then optionally transduced with ϕ 85 lysate from a strain with a
512 kanamycin-marked *ugtP* or *ItaA* deletion.

513 **Phosphate quantification from purified sacculi.** Sacculi containing covalently
514 linked WTA were isolated in a manner similar as described previously (60). 2 mL of an
515 overnight culture grown in TSB (normalized by OD₆₀₀) were harvested, washed with buffer
516 1 (50 mM MES pH 6.5), and suspended in buffer 2 (50 mM MES pH 6.5, 4% SDS). Cells
517 were boiled for 1 hour and pellets harvested at 16,000g for 10 minutes. The supernatant
518 was discarded, and the pellets were washed twice with buffer 2, once with buffer 3 (50
519 mM MES pH 6.5, 342 mM NaCl), and twice with buffer 1. Pellets were treated with 50
520 µg/mL DNase and 50 µg/mL RNase in buffer 1 at 37°C for 1 hour. Pellets were harvested,
521 washed with buffer 1, and suspended in a solution containing 20 mM Tris pH 8, 0.5%
522 SDS. Samples were treated with 20 µg/mL proteinase K at 50°C for 2 hours with light
523 shaking. After harvesting pellets by centrifugation, pellets were washed once with buffer
524 3 and then 3 times with water.

525 Purified sacculi were suspended in 1M HCl. A dilution series of K_2HPO_4 in 1M HCl
526 was also prepared. Samples were treated at 80°C for 16 hours and cooled to room
527 temperature. Any insoluble material remaining was pelleted by centrifugation and the
528 supernatant was retained. An ammonium molybdate reagent was prepared by mixing, in

529 order, equal volumes of 2M H₂SO₄, 2.5% (w/v) ammonium molybdate, and 10% (w/v)
530 ascorbic acid. One volume of ammonium molybdate reagent was added to each sample
531 and samples were incubated at 37°C for 1 hour. Orthophosphate was quantified by
532 absorbance at 820nm with the K₂HPO₄ standard curve.

533 **Polyacrylamide gel electrophoresis of WTA polymers.** Sacculi containing
534 covalently linked WTA were isolated as described above but treated with 100 mM NaOH
535 at room temperature for 16 hours. 3 volumes of loading buffer (50% glycerol, 100 mM
536 Tris-tricine, 0.02% bromophenol blue) were added to each sample.

537 High-resolution 20x20cm polyacrylamide gels were prepared as described
538 previously (60), but with a stacking gel consisting of 3% acrylamide (3% T, 3.3% C where
539 T is total acrylamide and C is the percentage of T consisting of bisacrylamide), 900 mM
540 Tris pH 8.5, 0.1% ammonium persulfate, and 0.01% tetramethylethylenediamine. Gels
541 were run at 4°C in a Protean II xi Cell electrophoresis system (Bio-rad) at 40 mA/gel with
542 a running buffer consisting of 100 mM Tris-tricine pH 8.2 until the bromophenol blue
543 loading dye was near the bottom of the gel. Gels were washed with water, stained with 1
544 mg/mL aqueous alcian blue for 30 minutes, destained with water and 40% ethanol/5%
545 acetic acid, and rehydrated with water. Silver stain was performed with the Silver Stain
546 Plus kit (Bio-rad) without the fixation step. Images were taken with a Nikon D3400 DSLR
547 camera fitted with an AF Micro-Nikkor 60 mm f/2.8D lens and converted to an 8-bit image
548 using ImageJ.

549 **Purification of LtaS mutants and proteoliposome analysis of DAG**
550 **production.** Mutant LtaS constructs were cloned from genomic DNA isolated from the
551 original suppressor mutants and assembled into pET28b with primers LtaS_F and LtaS_R

552 as previously described (56). LtaS constructs were expressed, purified, and reconstituted
553 into proteoliposomes as previously described (56). Proteoliposomes were added to 9
554 volumes of a solution containing 20 mM succinate 6.0, 50 mM NaCl, 5% DMSO.
555 Reactions were incubated either in the presence or absence of 1 mM MnCl₂. LTA was
556 detected by Western blot as previously described (56). To measure DAG production,
557 reactions proceeded for 4 hours at 30°C, and then extracted and assayed according to
558 the instructions provided by the Cell BioLabs DAG assay kit. Reactions were performed
559 in duplicate and plotted using GraphPad Prism. Absolute activity was calculated by
560 subtracting activity values calculated from reactions that did not contain MnCl₂ from the
561 values from reactions that contained MnCl₂. Activity was compared between mutants by
562 setting reactions with proteoliposomes containing wild type LtaS to 100% activity.

563 **Data availability.** Whole-genome sequencing data (accession number
564 PRJNA612838) can be found in the NCBI BioProject database.

565

566 **SUPPLEMENTAL MATERIAL**

567 **Supplemental File 1**, PDF file, 1.8 MB.

568

569 **ACKNOWLEDGMENT**

570 Some strains were generated with the help of Lincoln Pasquina and Wonsik Lee
571 and we thank them for their generous assistance. This project was funded by the National
572 Institutes of Health (P01-AI083214 to S.W. and R01-AI139011 to S.W. and R.L.) and the
573 National Science Foundation (DGE1144152 to A.R.H. and to T.D.).

