

1
2
3
4

5 Comparative Proteomic Study of Retinal Ganglion Cells Undergoing Various Types of Cellular 6 Stressors. 7 8 9

10
11
12
13
14 Christopher R. Starr and Marina S. Gorbatyuk*
15
16
17

18 Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham,
19 Alabama, USA, 35233
20
21
22
23
24
25
26
27
28

29 *To whom correspondence should be addressed:
30 Dr. Marina S. Gorbatyuk.
31 Department of Optometry and Vision Science, School of Optometry,
32 University of Alabama at Birmingham.
33 1670 University Blvd., Birmingham, Alabama 35233.
34 Tel: 205- 934-6762. Fax: 205-934-3425.
35 Email: mgortk@uab.edu.
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Abstract

1 Retinal ganglion cell (RGC) damage serves as a key indicator of various retinal degenerative diseases,
2 including diabetic retinopathy (DR), glaucoma, retinal arterial and retinal vein occlusions, as well as
3 inflammatory and traumatic optic neuropathies. Despite the growing body of data on the RGC
4 proteomics associated with these conditions, there has been no dedicated study conducted to compare
5 the molecular signaling pathways involved in the mechanism of neuronal cell death. Therefore, we
6 launched the study using two different insults leading to RGC death: glutamate excitotoxicity and optic
7 nerve crush (ONC). C57BL/6 mice were used for the study and underwent NMDA- and ONC-induced
8 damages. Twenty-four hours after ONC and 1 hour after NMDA injection, we collected RGCs using
9 CD90.2 coupled magnetic beads, prepared protein extracts, and employed LC-MS for the global
10 proteomic analysis of RGCs. Statistically significant changes in proteins were analyzed using the Shiny
11 Go program to identify GO biological processes and molecular functions resulting from the treatment.
12 We identified unique and common alterations in protein profiles in RGCs undergoing different types of
13 cellular stressors. Additionally, we observed the absence of certain proteins in treated RGCs compared
14 to the control group. Our study not only identified both unique and shared proteomic changes but also
15 laid the groundwork for the future development of a therapeutic platform for testing gene candidates for
16 DR and glaucoma.

Keywords

35 Retina, Proteomics, Glaucoma, Excitotoxicity, Optic Neuropathy, Ophthalmology

1 1 Introduction

2
3 Retinal ganglion cells (RGCs) are neurons located in the retina of the eye, playing a crucial role
4 in vision by transmitting visual information from the retina to the brain. There are several types of RGCs,
5 each with a specific function in processing visual information. They receive input from photoreceptor
6 cells, rods and cones, and integrate this information before sending it to the brain via the optic nerve.
7
8 The axons of RGCs form the optic nerve, which carries visual signals to the brain, where signals are
9 further processed to create the visual perception. Once damaged, axons of the mammalian central
10 nervous system (CNS) fail to regenerate. RGCs are of clinical relevance in diabetic retinopathy (Abu-
11 El-Asrar et al., 2004), glaucoma (Joo et al., 1999), retinal arterial and retinal vein occlusions (Sucher et
12 al., 1997) as well as optic neuropathies (Khan et al., 2021). In these diseases, RGCs may be irreversibly
13 damaged. It is widely accepted that damaged RGCs not only serve as a model of optic neuropathies
14 but also as the primary model for studying mechanisms of CNS axon degeneration and how therapies
15 may promote regeneration.

16 After insult, both intrinsic and extrinsic factors contribute to whether CNS neurons survive, retain,
17 or regenerate their axons. Although lowering intraocular pressure (IOP) is an approved treatment for
18 glaucoma, it is not effective for every patient, and many other diseases affecting CNS neurons lack
19 approved treatment options. In glaucoma, it has been reported that RGCs undergo apoptosis triggered
20 by various factors, including autophagy, glutamate neurotoxicity, oxidative stress, neuroinflammation,
21 immunity, and vasoconstriction (Kuehn et al., 2005; Shen et al., 2023). Autophagy can be induced by
22 retinal hypoxia and axonal damage (Shen et al., 2023) while glutamate neurotoxicity is induced by the
23 overstimulation of N-methyl-D-aspartate membrane receptors by glutamate, leading to progressive
24 glaucomatous optic neuropathy (Shen et al., 2023).

25 In diabetes, retinal neuropathy involves progressive RGC death, axonal degeneration, and
26 consequently, optic nerve degeneration (Bikbova et al., 2014). RGC loss occurs in diabetic patients
27 even before the diagnosis of diabetic retinopathy. Furthermore, thinning of both the nerve fiber and the
28 RGC layer has been documented in patients with diabetic retinopathy (Verma et al., 2009; Vujosevic
29 and Midena, 2013; Verbraak, 2014) and animal diabetic models (Oleg S. Gorbatyuk, 2021; Pitale et al.,
30 2021). One of the earliest experimental observations in animal models of diabetic retinopathy (DR)
31 was the impairment of retrograde axonal transport in RGCs (Potilinski et al., 2020). Interestingly, this
32 impairment was found to be even greater in type 1 diabetes than in type 2 diabetes, possibly due to
33 metabolic dysfunctions contributing to optic nerve atrophy (Zhang et al., 1998). Under high glucose
34 conditions, there was an observed increase in glutamate release, leading to significant extracellular
35 glutamate accumulation and subsequent neurotoxicity of RGCs, further contributing to their
36 deterioration(Ma et al., 2010).

