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Abstract 20 

Spatial transcriptomics enable us to dissect tissue heterogeneity and map out inter-cellular 21 

communications. Optimal integration of transcriptomics data and associated spatial 22 

information is essential towards fully exploiting the data. We present SEDR, an unsupervised 23 

spatially embedded deep representation of both transcript and spatial information. The SEDR 24 

pipeline uses a deep autoencoder to construct a low-dimensional latent representation of gene 25 

expression, which is then simultaneously embedded with the corresponding spatial 26 

information through a variational graph autoencoder. We applied SEDR on human dorsolateral 27 

prefrontal cortex data and achieved better clustering accuracy, and correctly retraced the 28 

prenatal cortex development order with trajectory analysis. We also found the SEDR 29 

representation to be eminently suited for batch integration. Applying SEDR to human breast 30 

cancer data, we discerned heterogeneous sub-regions within a visually homogenous tumor 31 

region, identifying a tumor core with pro-inflammatory microenvironment and an outer ring 32 

region enriched with tumor associated macrophages which drives an immune suppressive 33 

microenvironment. 34 

 35 

   36 

 37 

  38 
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Introduction 39 

Single-cell omics technologies enable measurements at single-cell resolution, and have led to 40 

discoveries of new subpopulations across various tissues, in both healthy and diseased states. 41 

However, the dissociation of tissue into single cells prior to high throughput omics data 42 

acquisition leads to cellular spatial information being lost, hindering our ability to dissect the 43 

spatial organization and intercellular interactions of individual cells. While computational tools 44 

have been developed to predict cell-cell interactions from ligand and receptor expression, they 45 

require validation using immunohistochemistry (IHC) or immunofluorescence (IF). Emerging 46 

spatial omics technologies overcome these limitations through the simultaneous 47 

measurement of gene/protein expression and spatial locations of cells. Such spatially resolved 48 

transcriptomes of histological tissues enable the reconstruction of tissue architecture and cell-49 

cell interactions.1,2,3,4,5,6,7,8,9  This approach has proven valuable in many applications including 50 

studies on brain disorders,2,10 tumour microenvironments,3,11 and embryonic development.12 51 

Among currently available spatial transcriptomics approaches, in situ capturing-based 52 

technologies such as 10x Genomics Visium and Nanostring GeoMX DSP have gained 53 

popularity owing to their accessibility and ability to profile a large number of mRNA targets 54 

within each spot. In principle, a histological section from a tissue sample is permeabilized and 55 

the released mRNA is captured by either spatially arrayed oligos on slide surfaces or by pre-56 

hybridized RNA-target barcodes in manually defined regions of interest (ROIs). However, both 57 

technologies suffer from mRNA capture area limitations, with the smallest diameter typically 58 

being ~50µm, which is larger than a single cell. To overcome this, several computational 59 

methods have been developed to deconvolve the cell mixture of the spatial 60 

spot.13,14,15,16,17,18,19,20 Recently, improvements in mRNA capture methods have led to smaller 61 

subcellular capture areas that are ~1-10µm in diameter. These high-resolution spatial 62 

transcriptomics methods can obtain spatially resolved transcriptomes with increased spatial 63 

fidelity, without compromising the number of genes captured. They include Slide-seq,8 DBiT-64 

seq,9 Stereo-seq,5 PIXEL-seq,6 and Seq-Scope,7 with the highest resolution (~1µm) thus far 65 
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obtained by the latter three. These submicrometer-resolution methods usually require voxel 66 

binning or cell segmentation to produce a gene-by-cell expression matrix for downstream 67 

analysis. Capture area sizes have also improved and thus increased the overall cell 68 

throughput, necessitating new computational methods that can handle big spatial data.  69 

When analyzing spatial transcriptomics data, combining both gene expression and 70 

spatial information to learn a discriminative representation for each cell or spot is crucial. 71 

However, established workflows, e.g., Seurat,21 still employ pipelines designed for single-cell 72 

RNA-seq analysis, which primarily focus on gene expression data and ignore the structural 73 

relationship of the spatial neighborhood. Recently, several new methods have been developed 74 

for spatial transcriptomics to overcome this limitation. For example, BayesSpace22 starts from 75 

a Markov random field (MRF) prior which hypothesizes that spots belonging to the same cell 76 

type should be closer to one another, and updates the model with a Bayesian approach. 77 

Giotto23  implements a hidden Markov random field (HMRF) model to detect domains with 78 

coherent patterns by comparing gene expression between cells and their neighbors. 79 

SpaGCN24 combines spatial distances and histological dissimilarities to construct a weighted 80 

graph of spots, and then integrates the graph with gene expression using a graph 81 

convolutional network (GCN) to cluster the spots. stLearn25 utilizes a deep learning model on 82 

the spot images to extract morphological features, on which morphological distances are 83 

calculated. It then uses the morphological distance and spatial neighborhood information to 84 

normalize the gene expression of each spot based on its identified neighbors. The normalized 85 

gene expression is then used as input for linear principal component analysis (PCA), followed 86 

by uniform manifold approximation and projection (UMAP), and spatial clustering. Notably, 87 

these methods mainly rely on PCA to extract the highly variable features of gene expression 88 

data, which involves a linear transformation, so they are unable to model complex non-linear 89 

relationships. While stLearn does utilize deep learning, it is only applied to the image modality, 90 

and the model still relies on linear PCA to extract features from the spatially normalized gene 91 

expression data. Moreover, these methods do not produce low-dimensional representations 92 

of jointly embedded gene expression and spatial information. The joint embedding of gene 93 
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expression and spatial information is essential to effectively integrate both modalities for better 94 

visualization, clustering, trajectory inference, and batch integration.   95 

In this work, we developed an unsupervised spatially embedded deep representation 96 

