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Abstract 18 

Background: Microsatellite instability (MSI) is an indispensable biomarker in 19 

cancer immunotherapy. Currently, MSI scoring methods by high-throughput omics 20 

methods have gained popularity and demonstrated better performance than the gold 21 

standard method for MSI detection. However, MSI detection method on expression 22 

data, especially single-cell expression data is still lacking, limiting the scope of 23 

clinical application and prohibiting investigation of MSI at single cell level. 24 

Results: Herein, we developed MSIsensor-RNA, an accuracy, robust, adaptable, and 25 

standalone software, to detect MSI status by its associated genes’ expression values. 26 

We demonstrated the favorable performance and promise of MSIsensor-RNA in both 27 

bulk and single-cell gene expression data in multiplatform technologies including 28 

RNA-seq, Microarray, and single-cell RNA-seq. 29 

Conclusions: MSIsensor-RNA is a versatile, efficient, and robust method for MSI 30 

status detection from both bulk and single-cell gene expression data in clinical 31 

researches and applications. MSIsensor-RNA is available at 32 

https://github.com/xjtu-omics/msisensor-rna. 33 

Keywords: microsatellite instability, cancer, gene expression, multiplatform, 34 

single-cell RNA-seq, RNA-seq, Microarray 35 
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Background 37 

Microsatellite instability (MSI) refers to hypermutations of microsatellite sites due 38 

to inactivating alterations of mismatch repair (MMR) genes in malignancies [1, 2]. 39 

Currently, MSI is an indispensable pan-cancer biomarker in cancer immunotherapy 40 

therapy and prognosis, and it is routinely examined in multiple cancer types, 41 

particularly in colorectal cancer (CRC), stomach adenocarcinoma (STAD), and 42 

uterine corpus endometrial carcinoma (UCEC) [2-5]. For example, MSI positive 43 

patients are often resistant to 5-fluorouracil treatment but have a better outcome for 44 

immune checkpoint blockade treatment [4, 5]. 45 

In clinical settings, MSI detection mainly relies on the gold-standard experimental 46 

method, MSI-PCR [6], which is laborious and time-consuming. With the 47 

advancement of next-generation-sequencing technology, numerous features of 48 

genomics, epigenomics, transcriptomics, and histology are investigated, and novel 49 

MSI computational algorithms have been developed for a variety of scenarios [7-20]. 50 

Genomics-based methods quantify MSI according to genetic mutations at 51 

microsatellite sites, which achieve high accuracy and are becoming popular in 52 

clinical MSI detection. For example, MSIsensor [9] detects MSI with high 53 

concordance as 99.4% on MSK-IMPACT panel [21]. Epigenomics-based method 54 

MIRMMR [18] detects MSI using methylation levels in MMR pathway with 0.97 55 
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AUC. In addition, transcription levels of MSI-associated genes exhibit correlation 56 

with MSI, hinting possibility of MSI detection using transcriptomics data [15-17]. 57 

Besides these high-throughput technologies, deep learning algorithms were also 58 

applied to hematoxylin and eosin-stained slides to detect MSI [19, 20]. However, all 59 

these MSI methods detected MSI at a sample level, lacking cell-level measuring of 60 

MSI. Recently, single-cell RNA-seq (scRNA-seq) technology enables investigation 61 

of cell specific transcriptome and sheds light on tumor heterogeneity and tumor 62 

stages. In particular, the single-cell and spatial transcriptome enable the dynamic 63 

analysis of MSI in the complex tumor microenvironment, such as in metastatic and 64 

recurrent cancer [22]. However, current MSI detection methods designed for bulk 65 

gene expression data do not perform well on scRNA-seq samples. For example, the 66 

only software for gene expression data, PreMSIm [16], only provided fixed 67 

signatures and a fixed model for all cancers, which limits the widely application of 68 

the methods. Moreover, the normalized method in PreMSIm also leads to poor 69 

performance with abnormal samples. Here, we developed MSIsensor-RNA, a robust 70 

method for MSI-associated genes detection and MSI evaluation for both bulk gene 71 

expression data and single-cell RNA-seq data. 72 

Implementation 73 

Dataset. We downloaded RNA-seq data of 1,428 TCGA samples across CRC, STAD, 74 
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and UCEC from TCGA Research Network (https://portal.gdc.cancer.gov) and 75 

obtained their MSI status determined by gold standards (Table S1). We obtained 141 76 

