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18 Abstract

19 Background: Microsatellite instability (MSI) is an indispensable biomarker in
20  cancer immunotherapy. Currently, MSl scoring methods by high-throughput omics
21  methods have gained popularity and demonstrated better performance than the gold
22  standard method for MSl detection. However, MSI detection method on expression
23 data, especialy single-cell expression data is still lacking, limiting the scope of

24  clinical application and prohibiting investigation of MS| at single cell level.

25 Results: Herein, we developed M Slsensor-RNA, an accuracy, robust, adaptable, and
26  standalone software, to detect MS| status by its associated genes’ expression values.
27  We demonstrated the favorable performance and promise of M Slsensor-RNA in both
28  bulk and single-cell gene expression data in multiplatform technologies including

29 RNA-seq, Microarray, and single-cell RNA-seq.

30 Conclusions: MSlsensor-RNA is a versatile, efficient, and robust method for M S|
31 status detection from both bulk and single-cell gene expression data in clinical
32 researches and applications. M Slsensor-RNA is avalable &

33  https://github.com/xjtu-omics/msisensor-rna.

34 Keywords: microsatellite instability, cancer, gene expression, multiplatform,

35 single-cell RNA-seq, RNA-seq, Microarray
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37 Background

38 Microsatellite instability (MSl) refers to hypermutations of microsatellite sites due
39 to inactivating alterations of mismatch repair (MMR) genes in malignancies [1, 2].
40  Currently, MSI is an indispensable pan-cancer biomarker in cancer immunotherapy
41 therapy and prognosis, and it is routinely examined in multiple cancer types,
42 particularly in colorectal cancer (CRC), stomach adenocarcinoma (STAD), and
43  uterine corpus endometrial carcinoma (UCEC) [2-5]. For example, MSI positive
44  patients are often resistant to 5-fluorouracil treatment but have a better outcome for

45  immune checkpoint blockade treatment [4, 5].

46 In clinical settings, MSI detection mainly relies on the gold-standard experimental
47  method, MSI-PCR [6], which is laborious and time-consuming. With the
48 advancement of next-generation-sequencing technology, numerous features of
49  genomics, epigenomics, transcriptomics, and histology are investigated, and novel
50 MSI computational algorithms have been developed for a variety of scenarios [7-20].
51 Genomics-based methods quantify MSI according to genetic mutations at
52 microsatellite sites, which achieve high accuracy and are becoming popular in
53 clinical MSI detection. For example, MSlsensor [9] detects MSI with high
54  concordance as 99.4% on MSK-IMPACT panel [21]. Epigenomics-based method

55 MIRMMR [18] detects MSI using methylation levels in MMR pathway with 0.97
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56 AUC. In addition, transcription levels of MSl-associated genes exhibit correlation
57  with MSI, hinting possibility of MSl detection using transcriptomics data [15-17].
58 Besides these high-throughput technologies, deep learning algorithms were also
59  applied to hematoxylin and eosin-stained slides to detect MSI [19, 20]. However, all
60 these MSI methods detected MS| at a sample level, lacking cell-level measuring of
61 MSI. Recently, single-cell RNA-seq (scRNA-seq) technology enables investigation
62 of cell specific transcriptome and sheds light on tumor heterogeneity and tumor
63 stages. In particular, the single-cell and spatia transcriptome enable the dynamic
64 analysis of MSI in the complex tumor microenvironment, such as in metastatic and
65 recurrent cancer [22]. However, current MSI detection methods designed for bulk
66 gene expression data do not perform well on scRNA-seq samples. For example, the
67 only software for gene expression data, PreMSIm [16], only provided fixed
68 signatures and a fixed model for all cancers, which limits the widely application of
69 the methods. Moreover, the normalized method in PreMSIm also leads to poor
70  performance with abnormal samples. Here, we developed M Slsensor-RNA, a robust
71  method for M Sl-associated genes detection and MSI evaluation for both bulk gene

72  expression data and single-cell RNA-seq data.

