

# 1 Structural basis for CFTR inhibition by CFTRinh-172

2 Paul Young<sup>1,4</sup>, Jesper Levring<sup>1</sup>, Karol Fiedorczuk<sup>1</sup>, Scott C. Blanchard<sup>2,\*</sup> & Jue Chen<sup>1,3,\*</sup>

4      <sup>1</sup>Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY  
5      10065, USA.

7 <sup>2</sup>Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.

9     <sup>3</sup>Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY,  
10    USA.

12 <sup>4</sup>Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program

14 \*To whom correspondence should be addressed: [juechen@rockefeller.edu](mailto:juechen@rockefeller.edu).

15 **ABSTRACT**

16  
17 The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that  
18 regulates electrolyte and fluid balance in epithelial tissues. Whereas activation of CFTR is vital to  
19 treating cystic fibrosis, selective inhibition of CFTR is a potential therapeutic strategy for secretory  
20 diarrhea and autosomal dominant polycystic kidney disease (ADPKD). Although several CFTR  
21 inhibitors have been developed by high-throughput screening, their modes of action remain  
22 elusive. In this study, we determined the structure of CFTR in complex with the inhibitor CFTR<sub>inh</sub>-  
23 172 to 2.7 Å resolution by cryogenic electron microscopy (cryo-EM). We observe that CFTR<sub>inh</sub>-  
24 172 binds inside the pore near transmembrane helix 8 (TM8), a critical structural element that links  
25 ATP hydrolysis with channel gating. Binding of CFTR<sub>inh</sub>-172 stabilizes a conformation in which  
26 the chloride selectivity filter is collapsed and the pore is blocked from the extracellular side of the  
27 membrane. Single molecule fluorescence resonance energy transfer (smFRET) experiments  
28 indicate that CFTR<sub>inh</sub>-172 inhibits channel gating without compromising nucleotide-binding  
29 domain (NBD) dimerization. Together, these data show that CFTR<sub>inh</sub>-172 acts as both a pore  
30 blocker and a gating modulator, setting it apart from typical ion channel inhibitors. The dual  
31 functionality of CFTR<sub>inh</sub>-172 reconciles previous biophysical observations and provides a  
32 molecular basis for its activity.

33  
34 **Significance statement**

35  
36 The pathogenesis of secretory diarrhea and autosomal dominant polycystic kidney disease  
37 involves hyperactivation of the CFTR ion channel. CFTR inhibitors, including the small-molecule  
38 CFTR<sub>inh</sub>-172, have been developed as therapeutic candidates to treat these diseases. This study  
39 offers a structural understanding of CFTR<sub>inh</sub>-172's mode of action, clarifying its dual inhibitory  
40 role as both a pore blocker and gating modulator. The molecular description of how CFTR<sub>inh</sub>-172  
41 interacts with CFTR provides a structural foundation to its specificity and efficacy. Furthermore,  
42 the observation that CFTR inhibitors and potentiators both interact with TM8 strengthens the  
43 notion that this helix serves as an allosteric link between the ATPase site and the channel gate, and  
44 is therefore a hotspot for pharmacological modulation.

45 **INTRODUCTION**

46  
47 The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel expressed  
48 in the apical membrane of epithelial cells (1, 2). Loss-of-function mutations in the *cftr* gene cause  
49 widespread salt and fluid dysregulation that leads to the autosomal recessive disease cystic fibrosis  
50 (1). By contrast, hyperactivation of CFTR is central to pathogenesis in secretory diarrhea and  
51 autosomal dominant polycystic kidney disease (ADPKD) (3–10). In both secretory diarrhea and  
52 ADPKD, cyclic AMP (cAMP) accumulation activates protein kinase A (PKA) (11–15). PKA-  
53 phosphorylation in turn activates CFTR (11, 12, 16–18), leading to excess fluid accumulation in  
54 the intestinal lumen and renal cysts, for secretory diarrhea and ADPKD, respectively (19, 20).  
55 CFTR hyperactivation has also been implicated in the pathogenesis of non-alcoholic  
56 steatohepatitis (NASH) (21).

57  
58 Despite functioning as an ion channel, CFTR belongs to the superfamily of ATP-binding cassette  
59 (ABC) transporters. It is comprised of two transmembrane domains (TMDs) and two nucleotide-  
60 binding domains (NBDs) that are common to all ABC transporters, along with a cytosolic  
61 regulatory (R) domain specific to CFTR (22, 23). CFTR's activity is regulated at two levels.  
62 Phosphorylation by PKA releases the auto-inhibition imposed by the unphosphorylated R domain  
63 (24, 25). Once phosphorylated, ATP-binding promotes NBD dimerization and pore opening,  
64 whereas ATP hydrolysis leads to pore closure (26).

65  
66 Substantial effort has been devoted to understanding CFTR in the context of cystic fibrosis.  
67 Disease-causing mutations have been extensively characterized, and small molecule drugs that  
68 potentiate gating or correct folding of CFTR have been successfully developed for clinical use  
69 (27–38). By contrast, relatively few studies have addressed CFTR hyperactivation. Although  
70 secretory diarrhea is the second leading cause of death in children under 5 worldwide (20, 39, 40),  
71 and ADPKD is the most common inherited cause of end-stage renal disease (ESRD) (19), both  
72 conditions lack broadly effective, generalizable pharmacological treatments. Despite the  
73 therapeutic potential of CFTR inhibitors and although several small-molecule CFTR inhibitors  
74 have been identified (5, 41–43), their mechanisms and sites of action remain poorly understood.

75  
76 In this study, we investigate the mechanism of CFTR<sub>inh</sub>-172, a highly specific and efficacious  
77 CFTR inhibitor developed in the Verkman laboratory (5). This inhibitor was shown to block  
78 cholera toxin-induced intestinal fluid secretion (5) and suppress cyst growth in animal models of  
79 polycystic kidney disease (3). Substitution of pore-lining residues reduced the potency of CFTR<sub>inh</sub>-  
80 172, suggesting that it directly binds to CFTR (44). However, several studies have also suggested  
81 that CFTR<sub>inh</sub>-172 acts as a gating modulator rather than a classical pore-blocker (45, 46). Using  
82 cryo-EM, smFRET, and electrophysiology, we have discovered that CFTR<sub>inh</sub>-172 binds within the  
83 pore, stabilizing the transmembrane helices in a nonconductive conformation without obstructing  
84 NBD dimerization. These findings enable us to propose a mechanism for CFTR<sub>inh</sub>-172 that  
85 reconciles previous conflicting observations.

86

87 **RESULTS**

88

89 ***CFTR<sub>inh</sub>-172 inhibits wild-type CFTR and the “locked-open” CFTR (E1371Q)***

90

91 First, we characterized the effects of CFTR<sub>inh</sub>-172 in excised inside-out membrane patches (Figure  
92 1A-B). Consistent with previous work (46), application of 10  $\mu$ M CFTR<sub>inh</sub>-172 reduced the  
93 macroscopic current of wild-type (WT) CFTR by 96%. A comparable level of inhibition was  
94 observed with the hydrolysis-deficient CFTR (E1371Q), which has an open dwell time 1000-fold  
95 longer than that of WT CFTR (47). Next purified CFTR was reconstituted into a planar lipid  
96 bilayer and activated by PKA. Single channel currents for WT CFTR and CFTR (E1371Q) were  
97 measured in the presence of 3 mM ATP with or without 10  $\mu$ M CFTR<sub>inh</sub>-172 (Figure 1C). CFTR<sub>inh</sub>-  
98 172 reduced the open probability of WT CFTR from  $0.21 \pm 0.05$  (mean and standard error) to  
99  $0.007 \pm 0.003$ , whereas that of CFTR (E1371Q) decreased from  $0.79 \pm 0.03$  to  $0.0011 \pm 0.0004$   
100 (Figure 1D). In agreement with a previous observation that CFTR<sub>inh</sub>-172 affects both the open  
101 dwell time and closed dwell time (46), we observed a large effect on closed dwell time and a  
102 fivefold reduction in mean open dwell time, from  $487 \pm 92$  ms to  $109 \pm 14$  ms for WT CFTR  
103 (Figure 1E). The similar responses of WT CFTR and CFTR (E1371Q) to CFTR<sub>inh</sub>-172 suggest a  
104 comparable mechanism of inhibition and establish CFTR (E1371Q) as a suitable system for  
105 structural studies with this inhibitor.

106

107 ***CFTR<sub>inh</sub>-172 binds within the pore***

108

109 To identify the binding site of CFTR<sub>inh</sub>-172, we determined the cryo-EM structure of inhibitor-  
110 bound CFTR using phosphorylated CFTR (E1371Q) (Figure 2, Figure S1). The structure was  
111 determined to an overall resolution of 2.7  $\text{\AA}$ . In the presence of CFTR<sub>inh</sub>-172 and ATP, CFTR  
112 (E1371Q) adopts an NBD-dimerized, pore-closed conformation distinct from any previously  
113 observed structures (Figure 2A). The density for CFTR<sub>inh</sub>-172, as strong as the protein main chain  
114 atoms, was observed inside the pore, at a position corresponding to the membrane outer leaflet  
115 (Figure 2A). The chemical structure of CFTR<sub>inh</sub>-172 can be divided into three rings (Figure 2B): a  
116 central thiazolidine ring (Ring B) with a (3-trifluoromethyl)phenyl substitution at position 3 (Ring  
117 A) and a (4-carboxyphenyl)methylene substitution at position 5 (Ring C). The density shows well-  
118 defined features corresponding to the trifluoromethyl phenyl and the heavy sulfur atoms in the  
119 thiazolidine ring (Figure 2B). The density for Ring C is not as well-defined, indicating that this  
120 moiety may be mobile.