RNA-seq samples of ICGC from ICGC data portal (https://dcc.icgc.org), and their 77 

MSI status reported by MIMcall [23]. Another 106 RNA-seq samples with the 78 

matched MSI status were downloaded from public publication of Clinical Proteomic 79 

Tumor Analysis Consortium (CPTAC) [24]. We also downloaded Microarray data 80 

and their MSI status of 1,468 samples across CRC and STAD from GEO dataset 81 

(https://www.ncbi.nlm.nih.gov/geo). For scRNA-seq data, we got the gene 82 

expression data and their MSI status from 133 CRC samples in two recent 83 

publications [25, 26]. 84 

Overall design. The pipeline of MSIsensor-RNA consists of data preprocessing, 85 

informative genes selection, model training, and model testing (Fig. 1 and Fig. S1). 86 

First, we preprocess the expression values of samples from Microarray, bulk 87 

RNA-seq, and scRNA-seq. Next, we select an informative gene set for MSI 88 

detection from 1,428 TCGA samples. Then we used these TCGA samples to train a 89 

machine learning model for each cancer type for MSI scoring. Finally, we applied 90 

the trained model to independent databases to test the performance of the 91 

MSIsensor-RNA for each cancer type. 92 

Data preprocessing. In MSIsensor-RNA, we accept Microarray expression value, 93 
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FPKM, TPM, and RESM read count as input. All values of expression matrix were 94 

added 1 and followed by log2 transformed. Then, for each sample or cell, expression 95 

values were normalized as a Gaussian distribution with 0 mean and 1 standard 96 

deviation. For scRNA-seq sample, to obtain accurate MSI status, we only included 97 

high-quality cells with at least 20% genes detected for MSI detection. If the number 98 

of high-quality cells was less than 20, we sort all cells by the ratio of detected genes 99 

in descending order, and the top 20 cells would be utilized for MSI detection. To 100 

solve the dropout problem of scRNA-seq, we imputed zero values by the average of 101 

the gene expression value in the given sample. 102 

Selection of informative genes. We select informative genes for MSI classification 103 

in terms of stability, discrimination, and generalization. Firstly, we remove 104 

ribosomal genes, mitochondrial genes, and genes with low FPKM in TCGA dataset. 105 

Secondly, we selected genes with discriminative gene expression signatures between 106 

MSI samples and MSS samples. We perform rank-sum tests for expression values 107 

between MSI samples and MSS samples for each gene, and only genes with P value 108 

< 0.01 are included for the following analysis. Furthermore, we compute the fold of 109 

ith gene by: 110 

�� � �log2 � 1
 ∑ ����
���1
 � 
 ∑ ����
�����

�� 
where m is the sample number for informative genes selection, n is the MSI sample 111 
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number, ��� is the gene expression value of ith for j sample. We only select genes 112 

with fold > 0.5 for candidate informative genes. Finally, we keep genes with more 113 

generalization ability for MSI detection. We calculate the area under the receiver 114 

operating characteristic curve (AUC) of the gene expression value and only genes 115 

with AUC > 0.65 are kept for next step. We also calculate the 10-fold cross 116 

validation score of SVM and random forest, and only first quartet genes are included 117 

the finial informative gene set (Fig. S2). 118 

Machine learning model training and testing. We build a support vector machine 119 

(SVM) model to classify the MSI status for CRC, STAD, and UCEC in TCGA 120 

dataset. Firstly, we utilized SOMTE [27] to correct the imbalance between MSI and 121 

MSS in each cancer type by amplifying the MSI samples. Then, we utilized the 122 

expression values from correct data as input to train SVM model for MSI 123 

classification. To evaluate the performance of MSIsensor-RNA, we tested the 124 

trained model with 1,848 independent samples of multiplatform including 247 125 

RNA-seq, 1,468 Microarray, and 133 scRNA-seq samples. For a scRNA-seq sample, 126 

we calculated the MSI score with SVM model for each high-quality cell. Then the 127 

average cell MSI score is used to evaluate the MSI status of a scRNA-seq sample. 128 