574

575 **REFERENCES**

- 576 1. Rajagopal M, Walker S. 2017. Envelope Structures of Gram-Positive Bacteria. *Curr Top Microbiol*
577 *Immunol* 404:1-44.
- 578 2. Santa Maria JP, Jr., Sadaka A, Moussa SH, Brown S, Zhang YJ, Rubin EJ, Gilmore MS, Walker
579 S. 2014. Compound-gene interaction mapping reveals distinct roles for *Staphylococcus aureus*
580 teichoic acids. *Proc Natl Acad Sci U S A* 111:12510-5.
- 581 3. Oku Y, Kurokawa K, Matsuo M, Yamada S, Lee B-L, Sekimizu K. 2009. Pleiotropic Roles of
582 Polyglycerolphosphate Synthase of Lipoteichoic Acid in Growth of *Staphylococcus aureus* Cells.
583 *Journal of Bacteriology* 191:141-151.
- 584 4. Schirner K, Marles-Wright J, Lewis RJ, Errington J. 2009. Distinct and essential morphogenic
585 functions for wall- and lipo-teichoic acids in *Bacillus subtilis*. *The EMBO Journal* 28:830-842.
- 586 5. Gründling A, Schneewind O. 2007. Synthesis of glycerol phosphate lipoteichoic acid in
587 *Staphylococcus aureus*. *Proc Natl Acad Sci U S A* 104:8478-83.
- 588 6. Campbell J, Singh AK, Santa Maria JP, Jr., Kim Y, Brown S, Swoboda JG, Mylonakis E,
589 Wilkinson BJ, Walker S. 2010. Synthetic Lethal Compound Combinations Reveal a Fundamental
590 Connection between Wall Teichoic Acid and Peptidoglycan Biosyntheses in *Staphylococcus*
591 *aureus*. *ACS Chem Biol* 6:106-116.
- 592 7. Weidenmaier C, Kokai-Kun JF, Kristian SA, Chanturiya T, Kalbacher H, Gross M, Nicholson G,
593 Neumeister B, Mond JJ, Peschel A. 2004. Role of teichoic acids in *Staphylococcus aureus* nasal
594 colonization, a major risk factor in nosocomial infections. *Nat Med* 10:243-5.
- 595 8. Weidenmaier C, Peschel A, Kempf VA, Lucindo N, Yeaman MR, Bayer AS. 2005. DltABCD- and
596 MprF-mediated cell envelope modifications of *Staphylococcus aureus* confer resistance to
597 platelet microbicidal proteins and contribute to virulence in a rabbit endocarditis model. *Infect*
598 *Immun* 73:8033-8.
- 599 9. Wanner S, Schade J, Keinhörster D, Weller N, George SE, Kull L, Bauer J, Grau T, Winstel V,
600 Stoy H, Kretschmer D, Kolata J, Wolz C, Bröker BM, Weidenmaier C. 2017. Wall teichoic acids
601 mediate increased virulence in *Staphylococcus aureus*. *Nat Microbiol* 2:16257.

- 602 10. Gründling A, Schneewind O. 2007. Genes required for glycolipid synthesis and lipoteichoic acid
603 anchoring in *Staphylococcus aureus*. *J Bacteriol* 189:2521-30.
- 604 11. Sheen TR, Ebrahimi CM, Hiemstra IH, Barlow SB, Peschel A, Doran KS. 2010. Penetration of the
605 blood-brain barrier by *Staphylococcus aureus*: contribution of membrane anchored lipoteichoic
606 acid. *Journal of molecular medicine (Berlin, Germany)* 88:633-639.
- 607 12. Collins LV, Kristian SA, Weidenmaier C, Faigle M, van Kessel KPM, van Strijp JAG, Götz F,
608 Neumeister B, Peschel A. 2002. *Staphylococcus aureus* strains lacking D-alanine modifications of
609 teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in
610 mice. *J Infect Dis* 186:214-219.
- 611 13. Simanski M, Gläser R, Köten B, Meyer-Hoffert U, Wanner S, Weidenmaier C, Peschel A, Harder
612 J. 2013. *Staphylococcus aureus* subverts cutaneous defense by D-alanylation of teichoic acids.
613 *Exp Dermatol* 22:294-6.
- 614 14. Bunk S, Sigel S, Metzdorf D, Sharif O, Triantafilou K, Triantafilou M, Hartung T, Knapp S, von
615 Aulock S. 2010. Internalization and coreceptor expression are critical for TLR2-mediated
616 recognition of lipoteichoic acid in human peripheral blood. *J Immunol* 185:3708-17.
- 617 15. Neuhaus FC, Baddiley J. 2003. A continuum of anionic charge: structures and functions of D-
618 alanyl-teichoic acids in gram-positive bacteria. *Microbiol Mol Biol Rev* 67:686-723.
- 619 16. Corrigan RM, Abbott JC, Burhenne H, Kaever V, Gründling A. 2011. c-di-AMP is a new second
620 messenger in *Staphylococcus aureus* with a role in controlling cell size and envelope stress.
621 *PLoS Pathog* 7:e1002217.
- 622 17. Wang H, Gill CJ, Lee SH, Mann P, Zuck P, Meredith TC, Murgolo N, She X, Kales S, Liang L, Liu
623 J, Wu J, Santa Maria J, Su J, Pan J, Hailey J, McGuinness D, Tan CM, Flattery A, Walker S,
624 Black T, Roemer T. 2013. Discovery of Wall Teichoic Acid Inhibitors as Potential Anti-MRSA
625 beta-Lactam Combination Agents. *Chem Biol* 20:272-84.
- 626 18. Schuster CF, Wiedemann DM, Kirsebom FCM, Santiago M, Walker S, Gründling A. 2019. High-
627 throughput transposon sequencing highlights the cell wall as an important barrier for osmotic
628 stress in methicillin resistant *Staphylococcus aureus* and underlines a tailored response to
629 different osmotic stressors. *Mol Microbiol* doi:10.1111/mmi.14433.