(SEDR) method for learning a low-dimensional latent representation of gene expression 97 

embedded with spatial information. Our SEDR model consists of two main components, a deep 98 

autoencoder network for learning a gene representation, and a variational graph autoencoder 99 

network for embedding the spatial information. These two components are optimized jointly to 100 

generate a latent representation for spatial transcriptomics data analysis. We applied SEDR 101 

on the 10x Genomics Visium spatial transcriptomics and Stereo-seq datasets and 102 

demonstrated its ability to achieve better representations for various follow-up analysis tasks, 103 

including clustering, visualization, trajectory inference, and batch effects correction. 104 

Results 105 

Overview of SEDR.  106 

SEDR learns a gene representation in a low-dimensional latent space with jointly embedded 107 

spatial information (Figure 1). Given spatial transcriptomics data, SEDR first learns a nonlinear 108 

mapping from the gene expression space to a low-dimensional feature space using a deep 109 

autoencoder network. Simultaneously, a variational graph autoencoder is utilized to aggregate 110 

the gene representation with the corresponding spatial neighborhood relationships to produce 111 

a spatial embedding. Then, the gene representation and spatial embedding are concatenated 112 

to form the final latent representation used to reconstruct the gene expression. Thereafter, an 113 

unsupervised deep clustering method26 is employed to enhance the compactness of the 114 

learned latent representation. This iterative deep clustering generates a form of soft clustering 115 

that assigns cluster-specific probabilities to each cell, leveraging on the inferences between 116 

cluster-specific and cell-specific representation learning. Finally, the learned latent 117 

representation can be applied towards various analysis tasks. 118 
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Quantitative assessment of SEDR on human dorsolateral prefrontal cortex (DLPFC) 119 

dataset.  120 

To perform a quantitative comparison of SEDR with other methods, we downloaded the 10x 121 

Genomics Visium spatial transcriptomics data and the manually annotated layers for LIBD 122 

human dorsolateral prefrontal cortex (DLPFC) data.2 The LIBD data includes 12 slices from 123 

the human DLPFC, which span six cortical layers plus white matter. We chose this dataset 124 

because the human DLPFC has clear and established morphological boundaries which can 125 

serve as the ground truth. We first applied the standard Seurat pipeline21 to process and cluster 126 

cells using only expression profiles and set the result as the benchmarking baseline to 127 

investigate the extent to which spatial information improves cell clustering. As Giotto,23 128 

stLearn,25 SpaGCN,24 and BayesSpace22 integrate spatial information and RNA-seq data for 129 

clustering, we also applied them with recommended default parameters to the same dataset 130 

for benchmarking against SEDR.  131 

In brain slice 151673 (Figure 2A) with 3,639 spots and 33,538 genes, SEDR and 132 

BayesSpace achieved the best performance in terms of both layer borders and adjusted rand 133 

index (ARI). When comparing the results on all 12 DLPFC samples, SEDR had the second 134 

highest mean ARI (0.427) (Figure 2A, bottom right), but the difference between SEDR and the 135 

top performer BayesSpace (0.457) was not significant (Mann-Whitney U Test:27 p-value=0.55). 136 

It should be noted that BayesSpace9s clustering algorithm is optimized for spatial omics, while 137 

SEDR is a dimension reduction method with its objective being to find the best latent 138 

representation. SEDR followed by Leiden clustering, which was not specifically designed or 139 

optimized for clustering spatial omics, achieved comparable clustering performance to 140 

BayesSpace. This indicated that SEDR latent representations effectively integrate gene 141 

expressions and spatial information for capturing inter-cluster differences. Coupling SEDR with 142 

clustering algorithms that are better-suited for spatial omics can be expected to further improve 143 

the clustering accuracy. Furthermore, in contrast to BayesSpace, which does not produce 144 

latent representations, SEDR-derived embeddings can be used for not only clustering but also 145 
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various downstream analysis tasks such as UMAP visualization, trajectory inference, and 146 

batch effect correction, thus providing more flexibility and utility. Similar to SEDR, SpaGCN 147 

also uses a GCN to process spatial transcriptomics data. Moreover, it incorporates histological 148 

information, which is not included in SEDR. However, the clustering performance of SEDR is 149 

better than that of SpaGCN (Mann-Whitney U Test, p-value < 0.05). stLearn also integrates 150 

histological data, but the performance is likewise poorer. This may indicate that the current 151 

approaches utilized by SpaGCN and stLearn to incorporate histological data are not optimal. 152 

To make full use of the histological information, we may need to treat it as a separate data 153 

modality and use dedicated multi-view algorithms for integration. 154 

SEDR generates a set of low-dimensional representation features which can be used 155 

in various downstream analyses, such as trajectory inference.28 In our experiments, we used 156 

Monocle329 to perform trajectory inference on sample 151673 with the Seurat output (RNA-157 

only) and the low-dimensional SEDR representation features. We found that SEDR showed 158 

significantly improved performance over Seurat (Figure 2B). In the UMAP plot of SEDR9s 159 

output, cells belonging to different layers were well-organized, and when we selected white 160 

matter (WM) as the root, the pseudo-time reflected the correct <inside-out= developmental 161 

ordering of cortical layers (Figure 2B). This demonstrated that, compared to RNA-only 162 

analyses, incorporating spatial information enabled SEDR to generate a better latent 163 

representation summarizing the spatial transcriptomics data. We further confirmed our 164 

observations with another trajectory inference method named partition-based graph 165 

abstraction (PAGA),30 using the SEDR-derived latent space embedding instead of UMAP 166 

coordinates (Figure 2C). The PAGA results showed that adjacent cortical layers tend to share 167 

greater similarity, suggesting that spatial adjacency is linked with transcriptomic and even 168 

functional similarity. Notably, the trajectory was concordant with the chronological order of 169 

cortex development.31,32,33 We then compared the PAGA graphs generated using the Seurat-170 

derived principal components and SEDR embeddings. For each of the 12 DLPFC slices, we 171 

calculated the ratio of the edge weights between adjacent cortical layers to the total sum of 172 
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the weights of all edges. We found a significantly higher ratio for SEDR compared to Seurat 173 