73 Implementation

74  Dataset. We downloaded RNA-seq data of 1,428 TCGA samples across CRC, STAD,
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75 and UCEC from TCGA Research Network (https://portal.gdc.cancer.gov) and

76  obtained their MSI status determined by gold standards (Table S1). We obtained 141
77  RNA-seq samples of ICGC from ICGC data portal (https://dcc.icgc.org), and their
78 MSI status reported by MIMcall [23]. Another 106 RNA-seq samples with the
79  matched M Sl status were downloaded from public publication of Clinical Proteomic
80  Tumor Analysis Consortium (CPTAC) [24]. We aso downloaded Microarray data
81 and their MSI status of 1,468 samples across CRC and STAD from GEO dataset

82  (https://www.ncbi.nlm.nih.gov/geo). For scRNA-seq data, we got the gene

83 expression data and their MSI status from 133 CRC samples in two recent

84  publications [25, 26].

85 Overall design. The pipeline of MSlsensor-RNA consists of data preprocessing,
86 informative genes selection, model training, and model testing (Fig. 1 and Fig. S1).
87  First, we preprocess the expression values of samples from Microarray, bulk
88 RNA-seg, and scRNA-seg. Next, we select an informative gene set for MS
89  detection from 1,428 TCGA samples. Then we used these TCGA samples to train a
90 machine learning model for each cancer type for MSl scoring. Finally, we applied
91 the trained model to independent databases to test the performance of the

92  MSlsensor-RNA for each cancer type.

93 Data preprocessing. In M Slsensor-RNA, we accept Microarray expression value,
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94 FPKM, TPM, and RESM read count as input. All values of expression matrix were
95 added 1 and followed by log2 transformed. Then, for each sample or cell, expression
96 vaues were normalized as a Gaussian distribution with 0 mean and 1 standard
97  deviation. For scRNA-seq sample, to obtain accurate MSl status, we only included
98 high-quality cells with at least 20% genes detected for MSI detection. If the number
99  of high-quality cells was less than 20, we sort al cells by the ratio of detected genes
100 in descending order, and the top 20 cells would be utilized for MSI detection. To
101  solve the dropout problem of sScRNA-seq, we imputed zero values by the average of

102 the gene expression value in the given sample.

103 Selection of informative genes. We select informative genes for MSI classification
104 in terms of stability, discrimination, and generalization. Firstly, we remove
105 ribosomal genes, mitochondrial genes, and genes with low FPKM in TCGA dataset.
106  Secondly, we selected genes with discriminative gene expression signatures between
107 MS samples and MSS samples. We perform rank-sum tests for expression values
108 between MSI samples and M SS samples for each gene, and only genes with P value
109 < 0.01 areincluded for the following analysis. Furthermore, we compute the fold of

110  ith geneby:

1 .
i n ;l=1 G]l
F' = |log2
1 m i
m-—n k=n+1 Gk

111  where mis the sample number for informative genes selection, n isthe MSlI sample
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112 number, G]-i is the gene expression value of ith for j sample. We only select genes
113  with fold > 0.5 for candidate informative genes. Finally, we keep genes with more
114  generdization ability for MSI detection. We calculate the area under the receiver
115 operating characteristic curve (AUC) of the gene expression value and only genes
116  with AUC > 0.65 are kept for next step. We also calculate the 10-fold cross
117  vadlidation score of SVM and random forest, and only first quartet genes are included

118 thefinial informative gene set (Fig. S2).