- 630 19. Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Gale RT, Götz F. 1999. Inactivation of the *dlt*
631 operon in *Staphylococcus aureus* confers sensitivity to defensins, protegrins, and other
632 antimicrobial peptides. *J Biol Chem* 274:8405-8410.
- 633 20. Kohler T, Weidenmaier C, Peschel A. 2009. Wall Teichoic Acid Protects *Staphylococcus aureus*
634 against Antimicrobial Fatty Acids from Human Skin. *Journal of Bacteriology* 191:4482-4484.
- 635 21. Brown S, Xia G, Luhachack LG, Campbell J, Meredith TC, Chen C, Winstel V, Gekeler C,
636 Irazoqui JE, Peschel A, Walker S. 2012. Methicillin resistance in *Staphylococcus aureus* requires
637 glycosylated wall teichoic acids. *Proc Natl Acad Sci U S A* 109:18909-14.
- 638 22. Mishra NN, Bayer AS, Weidenmaier C, Grau T, Wanner S, Stefani S, Cafiso V, Bertuccio T,
639 Yeaman MR, Nast CC, Yang SJ. 2014. Phenotypic and genotypic characterization of daptomycin-
640 resistant methicillin-resistant *Staphylococcus aureus* strains: relative roles of *mprF* and *dlt*
641 operons. *PLoS One* 9:e107426.
- 642 23. Frankel MB, Schneewind O. 2012. Determinants of murein hydrolase targeting to cross-wall of
643 *Staphylococcus aureus* peptidoglycan. *J Biol Chem* 287:10460-71.
- 644 24. Fedtke I, Mader D, Kohler T, Moll H, Nicholson G, Biswas R, Henseler K, Götz F, Zähringer U,
645 Peschel A. 2007. A *Staphylococcus aureus* *ypfP* mutant with strongly reduced lipoteichoic acid
646 (LTA) content: LTA governs bacterial surface properties and autolysin activity. *Molecular*
647 *Microbiology* 65:1078-1091.
- 648 25. Sieradzki K, Tomasz A. 2003. Alterations of cell wall structure and metabolism accompany
649 reduced susceptibility to vancomycin in an isogenic series of clinical isolates of *Staphylococcus*
650 *aureus*. *J Bacteriol* 185:7103-10.
- 651 26. Atilano ML, Pereira PM, Yates J, Reed P, Veiga H, Pinho MG, Filipe SR. 2010. Teichoic acids are
652 temporal and spatial regulators of peptidoglycan cross-linking in *Staphylococcus aureus*. *Proc*
653 *Natl Acad Sci U S A* 107:18991-6.
- 654 27. Tiwari KB, Gatto C, Walker S, Wilkinson BJ. 2018. Exposure of *Staphylococcus aureus* to
655 Targocil Blocks Translocation of the Major Autolysin Atl across the Membrane, Resulting in a
656 Significant Decrease in Autolysis. *Antimicrob Agents Chemother* 62.