(Mann-Whitney U test p-value < 0.05) (Figure 2C, bottom).  174 

SEDR corrects for batch effects. 175 

The proliferation of spatial omics applications is generating ever increasing volumes of spatially 176 

resolved omics data across different labs. However, differences in protocols and technologies 177 

complicate comparisons and data integration when trying to achieve consensus on spatially 178 

resolved tissue atlases. As with single-cell RNA-seq (scRNA-Seq), removing batch effects in 179 

spatial omics datasets is a significant challenge. To date, no methods are available for this.  180 

Here, we demonstrate that SEDR can learn joint embeddings across multiple batches and 181 

project them into a shared latent space. Furthermore, SEDR employs a deep embedded 182 

clustering (DEC) loss function that enables it to retain biological variations while reducing 183 

technical variations. We evaluated the batch correcting performance of SEDR on the DLPFC 184 

datasets. We first assessed the batch variations among the twelve datasets and selected three 185 

sets (151507, 151672, 151673) which exhibited substantial batch effects. The common cortical 186 

layers from different batches were separated, as shown in the UMAP plot (Figure 3A). We first 187 

applied Harmony to remove the batch effects due to its superior performance in  scRNA-seq 188 

data integration.34 Harmony was able to mix batches while keeping different layers apart. 189 

However, when we zoomed into the individual layers, we found distinct batch-specific 190 

subclusters, suggesting that the batch effects were not completely removed (Figure 3B). Next, 191 

we tested SEDR and found that the batch effects were substantially reduced (Figure 3C). 192 

Common layers across batches were brought very close and were well-aligned, while different 193 

layers were minimally mixed. Further application of Harmony on the SEDR embeddings evenly 194 

mixed the batches while maintaining separation between layers (Figure 3D). Notably, batch-195 

specific clusters were no longer present within individual layers. This showed that the 196 

combination of SEDR with Harmony effectively removed the batch effects. Among the other 197 

spatial omics analysis methods, only stLearn is able to produce a latent space embedding 198 

which can be fed to Harmony for batch correction. Therefore, we benchmarked SEDR against 199 
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stLearn. As stLearn is unable to jointly project different batches to a shared latent space due 200 

to its requirement of histological images as input, we generated latent space embeddings from 201 

each dataset and then concatenated them for Harmony integration. The results showed that 202 

batches were not well mixed and the layers were poorly separated (Figure 3E). In conclusion, 203 

SEDR combined with Harmony outperforms both Harmony alone and stLearn with Harmony, 204 

and can serve as an effective method for batch correction of spatial omics data.  205 

Dissecting tumor heterogeneity and immune microenvironments using SEDR. 206 

Intratumoral heterogeneity in cancer complicates effective treatment formulations and is 207 

associated with poor survival prospects.35 Spatial transcriptomics is an effective tool for 208 

dissecting and characterizing intratumoral heterogeneity and tumor-immune crosstalk. We 209 

tested SEDR on the 10x Visium spatial transcriptomics data for human breast cancer, which 210 

is known for its high intratumoral and intertumoral differences. To aid in the interpretation of 211 

SEDR results, we performed manual pathology labeling based on H&E staining. It should be 212 

noted that, unlike the cerebral cortex which has clear and established morphological 213 

boundaries, tumor tissues are highly heterogeneous and encompass complex 214 

microenvironments. Manual labeling solely based on tumor morphology is inadequate for 215 

characterizing such complexity. Based on pathological features, we manually segmented the 216 

histological image into twenty regions, which we then grouped into four main morphotypes: 217 

ductal carcinoma in situ/lobular carcinoma in situ (DCIS/LCIS), healthy tissue (Healthy), 218 

invasive ductal carcinoma (IDC), and tumor surrounding regions with low features of 219 

malignancy (Tumor edge) (Figure 4A top left, Supplementary Figure 1A). Visually, all five 220 

methods agreed with the manual annotations at the macroscopic level (Figure 4A). 221 

Nevertheless, the SEDR clusters presented a smoother segmentation compared to other 222 

methods, while those derived by Seurat, stLearn, and SpaGCN appeared fragmented with 223 

irregular boundaries. Notably, SEDR found more sub-clusters within the tumor regions, while 224 

other methods were prone to dividing the healthy regions into subclusters, given that all 225 

methods were set to generate the same number of clusters. Specifically, within the seemingly 226 
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homogenous tumor region DCIS/LCIS_3, SEDR separated an outer <ring= (Figure 4A, SEDR 227 

cluster 7) from the tumor core (Figure 4A, SEDR cluster 3). These SEDR clusters indicated 228 

transcriptionally and spatially distinct compartments within the visually homogenous tumor 229 

regions. In addition to clustering analysis, we also employed the Seurat3 8anchor9-based 230 

integration workflow to perform probabilistic transfer of annotations from scRNA-seq reference 231 

data for human breast cancer36 to the spatial data. For each spot, we obtained a probabilistic 232 

classification for each of the scRNA-seq derived classes (Figure 4B, Supplementary Figure 233 

1B). The transferred class probabilities were able to delineate the tumor regions and regions 234 

where immune cells or fibroblasts were present, which were useful for further dissecting the 235 

tumor microenvironment.  236 

To further characterize the transcriptional differences between SEDR cluster 3 (tumor 237 

core) and cluster 7 (tumor edge) of DCIS/LCIS_3 region, we performed differential expression   238 

analysis followed by pathway enrichment analysis (Figure 4C). In cluster 3, we observed the 239 

upregulation of interferon signaling pathways (IFIT1, IFITM1, IFITM3 and TAP1) and NK or 240 

neutrophil activities (FCGR3B and TNFSF10) (Figure 4C, Supplementary Figure 2E). In 241 

addition, RHOB was upregulated in this region, pointing towards reduced metastatic 242 

potential.40 Cluster 3 represented a region where cancer growth was limited by pro-243 

inflammatory immune responses. On the other hand, in cluster 7, we observed the presence 244 

of TAMs (Figure 4B, Supplementary Figure 2D), memory B cells (IGHG1, IGHG3, IGHG4, 245 