1 Various approaches have been employed to analyze cellular signaling involved in RGC death
2 and axonal deterioration. For instance, research groups have conducted unbiased proteomic screens
3 of total mouse retina lysates (Magharious et al., 2011; Hollander et al., 2012; Kwong et al., 2021; Zhu
4 et al., 2022) and used fluorescent-assisted cell sorting (FACS)(Belin et al., 2015) to isolate RGCs
5 following optic nerve crush (ONC), one of the most extensively studied models of CNS axonal injury.
6 However, most of these studies either examined whole retina lysates or assessed sorted RGCs at a
7 time point (3 days after injury) when a significant amount of RGC apoptosis has already began
8 (Goldenberg-Cohen et al., 2012). Another common injury model is N-methyl-D-aspartate (NMDA)-
9 induced excitotoxicity, a model mimicking the glutamate-induced excitotoxicity associated with multiple
10 neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), ischemic stroke, and
11 traumatic brain injury (Guerriero et al., 2015; Ibanez et al., 2022; Rubino et al., 2023). To date, the only
12 study examining proteomics in the context of NMDA-induced excitotoxicity of RGCs investigated
13 proteomic changes in whole retinal lysates 12 hours after NMDA injection, which is a time point at which
14 a substantial amount of RGC apoptosis is already in progress (Suo et al., 2022).

15 Understanding how CNS neurons respond to injury is crucial as we strive to develop therapeutic
16 strategies for promoting neuroprotection, axon survival, and regeneration. Particularly, the significance
17 of such studies lies in the development of neuroprotective interventions. Therefore, we initiated a
18 comparative proteomic study, in which we analyzed the protein profiles of RGCs subjected to different
19 cellular stress stimuli. The importance of our study lies in the fact that we not only identified differentially
20 expressed proteins involved in two distinct cell death mechanisms but also revealed common biological
21 processes that were similarly altered by different cell stress stimuli.

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

2 Results

2.1 Nontargeted quantitative proteomics of retinal ganglion cells.

In our study, we adopted an approach to analyze molecular alterations in deteriorating RGCs before their cell death, even though the peaks of apoptosis occur at different time points. To investigate early proteomic changes in RGCs following ONC- or NMDA-induced injury, protein lysates from Thy1-magnetic bead-isolated RGCs underwent nano high-performance liquid chromatography/mass spectrometry (LC/MS). RGC enrichment was confirmed via western blot (WB) using antibodies against RGC proteins, RNA-binding protein with multiple splicing (Rbpms), Class III β -tubulin (Tubb3/TUJ1), and photoreceptor markers, phosphodiesterase 6 β (Pde6 β) and rhodopsin (Rho) (**Fig. 1A**). As expected, RGC markers Rbpms and Tubb3/TUJ1 were highly enriched in RGCs and notably reduced in cells not bound by Cd90.2-coupled magnetic beads, corresponding to the rest of the retinal cells (**Fig. 1A**). Furthermore, photoreceptor proteins Pde6 β and rhodopsin were nearly undetectable in cells

65

1 bound by the beads but highly expressed in unbound retinal cells. RGC enrichment was further
2 validated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) with primers
3 against CD90/Thy1, Rho, and Pde6b (**Fig. 1B**). While Thy1 was significantly elevated in cells bound
4 by the magnetic beads and reduced in unbound cells, *Rho* and *Pde6b* mRNA levels were high in
5 unbound cells and significantly diminished in bound cells. Together, the WB and qRT-PCR results
6 indicate reliable RGC enrichment was achieved in our study.
7
8

9
10 We analyzed identified proteins and prior to pathway analysis, grouped them according to the
11 following parameters: 1) elevated in NMDA treated 2) reduced in NMDA treated 3) elevated in ONC
12 treated 4) reduced in ONC 5) altered in NMDA and ONC.
13
14

15
16 **2.2 NMDA Treatment shifts RGC metabolic signaling.**
17
18

19 To induce excitotoxic damage to the retina, we intravitreally injected 1 μ l of 20 mM NMDA in
20 PBS, following a protocol previously described (Guo et al., 2021). NMDA treatment resulted in
21 significant alterations in multiple pathways, with a notable impact on metabolic processes (**Fig. 2** and
22
23 **Table 1**). NMDA treatment induced a substantial increase in methylglyoxal (MGO) signaling and the
24 pentose-phosphate pathway (PPP), indicating the involvement of oxidative stress and a decrease in
25 glutathione (GSH) levels, which is often associated with increased apoptosis (Nuamnaichati et al.,
26
27 2020; Barisa et al., 2021) (**Fig. 2A**). Consistent with these findings, the levels of specific proteins related
28 to these pathways, such as GLO1 (Lactoylglutathione lyase, Q9CPU0) in the MGO signaling pathway
29 and 6-phosphogluconolactonase (Q9CQ60) in the PPP, were significantly elevated (**Table 1**).
30
31 Additionally, NMDA treatment led to an increase in NADPH regeneration, a process known to be
32 derived from Glucose 6-phosphate (G6P). This regeneration involves enzymes such as G6P
33 dehydrogenase, which generates NADPH, and 6-phosphogluconolactonase (Q9CQ60), which
34 converts 6-phosphogluconolactone to 6-phosphogluconate. The elevated presence of 6-
35 phosphogluconolactonase (Q9CQ60) in NMDA-treated RGCs was observed (Table 1). Furthermore,
36
37 our study revealed an enhancement in protein sumoylation in NMDA-treated RGCs. This
38 posttranslational modification plays a pivotal role in various biological functions, including nuclear-
39 cytosolic transport, transcriptional regulation, apoptosis, and protein stability, among others.
40
41