119 Machine learning model training and testing. We build a support vector machine
120 (SVM) model to classify the MSI status for CRC, STAD, and UCEC in TCGA
121  dataset. Firstly, we utilized SOMTE [27] to correct the imbalance between M S| and
122 MSS in each cancer type by amplifying the MSI samples. Then, we utilized the
123  expression values from correct data as input to tran SVM model for MSI
124  classfication. To evaluate the performance of MSIsensor-RNA, we tested the
125 trained model with 1,848 independent samples of multiplatform including 247
126 RNA-seq, 1,468 Microarray, and 133 scRNA-seq samples. For a sScRNA-seq sample,
127  we caculated the M Sl score with SYM model for each high-quality cell. Then the

128 average cell MS| scoreis used to evaluate the M S status of a SCRNA-seq sample.

129 PreMSIm running. To compare performance of M Slsensor-RNA with the only

130 standalone software PreM SIm, we also apply the data of Microarray, RNA-seq, and
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131 scRNA-seq from 1,848 independent samples to PreMSIm. For Microarray and
132 RNA-seq samples, we test PreMSIm with two modes. PreMSIm-al and
133  PreMSIm-split. In PreMSIm-all, we integrate al input samples to PreMSIm
134  normalized module and predicted module. PreM SIm-split referred to input samples

135 onedatabase for each run.

136 Performance comparison of MSsensor-RNA and PreMSm. In M Slsensor-RNA,
137  the predicted MSI probability by the SYM model was used to score the MS| status.
138 The probabilities were further transformed to M S| status by the Youden index [28].
139  We first compared the M Slsensor-RNA score between MS| and M SS samples to test
140 the performance of MSlsensor-RNA in multiplatform by rank sum test. To further
141  evaluate the performance of two MSI detected methods, we calculated AUC,
142  accuracy, F-score, precision, sensitivity, and specificity of MSlsensor-RNA and

143  PreMSIm in different sequencing technologies.

144 Robustness testing of MSsensor-RNA and PreMSim. To test the performance of
145 MSlsensor-RNA and PreM SIm at different normalized methods, we tested these two
146 methods with FPKM, TPM, and read counts format of TCGA samples and
147  caculated the AUC, Fl1-score, accuracy, precision, sensitivity, and specificity of
148  each normalized method. To overcome the bias of different normalized methods and

149  sequencing technology, we normalized the input data of each sample to a Gaussian
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150 distribution with O mean and 1 standard deviation. However, in PreMSIm, the
151 normalization process was performed by genes, which means the normalized input
152  data of a sample would be influenced by other samples in the bulk. Here, we tested
153 the PreMSIm in two ways. Firstly, we input TCGA samples by three cancer types
154 and calculated the performance of predicted MSI result. Secondly, we input all
155 TCGA samples together to evaluate its performance. We further compared the M Sl
156 result and performance of these two ways and found that the performance of

157 PreMSIm was affected by the way input was provided.

158 Reaults

159  The workflow of MSlsensor-RNA includes four modules (Fig. 1 and Fig. S1). First,
160 we preprocess the expression value of Microarray, bulk RNA-seq, and scRNA-seq
161 data. Then, we select a set of informative genes for MSI detection. Next, we train a
162  support vector machine (SVM) model to estimate M S| scores using gene expression
163 values of the selected informative genes. Finaly, we apply the trained model to
164 predict MSI score for either one clinical sample or a single cell (Table S1). For a
165 given scRNA-seq sample, we also developed a model to report MSI status of this

166  sample by integrating M Sl scores of cells within.

167 M Slsensor-RNA accepts a variety of expression data including FPKM, RESM

168 normalized read count, TPM, or microarray expression format as input. Input
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169 expression values were added 1 and then log2 transformed following Z-score
170 normalization per sample or cell. In particular, for single cell module of
171  MSlsensor-RNA, we only included high-quality cell in following steps, and the
172  missing values of each genein high-quality cells were imputed by the average of the

173  geneexpression valuein this sample.