IGLC2 and IGLC3) and fibroblasts (COL1A1, COL1A2, COL3A1, COL5A1, COL6A1, COL6A2 246 

and FN1) (Figure 4C, Supplementary Figure 2E). Upregulated cathepsin activity (CTSB, 247 

CTSD and CTSZ) and complement pathway (C1QA, C1S) indicated pro-tumor activity by the 248 

TAMs in this region.41,42,43 Upregulation of actin cytoskeleton signalling also suggested higher 249 

metastasis potential of cluster 7 (Figure 4C). Moreover, upregulated cathepsin activity and 250 

metalloproteinase inhibitors (TIMP1 and TIMP3) also indicated disturbance in the extracellular 251 

matrix integrity (Supplementary Figure 2E). Overall, cluster 7 represented a region with an 252 

immune-suppressed pro-tumor microenvironment and high potential for cancer metastasis.   253 

A number of driving forces have been hypothesized as responsible for the metastatic 254 
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transition of tumor cells from a pre-invasive state to invasive carcinoma, including pro-tumor 255 

immune microenvironments and reduced cell-cell interactions within the tumor.37 In this study, 256 

we employed PAGA to infer the inter-relatedness between the manually annotated tumor 257 

regions to trace the metastatic transition process. The PAGA graph generated using the SEDR 258 

embeddings suggested that DCIS_LCIS_3 was related to the neighboring IDC_6 region 259 

(Figure 4D). The differentially expressed genes (DEGs) and enriched pathways of 260 

DCIS_LCIS_3 compared to all other DCIS_LCIS regions showed that DCIS_LCIS_3 had more 261 

immune infiltrates (Supplementary Figure 2A, 2B, 2C), particularly tumor associated 262 

macrophages (TAMs) (Figure 4B, top), while the other DCIS_LCIS regions were mainly 263 

comprised of actively dividing/cycling epithelial cells (Figure 4B, bottom) with upregulated 264 

glycolytic and metabolic processes (Supplementary Figure 2C). TAM infiltration is known to 265 

be strongly associated with poor survival rate in solid tumor patients due to its promotion of 266 

tumor angiogenesis and induction of tumor migration, invasion and metastasis.38,39 We thus 267 

performed Monocle3 analysis to infer the pseudo-time of the transition from DCIS_LCIS_3 to 268 

IDC_6. As DCIS_LCIS_3 and IDC_6 coincided with SEDR clusters 3, 7, and 11 (Figure 4A, 269 

4D), we applied Monocle3 on these three clusters and set cluster 3 (tumor core) as the starting 270 

point (Figure 4D bottom). Monocle3 analysis showed that pseudo-time derived from SEDR 271 

embeddings better traced the inside-out tumor progression compared to that from Seurat PCA 272 

embeddings. We subsequently identified genes that changed expression along the Monocle3 273 

pseudo-time and revealed sequential waves of gene regulation along the trajectory (Figure 274 

4E).  275 

In summary, SEDR analysis revealed intratumoral heterogeneity within visually 276 

homogenous tumor regions and revealed the tumor outer ring (cluster 7) with TAM infiltration 277 

and cancer associated fibroblasts (CAFs), both of which have been reported to facilitate tumor 278 

spread.44,45 SEDR also enabled the mapping of a molecular trajectory from the tumor core to 279 

its neighboring invasive region, demonstrating the transition from a pro-inflammatory to an 280 

immune-suppressive microenvironment, which may contribute to tumor metastasis.  281 
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SEDR can handle spatial transcriptomics of high resolution. 282 

Currently available spatial omics technologies, including 10x Visium Spatial Omics,  283 

Nanostring GeoMX DSP, SLIDE-seq4, and DBIT-seq46, do not provide single-cell resolution, 284 

with each capture spot containing 1 to 10 cells. However, newly emerging methods such as 285 

Stereo-seq5, PIXEL-Seq6, and Seq-Scope7 can achieve submicrometer and thus subcellular 286 

resolution. With continued technology advancement, the spatial resolution and number of cells 287 

detected per tissue will significantly improve, producing large datasets with high throughput. 288 

As such, we evaluated SEDR9s performance on one type of such data produced by Stereo-289 

seq from mouse olfactory bulb tissues (Figure 5). The coronal section of a mouse olfactory 290 

bulb contains the olfactory nerve layer (ONL), glomerular layer (GL), external plexiform layer 291 

(EPL), mitral cell layer (MCL), internal plexiform layer (IPL), granule cell layer (GCL), and 292 

rostral migratory stream (RMS) (Figure 5A). We performed unsupervised clustering using the 293 

Seurat-derived principal components and SEDR-derived embeddings to computationally 294 

reconstruct the spatial identity of the olfactory bulb tissues. Compared to Seurat clusters, those 295 

produced by SEDR better reflected tissue organization and were more consistent with known 296 

anatomical layers (Figure 5B, 5C). We also performed quantitative assessment using local 297 

inverse Simpson9s index (LISI) and found that SEDR produced significantly lower LISI than 298 

Seurat, implying better spatial separation by SEDR (Figure 5D).  299 

Discussion 300 

 301 

Cell type heterogeneity is a feature of both healthy and diseased tissue. Capturing this 302 

heterogeneity, coupled with its spatial arrangement in the tissue, is crucial when studying the 303 

roles of cells and their cross-talk. Spatial omics technologies represent the state-of-the-art 304 

approaches for capturing omics data with corresponding spatial information from tissue 305 

samples.  In this paper, we have introduced SEDR, which leverages on cutting edge graph 306 

neural network techniques to achieve a better representation of spatial omics data that can be 307 

used for clustering and further downstream analyses. SEDR first learns a low-dimensional 308 
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latent space representation of the transcriptome information with a deep autoencoder network, 309 

which is then aggregated with spatial neighborhood information by a variational graph 310 

autoencoder to create a spatial embedding. This spatial embedding is then concatenated with 311 

the gene expression to be decoded to reconstruct the final gene expression for further 312 

analyses. We first demonstrated the efficacy of SEDR in delineating the different cerebral 313 

cortex layers with higher clarity than competing methods, and recapitulated the associated 314 

development order by using the joint latent representation with Monocle3.  315 

To enhance the analytical power and resolution of spatial omics, we need to integrate 316 

multiple datasets from the same tissue. Similar to single-cell transcriptomic data, spatial omics 317 

datasets generated in different batches also contain batch-specific systematic variations that 318 

present a challenge to batch-effect removal and data integration. In our study, we 319 

demonstrated that by combining SEDR and Harmony, we were able to effectively remove 320 

batch effects present. In the future, we will integrate Harmony into the SEDR workflow.   321 