121

122 CFTR<sub>inh</sub>-172 binds within the CFTR pore and interacts with both TMDs (Figure 2A). The three  
123 rings of the compound form an elongated shape wedged between TMs 1, 6, 8, 9, and 12. Whereas  
124 Ring A and Ring B are completely buried, Ring C is exposed to the aqueous ion-conduction  
125 pathway (Figure 2A). With this structure, we can now fully understand previous structure-activity-  
126 relationship (SAR) analyses (5, 48). Specifically, these studies showed that the trifluoromethyl  
127 group (CF<sub>3</sub>) is essential for inhibition and that the addition of polar substituents or removal of CF<sub>3</sub>  
128 on Ring A diminished activity (48). The highest potency is achieved when CF<sub>3</sub> is at position 3 of  
129 Ring A, as in CFTR<sub>inh</sub>-172 (5, 48). In the structure, the trifluoromethyl group fits snugly into a  
130 hydrophobic cavity, establishing van der Waals interactions with five hydrophobic residues on  
131 TMs 6, 8, 9, and 12 (Figure 2C-D). If the CF<sub>3</sub> substitution were to occur at positions 2 or 4, many  
132 of these interactions would be lost, resulting in lower inhibitory potency, as observed (48). The

133 SAR studies further demonstrate the significance of negative or polar substitutions on Ring C (48).  
134 Indeed, we observe that this ring is positioned within a spacious, solvent-exposed cavity  
135 surrounded by numerous charged and polar residues, including K95 on TM1, Q353 on TM6, as  
136 well as N1138, S1141, and T1142 on TM12 (Figure 2C-D). The carboxy group on CFTR<sub>inh</sub>-172  
137 forms a salt bridge with K95 (Figure 2C-D). Consistent with this observation, esterification or  
138 amidation of the carboxy group in CFTR<sub>inh</sub>-172 resulted in inactive compounds (48), presumably  
139 due to the loss of this interaction. The reciprocal change on CFTR, substitution of K95 with  
140 alanine, resulted in a nearly sevenfold decrease in potency, increasing the half maximal inhibitory  
141 concentration ( $IC_{50}$ ) of CFTR<sub>inh</sub>-172 from  $0.6 \pm 0.1 \mu\text{M}$  to  $3.5 \pm 0.9 \mu\text{M}$  (Figure 2E). Perturbation  
142 of the binding site by T1142I substitution increased the  $IC_{50}$  to  $5.3 \pm 3.1 \mu\text{M}$  (Figure 2E). The  
143 effect of the T1142I substitution is most likely due to steric hindrance, as the side chain of T1142  
144 is close to the methylene group at position 2 of Ring B (Figure 2C-D). The reciprocal modification  
145 on the inhibitor, adding a methyl at this position, was shown to increase the  $IC_{50}$  to  $8 \mu\text{M}$  (48). By  
146 contrast, alanine substitution of a non-interacting residue, S1141, had no effect on inhibitory  
147 potency (Figure 2E, Figure S2).

148  
149 The structure also offers a molecular explanation for previous data showing that substituting R347  
150 with alanine decreased the potency of CFTR<sub>inh</sub>-172 by over 30-fold, and that R347D substitution  
151 nearly eliminated its inhibitory effect (44). Although R347 does not interact with the inhibitor  
152 directly, it forms a salt bridge with D924, creating a surface against which the inhibitor is tightly  
153 packed (Figure 2C). Substitutions at position 347 are likely to modify the structure of the binding  
154 site, consequently reducing the inhibitory activity.

155  
156 ***CFTR<sub>inh</sub>-172 stabilizes a closed conformation of CFTR***  
157

158 Previous structural studies of human CFTR have revealed the conformational changes required for  
159 pore opening (Figure 3A). Dephosphorylated CFTR exhibits an NBD-separated conformation with  
160 an inner vestibule open to the cytosol but the pore closed off to the extracellular space (Figure 3A)  
161 (49). In the presence of ATP, phosphorylated CFTR (E1371Q) forms an NBD-dimerized  
162 conformation (50), in which the pore is open and a dehydrated chloride ion is bound at the  
163 selectivity filter near the extracellular entrance (see accompanying paper) (Figure 3A). A  
164 comparison of these two structures reveals that phosphorylation and ATP binding cause the NBDs  
165 and TMDs to move towards the central axis essentially as rigid bodies. However, local  
166 conformational changes of TMs 8 and 12 are also critical for CFTR gating (25).

167  
168 In the presence of CFTR<sub>inh</sub>-172, CFTR adopts a conformation distinct from either structure (Figure  
169 3A). The NBDs form a dimer similar to that observed in the uninhibited structures of CFTR  
170 (E1371Q) (25, 50). The TMDs undergo global rigid-body movements towards each other, but TMs  
171 1, 8 and 12 are positioned differently (Figure 3B). Local structural superposition shows that the  
172 extracellular segment of TM8 is stabilized in a conformation intermediate between the NBD-  
173 separated and -dimerized conformations (Figure 3C). Furthermore, the anion selectivity filter (see  
174 accompanying paper) collapses, as TM1 undergoes a  $\sim 5^\circ$  rotation that places the side chain of I106  
175 at the position of the chloride ion (Figure 3D-E). This repositioning of the TMs also leads to a  
176 complete closure of the lateral exit between TMs 1 and 6 that connects the selectivity filter to the  
177 extracellular space (Figure 3E).

178

179 ***CFTR<sub>inh</sub>-172 allosterically inhibits ATP turnover***

180

181 The structural analysis clearly shows that CFTR<sub>inh</sub>-172 binds and occludes the pore (Figure 3).  
182 However, previous electrophysiological measurements indicate that it does not act as a simple  
183 open-channel blocker (45). As CFTR gating is coupled to ATP hydrolysis, we tested if CFTR<sub>inh</sub>-  
184 172 changes the ATP turnover rate (Figure 4A). We found that the presence of 10  $\mu$ M CFTR<sub>inh</sub>-  
185 172 decreased saturating ATP turnover ( $k_{cat}$ ) by approximately fourfold, from  $22.0 \pm 2.2$  to  $5.2 \pm$   
186 1.0 ATP/protein/min (Figure 4A). The Michaelis–Menten constant ( $K_m$ ) for ATP was not  
187 significantly changed (Figure 4A).

188

189 To assess the mechanism by which ATP hydrolysis is inhibited by CFTR<sub>inh</sub>-172, we used a recently  
190 established smFRET assay, which reports on the conformational state of CFTR's NBDs (38). In  
191 this assay, position 388 in NBD1 and position 1435 in NBD2 were labeled with donor and acceptor  
192 fluorophores (Figure 4B). Conformational isomerizations of individual CFTR molecules were  
193 monitored as transitions between a low FRET efficiency ( $0.25 \pm 0.01$ ) NBD-separated state and a  
194 high FRET efficiency ( $0.49 \pm 0.02$ ) NBD-dimerized state. As we have previously reported (38), at  
195 a saturating (3 mM) ATP concentration, WT CFTR predominantly occupies NBD-dimerized  
196 conformations with brief excursions to the NBD-separated state (Figure 4C). The presence of 10  
197  $\mu$ M CFTR<sub>inh</sub>-172 did not significantly affect the probability of NBD dimerization or the dwell time  
198 of the NBD-dimerized state for WT CFTR (Figure 4D-E). CFTR<sub>inh</sub>-172 also did not affect the  
199 conformational dynamics of CFTR (E1371Q), which remained constitutively NBD-dimerized  
200 (Figure 4C-E). These data indicate that CFTR<sub>inh</sub>-172 does not prevent NBD dimerization, but  
201 rather slows progression through the gating cycle while the NBDs are dimerized.

202

203 These observations lead us to consider a possible mechanism for inhibition of ATP hydrolysis.  
204 Our recent study showed that conformational changes within NBD-dimerized CFTR governed by  
205 ATP turnover are required for chloride conductance (38). Potentiators Ivacaftor and GLPG1837  
206 enhance channel activity by increasing pore opening while the NBDs are dimerized. Additionally,  
207 the potentiators increase ATP turnover (38). In comparing the structure of CFTR (E1371Q) bound  
208 to GLPG1837 with that bound to CFTR<sub>inh</sub>-172, we observe that the CFTR<sub>inh</sub>-172 site is located  
209 along the pore-lining side of the TM8 hinge region, in direct juxtaposition to the potentiator  
210 binding site (Figure 4F). As TM8 links ATP hydrolysis and pore opening (36, 51), we propose that  
211 CFTR<sub>inh</sub>-172 inhibits ATP turnover via an allosteric mechanism involving TM8, similar in nature  
212 but opposite in effect to that of the potentiators.

213

214 **DISCUSSION**

215

216 Typically, ion channel inhibitors are classified into two categories: pore blockers that bind within  
217 the ion conduction pathway to occlude the pore and gating inhibitors that impair channel opening  
218 by stabilizing the closed state (52). However, CFTR<sub>inh</sub>-172 presents a perplexing case, as it has  
219 been shown to interact with residues within the pore and also impair gating (44, 45). Through cryo-  
220 EM and smFRET analyses, we now have a structural understanding of CFTR<sub>inh</sub>-172 inhibition that  
221 reconciles earlier findings. The binding site of CFTR<sub>inh</sub>-172 is located within the pore, nestled in  
222 a cavity lined by R347, a residue whose substitution significantly reduces the affinity for CFTR<sub>inh</sub>-  
223 172 (44). Whereas the principal mechanism of CFTR<sub>inh</sub>-172 involves steric occlusion of the pore,  
224 we also observe local conformational changes of TMs 1, 8, and 12. These changes cause a collapse

225 of the chloride selectivity filter and the extracellular exit. Based on kinetic analysis Hwang and  
226 colleagues had predicted that CFTR<sub>inh</sub>-172 induces conformational change of CFTR (46). The  
227 nature of this change is now revealed at a molecular level. Additionally, we discovered that  
228 CFTR<sub>inh</sub>-172 inhibits ATP hydrolysis through an allosteric mechanism similar to that of  
229 potentiators, but with an opposite functional effect. These observations corroborate the hypothesis  
230 that conformational shifts in TM8 link ATP hydrolysis at the NBDs with the state of the pore.  
231

232 Electrophysiological measurements in our laboratory (Figure 1) and in other studies (46)  
233 demonstrate that CFTR<sub>inh</sub>-172 inhibits WT CFTR and several hydrolysis-deficient variants to  
234 similar extents. Although it is theoretically possible that this molecule inhibits WT CFTR and each  
235 variant through different mechanisms, it is more likely that the mechanism of action is similar.  
236 Indeed, the structure determined with CFTR (E1371Q) is entirely consistent with earlier SAR  
237 studies (5, 48). Substitutions at the structurally identified binding site made in the WT CFTR  
238 background reduced the potency of CFTR<sub>inh</sub>-172 (44) (Figure 2E). Additionally, smFRET studies  
239 reveal that CFTR<sub>inh</sub>-172 does not affect the NBD isomerization in WT CFTR or CFTR (E1371Q)  
240 (Figure 4C-D). These data strongly suggest that the mode of action revealed in this study represents  
241 a general mechanism for CFTR<sub>inh</sub>-172. However, E1371Q substitution stabilizes the NBDs in a  
242 canonical dimerized conformation, and it is possible that CFTR<sub>inh</sub>-172 induces local changes at the  
243 ATPase site that are obscured in our structure. Further studies will be pursued to identify structural  
244 re-arrangements of the WT channel within the NBD-dimerized state, as these play a key role in  
245 coupling ATP hydrolysis to channel gating.  
246

247 Finally, the congruence between structural and functional data not only offers intellectual  
248 satisfaction but also opens up new avenues for enhancing the potency and specificity of CFTR<sub>inh</sub>-  
249 172. Specifically, CFTR interacts with Ring C of CFTR<sub>inh</sub>-172 primarily through the K95 salt-  
250 bridge and an edge-to-face  $\pi$ -stacking interaction with W1145. It is possible that analogs of  
251 CFTR<sub>inh</sub>-172, with modifications on Ring C that establish additional interactions with nearby polar  
252 residues on CFTR will have enhanced potency and specificity.