174  The informative gene selection module consists of three key steps (Fig. S2): (i)
175 removing mitochondrial genes and ribosomal genes; (ii) filtering of genes, of which
176  expression values do not differ significantly between MSI and MSS samples; (iii)
177  keeping genes, of which expression values have high generalized scores for MS|
178 detection (online methods). We applied the gene selection module to 1,428 samples
179  based on the gene expressions (FPKM values) from three M Sl-popular cancer types
180 (CRC, STAD, and UCEC) in TCGA dataset and finally obtained 109 informative
181 genes for MSI classification. We also performed this step for each type of CRC,
182 STAD, and UCEC, yielding 397, 206, and 86 informative genes, respectively (Fig.
183 $S4 and Table S2-S5). We found that only eight informative genes are detected in al
184  three cancer types. Of which, we found that MLH1 was the most important
185 informative gene for M S| detection, as confirmed by previous reports [15-17] (Fig.

186  S5).

187 To assess the performance of MSlsensor-RNA in bulk sample data, we first

10
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188 trained tumor-specific models for CRC, STAD, and UCEC, as well as a model for
189  dl three MSI-popular cancer types in the TCGA dataset. Then we compared the two
190 kinds of models (tumor-specific and MSI-popular) with the standalone software,
191 PreMSIm, in terms of the area under the curve (AUC) of the receiver operating
192 characteristic (ROC), accuracy, senstivity, and specificity in 1,715 (1468
193 Microarray and 247 bulk RNA-seq samples) independent samples. Notably,
194  MSlsensor-RNA normalizes the expression value of informative genes for each
195 sample independently, while PreMSIm must normalize each gene for multiple
196 samples at the same time. Thus, we examined PreM SIm with all samples normalized

197  together (PreM SIm-all) or by database (PreM SIm-split).

198 For Microarray data, we computed M S| status by M Slsensor-RNA and PreM SIm
199 in 1,468 samples from 12 GEO accessions. The result showed that M Slsensor-RNA
200 predicted MSI with 0.952 AUC, while PreMSIm only performed 0.628 AUC in
201  PreMSIm-split and 0.912 AUC in PreMSim-all mode (Fig. 2A, S6, S7; Table S6
202 and S7). Meanwhile, MSlsensor-RNA achieved much higher sensitivities than
203  PreMSIm-split, and preMSl-all (MSlsensor-RNA: 0.968, PreMSIm-split: 0.912,
204  PreMSIm-all: 0.384) and comparable specificities with PreMSIm-split, and

205 preMSl-al (MSlsensor-RNA: 0.843, PreM SIm-split: 0.912, PreM SIm-all: 0.873).

206 To evaluate the performance using bulk RNA-seq data, we compared

11
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207  MSlsensor-RNA and two modes of PreMSIm on 247 independent samples from
208 ICGC and CPTAC. We noticed that MSlsensor-RNA achieved 0.997 AUC in
209  tumor-specific model and 0.985 AUC in MSI-popular model, which were
210 significantly greater than PreM SIm-all (0.5) and PreM Sim-split (0.870) (Fig. 2B, S8,
211 S9; Table S8 and S9). In addition, MSlsensor-RNA performed much better than
212  PreMSIm for both sensitivity (MSlsensor-RNA with tumor-specific model: 0.951,
213  MSlIsensor-RNA  with  MSI-popular model: 0.973, PreMSIm-split: 0.834,
214  PreMSIm-all: 0.25) and specificity (MSlsensor-RNA with tumor-specific mode: 1,
215 MSIsensor-RNA  with  MSI-popular model: 0.923, PreMSIm-split:  0.906,
216  PreMSIm-all: 0.75). To further investigate the robustness of M Slsensor-RNA for
217  different input data types, we evaluated the performance of M Slsensor-RNA and
218  PreMSIm with FPKM, read count, and TPM normalized samples in TCGA as input.
219 We found that MSlsensor-RNA achieved 0.982+ 0.040 AUC indicating the
220  robustness of MSIsensor-RNA regardless of the measurements of gene expression

221  (Table S10).