PreMSIm running. To compare performance of MSIsensor-RNA with the only 129 

standalone software PreMSIm, we also apply the data of Microarray, RNA-seq, and 130 
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scRNA-seq from 1,848 independent samples to PreMSIm. For Microarray and 131 

RNA-seq samples, we test PreMSIm with two modes: PreMSIm-all and 132 

PreMSIm-split. In PreMSIm-all, we integrate all input samples to PreMSIm 133 

normalized module and predicted module. PreMSIm-split referred to input samples 134 

one database for each run. 135 

Performance comparison of MSIsensor-RNA and PreMSIm. In MSIsensor-RNA, 136 

the predicted MSI probability by the SVM model was used to score the MSI status. 137 

The probabilities were further transformed to MSI status by the Youden index [28]. 138 

We first compared the MSIsensor-RNA score between MSI and MSS samples to test 139 

the performance of MSIsensor-RNA in multiplatform by rank sum test. To further 140 

evaluate the performance of two MSI detected methods, we calculated AUC, 141 

accuracy, F-score, precision, sensitivity, and specificity of MSIsensor-RNA and 142 

PreMSIm in different sequencing technologies. 143 

Robustness testing of MSIsensor-RNA and PreMSIm. To test the performance of 144 

MSIsensor-RNA and PreMSIm at different normalized methods, we tested these two 145 

methods with FPKM, TPM, and read counts format of TCGA samples and 146 

calculated the AUC, F1-score, accuracy, precision, sensitivity, and specificity of 147 

each normalized method. To overcome the bias of different normalized methods and 148 

sequencing technology, we normalized the input data of each sample to a Gaussian 149 
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distribution with 0 mean and 1 standard deviation. However, in PreMSIm, the 150 

normalization process was performed by genes, which means the normalized input 151 

data of a sample would be influenced by other samples in the bulk. Here, we tested 152 

the PreMSIm in two ways. Firstly, we input TCGA samples by three cancer types 153 

and calculated the performance of predicted MSI result. Secondly, we input all 154 

TCGA samples together to evaluate its performance. We further compared the MSI 155 

result and performance of these two ways and found that the performance of 156 

PreMSIm was affected by the way input was provided. 157 

Results 158 

The workflow of MSIsensor-RNA includes four modules (Fig. 1 and Fig. S1). First, 159 

we preprocess the expression value of Microarray, bulk RNA-seq, and scRNA-seq 160 

data. Then, we select a set of informative genes for MSI detection. Next, we train a 161 

support vector machine (SVM) model to estimate MSI scores using gene expression 162 

values of the selected informative genes. Finally, we apply the trained model to 163 

predict MSI score for either one clinical sample or a single cell (Table S1). For a 164 

given scRNA-seq sample, we also developed a model to report MSI status of this 165 

sample by integrating MSI scores of cells within. 166 

MSIsensor-RNA accepts a variety of expression data including FPKM, RESM 167 

normalized read count, TPM, or microarray expression format as input. Input 168 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2023. ; https://doi.org/10.1101/2023.10.09.561613doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.09.561613
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 

 

expression values were added 1 and then log2 transformed following Z-score 169 

normalization per sample or cell. In particular, for single cell module of 170 

MSIsensor-RNA, we only included high-quality cell in following steps, and the 171 

missing values of each gene in high-quality cells were imputed by the average of the 172 

gene expression value in this sample. 173 

The informative gene selection module consists of three key steps (Fig. S2): (i) 174 

removing mitochondrial genes and ribosomal genes; (ii) filtering of genes, of which 175 

expression values do not differ significantly between MSI and MSS samples; (iii) 176 

keeping genes, of which expression values have high generalized scores for MSI 177 

detection (online methods). We applied the gene selection module to 1,428 samples 178 

based on the gene expressions (FPKM values) from three MSI-popular cancer types 179 

(CRC, STAD, and UCEC) in TCGA dataset and finally obtained 109 informative 180 

genes for MSI classification. We also performed this step for each type of CRC, 181 

STAD, and UCEC, yielding 397, 206, and 86 informative genes, respectively (Fig. 182 

S4 and Table S2-S5). We found that only eight informative genes are detected in all 183 

three cancer types. Of which, we found that MLH1 was the most important 184 

informative gene for MSI detection, as confirmed by previous reports [15-17] (Fig. 185 