42 Therefore, these findings demonstrate that NMDA treatment has a significant impact on
43 metabolic signaling pathways in retinal ganglion cells, suggesting a link to oxidative stress, altered GSH
44 levels, and increased apoptosis. Moreover, the study highlights the involvement of NADPH
45 regeneration and protein sumoylation as part of the cellular responses to NMDA-induced excitotoxicity.
46
47

48 We then plotted proteins diminished following NMDA injections using the ShinyGo program. Fig.
49
50 **2B** and Table 1 clearly demonstrate that NMDA treatment results in a reduction of proteins associated
51 with critical cellular processes, including the tricarboxylic acid (TCA) cycle, mitochondrial ATP-coupled
52
53

1 electron transport, aerobic respiration, and the respiratory electron transport chain. This reduction is
2 particularly noteworthy as it predominantly affects mitochondrial proteins involved in essential functions
3 (Table 1), ultimately leading to a decrease in adenosine triphosphate (ATP) production. Notably, NMDA
4 excitotoxicity predominantly affects proteins crucial for ATP generation, underscoring its impact on
5 cellular energy metabolism. Furthermore, our study identified specific cellular components that were
6 enriched as a result of NMDA treatment. This enrichment notably included the mitochondrial respiratory
7 chain complex III (involved in oxidative phosphorylation) and the oxidoreductase complex (specifically
8 complex I: NADH-ubiquinone oxidoreductase). This elevation in these components aligns with the
9 observed increase in various metabolic cellular processes (as depicted in Fig. 2C).

10
11
12
13
14
15
16
17 Collectively, our findings indicate that NMDA excitotoxicity in retinal ganglion cells leads to rapid
18 perturbations in metabolic processes. These perturbations are characterized by a reduction in ATP
19 production pathways and a simultaneous shift of glycolysis towards the PPP. This shift reflects the
20 intricate interplay between NMDA-induced damage and cellular metabolic responses, shedding light
21 on the complex mechanisms involved in excitotoxicity-induced cellular alterations.

28 *2.3 ONC Results in an Early Shift in DNA Repair and Telomere Maintenance in RGCs.*

29
30 RGCs were isolated 24 hours after the ONC procedure and subjected to LC/MS analysis.
31 Examples of biological processes elevated following ONC include nucleosome organization, formation
32 of protein-DNA complexes, DNA chromatin changes, and chromatin organization (**Fig. 3A**). These
33 biological processes were accompanied by an increase in chromodomain-helicase-DNA-binding
34 protein 4 (Q6PDQ2), histone H2B type 3-A (Q9D2U9), Histone H2B type 1-H (Q64478), and other
35 nuclear proteins (**Table 2**). Among the reduced biological processes following ONC, we found that
36 positive regulation of telomer and telomerase and spindle localization includes organelle localization
37 (**Fig. 3B and Table 2**).
38

39 The GO Cellular component analysis demonstrates that an increase in proteins in ONC-
40 processed RGCs was associated with endosome complex formation and CST, a cellular multiprotein
41 complex involved in telomere maintenance (**Fig. 3C**). Therefore, it is not surprising that the endosomal
42 Ras-related protein Rab-18 (P352930) was elevated. Other examples are the CST complex subunit
43 STN1 (Q8K2X3) and High Mobility Group protein B3 (O54879) regulating the mechanisms of DNA
44 replication, transcription, recombination, and repair that were significantly elevated in the ONC-
45 processed RGCs (**Table 2**). We then found that reduced proteins were responsible for the GO cellular
46 components, including the 6-phosphofructokinase complex and chaperon-containing T complex (CCT)
47 (**Fig. 3D**). These findings were in accordance with the expression levels of individual proteins such as
48 ATP-dependent 6-phosphofructokinases (P12382 and P47857) and T-complex protein 1 subunit
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 gamma (TRiC or P80318). Overall, these data suggested that ONC causes chromatin and DNA
2 reorganization in RGCs and reduces the cellular ability to repair DNA damage.
3
4
5

6 **2.4 Proteins altered following both NMDA-induced excitotoxicity and ONC.**

7
8 One of the primary objectives of this study was to identify proteins that exhibit changes in multiple
9 models of neuronal injury. In pursuit of this goal, we successfully identified proteins that exhibited
10 alterations in both models (**Fig. 4** and **Table 3**). Remarkably, the majority of these protein level changes,
11 whether upregulation or downregulation, were notably consistent across both groups. Specifically, we
12 observed significant upregulation of eukaryotic initiation factor 4A-II (4A-II), small nuclear
13 ribonucleoprotein D3 (SNRD3), and STN1, alongside significant downregulation of Ras-related protein
14 (Rab-18), AP-1, Clathrin, ATP synthase subunit D, and sodium and chloride-dependent GABA
15 transporter 3 in both treated RGCs when compared to the control group. Fig. 4, which provides a visual
16 representation of these modified protein levels, also highlights the unique absence of succinate
17 semialdehyde dehydrogenase (SSADH) and KCNB2 (potassium voltage-gated channel subfamily B
18 member 2) in both RGC treatments as compared to control.
19
20

21 The analysis of differentially expressed proteins revealed 16 proteins with significantly reduced
22 expression, four proteins with significantly increased expression, one protein exhibiting an opposite
23 response pattern to the stimulus in both types of treated RGCs, and two proteins uniquely present in
24 the control group.
25
26

27 **3 Discussion**

28 In the present study, we examined acute changes in RGC global protein expression following
29 NMDA injection or ONC. We provide evidence that NMDA treatment alters multiple signaling pathways,
30 many of which are metabolic. In addition, we identified several biological processes impacted by ONC.
31 We identified common proteins manifesting a decline and incline in expression and unique proteins
32 absent in RGC undergoing both types of injury.
33
34