Spatial omics technologies such as Stero-seq are able to measure a large number of 322 

cells in a single experiment through high spatial resolutions and large tissue sizes. In the near 323 

future, we expect to see ever-increasing throughput from spatial omics experiments, which will 324 

result in spatial omics big data that will pose significant challenges to data analysis and 325 

integration. Computational methods that employ GCNs require the entire graph to be loaded 326 

into GPU memory, which inhibits their application to very large datasets. We will improve the 327 

memory efficiency of SEDR using a GCN mini-batch or parallel techniques to construct large-328 

scale graphs for spatial omics data of high throughput and resolution. Furthermore, 329 

technologies with a capture spot size smaller than the diameter of a cell will also require new 330 

computational methods that can accurately delineate cells based on capture spots. In the 331 

future, we will integrate cell segmentation based on H&E or DAPI staining into the SEDR 332 

workflow. 333 

The current SEDR methodology focuses on gene expression and spatial information, 334 

and does not make use of histological images. Contemporary methods such as SpaGCN and 335 
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stLearn use histological images as input, but in a suboptimal fashion, as demonstrated in our 336 

study. Specifically, SpaGCN utilizes histological image pixels as features by calculating the 337 

mean color values from the RGB channels directly. However, the pixel values are easily 338 

affected by noise and cannot provide semantic features for cell analysis. A more effective 339 

approach can be to adopt a deep CNN model which can learn high-level representations for 340 

histological images. stLearn introduces a deep learning model to extract image features of the 341 

spots and integrates them with the spatial location and gene expression. However, stLearn 342 

employs a model pre-trained on natural images, and does not fine-tune the network for 343 

histological images. In the future, we will incorporate histological images as an additional 344 

modality into the SEDR model. We will add an image autoencoder network to learn image 345 

features, and jointly learn the latent representation by integrating gene expression, image 346 

morphology, and spatial information. 347 

In summary, SEDR is a promising new approach that builds an integrated 348 

representation of cells using both transcriptomic data and spatial coordinates. SEDR-derived 349 

low-dimensional embedding enables more accurate clustering, trajectory inference and batch 350 

effect correction. Our model is also able to handle spatial transcriptomics with capture spot 351 

sizes ranging from 50µm to less than 1µm. Furthermore, we applied SEDR on human breast 352 

cancer to reveal heterogeneous sub-regions within the seemly homogenous tumor region and 353 

shed light on the role of immune microenvironments on tumor invasiveness.    354 
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Methods 355 

Dataset preprocessing.  356 

Our SEDR method takes spatial transcriptomic gene expressions and spatial coordinates as 357 

inputs. The raw gene expression counts are first normalized using the respective library sizes 358 

(by normalize_total in Scanpy (v.1.5.0)), with very highly expressed genes excluded when 359 

computing the normalization factor (size factor) for each cell47. PCA is then applied to extract 360 

the first 200 principal components to generate the initial gene expression matrix. 361 

 362 

Graph construction for spatial transcriptomics data. 363 

To create a graph representing the cell3cell spatial relationships in spatial transcriptomics data, 364 

we calculate the Euclidean distances between cells using the image coordinates, and select 365 

the top 10 nearest neighbors of each cell to construct an adjacency matrix. The adjacency 366 

matrix, denoted by ý, is a symmetric matrix, where ýÿÿ = ýÿÿ = 1 if ÿ and ÿ are neighbors, and 367 

0 otherwise.    368 

Deep autoencoder for latent representation learning.  369 

The latent representation of gene expression is learned using a deep autoencoder. The 370 

encoder part, consisting of two fully connected stacked layers, generates a low-dimensional 371 

representation ýÿ  * =ý×ÿÿ from the input gene expression matrix ÿ *  =ý×ý. Meanwhile, the 372 

decoder part with one fully connected layer reconstructs the expression matrix ÿ2 *  =ý×ý 373 

from the latent representation ý *  =ý×ÿ , which is obtained by concatenating the low-374 

dimensional representation ýÿ and spatial embedding ýý  * =ý×ÿý, where ý is the number of 375 

cells, ý is the number of input genes, and ÿÿ , ÿý, ÿ are the dimensions of the low-dimensional 376 

expression representation learned by the encoder, the spatial embedding learned by the GCN, 377 

and the final latent representation of SEDR, respectively with ÿ = ÿÿ + ÿý . The objective 378 

function of the deep autoencoder maximizes the similarity between the input gene and 379 
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reconstructed expressions measured by the mean squared error (MSE) loss function 380 3(ÿ 2 ÿ2)2. 381 

Variational graph autoencoder for spatial embedding. 382 

SEDR utilizes a variational graph autoencoder48 (VGAE) to embed the spatial information of 383 

neighboring cells.  With the adjacency matrix ý and its degree matrix ÿ, the VGAE learns a 384 

graph embedding ýý  with the following format: ý: (ý, ýÿ) ÷ ýý , where ýÿ  is the node/gene 385 

representation from the deep autoencoder. The inference part of the VGAE is parameterized 386 

by a two-layer  GCN49 : 387 

ý(ýý|ý, ýÿ) = / ý(ÿÿ|ý, ýÿ), with ý(ÿÿ|ý, ýÿ) = ý(ÿÿ|ÿÿ , ýÿÿý(ÿÿ2)), 388 

where  ÿ = ÿÿýÿ(ý, ýÿ) is the matrix of mean vectors, and ýýýÿ = ÿÿýÿ(ý, ýÿ). The two-layer 389 