- 657 28. D'Elia MA, Pereira MP, Chung YS, Zhao W, Chau A, Kenney TJ, Sulavik MC, Black TA, Brown
658 ED. 2006. Lesions in teichoic acid biosynthesis in *Staphylococcus aureus* lead to a lethal gain of
659 function in the otherwise dispensable pathway. *J Bacteriol* 188:4183-9.
- 660 29. Bæk KT, Bowman L, Millership C, Dupont Søgaard M, Kaever V, Siljamäki P, Savijoki K,
661 Varmanen P, Nyman TA, Gründling A, Frees D. 2016. The Cell Wall Polymer Lipoteichoic Acid
662 Becomes Nonessential in *Staphylococcus aureus* Cells Lacking the ClpX Chaperone. *MBio* 7.
- 663 30. Karinou E, Schuster CF, Pazos M, Vollmer W, Gründling A. 2019. Inactivation of the
664 Monofunctional Peptidoglycan Glycosyltransferase SgtB Allows *Staphylococcus aureus* To
665 Survive in the Absence of Lipoteichoic Acid. *J Bacteriol* 201.
- 666 31. Jorasch P, Warnecke DC, Lindner B, Zähringer U, Heinz E. 2000. Novel processive and
667 nonprocessive glycosyltransferases from *Staphylococcus aureus* and *Arabidopsis thaliana*
668 synthesize glycoglycerolipids, glycophospholipids, glycosphingolipids and glycosylsterols. *Eur J
669 Biochem* 267:3770-3783.
- 670 32. Kiriukhin MY, Debabov DV, Shinabarger DL, Neuhaus FC. 2001. Biosynthesis of the glycolipid
671 anchor in lipoteichoic acid of *Staphylococcus aureus* RN4220: role of YpfP, the
672 diglucosyldiacylglycerol synthase. *J Bacteriol* 183:3506-14.
- 673 33. Lu D, Wörmann ME, Zhang X, Schneewind O, Gründling A, Freemont PS. 2009. Structure-based
674 mechanism of lipoteichoic acid synthesis by *Staphylococcus aureus* LtaS. *Proc Natl Acad Sci U S
675 A* 106:1584-1589.
- 676 34. Duckworth M, Archibald AR, Baddiley J. 1975. Lipoteichoic acid and lipoteichoic acid carrier in
677 *Staphylococcus aureus* H. *FEBS Lett* 53:176-179.
- 678 35. Taron DJ, Childs III WC, Neuhaus FC. 1983. Biosynthesis of D-Alanyl-Lipoteichoic Acid: Role of
679 Diglyceride Kinase in the Synthesis of Phosphatidylglycerol for Chain Elongation. *J Bacteriol*
680 154:1110-1116.
- 681 36. Jerga A, Lu YJ, Schujman GE, de Mendoza D, Rock CO. 2007. Identification of a soluble
682 diacylglycerol kinase required for lipoteichoic acid production in *Bacillus subtilis*. *J Biol Chem*
683 282:21738-45.

- 684 37. Price KD, Roels S, Losick R. 1997. A *Bacillus subtilis* gene encoding a protein similar to
685 nucleotide sugar transferases influences cell shape and viability. *J Bacteriol* 179:4959-4961.
- 686 38. Weart RB, Lee AH, Chien AC, Haeusser DP, Hill NS, Levin PA. 2007. A metabolic sensor
687 governing cell size in bacteria. *Cell* 130:335-47.
- 688 39. Lazarevic V, Soldo B, Medico N, Pooley H, Bron S, Karamata D. 2005. *Bacillus subtilis* alpha-
689 phosphoglucomutase is required for normal cell morphology and biofilm formation. *Appl Environ
690 Microbiol* 71:39-45.
- 691 40. Matsuoka S, Chiba M, Tanimura Y, Hashimoto M, Hara H, Matsumoto K. 2011. Abnormal
692 morphology of *Bacillus subtilis* *ugtP* mutant cells lacking glucolipids. *Genes Genet Syst* 86:295-
693 304.
- 694 41. Chien AC, Zareh SK, Wang YM, Levin PA. 2012. Changes in the oligomerization potential of the
695 division inhibitor *UgtP* co-ordinate *Bacillus subtilis* cell size with nutrient availability. *Mol Microbiol*
696 86:594-610.
- 697 42. Pinho MG, Errington J. 2003. Dispersed mode of *Staphylococcus aureus* cell wall synthesis in the
698 absence of the division machinery. *Mol Microbiol* 50:871-81.
- 699 43. Jorge AM, Hoiczyk E, Gomes JP, Pinho MG. 2011. *EzrA* contributes to the regulation of cell size
700 in *Staphylococcus aureus*. *PLoS One* 6:e27542.
- 701 44. Pang T, Wang X, Lim HC, Bernhardt TG, Rudner DZ. 2017. The nucleoid occlusion factor *Noc*
702 controls DNA replication initiation in *Staphylococcus aureus*. *PLoS Genet* 13:e1006908.
- 703 45. Do T, Schaefer K, Santiago AG, Coe KA, Fernandes PB, Kahne D, Pinho MG, Walker S. 2020.
704 *Staphylococcus aureus* cell growth and division are regulated by an amidase that trims peptides
705 from uncrosslinked peptidoglycan. *Nat Microbiol* doi:10.1038/s41564-019-0632-1.
- 706 46. Kajimura J, Fujiwara T, Yamada S, Suzawa Y, Nishida T, Oyamada Y, Hayashi I, Yamagishi J,
707 Komatsuzawa H, Sugai M. 2005. Identification and molecular characterization of an N-
708 acetyl muramyl-L-alanine amidase *Sle1* involved in cell separation of *Staphylococcus aureus*. *Mol
709 Microbiol* 58:1087-101.
- 710 47. Schindler CA, Schuhardt VT. 1964. Lysostaphin: a New Bacteriolytic Agent for the
711 *Staphylococcus*. *Proc Natl Acad Sci U S A* 51:414-421.