35 Classically, the primary cause of glutamate excitotoxicity is ATP depletion and impaired
36 glutamate transport, resulting in a buildup of extracellular glutamate, leading to excitotoxicity by
37 overloading NMDA receptor (NMDAR)-expressing cells with Na⁺ and Ca²⁺. Glutamate excitotoxicity is
38 known to be involved in various diseases, including Alzheimer's (Tannenberg et al., 2004), Parkinson's
39 (Verma et al., 2022), or Huntington's (Girling et al., 2018), and predicted to be involved in choroidal
40 vessel occlusion, glaucoma, and diabetic retinopathy (Lucas and Newhouse, 1957; Massey and Miller,
41 1987, 1990; Thoreson and Witkovsky, 1999; Yumnamcha et al., 2020). Elevated Ca²⁺ can lead to
42 changes in several Ca²⁺-sensitive signaling cascades and eventually mitochondrial-mediated
43 apoptosis (Verma et al., 2022). An increase in intracellular Na⁺ can lead to cell swelling. NMDA-
44
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 mediated excitotoxicity leads to synaptic degeneration and dendritic pruning before cell death. By
2 isolating RGCs one hour after NMDA injection, we hoped to see how the RGCs are altered in the time
3 window before full-fledged apoptosis begins. We did indeed observe perturbations in several biological
4 processes after NMDA injection. We report that early NMDA-induced excitotoxicity leads to a
5 substantial elevation of MGO and the PPP, indicating a potential involvement of oxidative stress and a
6 reduction in the levels of GSH, which is often associated with apoptosis. Despite this, we did not
7 observe a significant change in GO biological processes pertaining to apoptosis or any other known
8 form of cell death, indicating we did indeed perform proteomic analysis at a time point after NMDA-
9 induced excitotoxicity where apoptotic signaling is not yet elevated. In addition, we also discovered that
10 many of the cellular processes upregulated by excitotoxicity involve changes in the nucleus, such as
11 nuclear protein export, and regulation of DNA processes (**Fig. 2A**). These specific changes could
12 represent heterogeneous nuclear ribonucleoprotein A1, A1/B1, small nuclear ribonucleoprotein D3.
13

14 We also show that NMDA treatment reduces many GO biological processes. Of note, most
15 proteins reduced by intravitreal NMDA injection are involved in ATP production. It is possible that the
16 calcium elevation that occurs during excitotoxicity could be the major driving force behind excitotoxic
17 cell death. Cells respond to this by sequestering this excess calcium in the endoplasmic reticulum
18 and mitochondria. Mitochondria is the site of oxidative phosphorylation, a process that generates ATP
19 and is regulated by calcium (Glancy et al., 2013). This is consistent with our findings on a reduction of
20 GO biological processes pertaining to ATP production and a decline in GO cellular components
21 pertaining to various mitochondrial complexes.

22 The murine optic nerve crush injury model is the most commonly used model of RGC injury that
23 mimics molecular events occurring upon traumatic optic neuropathy, glaucoma, etc. (Tang et al., 2011)
24 Moreover, the prevalence of optic neuropathy in diabetics could increase with diabetes duration (Hua
25 et al., 2019) In this model, the crush injury to the optic nerve leads to retinal ganglion cell apoptosis.
26 This disease model can be used to study the general processes and mechanisms of neuronal death
27 and survival, which is essential for the development of therapeutic measures. In addition,
28 pharmacological and molecular approaches can be used in this model to identify and test potential
29 therapeutic reagents to treat different types of optic neuropathy. Interventions that are neuroprotective
30 for RGCs challenged with ONC are usually neuroprotective for other CNS neurons (Le Pichon et al.,
31 2017). In addition, axon regeneration promoting treatments discovered with the ONC model can
32 typically promote axon regeneration in the spinal cord (Bhowmick and Abdul-Muneer, 2021). Following
33 ONC, axonal components briefly travel retrogradely prior to the axons returning to the site of injury,
34 only to fail to pass the crush site. In fact, knocking out an inhibitor of the retrograde injury response of
35 RGCs, dual-leucine zipper kinase (DLK), leads to robust RGC survival (Watkins et al., 2013), indicating
36 that retrograde signaling is crucial for cell death signaling following ONC. Based on this, in the earliest
37

1 response to ONC, we would anticipate changes in the machinery responsible for transport and
2 localization. As expected, we did identify reductions in GO biological processes pertaining to the
3 localization of organelles cellular proteins and cellular macromolecules. After injuring the axon with
4 ONC, we expected to observe changes in synaptic GO cellular components. To that end, we did
5 detect changes in components of synaptic membrane, synapse, neuronal projections, the
6 presynapse, and the presynaptic membrane region. These changes are presented by the decline in
7 multiple proteins including Catenin beta-1, Sodium- and chloride-dependent GABA transporter 3,
8 Synaptogyrin-3 and Synaptotagmin-1. Together, these changes in GO biological processes and cellular
9 components after ONC suggest that, as expected, damaging the axon not only disrupts axonal
10 components but also the cellular localization of various cellular entities.