253 **METHODS**

254

255 *Cell culture*

256 Sf9 cells (Gibco, catalogue number 11496015, lot number 1670337) were grown at 27 °C in Sf-  
257 900 II SFM medium (Gibco) supplemented with 5% (v/v) fetal bovine serum (FBS) and 1% (v/v)  
258 antibiotic-antimycotic (Gibco). HEK293S GnTI<sup>-</sup> cells (ATCC CRL-3022, lot number 62430067)  
259 were cultured at 37 °C in Freestyle 293 medium (Gibco) supplemented with 2% (v/v) FBS and 1%  
260 (v/v) antibiotic-antimycotic. CHO-K1 cells (ATCC CCL-61, lot number 70014310) were cultured  
261 at 37 °C in DMEM F-12 medium (ATCC) supplemented with 10% (v/v) FBS and 1% (v/v)  
262 GlutaMAX (Gibco).

263

264 *Mutagenesis*

265 CFTR mutants were generated using the SPRINP mutagenesis method (**Table S2**) (53). Briefly,  
266 mutagenic primers were designed to be complementary to the template plasmid except for the  
267 mutated bases and to be 15-45 nucleotides in length. Plasmid containing CFTR cDNA was  
268 amplified in separate reactions containing forward or reverse primer. The single-primer products  
269 of these reactions were combined and denatured at 95 °C for 5 min. and gradually cooled to 37 °C  
270 over the next 5 min. The sample was then digested by DpnI for 4 hours. 5 µL of sample were added  
271 to 50 µL of competent XL2Blue cells for transformation and incubated on ice for 30 min. The  
272 bacteria were then heat-shocked at 42 °C for 45 seconds and allowed to recover on ice for 2 min.  
273 200 µL of warmed SOC media (Invitrogen) were then added directly to the cells, and the mixture  
274 was allowed to shake at 225 RPM in a 37 °C incubator. 200 µL of this mixture was then spread on  
275 LB/ampicillin plates and left to incubate at 37 °C overnight. Random colonies were then picked  
276 and expanded in LB/ampicillin. Plasmid DNA was then purified (QIAGEN Plasmid Kit) and  
277 sequenced (Genewiz).

278

279 *Patch-clamp electrophysiology*

280 Chinese hamster ovary (CHO; ATCC CCL-61, lot number 70014310) cells were maintained in  
281 DMEM-F12 (ATCC) supplemented with 10% (v/v) heat-inactivated fetal bovine serum (FBS) and  
282 1% GlutaMAX (Gibco) at 37°C. The cells were seeded in 35-mm cell culture dishes (Falcon)  
283 24 hours before transfection. Cells were transiently transfected with BacMam vector encoding C-  
284 terminally GFP-fused CFTR, using Lipofectamine 3000 (Invitrogen). 12 hours after transfection,  
285 medium was exchanged for DMEM-F12 supplemented with 2% (v/v) FBS and 1% (v/v)  
286 GlutaMAX and incubation temperature was reduced to 30 °C. Patch-clamp recording was carried  
287 out after an additional 24 hours.

288

289 The bath solution was 145 mM NaCl, 2 mM MgCl<sub>2</sub>, 5 mM KCl, 1 mM CaCl<sub>2</sub>, 5 mM glucose,  
290 5 mM HEPES and 20 mM sucrose (pH 7.4 with NaOH). Pipette solution was 140 mM NMDG,  
291 5 mM CaCl<sub>2</sub>, 2 mM MgCl<sub>2</sub> and 10 mM HEPES (pH 7.4 with HCl). Perfusion solution was 150 mM  
292 NMDG, 2 mM MgCl<sub>2</sub>, 1 mM CaCl<sub>2</sub>, 10 mM EGTA and 8 mM Tris (pH 7.4 with HCl).

293

294 Recordings were carried out using the inside-out patch configuration with local perfusion at the  
295 patch. Recording pipettes were pulled from borosilicate glass (outer diameter 1.5 mm, inner  
296 diameter 0.86 mm, Sutter) to 1.5–3.0 MΩ resistance. Currents were recorded at 25°C using an  
297 Axopatch 200B amplifier, a Digidata 1550 digitizer and the pClamp software suite (Molecular

298 Devices). Membrane potential was clamped at -30 mV. Current traces reflect inward currents with  
299 inverted signatures. Recordings were low-pass-filtered at 1 kHz and digitized at 20 kHz.  
300

301 For all measurements, CFTR was activated by exposure to PKA (Sigma-Aldrich) and 3 mM ATP.  
302 Displayed recordings were low-pass filtered at 100 Hz. Data were analyzed using Clampfit,  
303 GraphPad Prism, and OriginPro.  
304

#### 305 *Protein expression and purification*

306 CFTR constructs were expressed and purified as previously described (54, 55). Bacmids encoding  
307 human CFTR fused to a C-terminal PreScission Protease-cleavable green fluorescent protein  
308 (GFP) tag were generated in *E. coli* DH10Bac cells (Invitrogen). Recombinant baculovirus was  
309 produced and amplified in Sf9 cells. HEK293S GnT<sup>-</sup> suspension cells, at a density of 2.0-3.0 ×  
310 10<sup>6</sup> cells/ml, were infected with 10% (v/v) P3 or P4 baculovirus. Protein expression was induced  
311 by addition of 10 mM (final concentration) sodium butyrate 12 hours after infection. The cells  
312 were cultured at 30°C for an additional 48 hours and then harvested by centrifugation.  
313

314 Protein samples for cryo-EM were purified as follows. Cells were solubilized for 75 min at 4°C in  
315 extraction buffer containing 1-1.25% (w/v) 2,2-didecylpropane-1,3-bis-b-D-maltopyranoside  
316 (LMNG), 0.25% (w/v) cholestryl hemisuccinate (CHS), 200 mM NaCl, 20 mM HEPES (pH 7.5  
317 with NaOH), 2 mM MgCl<sub>2</sub>, 10 μM dithiothreitol (DTT), 20% (v/v) glycerol, 2 mM ATP, 1 μg mL<sup>-1</sup>  
318 pepstatin A, 1 μg mL<sup>-1</sup> aprotinin, 100 μg mL<sup>-1</sup> soy trypsin inhibitor, 1 mM benzamidine, 1 mM  
319 phenylmethylsulfonyl fluoride (PMSF) and 3 μg mL<sup>-1</sup> DNase I. Lysate was clarified by  
320 centrifugation at 75,000g for 45 min at 4°C, and mixed with NHS-activated Sepharose 4 Fast Flow  
321 resin (GE Healthcare) conjugated with GFP nanobody, which had been pre-equilibrated in  
322 extraction buffer. After 2 hours, the resin was packed into a chromatography column and was  
323 washed with buffer containing 0.06% (w/v) digitonin, 200 mM NaCl, 20 mM HEPES (pH 7.5 with  
324 NaOH), 2 mM ATP, and 2 mM MgCl<sub>2</sub>. The resin was then incubated for 2 hours at 4°C with 0.35  
325 mg mL<sup>-1</sup> PreScission Protease to cleave off the GFP tag. The PreScission Protease was removed  
326 by dripping eluate through Glutathione Sepharose 4B resin (Cytiva). The protein was then  
327 concentrated to yield ~1 mL of sample, which was then phosphorylated by protein kinase A (PKA).  
328 Finally, protein samples were purified by size-exclusion chromatography at 4°C using a Superose  
329 6 10/300 GL column (GE Healthcare), equilibrated with a buffer containing 0.03% (w/v) digitonin,  
330 200 mM NaCl, 20 mM HEPES (pH 7.5 with NaOH), 2 mM ATP, and 2 mM MgCl<sub>2</sub>. Peak fractions  
331 were pooled and concentrated.  
332

333 Samples for ATP hydrolysis assays were purified using the same protocol but in a buffer  
334 containing KCl, rather than NaCl. The sample used for single-molecule FRET imaging had the  
335 following substitutions: C76L, C128S, C225S, C276S, C343S, T388C, C491S, C592M, C647S,  
336 C832S, C866S, C1344S, C1355S, C1395S, C1400S, C1410S, S1435C and C1458S. The  
337 purification protocol was adjusted as described in (38). For proteoliposome reconstitution, the size-  
338 exclusion chromatography buffer contained glyco-diosgenin (GDN) instead of digitonin.  
339

#### 340 *EM data acquisition and processing*

341 Immediately following size-exclusion chromatography, the CFTR (E1371Q) sample was  
342 concentrated to 5 mg/mL (32 μM) and incubated with 8 mM ATP, 10 mM MgCl<sub>2</sub>, and 100 μM  
343 CFTR<sub>inh</sub>-172 on ice for 30 min. 3 mM fluorinated Fos-choline-8 was added to the samples directly

344 before application onto glow-discharged Quantifoil R0.6/1 300 mesh Cu grids. Samples were then  
345 vitrified using a Vitrobot Mark IV (FEI).