222 To assess the performance of MSlsensor-RNA and PreMSIm in scRNA-seq
223  samples, we applied the trained model of MSlsensor-RNA to 23,902 high-quality
224 cells from 133 samples to obtain sample specific MSI status and compared to the
225 ratio of cells labeled as MSI by PreMSIm. The result showed M Slsensor-RNA

226  detected MSI for scRNA-seq samples with 0.958 AUC, 0.9231 sensitivity, and

12
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227  0.9362 specificity, while PreMSIm with 0.4969 AUC, 1 sensitivity, and 0.0319
228  specificity (Fig. 2A, S10; Table S11 and S12). The sample level MS| scores based
229 on scRNA-seq was significantly different between MSlI and MSS samples by
230  MSlsensor-RNA (rank-sum test, P = 1.01x10™°) while no significant difference was
231  detected for PreMSIm (rank-sum test, P = 0.9547) (Fig. 2B). Having established the
232  effectiveness of M SIsensor-RNA on scRNA-seq sample, we investigated cell-level
233  MSI. We computed the MSI scores of 21,438 high-quality cells from 100 samples
234  (GSE178341) and found cell-type dependent MSI scores. For example, MSI scores
235 of epithelial and immune cells in MSI samples were greater than that in MSS
236  samples while no significant difference was detected between MSI and MSS for
237 stroma cells (Fig. 2C, S11 and Table S13). This indicated the potential of
238 MSIsensor-RNA to assess MSI at the single-cell level, providing a novel

239  measurement for the investigation of tumorigenic process.

240 Discussion

241  Microsatellite instability is important for the prognosis assessment of both 5-FU
242  chemotherapy [4] and immunotherapy [5]. In addition to gold-standard experimental
243  methods [6], MSI status is also evaluated according to genomic sequencing data
244 [7-14], gene expression data [15-17], methylation data [18], and H& E-stained slides

245  [19, 20]. Compared to variants in microsatellite regions, gene expression values are

13
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246  more directly reflective of the features of MSI and easier to obtain. In this study, we
247  developed a robust method, MSIsensor-RNA, for MSI detection with gene
248 expression data. MSlsensor-RNA provided informative gene selections, model
249  training, and M Sl detection modules. M Slsensor-RNA is able to process data from
250 multiple platforms, including Microarray, RNA-seq, and single cell RNA-seq.
251 Compared to the standalone method PreMSIm, MSIsensor-RNA aso provided
252  modules for informative gene selection and model training so that users could apply
253 MSIsensor-RNA for different cancer types. MSlsensor-RNA aso improved the
254  normalization method of the data, yielding a more robust result than PreMSIm (Fig.
255  2). In addition, M Slsensor-RNA facilitates the evaluation of MS| status at the single
256  cell level, which will be critical to better understanding the mechanism of MS| in

257  cancer immunotherapy in the future.

258 In most MSI detection methods, such as M Slsensor [10] and M Slsensor-pro [11],
259 MS is quantified according to genetic mutations at microsatellite sites, the
260 consequence of M Sl rather than the deficiency of the MMR system, the direct cause
261 of MSI. In this study, a set of MSl-associated genes was identified, and their
262  expression values were used for MSl evaluation. We found that MLH1 is the most
263 important gene in all tested cancer types. In addition, unexpected expression of
264  MLHL1 is commonly seen in Lynch syndrome [29]. Thus, we test the performance of

265 MSlsensor-RNA for samples with abnormal MLH1 expression. We train a model

14
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266  based on al informative genes and tested it by samples with simulated abnormal
267  MLH1 gene expression (Table S14). We found that the model achieved 0.974 and
268 0.972 AUCs when we set the MLH1 expression value as the maximum and
269  minimum of all gene expression values, respectively. Furthermore, when MLH1 was
270  excluded from the informative gene set, MSlsensor-RNA also achieved a 0.977