11 In both RGC degenerative models, we identified common proteins that responded to cellular
12 insults in a similar manner, as well as proteins that exhibited a unique decline in expression in both
13 challenged RGCs. While our current study has its limitations, future investigations should prioritize the
14 validation of the roles of these proteins in RGC survival. In particular, it would be interesting to assess
15 the role of these proteins in RGC survival during the development of diabetic retinopathy or glaucoma.
16 For example, Rab18 deficiency detected in both types of challenged RGCs is the molecular deficit
17 underlying Warburg micro syndrome, characterized by eye, nervous system, and endocrine
18 abnormalities.(Handley and Sheridan, 1993) Moreover, a recent study highlighted the involvement of
19 Rab18 in lipid metabolism in human diabetic adipose tissue and demonstrated that Rab-18 contributes
20 to insulin resistance in obese individuals. (Pulido et al., 2011; Guzman-Ruiz et al., 2020) Another
21 example is DnaJC8 protein, the effect of which is closely associated with the aggregation of polyQ-
22 containing proteins in a cellular model of spinocerebellar ataxia type 3 (SCA3).(Ito et al., 2016) The
23 authors have shown that DnaJC8 overexpression significantly reduces polyQ aggregation and
24 apoptosis. Therefore, DnaJC8 should be validated for its neuroprotective role in the survival of RGCs
25 undergoing both cellular stressors. Finally, both KCNB2 and SSADH are exclusively present in control
26 C57BL6 RGCs and are absent in both types of challenged RGCs. Similar to SSADH deficiency
27 representing a genetic disorder resulting from the aberrant metabolism of GABA (Didiasova et al.,
28 2020), loss of SSADH could be a consequence of a defective GABA catabolism in both types of
29 stressed RGCs.

30 In summary, our study was designed to not only identify both individual and shared proteomic
31 changes in retinal ganglion cells undergoing different stress stimuli just before initiating a pro-apoptotic
32 cell death program but also to lay the groundwork for the future development of a therapeutic platform
33 for testing gene candidates contributing to retinal diseases such as diabetic retinopathy and glaucoma.

34 63 4 Conclusion

35 64 65

1 Here we report that challenging RGCs alters the levels of various proteins and therefore likely
2 impact cellular signaling at the onset of damage. We utilized unbiased, non-targeted proteomics to
3 identify proteins and GO biological processes altered after ONC or NMDA-induced excitotoxicity.
4 NMDA-induced excitotoxicity resulted in altered metabolic signaling. We observed a noticeable
5 reduction in proteins and GO biological processes involved in ATP production. NMDA led to an increase
6 in MGO signaling and the PPP, indicating the involvement of oxidative stress and a decrease in GSH
7 levels. RGCs experienced a shift in DNA repair and telomere maintenance 24 hours after ONC. Further
8 characterization of these altered proteins and signaling pathways may be vital for the creation of
9 therapeutic countermeasures for neurodegenerative diseases.
10
11
12
13
14
15
16
17
18

19 **5 Methods** 20

21 **5.1 Animals** 22

23 All animal procedures were approved by The University of Alabama at Birmingham institutional
24 animal use and care (IACUC) committee and in accordance with the statement for the Use of Animals
25 in Ophthalmic and Vision Research by The Association for Research in Vision and Ophthalmology
26 (ARVO). C57BL/6J mice were purchased from Jackson Laboratory (Bar Harbor, ME). An equal number
27 of female and male mice were used in this study. For all procedures, mice were anesthetized with
28 ketamine (100 mg/kg) and xylazine (10mg/kg).
29
30
31
32
33

34 To induce injury to RGCs, mice were either intravitreally injected with 1 μ l of 20mM N-Methyl D
35 aspartic acid (NMDA) or underwent optic nerve crush (ONC) surgery as previously described (Guo et
36 al., 2021). Briefly, for ONC, fine tweezers (Dumont#5; Fine Science Tools (FST) Item No. 11254-20 or
37 Dumont#55; FST Item No. 11255-20) were used to create a small incision in the conjunctiva and then
38 maneuvered between extraocular muscles to access the optic nerve, which was gently squeezed for 5
39 seconds at a location approximately 1mm posterior to the globe using Dumont #5 tweezers.
40
41
42
43
44
45
46

47 **5.2 RGC Isolation** 48

49 To isolate RGCs, we used a method that has previously been verified with slight modifications.
50 Briefly, animals from each group were euthanized with CO₂ asphyxiation and their retinas were
51 harvested in cold neurobasal medium and placed in a 37°C water bath for 5 minutes. The neurobasal
52 media was removed and replaced with fresh pre-warmed neurobasal media containing papain
53 (0.06mg/ml or 33.4 U/mg) and 5mM L-cysteine and incubated 20 minutes at 37°C. The papain solution
54 was removed and replaced with neurobasal containing 2mM L-Glutamine (Gibco; Catalog no.
55 25030081) B-27 supplement (Gibco; Catalog no. 17504044) and 10% FBS (Gibco; Catalog no.
56 26140079). The retinas were dissociated by gently pipetting up and down with a wide bore 1ml pipette
57 tip. Cells were then centrifuged at 450g for 8 minutes and resuspended in 90 μ l of isolation buffer
58
59
60
61
62
63
64
65

1 (DPBS + 0.5% BSA + 2mM EDTA) containing 25 µg/ml DNase I + 5mM MgCl₂. Cells were filtered
2 through a 30µm cell strainer and incubated with CD90.2 magnetic beads (Miltenyi Biotec; Catalog no.
3 4 130-121-278) at 4°C for 10 minutes and then isolated using MACs LS (Miltenyi Biotec; Catalog no. 130-
5 6 042-401) columns following the manufacturer's instructions. After isolation, cells were washed with
7 8 DPBS, centrifuged at 450g for 8 minutes and their pellets stored at -70°C prior to proteomics sample
9 10 preparation and LC/MS analysis.
11
12
13