346  
347 Cryo-EM images were collected in a super-resolution mode on a 300 kV Titan Krios (FEI)  
348 equipped with a K3 Summit detector (Gatan) using SerialEM (Table S1). Images were corrected  
349 for gain reference and binned by 2. Drift correction was performed using MotionCor2 (56).  
350 Contrast transfer function (CTF) estimation was performed using GCTF (57). GCTF values were  
351 used for further processing steps. Particles were picked using Gautomatch (<https://www.mrc-lmb.cam.ac.uk/kzhang/>). All subsequent steps of map reconstruction and resolution estimation  
352 were carried out using RELION 3.1 (58) (Figure S1).

353  
354  
355 After the first round of 3D classification, 3D refinement was performed, followed by an additional  
356 round of 3D classification without alignment and 3D refinement. The resulting dataset was then  
357 put through three rounds of CTF refinement, the first and third of which estimated anisotropic  
358 magnification. The dataset was then put through another round of 3D refinement, after which it  
359 was polished and refined again.

360  
361 *Model building and refinement*  
362 Initial protein models were built by fitting the published structure of the NBD-dimerized CFTR  
363 (E1371Q) (PDB: 6MSM) into the cryo-EM map using Coot (59). The model was then adjusted  
364 based on the cryo-EM density. CFTR<sub>inh</sub>-172 was built into the density and refined in PHENIX (60)  
365 using restraints generated by the Global Phasing web server ([grade.globalphasing.org](http://grade.globalphasing.org)).  
366 MolProbity (61) was used for geometry validation.

367  
368 *ATP hydrolysis measurements*  
369 Steady-state ATP hydrolysis was measured using an NADH-coupled assay (62). The assay buffer  
370 contained 50 mM HEPES (pH 8.0 with KOH), 150 mM KCl, 2 mM MgCl<sub>2</sub>, 2 mM DTT, 0.06%  
371 (w/v) digitonin, 60 µg/ml pyruvate kinase (Roche), 32 µg/ml lactate dehydrogenase (Roche),  
372 9 mM phosphoenolpyruvate, 150 µM NADH, and 200 nM CFTR. Aliquots of 27 µL were  
373 distributed into a Corning 384-well Black/Clear Flat Bottom Polystyrene NBS Microplate. The  
374 reactions were initiated by the addition of ATP. The rate of fluorescence depletion was monitored  
375 at  $\lambda_{ex} = 340$  nm and  $\lambda_{em} = 445$  nm at 28 °C with an Infinite M1000 microplate reader (Tecan). ATP  
376 turnover was then determined with an NADH standard curve.

377  
378 *Proteoliposome reconstitution and planar bilayer recording*  
379 The lipids 1,2-dioleoyl-*sn*-glycero-3-phosphoethanolamine (DOPE), 1-palmitoyl-2-oleyl-*sn*-  
380 glycero-3-phosphocholine (POPC), and 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phospho-L-serine  
381 (POPS) were mixed at a 2:1:1 (w/w/w) ratio and resuspended by sonication in buffer containing  
382 200 mM NaCl, 20 mM HEPES (pH 7.2 with NaOH) and 2 mM MgCl<sub>2</sub> to a final lipid concentration  
383 of 20 mg/ml. 2% (w/v) GDN was added and the mixture was incubated for 1 hour at 25 °C. CFTR  
384 was mixed with the lipids at a protein-to-lipid ratio of 1:250 (w/w) and incubated at 4 °C for  
385 2 hours. 14 mg/ml methylated beta-cyclodextrin was added to the mixture. After 4 hours an  
386 equivalent amount of methylated beta-cyclodextrin was added to the mixture. This was performed  
387 for a total of four additions. Proteoliposomes were pelleted by centrifugation at 150,000g for  
388 45 min at 4 °C and resuspended in buffer containing 200 mM NaCl, 20 mM HEPES (pH 7.2 with  
389 NaOH) and 2 mM MgCl<sub>2</sub>.

390  
391 Synthetic planar lipid bilayers were made from a lipid mixture containing DOPE, POPC, and  
392 POPS at a 2:1:1 (w/w/w) ratio. Proteoliposomes containing PKA-phosphorylated CFTR were  
393 fused with the bilayers. Currents were recorded at 25 °C in a symmetric buffer containing 150 mM  
394 NaCl, 2 mM MgCl<sub>2</sub>, 20 mM HEPES (pH 7.2 with NaOH), and 3 mM ATP. Voltage was clamped  
395 at -150 mV with an Axopatch 200B amplifier (Molecular Devices). Currents were low-pass  
396 filtered at 1 kHz, digitized at 20 kHz with a Digidata 1440A digitizer and recorded using the  
397 pCLAMP software suite (Molecular devices). Recordings were further low-pass filtered at 100 Hz.  
398 Data were analyzed with Clampfit, GraphPad Prism and OriginPro.  
399

400 *Single-molecule fluorescence imaging and FRET data analysis*  
401 Imaging and analysis were carried out as outlined in (38, 63). In brief, PKA-phosphorylated CFTR  
402 was immobilized within PEG-passivated microfluidic chambers via a streptavidin–biotin–tris-  
403 (NTA-Ni<sup>2+</sup>) bridge. Experiments were performed at 25 °C in buffer containing 0.06% (w/v)  
404 digitonin, 150 mM NaCl, 2 mM MgCl<sub>2</sub>, 20 mM HEPES (pH 7.2 with NaOH), 2 mM  
405 protocatechuiic acid and 50 nM protocatechuate-3,4-dioxygenase.  
406

407 Imaging was carried out with a custom-built wide-field, prism-based total internal reflection  
408 fluorescence microscope. Donor (LD555) fluorophores were excited with an evanescent wave  
409 generated using a 532-nm laser (Opus, Laser Quantum). Fluorescence emitted from donor  
410 (LD555) and acceptor (LD655) fluorophores was collected with a 1.27 NA 60× water-immersion  
411 objective (Nikon), spectrally resolved using a T635lpxr dichroic (Chroma), and imaged onto two  
412 Fusion sCMOS cameras (Hamamatsu). The integration period of imaging was 100 ms.  
413

414 Analysis of fluorescence data was performed using the SPARTAN analysis software in MATLAB  
415 (64). Single-molecule FRET trajectories were calculated as  $E_{FRET} = I_A / (I_A + I_D)$ , where  $I_A$  and  $I_D$  are  
416 the emitted acceptor and donor fluorescence intensities, respectively. The following pre-  
417 established criteria were applied to select FRET trajectories for analysis: single-step donor  
418 photobleaching; a signal-to-noise ratio above 8; fewer than 4 donor-blinking events; FRET  
419 efficiency below 0.8; and FRET efficiency above baseline for at least 50 frames. The segmental  
420 k-means algorithm (65) was used to idealize trajectories to a model containing two non-zero-  
421 FRET states with FRET efficiencies of 0.25 and 0.48. Data were further analyzed with OriginPro.  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435

436 **References**

437

438 1. D. C. Gadsby, P. Vergani, L. Csandy, The ABC protein turned chloride channel whose  
439 failure causes cystic fibrosis. *Nature* **440**, 477–483 (2006).

440 2. M. P. Anderson, *et al.*, Demonstration that CFTR is a chloride channel by alteration of its  
441 anion selectivity. *Science* **253**, 202–205 (1991).

442 3. B. Yang, N. D. Sonawane, D. Zhao, S. Somlo, A. S. Verkman, Small-molecule CFTR inhibitors  
443 slow cyst growth in polycystic kidney disease. *J. Am. Soc. Nephrol. JASN* **19**, 1300–1310  
444 (2008).

445 4. J. R. Thiagarajah, T. Broadbent, E. Hsieh, A. S. Verkman, Prevention of toxin-induced  
446 intestinal ion and fluid secretion by a small-molecule CFTR inhibitor. *Gastroenterology* **126**,  
447 511–519 (2004).

448 5. T. Ma, *et al.*, Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks  
449 cholera toxin–induced intestinal fluid secretion. *J. Clin. Invest.* **110**, 1651–1658 (2002).

450 6. D. S. Snyder, L. Tradtrantip, C. Yao, M. J. Kurth, A. S. Verkman, Potent, Metabolically Stable  
451 Benzopyrimido-pyrrolo-oxazine-dione (BPO) CFTR Inhibitors for Polycystic Kidney Disease.  
452 *J. Med. Chem.* **54**, 5468–5477 (2011).

453 7. F. A. Belibi, *et al.*, Cyclic AMP promotes growth and secretion in human polycystic kidney  
454 epithelial cells<sup>1</sup> See Editorial by Torres, p. 1283. *Kidney Int.* **66**, 964–973 (2004).

455 8. C. J. Davidow, R. L. Maser, L. A. Rome, J. P. Calvet, J. J. Grantham, The cystic fibrosis  
456 transmembrane conductance regulator mediates transepithelial fluid secretion by human  
457 autosomal dominant polycystic kidney disease epithelium in vitro. *Kidney Int.* **50**, 208–218  
458 (1996).

459 9. J. R. Thiagarajah, M. Donowitz, A. S. Verkman, Secretory diarrhoea: mechanisms and  
460 emerging therapies. *Nat. Rev. Gastroenterol. Hepatol.* **12**, 446–457 (2015).

461 10. C. Moon, *et al.*, Drug-induced secretory diarrhea: A role for CFTR. *Pharmacol. Res.* **102**,  
462 107–112 (2015).

463 11. A. C. Chao, *et al.*, Activation of intestinal CFTR Cl<sup>−</sup> channel by heat-stable enterotoxin and  
464 guanylin via cAMP-dependent protein kinase. *EMBO J.* **13**, 1065–1072 (1994).

465 12. V. E. Torres, P. C. Harris, Strategies Targeting cAMP Signaling in the Treatment of Polycystic  
466 Kidney Disease. *J. Am. Soc. Nephrol.* **25**, 18 (2014).

467 13. K. Hanaoka, W. B. Guggino, cAMP regulates cell proliferation and cyst formation in  
468 autosomal polycystic kidney disease cells. *J. Am. Soc. Nephrol. JASN* **11**, 1179–1187 (2000).