S5). 186 

  To assess the performance of MSIsensor-RNA in bulk sample data, we first 187 
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trained tumor-specific models for CRC, STAD, and UCEC, as well as a model for 188 

all three MSI-popular cancer types in the TCGA dataset. Then we compared the two 189 

kinds of models (tumor-specific and MSI-popular) with the standalone software, 190 

PreMSIm, in terms of the area under the curve (AUC) of the receiver operating 191 

characteristic (ROC), accuracy, sensitivity, and specificity in 1,715 (1468 192 

Microarray and 247 bulk RNA-seq samples) independent samples. Notably, 193 

MSIsensor-RNA normalizes the expression value of informative genes for each 194 

sample independently, while PreMSIm must normalize each gene for multiple 195 

samples at the same time. Thus, we examined PreMSIm with all samples normalized 196 

together (PreMSIm-all) or by database (PreMSIm-split). 197 

For Microarray data, we computed MSI status by MSIsensor-RNA and PreMSIm 198 

in 1,468 samples from 12 GEO accessions. The result showed that MSIsensor-RNA 199 

predicted MSI with 0.952 AUC, while PreMSIm only performed 0.628 AUC in 200 

PreMSIm-split and 0.912 AUC in PreMSIm-all mode (Fig. 2A, S6, S7; Table S6 201 

and S7). Meanwhile, MSIsensor-RNA achieved much higher sensitivities than 202 

PreMSIm-split, and preMSI-all (MSIsensor-RNA: 0.968, PreMSIm-split: 0.912, 203 

PreMSIm-all: 0.384) and comparable specificities with PreMSIm-split, and 204 

preMSI-all (MSIsensor-RNA: 0.843, PreMSIm-split: 0.912, PreMSIm-all: 0.873). 205 

To evaluate the performance using bulk RNA-seq data, we compared 206 
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MSIsensor-RNA and two modes of PreMSIm on 247 independent samples from 207 

ICGC and CPTAC. We noticed that MSIsensor-RNA achieved 0.997 AUC in 208 

tumor-specific model and 0.985 AUC in MSI-popular model, which were 209 

significantly greater than PreMSIm-all (0.5) and PreMSIm-split (0.870) (Fig. 2B, S8, 210 

S9; Table S8 and S9). In addition, MSIsensor-RNA performed much better than 211 

PreMSIm for both sensitivity (MSIsensor-RNA with tumor-specific model: 0.951, 212 

MSIsensor-RNA with MSI-popular model: 0.973, PreMSIm-split: 0.834, 213 

PreMSIm-all: 0.25) and specificity (MSIsensor-RNA with tumor-specific mode: 1, 214 

MSIsensor-RNA with MSI-popular model: 0.923, PreMSIm-split: 0.906, 215 

PreMSIm-all: 0.75). To further investigate the robustness of MSIsensor-RNA for 216 

different input data types, we evaluated the performance of MSIsensor-RNA and 217 

PreMSIm with FPKM, read count, and TPM normalized samples in TCGA as input. 218 

We found that MSIsensor-RNA achieved 0.982 ± 0.040 AUC indicating the 219 

robustness of MSIsensor-RNA regardless of the measurements of gene expression 220 

(Table S10). 221 

To assess the performance of MSIsensor-RNA and PreMSIm in scRNA-seq 222 

samples, we applied the trained model of MSIsensor-RNA to 23,902 high-quality 223 

cells from 133 samples to obtain sample specific MSI status and compared to the 224 

ratio of cells labeled as MSI by PreMSIm. The result showed MSIsensor-RNA 225 

detected MSI for scRNA-seq samples with 0.958 AUC, 0.9231 sensitivity, and 226 
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0.9362 specificity, while PreMSIm with 0.4969 AUC, 1 sensitivity, and 0.0319 227 

specificity (Fig. 2A, S10; Table S11 and S12). The sample level MSI scores based 228 

on scRNA-seq was significantly different between MSI and MSS samples by 229 

MSIsensor-RNA (rank-sum test, P = 1.01×10-16) while no significant difference was 230 

detected for PreMSIm (rank-sum test, P = 0.9547) (Fig. 2B). Having established the 231 

effectiveness of MSIsensor-RNA on scRNA-seq sample, we investigated cell-level 232 

MSI. We computed the MSI scores of 21,438 high-quality cells from 100 samples 233 