14 5.3 Proteomics

15 5.3.1 LC/MS

16 Proteomics analysis was carried out as previously described with minor changes (Ludwig et al.,
17 18 2016), within section 2.5 nLC-ESI-MS2 under Protein IDs for GeLC. Proteins from isolated RGCs were
19 20 extracted using T-PER™ Mammalian Protein Extraction Reagent (Thermo Fisher Scientific, Cat.#
21 22 78510) supplemented with HALT protease inhibitor cocktail (Thermo Fisher Scientific, Cat.# 78425),
23 24 and benzonase nuclease (Sigma, E1014) following manufacturers instructions. Lysates were quantified
25 26 using Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, Cat.# 23227). Samples were prepared
27 28 in NuPAGE LDS sample buffer (1x final conc., Invitrogen, Cat.# NP0007) and reduced with DTT then
29 30 denatured at 70°C for 10min prior to loading 20µg onto Novex NuPAGE 10% Bis-Tris Protein gels
31 32 (Invitrogen, Cat.# NP0315BOX) and separated appropriately (@ 200 constant V). The gels were
33 34 stained overnight with Novex Colloidal Blue Staining kit (Invitrogen, Cat.# LC6025). Following de-
35 36 staining, each entire lane was cut into multiple MW and equilibrated in 100 mM ammonium bicarbonate
37 38 (AmBc), each gel plug was then digested overnight with Trypsin Gold, Mass Spectrometry Grade
39 40 (Promega, Cat.# V5280) following manufacturer's instruction. Peptide extracts were reconstituted in
41 0.1% Formic Acid/ddH₂O at 0.1µg/µL.
42

43 Peptide digests (8µL each) were injected onto a 1260 Infinity nHPLC stack (Agilent
44 Technologies), and separated using a 75 micron I.D. x 15 cm pulled tip C-18 column (Jupiter C-18 300
45 Å, 5 micron, Phenomenex). This system runs in-line with a Thermo Q Exactive HFx mass spectrometer,
46 47 equipped with a Nanospray Flex™ ion source (Thermo Fisher Scientific), and all data were collected in
48 49 CID mode. The nHPLC is configured with binary mobile phases that includes solvent A (0.1%FA in
50 51 ddH₂O), and solvent B (0.1%FA in 15% ddH₂O/85% ACN), programmed as follows; 10min @ 5%B
52 53 (2µL/min, load), 30min @ 5%-40%B (linear: 0.5nL/min, analyze), 5min @ 70%B (2µL/min, wash),
54 55 10min @ 0%B (2µL/min, equilibrate). Following each parent ion scan (300-1200m/z @ 60k resolution),
56 57 fragmentation data (MS2) were collected on the top most intense 18 ions @7.5K resolution. For data
58 59 dependent scans, charge state screening and dynamic exclusion were enabled with a repeat count of
60 61 2, repeat duration of 30s, and exclusion duration of 90s.
62
63
64
65

1 MS data conversion and searches The XCalibur RAW files were collected in profile mode,
2 centroided and converted to MzXML using ReAdW v. 3.5.1. The mgf files were created using
3 MzXML2Search (included in TPP v. 3.5) for all scans. The data was searched using SEQUEST
4 (Thermo Fisher Scientific), which is set for three maximum missed cleavages, a precursor mass window
5 of 20ppm, trypsin digestion, variable modification C @ 57.0293, and M @ 15.9949 as a base setting.
6 Searches were performed with the mus musculus species specific subset of the UniProtKB database.
7
8
9
10
11
12
13

14 *5.3.2 Peptide filtering, grouping, and quantification*

15 The list of peptide IDs generated based on SEQUEST search results were filtered using Scaffold
16 (Protein Sciences, Portland Oregon). Scaffold filters and groups all peptides to generate and retain only
17 high confidence IDs while also generating normalized spectral counts (N-SC's) across all samples for
18 the purpose of relative quantification. The filter cut-off values were set with minimum peptide length of
19 >5 AA's, with no MH+1 charge states, with peptide probabilities of >80% C.I., and with the number of
20 peptides per protein ≥ 2 . The protein probabilities will be set to a >99.0% C.I., and an FDR<1.0. Scaffold
21 incorporates the two most common methods for statistical validation of large proteome datasets, the
22 false discovery rate (FDR) and protein probability (Keller, Nesvizhskii, Weatherly). Relative
23 quantification across experiments were then performed via spectral counting (Old, Liu), and when
24 relevant, spectral count abundances will then be normalized between samples (Hyde).
25
26
27
28
29
30
31
32
33
34
35

36 *5.3.3 Statistical analysis*

37 For generated proteomic data, two separate non-parametric-like statistical analyses were
38 performed between each pair-wise comparison. These analyses included; A) the calculation of weight
39 values by significance analysis of microarray (SAM; cut off $>|0.8|$ combined with, B) T-Test (single tail,
40 unequal variance, cut off of $p < 0.05$), which are then sorted according to the highest statistical
41 relevance in each comparison. For SAM, the weight value (W) is a function statistically derived that
42 approaches significance as the distance between the means ($\mu_1 - \mu_2$) for each group increases, and the
43 SD ($\delta_1 - \delta_2$) decreases using the formula: $W = (\mu_1 - \mu_2) / (\delta_1 - \delta_2)$. For protein abundance ratios determined
44 with N-SC's, we set a 1.5-fold change as the threshold for significance, determined empirically by
45 analyzing the inner-quartile data from the control experiments using In-In plots, where the Pierson's
46 correlation coefficient (R) is 0.98, and >99% of the normalized intensities fell between the set fold
47 change. Each of the tests (SAM, Ttest, and fold change) must be passed for to be considered
48 significant.
49
50
51
52
53
54
55
56
57
58
59
60

61 *5.3.4 Systems Analysis*

62 Gene ontology assignments and pathway analysis were carried out using ShinyGO (Ge et al., 2020).
63
64

1

2

3

4 **6 Funding**

5

6 This work was supported by the National Eye Institute, grants R01 EY027763.

7

8

9 **7 Conflict of Interests statement**

10

11

12

13 The authors declare that the research was conducted in the absence of any commercial or financial
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

relationships that could be construed as a potential conflict of interest.