469 14. C. S. Hyun, G. A. Kimmich, Effect of cholera toxin on cAMP levels and Na<sup>+</sup> influx in isolated  
470 intestinal epithelial cells. *Am. J. Physiol.* **243**, C107-115 (1982).

471 15. J. K. Scholz, *et al.*, Loss of Polycystin-1 causes cAMP-dependent switch from tubule to cyst  
472 formation. *iScience* **25**, 104359 (2022).

473 16. D. M. Gill, Involvement of nicotinamide adenine dinucleotide in the action of cholera toxin  
474 in vitro. *Proc. Natl. Acad. Sci.* **72**, 2064–2068 (1975).

475 17. D. M. Gill, R. Meren, ADP-ribosylation of membrane proteins catalyzed by cholera toxin:  
476 basis of the activation of adenylate cyclase. *Proc. Natl. Acad. Sci.* **75**, 3050–3054 (1978).

477 18. D. Cassel, T. Pfeuffer, Mechanism of cholera toxin action: Covalent modification of the  
478 guanyl nucleotide-binding protein of the adenylate cyclase system. *Proc. Natl. Acad. Sci.*  
479 **75**, 2669–2673 (1978).

480 19. V. Patel, R. Chowdhury, P. Igarashi, Advances in the Pathogenesis and Treatment of  
481 Polycystic Kidney Disease. *Curr. Opin. Nephrol. Hypertens.* **18**, 99 (2009).

482 20. J. B. Harris, R. C. LaRocque, F. Qadri, E. T. Ryan, S. B. Calderwood, Cholera. *The Lancet* **379**,  
483 2466–2476 (2012).

484 21. S. Rajak, *et al.*, Pharmacological inhibition of CFTR attenuates nonalcoholic steatohepatitis  
485 (NASH) progression in mice. *Biochim. Biophys. Acta Mol. Basis Dis.* **1869**, 166662 (2023).

486 22. L. Csanády, P. Vergani, D. C. Gadsby, STRUCTURE, GATING, AND REGULATION OF THE CFTR  
487 ANION CHANNEL. *Physiol. Rev.* **99** (2019).

488 23. T.-C. Hwang, *et al.*, Structural mechanisms of CFTR function and dysfunction. *J. Gen.*  
489 *Physiol.* **150**, 539–570 (2018).

490 24. S. H. Cheng, *et al.*, Phosphorylation of the R domain by cAMP-dependent protein kinase  
491 regulates the CFTR chloride channel. *Cell* **66**, 1027–1036 (1991).

492 25. Z. Zhang, F. Liu, J. Chen, Conformational Changes of CFTR upon Phosphorylation and ATP  
493 Binding. *Cell* **170**, 483-491.e8 (2017).

494 26. L. Csanády, P. Vergani, D. C. Gadsby, Strict coupling between CFTR's catalytic cycle and  
495 gating of its Cl<sup>-</sup> ion pore revealed by distributions of open channel burst durations. *Proc.*  
496 *Natl. Acad. Sci.* **107**, 1241–1246 (2010).

497 27. S. Hadida, *et al.*, Discovery of N-(2,4-Di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-  
498 dihydroquinoline-3-carboxamide (VX-770, Ivacaftor), a Potent and Orally Bioavailable CFTR  
499 Potentiator. *J. Med. Chem.* **57**, 9776–9795 (2014).

500 28. S. E. Van der Plas, *et al.*, Discovery of N-(3-Carbamoyl-5,5,7,7-tetramethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-2-yl)-IH-pyrazole-5-carboxamide (GLPG1837), a Novel Potentiator  
501 Which Can Open Class III Mutant Cystic Fibrosis Transmembrane Conductance Regulator  
502 (CFTR) Channels to a High Extent. *J. Med. Chem.* **61**, 1425–1435 (2018).

504 29. J. L. Taylor-Cousar, *et al.*, Tezacaftor–Ivacaftor in Patients with Cystic Fibrosis Homozygous  
505 for Phe508del. *N. Engl. J. Med.* **377**, 2013–2023 (2017).

506 30. C. E. Wainwright, *et al.*, Lumacaftor–Ivacaftor in Patients with Cystic Fibrosis Homozygous  
507 for Phe508del CFTR. *N. Engl. J. Med.* **373**, 220–231 (2015).

508 31. B. W. Ramsey, *et al.*, A CFTR Potentiator in Patients with Cystic Fibrosis and the G551D  
509 Mutation. *N. Engl. J. Med.* **365**, 1663–1672 (2011).

510 32. D. Keating, *et al.*, VX-445–Tezacaftor–Ivacaftor in Patients with Cystic Fibrosis and One or  
511 Two Phe508del Alleles. *N. Engl. J. Med.* **379**, 1612–1620 (2018).

512 33. J. C. Davies, *et al.*, VX-659–Tezacaftor–Ivacaftor in Patients with Cystic Fibrosis and One or  
513 Two Phe508del Alleles. *N. Engl. J. Med.* **379**, 1599–1611 (2018).

514 34. K.-Y. Jih, T.-C. Hwang, Vx-770 potentiates CFTR function by promoting decoupling between  
515 the gating cycle and ATP hydrolysis cycle. *Proc. Natl. Acad. Sci.* **110**, 4404–4409 (2013).

516 35. F. Van Goor, *et al.*, Rescue of CF airway epithelial cell function in vitro by a CFTR  
517 potentiator, VX-770. *Proc. Natl. Acad. Sci.* **106**, 18825–18830 (2009).

518 36. F. Liu, *et al.*, Structural identification of a hotspot on CFTR for potentiation. *Science* **364**,  
519 1184–1188 (2019).

520 37. K. Fiedorczuk, J. Chen, Molecular structures reveal synergistic rescue of Δ508 CFTR by  
521 Trikafta modulators. *Science* **378**, 284–290 (2022).

522 38. J. Levring, *et al.*, CFTR function, pathology and pharmacology at single-molecule  
523 resolution. *Nature*, 1–9 (2023).

524 39. J. Bryce, C. Boschi-Pinto, K. Shibuya, R. E. Black, WHO estimates of the causes of death in  
525 children. *The Lancet* **365**, 1147–1152 (2005).

526 40. F. Rivera-Chávez, B. T. Meader, S. Akosman, V. Koprivica, J. J. Mekalanos, A Potent  
527 Inhibitor of the Cystic Fibrosis Transmembrane Conductance Regulator Blocks Disease and  
528 Morbidity Due to Toxigenic *Vibrio cholerae*. *Toxins* **14**, 225 (2022).

529 41. G. de Wilde, *et al.*, Identification of GLPG/ABBV-2737, a Novel Class of Corrector, Which  
530 Exerts Functional Synergy With Other CFTR Modulators. *Front. Pharmacol.* **10** (2019).

531 42. C. Muanprasat, *et al.*, Discovery of glycine hydrazide pore-occluding CFTR inhibitors:  
532 mechanism, structure-activity analysis, and in vivo efficacy. *J. Gen. Physiol.* **124**, 125–137  
533 (2004).

534 43. D. S. Snyder, L. Tradtrantip, C. Yao, M. J. Kurth, A. S. Verkman, Potent, Metabolically Stable  
535 Benzopyrimido-pyrrolo-oxazine-dione (BPO) CFTR Inhibitors for Polycystic Kidney Disease.  
536 *J. Med. Chem.* **54**, 5468–5477 (2011).

537 44. E. Caci, *et al.*, Evidence for direct CFTR inhibition by CFTR(inh)-172 based on Arg347  
538 mutagenesis. *Biochem. J.* **413**, 135–142 (2008).

539 45. A. Taddei, *et al.*, Altered channel gating mechanism for CFTR inhibition by a high-affinity  
540 thiazolidinone blocker. *FEBS Lett.* **558**, 52–56 (2004).

541 46. Z. Kopeikin, Y. Sohma, M. Li, T.-C. Hwang, On the mechanism of CFTR inhibition by a  
542 thiazolidinone derivative. *J. Gen. Physiol.* **136**, 659–671 (2010).

543 47. P. Vergani, S. W. Lockless, A. C. Nairn, D. C. Gadsby, CFTR channel opening by ATP-driven  
544 tight dimerization of its nucleotide-binding domains. *Nature* **433**, 876–880 (2005).

545 48. N. D. Sonawane, A. S. Verkman, Thiazolidinone CFTR inhibitors with improved water  
546 solubility identified by structure-activity analysis. *Bioorg. Med. Chem.* **16**, 8187–8195  
547 (2008).

548 49. F. Liu, Z. Zhang, L. Csanády, D. C. Gadsby, J. Chen, Molecular Structure of the Human CFTR  
549 Ion Channel. *Cell* **169**, 85–95.e8 (2017).

550 50. Z. Zhang, F. Liu, J. Chen, Molecular structure of the ATP-bound, phosphorylated human  
551 CFTR. *Proc. Natl. Acad. Sci.* **115**, 12757–12762 (2018).

552 51. V. Corradi, R.-X. Gu, P. Vergani, D. P. Tielemans, Structure of Transmembrane Helix 8 and  
553 Possible Membrane Defects in CFTR. *Biophys. J.* **114**, 1751–1754 (2018).

554 52. T. C. Hwang, D. N. Sheppard, Molecular pharmacology of the CFTR Cl- channel. *Trends  
555 Pharmacol. Sci.* **20**, 448–453 (1999).

556 53. O. Edelheit, A. Hanukoglu, I. Hanukoglu, Simple and efficient site-directed mutagenesis  
557 using two single-primer reactions in parallel to generate mutants for protein structure-  
558 function studies. *BMC Biotechnol.* **9**, 61 (2009).

559 54. A. Goehring, *et al.*, Screening and large-scale expression of membrane proteins in  
560 mammalian cells for structural studies. *Nat. Protoc.* **9**, 2574–2585 (2014).

561 55. Z. Zhang, J. Chen, Atomic Structure of the Cystic Fibrosis Transmembrane Conductance  
562 Regulator. *Cell* **167**, 1586–1597.e9 (2016).

563 56. S. Q. Zheng, *et al.*, MotionCor2: anisotropic correction of beam-induced motion for  
564 improved cryo-electron microscopy. *Nat. Methods* **14**, 331–332 (2017).