GCN is defined as: 390 

ÿÿý(ý, ýÿ) = ý� ýÿÿý(ý�ýÿÿ0)ÿ1, 391 

with a weight ÿÿ  and symmetrically normalized adjacency matrix ý� = ÿ212ýÿ212. The spatial 392 

embedding ýý and reconstructed adjacency matrix ý2 are generated as: 393 

ý2 = ÿ(ýý ç ýýÿ),  394 

with ýý = ÿÿý (ý, ýý). The objective of the VGAE is to minimize the cross-entropy (CE) loss 395 

between the input adjacency matrix ý  and reconstructed adjacency matrix ý2 , while 396 

simultaneously minimizing the Kullback-Leibler (KL) divergence between ý(ýý|ý, ýÿ) and the 397 

Gaussian prior: 398 

 ý(ýý) =  / ý(ÿÿ|0, ý)ÿ . 399 

Batch effect correction for spatial transcriptomics. 400 

Spatial relationships only exist within single spatial transcriptomic measurement; cells/spots 401 

from different transcriptomic measurements have no direct spatial relation. Let ýý  and ýÿý 402 

denote the adjacency matrix and deep gene representation of spatial omics ý, we then create 403 
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a block-diagonal adjacency matrix ýý and concatenate the deep gene representation in the 404 

cell dimension, as: 405 

ý = [ý1 ï 0 î ó î 0 ï ýÿ],  ýÿ = [ýÿ1îýÿÿ], 406 

where ÿ is the number of spatial omics. Based on this formulation, we transform different 407 

spatial omics datasets (of potentially different sizes) into multiple graph instances in the form 408 

of one block-diagonal adjacency matrices as inputs to SEDR. 409 

To remove batch effects and enhance the compactness of its latent representation, SEDR 410 

employs an unsupervised deep embedded clustering (DEC) method26 to iteratively group the 411 

cells into different clusters. To initialize the cluster centers, we employ the KMeans of scikit-412 

learn on the learned latent representations. The number of clusters is pre-defined as a 413 

hyperparameter. With the initialization, DEC improves the clustering using an unsupervised 414 

iterative method of two steps. In the first step, a soft assignment ÿÿÿ  of latent point ÿÿ to cluster 415 

center ÿÿ is calculated using the Student9s t-distribution: 416 

ÿÿÿ =  (1+||ÿÿ2ÿÿ||2)21
3 (1+||ÿÿ2ÿÿ2||2)21ÿ2  . 417 

In the second step, we iteratively refine the clusters by learning from their high confidence 418 

assignments with the help of an auxiliary target distribution ý based on ÿÿÿ: 419 

ýÿÿ =  ÿÿÿ2 / 3 ÿÿÿÿ3 (ÿÿÿ22 / 3 ÿÿÿ2ÿ )ÿ2  . 420 

Based on the soft assignment ÿÿÿ and auxiliary target distribution ýÿÿ, an objective function is 421 

defined using the KL divergence: 422 

ÿÿ(ÿ||ý) =  3 3 ýÿÿ log ýÿÿÿÿÿÿÿ  . 423 

The SEDR parameters and cluster centers are then simultaneously optimized by using 424 

stochastic gradient descent (SGD) with momentum.  425 
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 426 

Seurat. 427 

Raw mRNA counts were preprocessed to remove low-quality genes and sctransformed to 428 

remove technical artifacts and normalize the data.50 We then ran PCA to extract the top 30 429 

principal components (PCs) and used them to calculate the shared nearest neighbors (SNNs). 430 

Then, the Louvain clustering algorithm was used to identify clusters with the SNN networks. 431 

We tried clustering at different resolutions to obtain the same number of clusters as the ground 432 

truth layers. 433 

SpaGCN, stLearn, BayesSpace, Giotto. 434 

We ran these methods with the recommended parameters and set each one to generate the 435 

same number of clusters as the ground truth layers. The stLearn-derived low-dimensional 436 

embedding was used for downstream UMAP visualization and Harmony batch correction.   437 

Evaluation metrics for clustering.  438 

For datasets with cell-type labels (e.g., DLPFC), we employed ARI to compare the 439 

performance of different clustering algorithms. ARI calculates the similarity between the 440 

clustering labels predicted by the algorithm and reference cluster labels as: 441 

ýýý =  ýý 2 ý[ýý]max(ýý) 2 ý[ýý] , 442 

where the unadjusted rand index (RI) is defined as ýý = (ÿ + ÿ)/ÿÿ2, with ÿ being the number 443 

of pairs correctly labeled as coming from the same set, ÿ being the number of pairs correctly 444 

labeled as not in the same set, and ÿÿ2 being the total number of possible pairs. ý[ýý] is the 445 

expected ýý of random labeling. A higher ARI score indicates better performance. 446 

Monocle3. 447 

On the DLPFC #151673 slice and breast cancer data, we ran Monocle3 using both the Seurat 448 

and SEDR outputs. For Seurat, we ran the standard pipeline to obtain the UMAP. For SEDR, 449 

we first extracted the low-dimensional embedding and then used the uwot package to calculate 450 
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the UMAP. We then ran Monocle3 on both UMAPs using the recommended parameters and 451 

set white matter (WM) as the starting point to generate the pseudo-time. Finally, we used the 452 

Moran_I test to detect significant genes that showed correlations with the pseudo-time. 453 

Leiden clustering, PAGA trajectory, and UMAPs. 454 

We used the Scanpy (v.1.5.0) package to compute the Leiden clustering, partition-based graph 455 

abstraction (PAGA), and uniform manifold approximation and projection (UMAP) from SEDR-456 

derived joint embeddings of gene expression and spatial information. Briefly, we used SEDR 457 

embeddings to compute neighborhood graphs with 15 as the number of neighbors and 458 