1 **Figure Legends**
2

3 **Figure 1-** RGCs are enriched with Cd90.2 coupled magnetic beads. A) Western blot of select RGC and
4 photoreceptor proteins indicating RGC enrichment. B) qRT-PCR analysis using primers against RGC
5 or photoreceptor targets. * = $p < 0.05$, *** = $p < 0.005$, **** = $p < 0.001$ (n=3-4). Data are shown as a
6 standard deviation.
7

8
9
10
11 **Figure 2-** GO biological processes and cellular components of RGCs shift 1 hour after intravitreal
12 NMDA injection. A) The most significantly elevated GO biological processes following NMDA-induced
13 excitotoxicity. B) GO biological processes reduced by intravitreal NMDA injection. C) GO cellular
14 components reduced by NMDA-induced excitotoxicity. False Discovery rate (FDR) ≥ 0.05 .
15
16

17
18 **Figure 3 -** GO biological processes and cellular components of RGCs shift 24 hours after ONC. A) The
19 most significantly elevated GO biological processes following traumatic injury to the optic nerve. B) GO
20 biological processes reduced by ONC. C) GO cellular components elevated by ONC. D) GO cellular
21 components reduced 24 hours after ONC. False Discovery rate (FDR) ≥ 0.05 .
22
23

24 **Figure 4 –** Select proteins with significantly altered levels after both NMDA injection and ONC. Levels
25 depicted have been normalized to control. All proteins that are changed in both models of RGC injury
26 are listed in table 3 (n=4). Data are shown as a standard error.
27
28

29 **Table Legends**
30

31 **Table 1-** List of proteins differentially expressed in RGCs 1 hour after NMDA treatment. The accession
32 numbers were entered into ShinyGO to generate Figure 2.
33

34 **Table 2-** List of proteins differentially expressed in RGCs 24 hours after ONC. Accession numbers were
35 entered into ShinyGO to generate Figure 3.
36

37 **Table 3-** List of proteins altered after both NMDA injection and after ONC.
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 References

3 Abu-El-Asrar AM, Dralands L, Missotten L, Al-Jadaan IA, Geboes K (2004) Expression of apoptosis
4 markers in the retinas of human subjects with diabetes. *Invest Ophthalmol Vis Sci* 45:2760-
5 2766.

7 Barisa M, Fowler D, Fisher J (2021) Interplay between gammadeltaT-Cell Metabolism and Tumour
8 Microenvironment Offers Opportunities for Therapeutic Intervention. *Immunometabolism*
9 3:210026.

10 Belin S, Nawabi H, Wang C, Tang S, Latremoliere A, Warren P, Schorle H, Uncu C, Woolf CJ, He Z,
11 Steen JA (2015) Injury-Induced Decline of Intrinsic Regenerative Ability Revealed by
12 Quantitative Proteomics. *Neuron* 86:1000-1014.

14 Bhowmick S, Abdul-Muneer PM (2021) PTEN Blocking Stimulates Corticospinal and Raphespinal
15 Axonal Regeneration and Promotes Functional Recovery After Spinal Cord Injury. *J
16 Neuropathol Exp Neurol* 80:169-181.

18 Bikbova G, Oshitari T, Baba T, Yamamoto S (2014) Neurotrophic factors for retinal ganglion cell
19 neuropathy - with a special reference to diabetic neuropathy in the retina. *Curr Diabetes Rev*
20 10:166-176.

21 Didiasova M, Banning A, Brennenstuhl H, Jung-Klawitter S, Cinquemani C, Opladen T, Tikkanen R
22 (2020) Succinic Semialdehyde Dehydrogenase Deficiency: An Update. *Cells* 9.

24 Ge SX, Jung D, Yao R (2020) ShinyGO: a graphical gene-set enrichment tool for animals and plants.
25 *Bioinformatics* 36:2628-2629.

26 Girling KD, Demers MJ, Laine J, Zhang S, Wang YT, Graham RK (2018) Activation of caspase-6 and
27 cleavage of caspase-6 substrates is an early event in NMDA receptor-mediated excitotoxicity.
28 *J Neurosci Res* 96:391-406.

30 Glancy B, Willis WT, Chess DJ, Balaban RS (2013) Effect of calcium on the oxidative phosphorylation
31 cascade in skeletal muscle mitochondria. *Biochemistry* 52:2793-2809.

32 Goldenberg-Cohen N, Raiter A, Gaydar V, Dratviman-Storobinsky O, Goldstein T, Weizman A, Hardy
33 B (2012) Peptide-binding GRP78 protects neurons from hypoxia-induced apoptosis. *Apoptosis*
35 17:278-288.

36 Guerriero RM, Giza CC, Rotenberg A (2015) Glutamate and GABA imbalance following traumatic
37 brain injury. *Curr Neurol Neurosci Rep* 15:27.

38 Guo X, Starr C, Zhou J, Chen B (2021) Protocol for evaluating the role of a gene in protecting mouse
39 retinal ganglion cells. *STAR Protoc* 2:100932.

41 Guzman-Ruiz R, Tercero-Alcazar C, Rabanal-Ruiz Y, Diaz-Ruiz A, El Bekay R, Rangel-Zuniga OA,
42 Navarro-Ruiz MC, Molero L, Membrives A, Ruiz-Rabelo JF, Pandit A, Lopez-Miranda J,
43 Tinahones FJ, Malagon MM (2020) Adipose tissue depot-specific intracellular and extracellular
44 cues contributing to insulin resistance in obese individuals. *FASEB J* 34:7520-7539.