(GSE178341) and found cell-type dependent MSI scores. For example, MSI scores 234 

of epithelial and immune cells in MSI samples were greater than that in MSS 235 

samples while no significant difference was detected between MSI and MSS for 236 

stromal cells (Fig. 2C, S11 and Table S13). This indicated the potential of 237 

MSIsensor-RNA to assess MSI at the single-cell level, providing a novel 238 

measurement for the investigation of tumorigenic process. 239 

Discussion 240 

Microsatellite instability is important for the prognosis assessment of both 5-FU 241 

chemotherapy [4] and immunotherapy [5]. In addition to gold-standard experimental 242 

methods [6], MSI status is also evaluated according to genomic sequencing data 243 

[7-14], gene expression data [15-17], methylation data [18], and H&E-stained slides 244 

[19, 20]. Compared to variants in microsatellite regions, gene expression values are 245 
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more directly reflective of the features of MSI and easier to obtain. In this study, we 246 

developed a robust method, MSIsensor-RNA, for MSI detection with gene 247 

expression data. MSIsensor-RNA provided informative gene selections, model 248 

training, and MSI detection modules. MSIsensor-RNA is able to process data from 249 

multiple platforms, including Microarray, RNA-seq, and single cell RNA-seq. 250 

Compared to the standalone method PreMSIm, MSIsensor-RNA also provided 251 

modules for informative gene selection and model training so that users could apply 252 

MSIsensor-RNA for different cancer types. MSIsensor-RNA also improved the 253 

normalization method of the data, yielding a more robust result than PreMSIm (Fig. 254 

2). In addition, MSIsensor-RNA facilitates the evaluation of MSI status at the single 255 

cell level, which will be critical to better understanding the mechanism of MSI in 256 

cancer immunotherapy in the future. 257 

In most MSI detection methods, such as MSIsensor [10] and MSIsensor-pro [11], 258 

MSI is quantified according to genetic mutations at microsatellite sites, the 259 

consequence of MSI rather than the deficiency of the MMR system, the direct cause 260 

of MSI. In this study, a set of MSI-associated genes was identified, and their 261 

expression values were used for MSI evaluation. We found that MLH1 is the most 262 

important gene in all tested cancer types. In addition, unexpected expression of 263 

MLH1 is commonly seen in Lynch syndrome [29]. Thus, we test the performance of 264 

MSIsensor-RNA for samples with abnormal MLH1 expression. We train a model 265 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2023. ; https://doi.org/10.1101/2023.10.09.561613doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.09.561613
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

15 

 

based on all informative genes and tested it by samples with simulated abnormal 266 

MLH1 gene expression (Table S14). We found that the model achieved 0.974 and 267 

0.972 AUCs when we set the MLH1 expression value as the maximum and 268 

minimum of all gene expression values, respectively. Furthermore, when MLH1 was 269 

excluded from the informative gene set, MSIsensor-RNA also achieved a 0.977 270 

AUC, indicating the robustness of MSIsensor-RNA for MSI detection. 271 

We demonstrate that MSIsensor-RNA achieved higher performance than other 272 

methods based on gene expression and comparable performance compared to 273 

DNA-based methods (Table S15). In our study design, MSIsensor-RNA detects MSI 274 

according to the gene expression signature of genes on MSI associated pathways, 275 

while MSIsensor evaluates MSI by computing the ratio of somatic microsatellite 276 

mutations. Although MSIsensor achieved slightly higher performance than 277 

MSIsensor-RNA, it cannot replace the applications of MSIsensor-RNA in gene 278 

expression data. Currently, MSIsensor-RNA reports favorable performance in all 279 

three MSI-popular cancers, including colorectal cancer, stomach adenocarcinoma, 280 

and uterine corpus endometrial carcinoma. The MSI features are different in 281 

different cancer types. Thus, the model obtained low performance when the testing 282 

samples were inconsistent with training samples in cancer types (Table S16-S18). 283 

Therefore, the performance of MSIsensor-RNA in other cancer types needs further 284 

validation in the future. 285 
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Conclusions 286 