- 712 48. Robinson JM, Hardman JK, Sloan GL. 1979. Relationship Between Lysostaphin Endopeptidase
713 Production and Cell Wall Composition in *Staphylococcus staphylolyticus*. *J Bacteriol* 137:1158-
714 1164.
- 715 49. Pasquina L, Santa Maria JP, Jr., Wood BM, Moussa SH, Matano LM, Santiago M, Martin SE, Lee
716 W, Meredith TC, Walker S. 2016. A synthetic lethal approach for compound and target
717 identification in *Staphylococcus aureus*. *Nat Chem Biol* 12:40-5.
- 718 50. Peschel A, Vuong C, Otto M, Götz F. 2000. The D-Alanine Residues of *Staphylococcus aureus*
719 Teichoic Acids Alter the Susceptibility to Vancomycin and the Activity of Autolytic Enzymes.
720 *Antimicrob Agents Chemother* 44:2845-2847.
- 721 51. Matano LM, Morris HG, Wood BM, Meredith TC, Walker S. 2016. Accelerating the discovery of
722 antibacterial compounds using pathway-directed whole cell screening. *Bioorg Med Chem*
723 24:6307-6314.
- 724 52. Fahmi T, Port GC, Cho KH. 2017. c-di-AMP: An Essential Molecule in the Signaling Pathways
725 that Regulate the Viability and Virulence of Gram-Positive Bacteria. *Genes (Basel)* 8.
- 726 53. Matsuoka S, Hashimoto M, Kamiya Y, Miyazawa T, Ishikawa K, Hara H, Matsumoto K. 2011. The
727 *Bacillus subtilis* essential gene dgkB is dispensable in mutants with defective lipoteichoic acid
728 synthesis. *Genes Genet Syst* 86:365-376.
- 729 54. Parsons JB, Rock CO. 2013. Bacterial lipids: metabolism and membrane homeostasis. *Prog Lipid
730 Res* 52:249-76.
- 731 55. Kuhn S, Slavetinsky CJ, Peschel A. 2015. Synthesis and function of phospholipids in
732 *Staphylococcus aureus*. *Int J Med Microbiol* 305:196-202.
- 733 56. Vickery CR, Wood BM, Morris HG, Losick R, Walker S. 2018. Reconstitution of *Staphylococcus
734 aureus* lipoteichoic Acid synthase activity identifies congo red as a selective inhibitor. *J Am Chem
735 Soc* 140:876-879.
- 736 57. Flores-Kim J, Dobhal GS, Fenton A, Rudner DZ, Bernhardt TG. 2019. A switch in surface
737 polymer biogenesis triggers growth-phase-dependent and antibiotic-induced bacteriolysis. *Elife* 8.

- 738 58. Heß N, Waldow F, Kohler TP, Rohde M, Kreikemeyer B, Gómez-Mejia A, Hain T, Schwudke D,
739 Vollmer W, Hammerschmidt S, Gisch N. 2017. Lipoteichoic acid deficiency permits normal growth
740 but impairs virulence of *Streptococcus pneumoniae*. *Nat Commun* 8:2093.
- 741 59. Lee W, Do T, Zhang G, Kahne D, Meredith TC, Walker S. 2018. Antibiotic combinations that
742 enable one-step, targeted mutagenesis of chromosomal genes. *ACS Infect Dis*
743 doi:10.1021/acsinfecdis.8b00017.
- 744 60. Meredith TC, Swoboda JG, Walker S. 2008. Late-stage polyribitol phosphate wall teichoic acid
745 biosynthesis in *Staphylococcus aureus*. *J Bacteriol* 190:3046-56.
- 746

747 **FIGURE LEGENDS**

748 **FIG 1** *S. aureus* mutants unable to synthesize LTA on Glc₂DAG produce long LTA
749 polymers anchored on Ptd-Gro, have cell size and division defects, and are susceptible
750 to PG hydrolases and beta-lactam antibiotics. **A)** LTA is a polymer of 30-50
751 phosphoglycerol repeats linked to a Glc₂DAG lipid anchor. Repeat units are heavily
752 modified with D-alanyl esters. **B)** UgtP uses DAG and UDP-glucose to synthesize
753 Glc₂DAG, which is then exported by LtaA to the cell surface. LtaS polymerizes
754 phosphoglycerol units derived from Ptd-Gro on the lipid anchor. Each elongation cycle
755 generates DAG. The *dlt* pathway adds D-alanyl esters to LTA. **C)** In the absence of
756 Glc₂DAG, LtaS uses Ptd-Gro as an alternative lipid anchor, resulting in abnormally long
757 LTA (see anti-LTA Western blot of exponential phase RN4220 lysates). **D)** TEM of
758 RN4220 strains. Arrowheads indicate septal defects. Scale bar = 500 nm. **E)** RN4220
759 cell volumes were calculated from cells lacking visible septa. The median is shown with
760 a red bar. **** indicates p < 0.0001. **F)** RN4220 cells were classified based on the cell
761 cycle stage and presence of defects (see FIG S1C for classification scheme). Cells
762 containing misplaced and/or multiple septa (classes C and E) were totalled. **G)** Cell