565 57. K. Zhang, Gctf: Real-time CTF determination and correction. *J. Struct. Biol.* **193**, 1–12  
566 (2016).

567 58. S. H. W. Scheres, RELION: Implementation of a Bayesian approach to cryo-EM structure  
568 determination. *J. Struct. Biol.* **180**, 519–530 (2012).

569 59. P. Emsley, K. Cowtan, Coot: model-building tools for molecular graphics. *Acta Crystallogr.*  
570 *D Biol. Crystallogr.* **60**, 2126–2132 (2004).

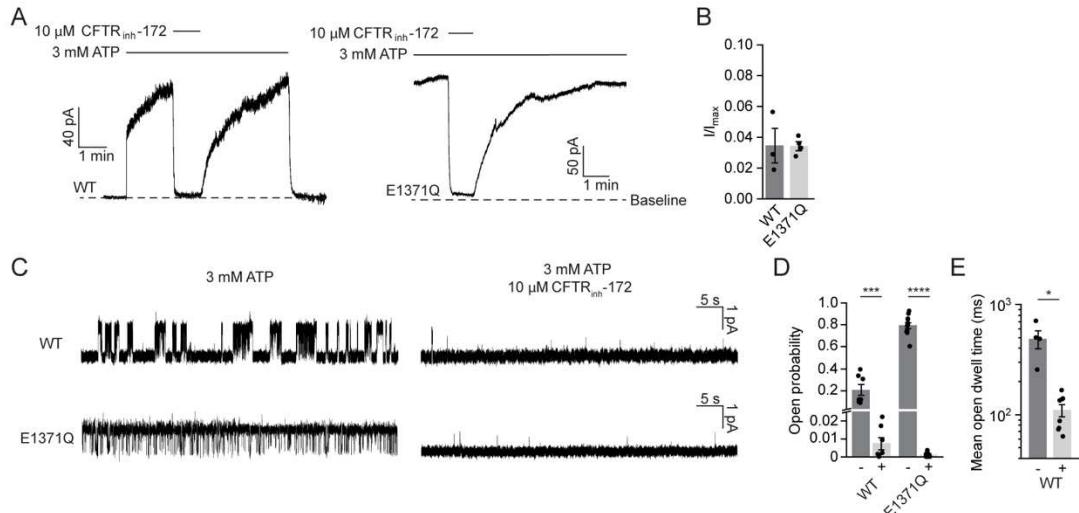
571 60. P. D. Adams, *et al.*, PHENIX: a comprehensive Python-based system for macromolecular  
572 structure solution. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 213–221 (2010).

573 61. V. B. Chen, *et al.*, MolProbity: all-atom structure validation for macromolecular  
574 crystallography. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 12–21 (2010).

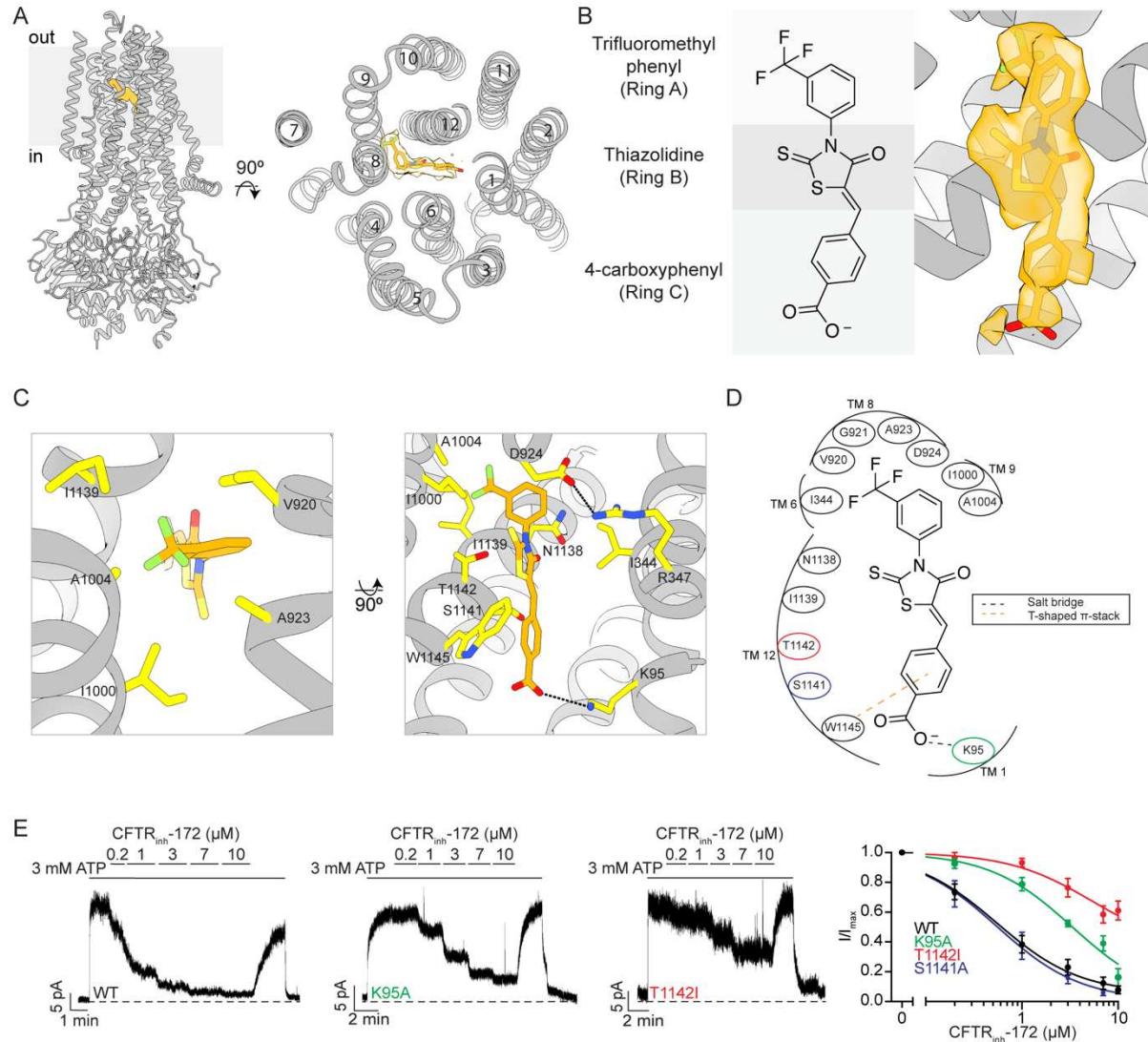
575 62. B. F. Scharschmidt, E. B. Keefe, N. M. Blankenship, R. K. Ockner, Validation of a recording  
576 spectrophotometric method for measurement of membrane-associated Mg- and NaK-  
577 ATPase activity. *J. Lab. Clin. Med.* **93**, 790–799 (1979).

578 63. M. Dyla, *et al.*, Dynamics of P-type ATPase transport revealed by single-molecule FRET.  
579 *Nature* **551**, 346–351 (2017).

580 64. M. F. Juette, *et al.*, Single-molecule imaging of non-equilibrium molecular ensembles on  
581 the millisecond timescale. *Nat. Methods* **13**, 341–344 (2016).


582 65. F. Qin, Restoration of Single-Channel Currents Using the Segmental k-Means Method  
583 Based on Hidden Markov Modeling. *Biophys. J.* **86**, 1488–1501 (2004).

584


585

586

587



588  
589 **Figure 1 | CFTR<sub>inh</sub>-172 inhibits WT and E1371Q variant CFTR.** (A) Example macroscopic  
590 current traces showing inhibition of WT CFTR and CFTR (E1371Q) by CFTR<sub>inh</sub>-172 in inside-  
591 out excised patches. CFTR was fully phosphorylated by PKA in the presence of 3 mM ATP before  
592 the displayed recordings. (B) Currents with 10  $\mu$ M CFTR<sub>inh</sub>-172 relative to currents without  
593 CFTR<sub>inh</sub>-172. Data represent means and standard errors of 3 (WT) or 4 (E1371Q) patches.  
594 Individual data points are displayed as dots. (C) Example single-channel recordings of PKA-  
595 phosphorylated WT and CFTR (E1371Q) reconstituted in synthetic lipid bilayers with and without  
596 CFTR<sub>inh</sub>-172. Recordings were made at -150 mV. Upward deflections correspond to opening. (D)  
597 Open probabilities of WT CFTR and CFTR (E1371Q) with and without CFTR<sub>inh</sub>-172. Data  
598 represent means and standard errors of 7 (WT, with or without CFTR<sub>inh</sub>-172), 11 (E1371Q, without  
599 CFTR<sub>inh</sub>-172), or 9 (E1371Q, with CFTR<sub>inh</sub>-172) bilayers. Statistical significance was tested by  
600 one-way analysis of variance (\*\*p = 2  $\times$  10<sup>-4</sup>, \*\*\*\*p < 10<sup>-10</sup>). (E) Mean open dwell time of WT  
601 CFTR with and without CFTR<sub>inh</sub>-172. Data represent means and standard errors of 4 (without  
602 CFTR<sub>inh</sub>-172), or 8 (with CFTR<sub>inh</sub>-172) bilayers. Statistical significance was tested using two-  
603 tailed Student's t-test (\*p = 0.025).  
604



605  
606 **Figure 2 | CFTR<sub>inh</sub>-172 makes specific interactions with the CFTR inner vestibule.** (A) (left)  
607 Structure of phosphorylated ATP-bound CFTR (E1371Q) bound to CFTR<sub>inh</sub>-172. CFTR<sub>inh</sub>-172 is  
608 shown as an orange stick model surrounded by cryo-EM density. (right) A view of the structure  
609 looking down the long axis of the CFTR pore with CFTR<sub>inh</sub>-172 modeled as orange sticks  
610 surrounded by cryo-EM density. (B) (left) Structure of CFTR<sub>inh</sub>-172 with the three functional rings  
611 delineated by gray rectangles. (right) Structure of CFTR<sub>inh</sub>-172 modeled into its binding site within  
612 the inner vestibule surrounded by cryo-EM density. (C) Interacting residues within 4.5 Å of  
613 CFTR<sub>inh</sub>-172. (left) The hydrophobic pocket of the CFTR<sub>inh</sub>-172 binding site. (right) The solvent-  
614 exposed pocket of the CFTR<sub>inh</sub>-172 binding site. CFTR<sub>inh</sub>-172/K95 and R347/D924 salt bridges  
615 are shown as black dashed lines. (D) Schematic drawing of the CFTR-inhibitor interactions. All  
616 residues within 4.5 Å of the inhibitor are depicted. Residues substituted in inside-out path-clamp  
617 electrophysiology are indicated with colored circles. (E) Example macroscopic current traces  
618 showing titration of CFTR<sub>inh</sub>-172 onto WT, K95A, or T1142I CFTR in inside-out excised patches.  
619 CFTR was fully phosphorylated by PKA in the presence of 3 mM ATP before CFTR<sub>inh</sub>-172  
620 titration. (right) Dose-response curves for CFTR<sub>inh</sub>-172 binding site variants. The mean current in  
621 the presence of 3 mM ATP alone was used to normalize current elicited at each CFTR<sub>inh</sub>-172

622 concentration. Dose-response curves were fitted with the Hill equation to estimate  $IC_{50}$  values for  
623 each variant. Hill coefficients were fixed to 1. Each data point represents mean and standard error  
624 determined from three to five patches.