MSIsensor-RNA is a cross-platform, efficient, and robust method for MSI status 287 

determination from both bulk and single-cell gene expression data. We demonstrated 288 

the effectiveness and robustness of MSIsensor-RNA across different platforms, 289 

hinting its potential in clinical research. Moreover, MSIsensor-RNA enables 290 

single-cell level MSI evaluation, providing a new tool to discover the role of MSI in 291 

tumorigenic process and to monitor cell-level dynamic changes during 292 

immunotherapy. 293 

 294 

Availability and requirements 295 

Project name: msisensor-rna 296 

Project home page: https://github.com/xjtu-omics/msisensor-rna 297 

Operating system(s): Unix System or Docker 298 

Programming language: python 299 

Other requirements: python packages including numpy, pandas and scikit-learn. 300 

License: Custom License (see at homepage) 301 

Any restrictions to use by non-academics: MSIsensor-RNA is free for 302 
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non-commercial use by academic, government, and non-profit/not-for-profit 303 

institutions. A commercial version of the software is available and licensed through 304 

Xi’an Jiaotong University. For more information, please contact with 305 

pengjia@stu.xjtu.edu.cn or kaiye@xjtu.edu.cn. 306 
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MSI: Microsatellite Instability 308 

MMR: Mismatch Repair 309 

CRC: Colorectal Cancer 310 

STAD: Stomach Adenocarcinoma 311 

UCEC: Uterine Corpus Endometrial Carcinoma 312 

NGS: Next Generation Sequencing 313 

ROC: Receiver Operating Characteristic  314 

AUC: Area Under the Curve 315 

scRNA-seq single-cell RNA sequencing 316 
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Figure legends 453 

Fig. 1. Workflow of MSIsensor-RNA. MSIsensor-RNA includes four modules: 454 

data preprocessing, informative gene selection, SVM model training, and testing. 455 

MSIsensor-RNA selects informative genes and trains SVM model by RNA-seq 456 

samples from TCGA. MSI scores are predicted by the trained model for Microarray, 457 

RNA-seq, and scRNA-seq samples. 458 

Fig. 2. Performance of MSIsensor-pro. A-C. AUC of MSIsensor-RNA and 459 

PreMSIm in Microarray (A), RNA-seq (B), and scRNA-seq (C) samples. 460 

Tumor-specific: MSI results with tumor specific model; MSI-popular: MSI results 461 

with three MSI-popular cancer types. D. Boxplot of MSIsensor-RNA score in 462 

scRNA-seq samples. E. Violin plot of MSIsensor-RNA score of different cell types 463 
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in scRNA-seq samples. Epithelial, stromal, and immune cell types are defined in 464 

Pelka et al.[25] 465 

Supplementary tables 466 

Table S1. Overview of samples in this study. 467 

Table S2. Details of informative genes in CRC. 468 

Table S3. Details of informative genes in STAD. 469 

Table S4. Details of informative genes in UCEC. 470 

Table S5. Details of informative genes in three MSI-popular cancers. 471 

Table S6. MSI results of Microarray samples by MSIsensor-RNA and PreMSIm. 472 

Table S7. MSI detection performance of MSIsensor-RNA and PreMSIm in 473 

Microarray samples. 474 

Table S8. MSI results of RNA-seq samples by MSIsensor-RNA and PreMSIm. 475 

Table S9. MSI detection performance of MSIsensor-RNA and PreMSIm in RNA-seq 476 

samples. 477 

Table S10. MSI detection performance of MSIsensor-RNA and PreMSIm in 478 

different normalized samples. 479 

Table S11. MSI results of scRNA-seq samples by MSIsensor-RNA. 480 
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Table S12. MSI detection performance of MSIsensor-RNA and preMSIm in 481 

scRNA-seq samples. 482 

Table S13. MSI results of scRNA-seq cells by MSIsensor-RNA. 483 

Table S14. Performance of MSIsensor-RNA with abnormal MLH1 expression 484 

values. 485 

Table S15. Performance of MSIsensor-RNA and MSIsensor in TCGA dataset. 486 

Table S16. AUC of MSIsensor-RNA with inconsistent training and testing samples. 487 

Table S17: Performance of train models for cancer with low frequency MSI. 488 

Table S18: Performance of MSIsensor-RNA for cancer with low frequency MSI by 489 

5-fold cross validation. 490 

Supplementary figures: 491 

See in supplementary materials. 492 

 493 

Figures: 494 

Fig. 1 495 
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 496 
Fig. 2 497 

 498 
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