271  AUC, indicating the robustness of M Slsensor-RNA for MS| detection.

272 We demonstrate that M Slsensor-RNA achieved higher performance than other
273 methods based on gene expression and comparable performance compared to
274  DNA-based methods (Table S15). In our study design, M Slsensor-RNA detects M S|
275 according to the gene expression signature of genes on MSI associated pathways,
276  while MSlsensor evaluates MSI by computing the ratio of somatic microsatellite
277 mutations. Although MSlsensor achieved slightly higher performance than
278 MSlsensor-RNA, it cannot replace the applications of MSIsensor-RNA in gene
279  expresson data. Currently, MSlsensor-RNA reports favorable performance in al
280 three MSI-popular cancers, including colorectal cancer, stomach adenocarcinoma,
281 and uterine corpus endometrial carcinoma. The MSl features are different in
282  different cancer types. Thus, the model obtained low performance when the testing
283 samples were inconsistent with training samples in cancer types (Table S16-S18).
284  Therefore, the performance of M Slsensor-RNA in other cancer types needs further

285 validation in the future.

15
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286 Conclusions

287  MSlsensor-RNA is a cross-platform, efficient, and robust method for MSI status
288  determination from both bulk and single-cell gene expression data. We demonstrated
289  the effectiveness and robustness of MSlsensor-RNA across different platforms,
290 hinting its potential in clinical research. Moreover, MSlsensor-RNA enables
291 single-cell level MSI evaluation, providing anew tool to discover the role of MSI in
292 tumorigenic process and to monitor cell-level dynamic changes during

293  immunotherapy.

294

295 Awvailability and requirements

296  Project name: msisensor-rna

297  Project home page: https://github.com/xjtu-omics/msisensor-rna

298  Operating system(s): Unix System or Docker

299  Programming language: python

300 Other requirements. python packages including numpy, pandas and scikit-learn.

301 License: Custom License (see at homepage)

302 Any restrictions to use by non-academics. MSlsensor-RNA is free for
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303 non-commercial use by academic, government, and non-profit/not-for-profit
304 ingtitutions. A commercia version of the software is available and licensed through
305 Xi'an Jaotong University. For more information, please contact with

306 pengjia@stu.xjtu.edu.cn or kaiye@xjtu.edu.cn.

307 Abbreviations

308 MSI: Microsatellite Instability

309 MMR: Mismatch Repair

310 CRC: Colorectal Cancer

311  STAD: Stomach Adenocarcinoma

312  UCEC: Uterine Corpus Endometrial Carcinoma
313 NGS: Next Generation Sequencing

314 ROC: Receiver Operating Characteristic

315 AUC: AreaUnder the Curve

316  scRNA-seqg single-cell RNA sequencing
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453 Figurelegends

454  Fig. 1. Workflow of M S sensor-RNA. MSIsensor-RNA includes four modules:
455  data preprocessing, informative gene selection, SYM model training, and testing.
456  MSlsensor-RNA selects informative genes and trains SVM model by RNA-seq
457  samples from TCGA. M Sl scores are predicted by the trained model for Microarray,

458 RNA-seq, and sScRNA-seq samples.

459 Fig. 2. Performance of MSlsensor-pro. A-C. AUC of MSIsensor-RNA and
460 PreMSIm in Microarray (A), RNA-seq (B), and scRNA-seq (C) samples.
461  Tumor-specific: MSI results with tumor specific model; M Sl-popular: MSI results
462  with three MSl-popular cancer types. D. Boxplot of MSlsensor-RNA score in

463  scRNA-seq samples. E. Violin plot of MSlsensor-RNA score of different cell types
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464  in scRNA-seq samples. Epithelial, stromal, and immune cell types are defined in

465 Pelkaet a.[25]
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467  Table S1. Overview of samplesin this study.

468 Table S2. Details of informative genesin CRC.

469 Table S3. Details of informative genesin STAD.
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471  Table Sb5. Details of informative genes in three M Sl-popular cancers.
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473 Table S7. MSI detection performance of MSIsensor-RNA and PreMSIm in
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492  Seein supplementary materials.
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494 Figures.
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