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

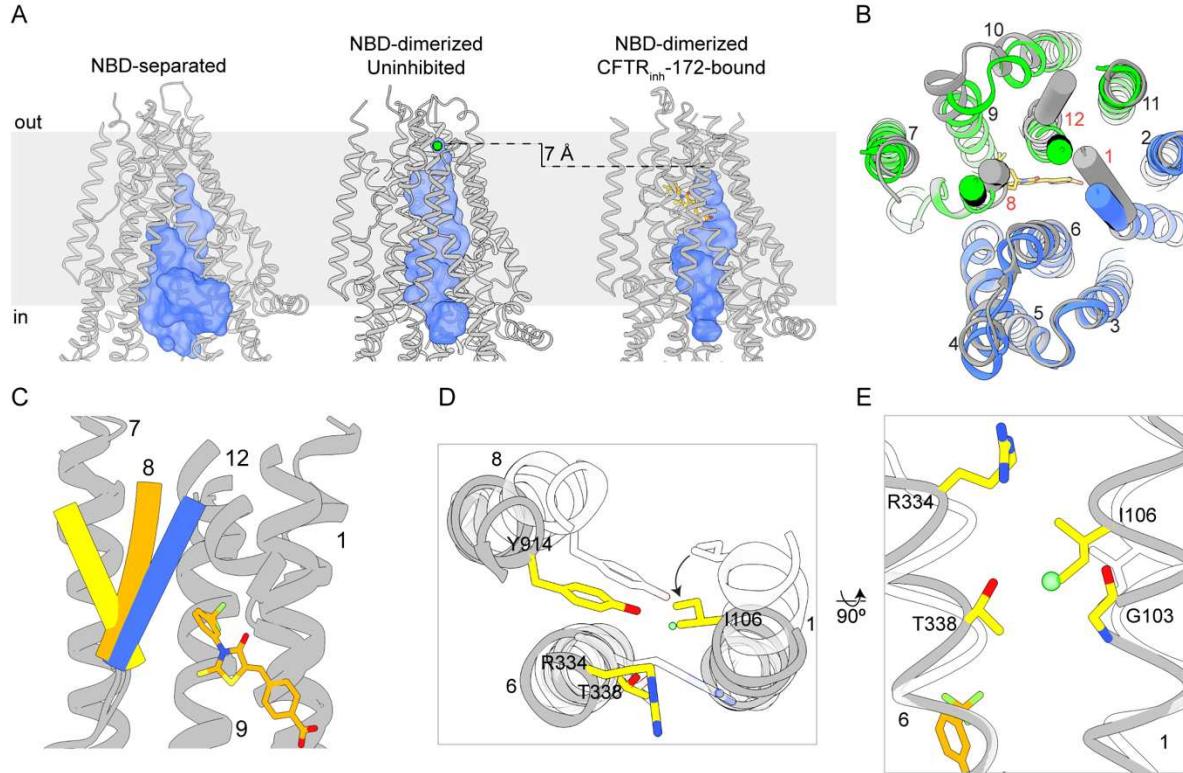
658

659

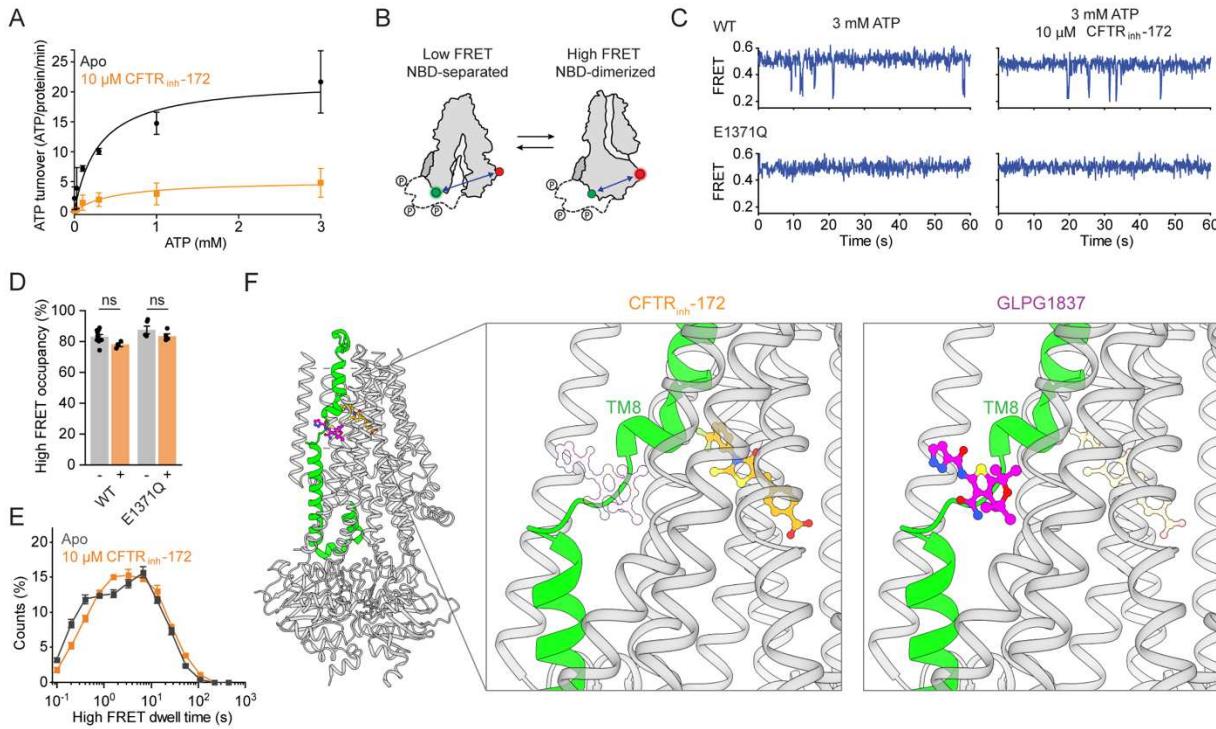
660

661

662

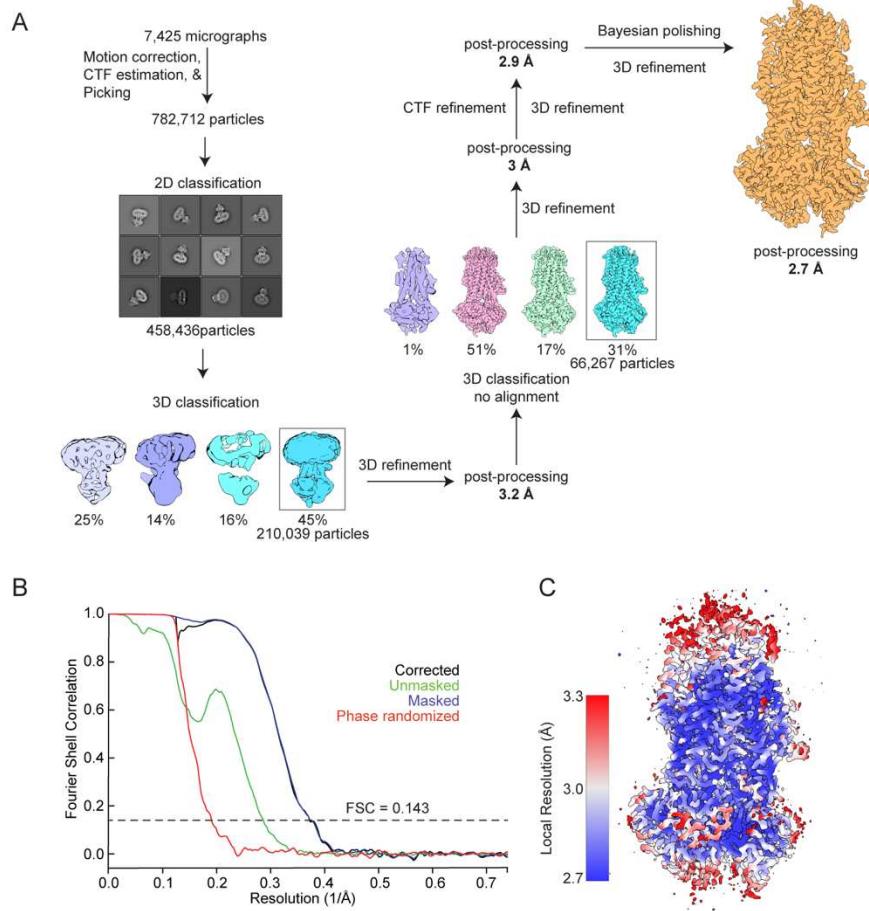

663

664


665

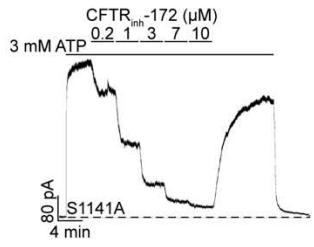
666

667




668  
669 **Figure 3 | CFTR<sub>inh</sub>-172 stabilizes a closed conformation.** (A) Comparison of the pore (shown  
670 as a blue surface) in NBD-separated (PDB 5UAK), NBD-dimerized, uninhibited (PDB 7SVD) and  
671 NBD-dimerized, CFTR<sub>inh</sub>-172-bound CFTR, as defined by a spherical probe with a radius of 1.7  
672 Å. Chloride is modeled as a green sphere in the NBD-dimerized, uninhibited structure. CFTR<sub>inh</sub>-  
673 172 is shown as an orange ball-and-stick model. (B) Overlay of the CFTR<sub>inh</sub>-172-bound structure  
674 (blue and green) with the uninhibited structure (gray). TMs 1, 8, and 12 are shown as cylinders.  
675 (C) CFTR<sub>inh</sub>-172-stabilized position of TM8 (orange) compared with that observed in the  
676 uninhibited structure (blue) and NBD-separated structure (yellow). (D) Extracellular view of the  
677 local superposition of the helices and residues comprising the selectivity filter in the CFTR<sub>inh</sub>-172-  
678 bound (gray/yellow) and uninhibited (transparent white) structures. The chloride ion observed in  
679 the uninhibited structure is shown as a green sphere. (E) Local superposition of TMs 1 and 6 in  
680 the CFTR<sub>inh</sub>-172-bound (gray/yellow) and uninhibited (transparent white) structures. The chloride  
681 ion observed in the uninhibited structure is shown as a green sphere.  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692