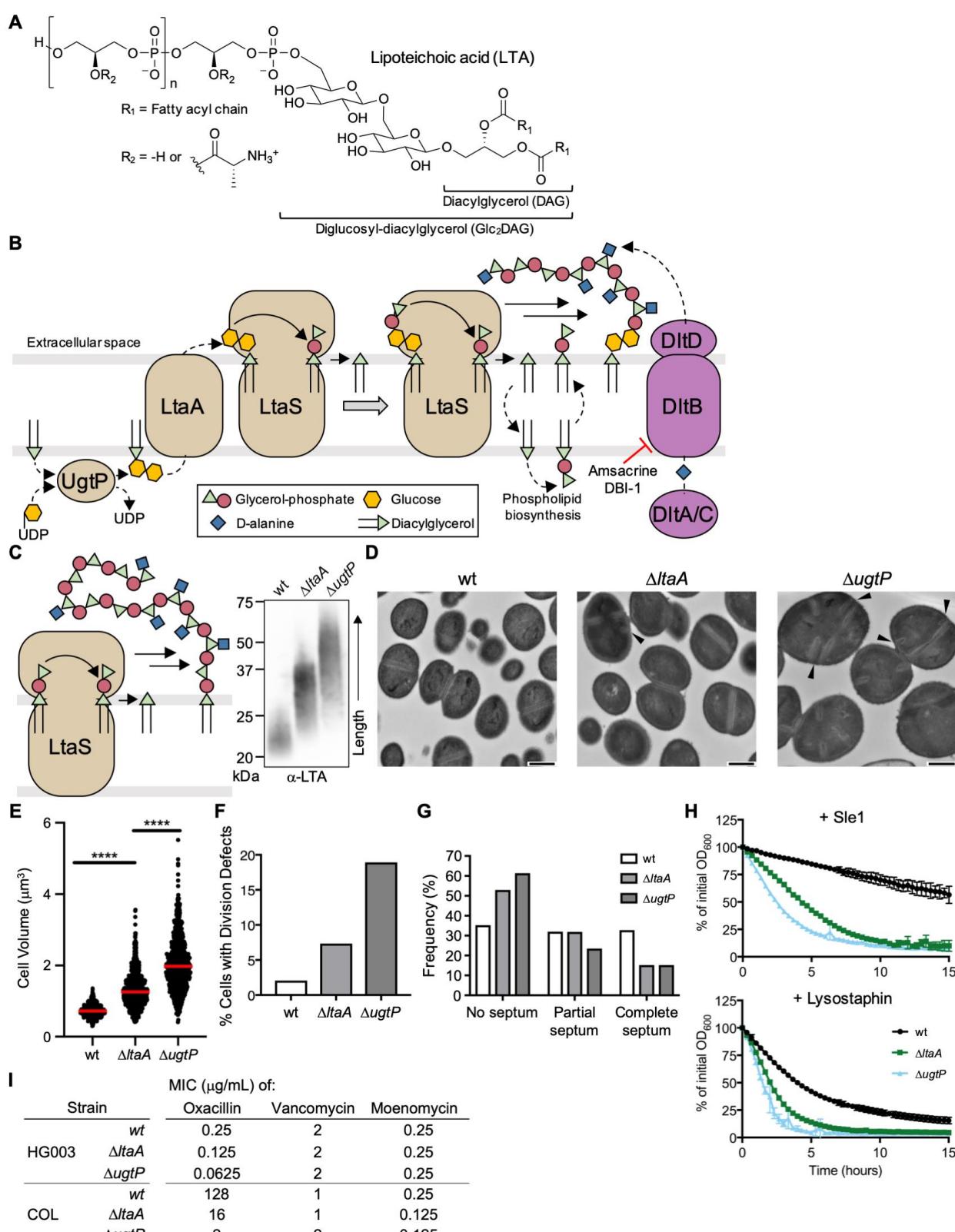
763 cycle stage frequency plot of classified cells without visible defects. **H)** RN4220 strains
764 were suspended in phosphate-buffered saline and treated with lytic enzymes. The
765 decrease in OD₆₀₀ was tracked over time. For all plots, the average and standard
766 deviation from 3 technical replicates are shown. **I)** MIC table of oxacillin, vancomycin,
767 and moenomycin against select *S. aureus* strains. HG003 is an MSSA strain and COL
768 is an MRSA strain.