Euclidean distance as the distance measure. To obtain the same number of unique Leiden 459 

clusters, grid-searching on the Leiden clustering resolutions between 0.2 and 2.5 was 460 

performed at intervals of 0.05/0.01. Subsequently, PAGA was applied to quantify the 461 

connectivity between Leiden clusters. Finally, the cluster positions suggested by PAGA were 462 

used to compute the UMAP for visualization. 463 

Harmony. 464 

Harmony was used to correct batch effects on low-dimensional embeddings. For SEDR, we 465 

used latent space embeddings as input. For the raw data and stLearn, we used the PCA 466 

embeddings. We treated different samples as different batches, and set all other parameters 467 

to their default values. For each method, the uncorrected embeddings and batch-corrected 468 

Harmony embeddings were used for UMAP visualization and analysis. 469 

Prediction of cell type composition of 10x Visium spatial spot. 470 

We downloaded a published scRNA-seq dataset of human breast cancer36 as reference, and 471 

ran Seurat to find transfer anchors between the reference and our Visium spatial data. Cell 472 

types in the reference were then assigned to the spatial spots by label transferring. We 473 

removed cell types with probabilities equal to 0 for all spots.  474 

Differential expression analysis and pathway analyses. 475 

We used Seurat to identify DEGs. Genes with adjusted p-values < 0.05 were used as the 476 
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input for QIANGEN Ingenuity Pathway Analysis (IPA). For IPA results, pathways with 477 

positive or negative z-scores were plotted.  478 

Raw data processing of Stereo-seq data. 479 

Fastq files were generated using the MGI DNBSEQ-Tx sequencer. Coordinate identities 480 

(CIDs) and unique molecular identifiers (UMIs) were encoded in the forward reads (CID: 1-481 

25bp, UMI: 26-35bp), while the reverse reads consisted of the cDNA sequences. CID 482 

sequences in the forward reads were first mapped to the designed coordinates of the in situ 483 

captured chip, allowing one base mismatch to correct for sequencing and PCR errors. Reads 484 

with UMIs containing either N bases or more than two bases with quality scores lower than 10 485 

were filtered out. The CIDs and UMIs associated with each read were appended to each read 486 

header. Retained reads were then aligned to the reference genome (mm10) using STAR51, 487 

and mapped reads with MAPQ ó10 were counted and annotated using an in-house script 488 

(available at https://github.com/BGIResearch/handleBam). UMIs with the same CIDs and gene 489 

loci were collapsed together, allowing for one mismatch to correct for sequencing and PCR 490 

errors, to give the final gene expression matrix.  491 

Local inverse Simpson9s index (LISI). 492 

We first used Seurat and SEDR to generate cell clusters for the stereo-seq data, and then the 493 

R <lisi= package to calculate the LISIs using spatial coordinates as X and the clustering results 494 

of Seurat and SEDR as meta data.  495 

 496 

Data availability. 497 

(1) LIBD human dorsolateral prefrontal cortex (DLPFC) Data 498 

(http://spatial.libd.org/spatialLIBD/); (2) 10x visium spatial transcriptomics data of human 499 

breast cancer and Stereo-seq of mouse olfactory bulb are at 500 

https://github.com/JinmiaoChenLab/SEDR/ (3) Analysis results and scripts to reproduce the 501 

results are at https://github.com/JinmiaoChenLab/SEDR/ 502 

http://spatial.libd.org/spatialLIBD/
https://github.com/JinmiaoChenLab/SEDR/
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  503 

Software availability. 504 

SEDR was written in Python using the PyTorch library. An open-source implementation of 505 

SEDR has been released on https://github.com/HzFu/SEDR 506 

  507 

 508 

 509 

510 

https://github.com/HzFu/SEDR
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 650 

Figure legends:  651 

Figure 1. Overview of SEDR. SEDR learns a low-dimensional latent representation of gene 652 

expression embedded with spatial information by jointly training a deep autoencoder and a 653 

variational graph autoencoder. The low-dimensional embedding produced by SEDR can be 654 

used for downstream visualization, cell clustering, trajectory inference, and batch effect 655 

correction.  656 

Figure 2. Quantitative assessment of SEDR on the human dorsolateral prefrontal cortex 657 

(DLPFC) dataset. A) Ground-truth segmentation of cortical layers; clustering results of Seurat, 658 

Giotto, stLearn, SpaGCN, BayesSpace, and SEDR on DLPFC slice #151673; and adjusted 659 

rand index (ARI) of various cluster sets on the 12 DLPFC slices. B) UMAP visualization and 660 

Monocle3 trajectory generated using the Seurat-derived PCA embedding (left) and SEDR 661 

embedding (right). Monocle pseudotimes visualized on UMAP plots (middle) and spatial co-662 

ordinates (bottom). C) PAGA graphs generated using the Seurat-derived PCA embedding (top) 663 
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and SEDR embedding (middle). The ratios of the sum of weights of correctly inferred PAGA 664 

edges to the sum of weights of all edges produced by SEDR and Seurat (bottom).  665 

Figure 3. Batch effects present in DLPFC dataset and assessment of SEDR9s 666 

performance on batch correction. A) Slices #151507, #151672 and #151673 showed 667 

substantial inter-slice variations before batch effect correction. UMAP plots colored by ground-668 

truth cortical layers (left), slices (right), split by layers and colored by slices (bottom). B) 669 

Harmony alone was unable to remove the batch effects present. C) SEDR alone substantially 670 

reduced the batch effects. D) SEDR combined with Harmony effectively corrected the batch 671 

effects. E) stLearn combined with Harmony was unable to correct the batch effects.   672 