693  
694 **Figure 4 | Allosteric inhibition of ATP-dependent gating.** (A) Effect of CFTR<sub>inh</sub>-172 on steady-  
695 state ATP hydrolysis by PKA-phosphorylated WT CFTR. Data represent means and standard  
696 errors for 3 (without CFTR<sub>inh</sub>-172) or 4 (with CFTR<sub>inh</sub>-172) measurements and are fitted with the  
697 Michaelis-Menten equation. Without CFTR<sub>inh</sub>-172, the  $K_m$  for ATP was  $0.3 \pm 0.1$  mM and  $k_{cat}$  was  
698  $22 \pm 3$  ATP/protein/minute. With CFTR<sub>inh</sub>-172, the  $K_m$  was  $0.47 \pm 0.29$  mM and  $k_{cat}$  was  $5.2 \pm 1.0$   
699 ATP/protein/minute. (B) Schematic of individual CFTR molecules labelled for smFRET imaging.  
700 Green and red circles indicate fluorophore positions. (C) Example smFRET traces for PKA-  
701 phosphorylated WT CFTR and CFTR (E1371Q) with and without CFTR<sub>inh</sub>-172. (D) Effects of  
702 CFTR<sub>inh</sub>-172 on probabilities of dimerization for WT CFTR and CFTR (E1371Q). Data represent  
703 means and standard errors for 9 (WT, without CFTR<sub>inh</sub>-172), 3 (WT, with CFTR<sub>inh</sub>-172), 5  
704 (E1371Q, without CFTR<sub>inh</sub>-172), or 4 (E1371Q, with CFTR<sub>inh</sub>-172) measurements. Statistical  
705 significance was tested by one-way analysis of variance (ns, not significant). (E) Dwell-time  
706 distributions for NBD-dimerization for WT CFTR with and without 10  $\mu\text{M}$  CFTR<sub>inh</sub>-172. Data  
707 represent means and standard errors for 8 (without CFTR<sub>inh</sub>-172) or 3 (with CFTR<sub>inh</sub>-172)  
708 measurements. (F) Cartoon representation of CFTR bound to CFTR<sub>inh</sub>-172 (left). TM 8 is colored  
709 green. The potentiator GLPG1837 (colored magenta) was overlayed onto the CFTR<sub>inh</sub>-172-bound  
710 structure. Closeup views of the CFTR<sub>inh</sub>-172 (middle) and GLPG1837 (right) binding sites. In each  
711 view the other compound is shown as transparent sticks to emphasize their relative positions.

712  
713  
714  
715  
716  
717  
718  
719



720  
721 **Figure S1 | Cryo-EM analysis of the CFTR/CFTR<sub>inh</sub>-172 complex and quality of the**  
722 **reconstruction. (A)** Image processing procedure. **(B)** Fourier shell correlation curves of the final  
723 map. **(C)** Local resolution estimation of the final map.

724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740



741  
742 **Figure S2 | CFTR<sub>inh</sub>-172 titration onto S1141A CFTR.** Example macroscopic current traces  
743 showing titration of CFTR<sub>inh</sub>-172 onto S1141A CFTR in inside-out excised patches. CFTR was  
744 fully phosphorylated by PKA in the presence of 3 mM ATP before CFTR<sub>inh</sub>-172 titration.  
745

746 **Table S1. Cryo-EM data collection, refinement, and validation statistics**

|                                                     |                                                                                            |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------|
|                                                     | CFTR (E1371Q)/CFTR <sub>inh</sub> -172 +ATP/Mg <sup>2+</sup><br>(EMDB-42101)<br>(PDB 8UBR) |
| <b>Data collection and processing</b>               |                                                                                            |
| Magnification                                       | 105,000                                                                                    |
| Voltage (kV)                                        | 300                                                                                        |
| Electron exposure (e <sup>-</sup> /Å <sup>2</sup> ) | 65.6                                                                                       |
| Defocus range (μm)                                  | 0.5-2.5                                                                                    |
| Pixel size (Å)                                      | 0.676                                                                                      |
| Symmetry imposed                                    | C1                                                                                         |
| Initial particle images (no.)                       | 782,712                                                                                    |
| Final particle images (no.)                         | 66,267                                                                                     |
| Map resolution (Å)                                  | 2.70                                                                                       |
| FSC threshold                                       | 0.143                                                                                      |
| Map resolution range (Å)                            | 2.7-3.8                                                                                    |
| <b>Refinement</b>                                   |                                                                                            |
| Initial model used (PDB code)                       | 6MSM                                                                                       |
| Model resolution (Å)                                | 2.6                                                                                        |
| FSC threshold                                       | 0.143                                                                                      |
| Map sharpening B factor (Å <sup>2</sup> )           | -43.286                                                                                    |
| Model composition                                   |                                                                                            |
| Non-hydrogen atoms                                  | 9440                                                                                       |
| Protein residues                                    | 1156                                                                                       |
| Ligands                                             | 9                                                                                          |
| B factors (Å <sup>2</sup> )                         |                                                                                            |
| Protein                                             | 98                                                                                         |
| Ligand (inhibitor)                                  | 67                                                                                         |
| R.m.s. deviations                                   |                                                                                            |
| Bond lengths (Å)                                    | 0.070                                                                                      |
| Bond angles (°)                                     | 0.870                                                                                      |
| Validation                                          |                                                                                            |
| MolProbity score                                    | 1.17                                                                                       |
| Clashscore                                          | 3.811                                                                                      |
| Poor rotamers (%)                                   | 0.1                                                                                        |
| Ramachandran plot                                   |                                                                                            |
| Favored (%)                                         | 98.25                                                                                      |
| Allowed (%)                                         | 1.75                                                                                       |
| Disallowed (%)                                      | 0                                                                                          |

747

748

749

750 **Table S2. List of oligonucleotides used in this study**

| Oligonucleotides used for mutagenesis                                 | Source |
|-----------------------------------------------------------------------|--------|
| Primer: K95A forward:<br>GCGAGGTTACTGCTGCCGTACAGCC                    | IDT    |
| Primer: K95A reverse:<br>GGCTGTACGGCAGCAGTAACCTCGC                    | IDT    |
| Primer: S1141A forward:<br>CAATGAACATCATGGCTACACTCAATGGGCAG           | IDT    |
| Primer: S1141A reverse:<br>CTGCCCATTGAAGTGTAGCCATGATGTTCATTG          | IDT    |
| Primer: T1142I forward:<br>CAATGAACATCATGTCTATTCTCAATGGGCAGTTAAC      | IDT    |
| Primer: T1142I reverse:<br>GTTAACTGCCATTGAAGAATAGACATGATGTTCATTG      | IDT    |
| Primer: T1142A forward:<br>GGCAATGAACATCATGTCTGCACTTCAATGGG           | IDT    |
| Primer: T1142A reverse:<br>CCCATTGAAGTGCAGACATGATGTTCATTGCC           | IDT    |
| Primer: E1371Q forward:<br>ACCTTCTGCTCACTTGGACCCCGTTACATACCAAATC      | IDT    |
| Primer: E1371Q reverse:<br>GGTCCAAGTGAGCAGAAGGTTGATCAAGCAGCAAGATCTGGC | IDT    |

751

752 **Acknowledgements**

753

754 We acknowledge the support from Mark Ebrahim, Johanna Sotiris, and Honkit Ng at Rockefeller's  
755 Evelyn Gruss Lipper Cryo-Electron Microscopy Resource Center in collecting electron  
756 microscopy data, and the assistance from the Single-Molecule Imaging Center at St. Jude  
757 Children's Research Hospital in single-molecule fluorescence imaging. We thank members of the  
758 Chen and Mackinnon laboratories for helpful discussions and Dr. L. Csanády for comments on the  
759 manuscript. This work was supported by HHMI to J.C., The Cystic Fibrosis Foundation  
760 Therapeutics to K.F., the National Institutes of Health to S.C.B.(GM079238) and P.Y (Training  
761 grant, T32GM007739).

762

763 **Author contributions**

764

765 P.Y. and K.F determined the cryo-EM structure; P.Y. performed ATP turnover assays and patch-  
766 clamp experiments presented in Figure 2E; J.L. performed electrophysiology experiments  
767 presented in Figure 1 and the single-molecule FRET experiments. All authors contributed to  
768 writing the manuscript. S.C.B. and J.C. oversaw the project.

769

770 **Competing interests**

771

772 S.C.B. has an equity interest in Lumidyne Technologies. The authors declare no competing  
773 financial interests.

774

775 **Data and materials availability**

776

777 The cryo-EM map of CFTR<sub>inh</sub>-172-bound CFTR has been deposited in the Electron Microscopy  
778 Data Bank under the accession code EMD-42101. The corresponding atomic model has been  
779 deposited in the Protein Data Bank under accession code 8UBR. All other data and information  
780 are available in the main text or the supplementary materials.

781