769

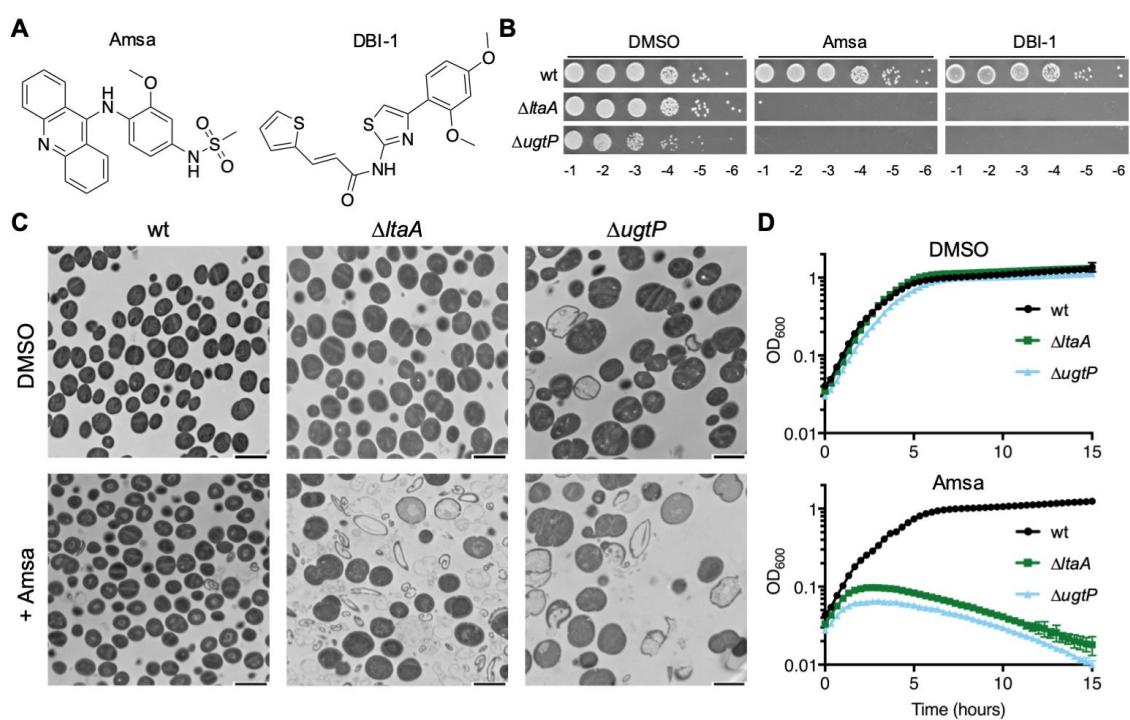
770 **FIG 2** Mutants with long, abnormal LTA undergo lysis when treated with D-alanylation
771 inhibitors. **A)** Structures of the two DltB inhibitors used in this study. **B)** 10-fold serial
772 dilutions of RN4220 strains on 10 µg/mL DltB inhibitor or DMSO vehicle control. **C)** TEM
773 of RN4220 strains treated with DMSO or with 10 µg/mL amsa. Scale bar = 2 µm. **D)**
774 Growth curves of RN4220 strains treated with DMSO or 10 µg/mL amsa. The average
775 and standard deviation from 3 technical replicates are shown.

776

777 **FIG 3** The lethality of amsa to $\Delta ugtP$ is suppressed by mutations in LtaS that decrease
778 LTA length and/or abundance. **A)** Schematic of LtaS depicting the location of the
779 identified mutations. **B)** Anti-LTA Western blot of exponential phase lysates from
780 isolated *ltaS* mutants in *ugtP* null backgrounds. While LTA abundance cannot be
781 precisely compared between LTA of different lengths with the anti-LTA antibody, several
782 mutations appear to drastically decrease LTA abundance. The wild type and *ugtP::tn*
783 strains are in the SEJ1 background, while the strain background of each isolated mutant
784 is given in FIG S3B. **C)** 10-fold serial dilutions of strains on plates containing 10 µg/mL
785 DltB inhibitor or DMSO. The $\Delta ltaS$ strain contains a *gdpP** hypomorphic suppressor


786 mutation. *gdpP::tn* is a transposon disruption of *gdpP*. Δ *ItaS* strains are in the SEJ1
787 background, while the *gdpP::tn* strains are in the RN4220 background.