Figure 4. Application of SEDR on 10x Visium spatial transcriptomics data of human 673 

breast cancer. A) Manual pathology labeling based on H&E staining (annotation); clustering 674 

results of SEDR, Seurat, stLearn, SpaGCN, and BayesSpace. B) Seurat3 8anchor9-based 675 

integration workflow was used to perform probabilistic transfer of annotations from a reference 676 

scRNA-seq data of human breast cancer to the spatial data. This gives a probabilistic 677 

classification of the scRNA-seq derived classes for each spot. The probabilities of tumor 678 

associated macrophage (TAMs) and cycling epithelials (C-EPI) were visualized. C) Pathways 679 

enriched by genes differentially expressed between SEDR clusters 3 (core) and 7 (outer ring). 680 

Red bars represent pathways upregulated in cluster 3. D) Trajectory analysis results using 681 

PAGA (top) and Monocle3 (bottom). The PAGA graph predictions of the inter-relatedness 682 

between the manually annotated DCIS/LCIS and IDC regions. The edge width denotes 683 

connectivity strength, thus indicating the likelihood of an actual connection being present. 684 

Monocle3 inferred the pseudo-times of spots in SEDR clusters 3, 7, and 11 using the Seurat-685 

derived PCA embedding (termed <rna_pseudotime=) and SEDR embedding (termed 686 

<SEDR_pseudotime=). E) Heatmap of genes with expression changes along the Monocle-687 

derived pseudo-time.  688 

Figure 5. Application of SEDR on Stereo-seq spatial transcriptomics data of mouse 689 

olfactory bulb tissue sections. A) Laminar organization of DAPI-stained mouse olfactory 690 
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bulb.  B) Unsupervised clustering of the spatial voxels analyzed by Seurat and SEDR. C) The 691 

four clusters with the highest numbers of voxels were selected and visualized. D) Quantitative 692 

comparison of Seurat and SEDR clusters using local inverse Simpson9s index (LISI).  693 

Supplementary: 694 

Figure 1. Human breast cancer histology and cell type mixtures of spatial spots. A) H&E 695 

staining. B) Seurat3 predicted probabilities of scRNA-seq derived cell types.  696 

Figure 2. Differentially expressed genes (DEGs) and enriched pathways. A) Locations of 697 

DCIS_LCIS_3 and other DCIS_LCIS regions. B) Top DEGs between DCIS_LCIS_3 and other 698 

DCIS_LCIS regions. C) Enriched pathways of DEGs between DCIS_LCIS_3 and other 699 

DCIS_LCIS regions. Red bars represent pathways up-regulated in DCIS_LCIS_3 D) 700 

Percentages of tumor associated macrophages (TAMs) in SEDR cluster 3 (tumor core) and 701 

cluster 7 (tumor edge). E) Violin plots of selected DEGs between SEDR clusters 3 and 7.  702 

 703 



Figures

Figure 1

Overview of SEDR. SEDR learns a low-dimensional latent representation of gene expression embedded
with spatial information by jointly training a deep autoencoder and a variational graph autoencoder. The
low-dimensional embedding produced by SEDR can be used for downstream visualization, cell clustering,
trajectory inference, and batch effect correction.



Figure 2

Quantitative assessment of SEDR on the human dorsolateral prefrontal cortex (DLPFC) dataset. A)
Ground-truth segmentation of cortical layers; clustering results of Seurat, Giotto, stLearn, SpaGCN,
BayesSpace, and SEDR on DLPFC slice #151673; and adjusted rand index (ARI) of various cluster sets on
the 12 DLPFC slices. B) UMAP visualization and Monocle3 trajectory generated using the Seurat-derived
PCA embedding (left) and SEDR embedding (right). Monocle pseudotimes visualized on UMAP plots



(middle) and spatial co-ordinates (bottom). C) PAGA graphs generated using the Seurat-derived PCA
embedding (top) and SEDR embedding (middle). The ratios of the sum of weights of correctly inferred
PAGA edges to the sum of weights of all edges produced by SEDR and Seurat (bottom).

Figure 3

Batch effects present in DLPFC dataset and assessment of SEDR9s performance on batch correction. A)
Slices #151507, #151672 and #151673 showed substantial inter-slice variations before batch effect



correction. UMAP plots colored by ground-truth cortical layers (left), slices (right), split by layers and
colored by slices (bottom). B) Harmony alone was unable to remove the batch effects present. C) SEDR
alone substantially reduced the batch effects. D) SEDR combined with Harmony effectively corrected the
batch effects. E) stLearn combined with Harmony was unable to correct the batch effects.

Figure 4



Application of SEDR on 10x Visium spatial transcriptomics data of human breast cancer. A) Manual
pathology labeling based on H&E staining (annotation); clustering results of SEDR, Seurat, stLearn,
SpaGCN, and BayesSpace. B) Seurat3 8anchor9-based integration work�ow was used to perform
probabilistic transfer of annotations from a reference scRNA-seq data of human breast cancer to the
spatial data. This gives a probabilistic classi�cation of the scRNA-seq derived classes for each spot. The
probabilities of tumor associated macrophage (TAMs) and cycling epithelials (C-EPI) were visualized. C)
Pathways enriched by genes differentially expressed between SEDR clusters 3 (core) and 7 (outer ring).
Red bars represent pathways upregulated in cluster 3. D) Trajectory analysis results using PAGA (top) and
Monocle3 (bottom). The PAGA graph predictions of the inter-relatedness between the manually annotated
DCIS/LCIS and IDC regions. The edge width denotes connectivity strength, thus indicating the likelihood
of an actual connection being present. Monocle3 inferred the pseudo-times of spots in SEDR clusters 3, 7,
and 11 using the Seurat-derived PCA embedding (termed <rna_pseudotime=) and SEDR embedding
(termed <SEDR_pseudotime=). E) Heatmap of genes with expression changes along the Monocle-derived
pseudo-time.



Figure 5

Application of SEDR on Stereo-seq spatial transcriptomics data of mouse olfactory bulb tissue sections.
A) Laminar organization of DAPI-stained mouse olfactory bulb. B) Unsupervised clustering of the spatial
voxels analyzed by Seurat and SEDR. C) The four clusters with the highest numbers of voxels were
selected and visualized. D) Quantitative comparison of Seurat and SEDR clusters using local inverse
Simpson9s index (LISI).
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