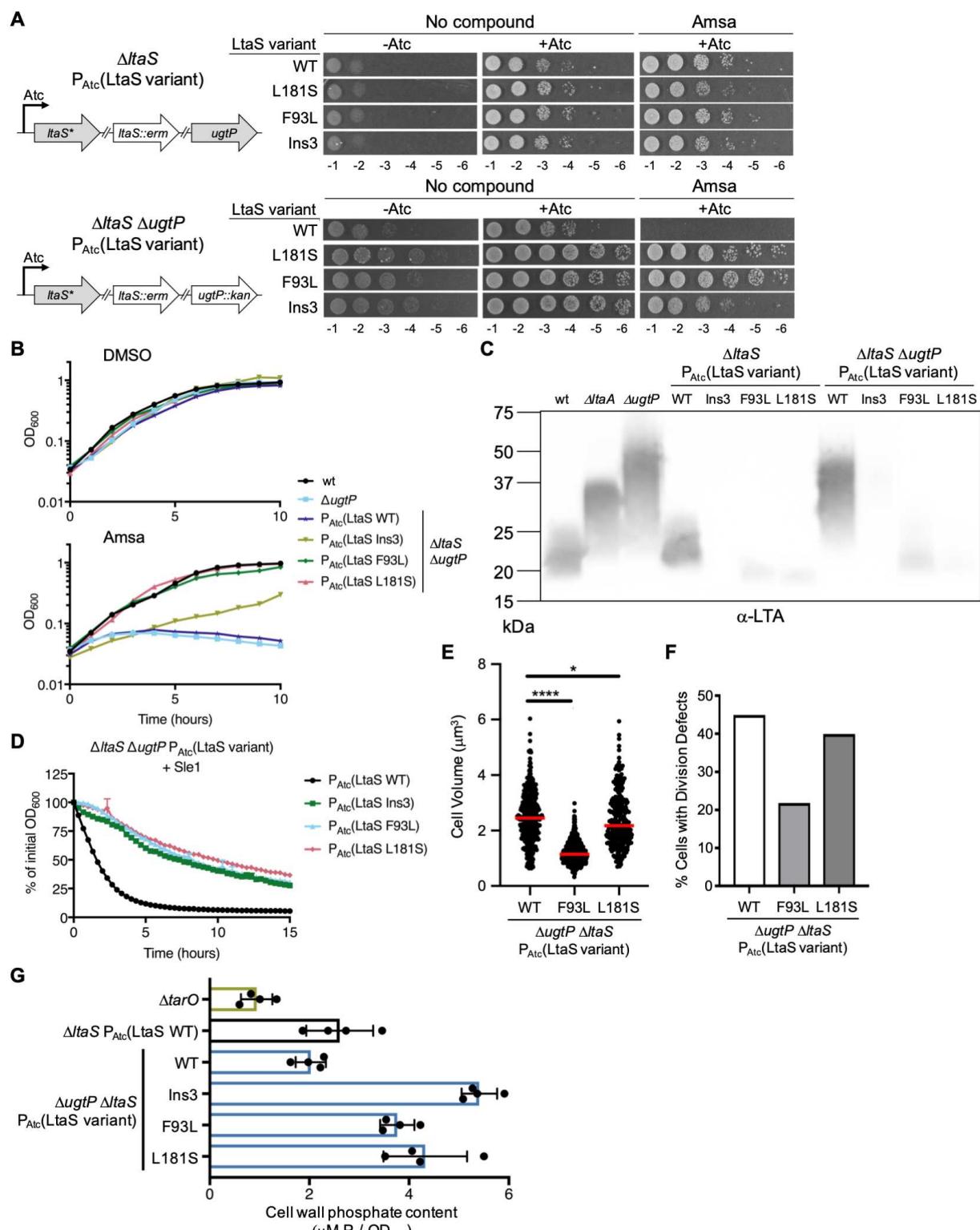
788


789 **FIG 4** Mutations in *ItaS* that reduce LTA length and/or abundance correct defects of
790 Δ *ugtP* and increase WTA abundance. **A)** RN4220 with an anhydrotetracycline (Atc)-
791 inducible copy of select *ItaS* mutants was transduced with an erythromycin (erm)-
792 marked *ItaS* deletion and, optionally, a kanamycin (kan)-marked *ugtP* deletion. Rebuilt
793 suppressor strains were spotted in a 10-fold dilution series on plates containing 10
794 μ g/mL amsa or DMSO. Note that some residual growth is observed on plates without
795 inducer due to growth of cells in the presence of inducer prior to plating. **B)** Growth
796 curves of RN4220 Δ *ugtP* strains with ectopically expressed *ItaS* variants as the only
797 source of LtaS. Strains were treated with 10 μ g/mL amsa or DMSO. A representative
798 growth curve from 3 replicates is shown for each strain. **C)** Anti-LTA Western blot of
799 exponential phase lysates from rebuilt *ItaS* mutants. **D)** RN4220 Δ *ugtP* strains
800 expressing *ItaS* alleles were suspended in phosphate-buffered saline and the decrease
801 in OD₆₀₀ was tracked upon addition of Sle1. This phenotype is also observed with
802 lysostaphin and when expressing *ItaS* mutant alleles in the wild type background (FIG
803 S7). The average and standard deviation from 3 technical replicates are shown. **E)** Cell
804 volumes of reconstructed RN4220 Δ *ugtP* strains expressing *ItaS* alleles were calculated
805 from cells lacking visible septa. Expression of *ItaS^{F93L}* ($1.15 \pm 0.31 \mu\text{m}^3$, median \pm
806 median absolute deviation) or *ItaS^{L181S}* ($2.17 \pm 0.78 \mu\text{m}^3$) in the Δ *ugtP* background
807 reduces size compared to expression of *ItaS^{wt}* ($2.45 \pm 0.73 \mu\text{m}^3$). The median is shown
808 with a red bar. * indicates $p < 0.05$ and **** indicates $p < 0.0001$. **F)** RN4220 Δ *ugtP*

809 strains expressing *ItaS* alleles were classified based on cell cycle stage and presence of
810 defects (see FIG S1C for classification scheme). The percentage of cells with division
811 defects is decreased by expression of *ItaS*^{F93L} (21.8%, n = 467) or *ItaS*^{L181S} (39.9%, n =
812 308) compared to expression of *ItaS*^{wt} (44.9%, n = 492). **G**) Purified sacculi from
813 overnight RN4220 cultures were hydrolyzed with HCl and the released orthophosphate
814 was quantified by an ammonium molybdate assay against a standard curve of KH₂PO₄.
815 Δ *tarO* is a deletion mutant of the first gene in the WTA biosynthesis pathway and does
816 not produce WTA. The average and standard deviation from 4 biological replicates are
817 shown.

818 **Figure 1**

820 **Figure 2**


821

822 **Figure 3**

823

824 **Figure 4**