46 Handley M, Sheridan E (1993) RAB18 Deficiency. In: *GeneReviews(R)* (Adam MP, Mirzaa GM,
47 Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, eds). Seattle (WA).

48 Hollander A, D'Onofrio PM, Magharious MM, Lysko MD, Koeberle PD (2012) Quantitative retinal
49 protein analysis after optic nerve transection reveals a neuroprotective role for hepatoma-
50 derived growth factor on injured retinal ganglion cells. *Invest Ophthalmol Vis Sci* 53:3973-
52 3989.

53 Hua R, Qu L, Ma B, Yang P, Sun H, Liu L (2019) Diabetic Optic Neuropathy and Its Risk Factors in
54 Chinese Patients With Diabetic Retinopathy. *Invest Ophthalmol Vis Sci* 60:3514-3519.

55 Ibanez L et al. (2022) Multi-ancestry GWAS reveals excitotoxicity associated with outcome after
56 ischaemic stroke. *Brain* 145:2394-2406.

58 Ito N, Kamiguchi K, Nakanishi K, Sokolovskya A, Hirohashi Y, Tamura Y, Murai A, Yamamoto E,
59 Kanaseki T, Tsukahara T, Kochin V, Chiba S, Shimohama S, Sato N, Torigoe T (2016) A novel
60 nuclear DnaJ protein, DNAJC8, can suppress the formation of spinocerebellar ataxia 3
61 polyglutamine aggregation in a J-domain independent manner. *Biochem Biophys Res
62 Commun* 474:626-633.

63

64

65

1 Joo CK, Choi JS, Ko HW, Park KY, Sohn S, Chun MH, Oh YJ, Gwag BJ (1999) Necrosis and
2 apoptosis after retinal ischemia: involvement of NMDA-mediated excitotoxicity and p53. *Invest*
3 *Ophthalmol Vis Sci* 40:713-720.

4 Khan RS, Ross AG, Aravand P, Dine K, Selzer EB, Shindler KS (2021) RGC and Vision Loss From
5 Traumatic Optic Neuropathy Induced by Repetitive Closed Head Trauma Is Dependent on
6 Timing and Force of Impact. *Transl Vis Sci Technol* 10:8.

7 Kuehn MH, Fingert JH, Kwon YH (2005) Retinal ganglion cell death in glaucoma: mechanisms and
8 neuroprotective strategies. *Ophthalmol Clin North Am* 18:383-395, vi.

9 Kwong JMK, Caprioli J, Sze YH, Yu FJ, Li KK, To CH, Lam TC (2021) Differential Retinal Protein
10 Expression in Primary and Secondary Retinal Ganglion Cell Degeneration Identified by
11 Integrated SWATH and Target-Based Proteomics. *Int J Mol Sci* 22.

12 Le Pichon CE et al. (2017) Loss of dual leucine zipper kinase signaling is protective in animal models
13 of neurodegenerative disease. *Science Translational Medicine* 9:eaag0394.

14 Lucas DR, Newhouse JP (1957) The toxic effect of sodium L-glutamate on the inner layers of the
15 retina. *AMA Arch Ophthalmol* 58:193-201.

16 Ludwig MR, Kojima K, Bowersock GJ, Chen D, Jhala NC, Buchsbaum DJ, Grizzle WE, Klug CA,
17 Mobley JA (2016) Surveying the serologic proteome in a tissue-specific kras(G12D) knockin
18 mouse model of pancreatic cancer. *Proteomics* 16:516-531.

19 Ma R, Xie XJ, Wan L (2010) [Effect of drug-serum with Chinese drugs for nourishing shen and
20 activating blood on the glutamate release in purified retinal ganglion cells cultured in high-
21 glucose conditions]. *Zhongguo Zhong Xi Yi Jie He Za Zhi* 30:875-879.

22 Magharios M, D'Onofrio PM, Hollander A, Zhu P, Chen J, Koeberle PD (2011) Quantitative iTRAQ
23 analysis of retinal ganglion cell degeneration after optic nerve crush. *J Proteome Res* 10:3344-
24 3362.

25 Massey SC, Miller RF (1987) Excitatory amino acid receptors of rod- and cone-driven horizontal cells
26 in the rabbit retina. *J Neurophysiol* 57:645-659.

27 Massey SC, Miller RF (1990) N-methyl-D-aspartate receptors of ganglion cells in rabbit retina. *J*
28 *Neurophysiol* 63:16-30.

29 Nuamnaichati N, Mangmool S, Chattipakorn N, Parichatikanond W (2020) Stimulation of GLP-1
30 Receptor Inhibits Methylglyoxal-Induced Mitochondrial Dysfunctions in H9c2 Cardiomyoblasts:
31 Potential Role of Epac/PI3K/Akt Pathway. *Front Pharmacol* 11:805.

32 Oleg S, Gorbatyuk PMP, Irina V, Saltykova, Iuliia B, Dorofeeva, Assylbek A, Zhylkibayev, Mohammad
33 Athar, Preston A, Fuchs, Brian C, Samuels and Marina S, Gorbatyuk (2021) A Novel Tree
34 Shrew Model of Diabetic Retinopathy. *Front Endocrinol (Lausanne)*.

35 Pitale PM, Saltykova IV, Adu-Agyeiwaah Y, Calzi SL, Satoh T, Akira S, Gorbatyuk O, Boulton ME,
36 Pardue MT, Garvey WT, Athar M, Grant MB, Gorbatyuk MS (2021) Tribbles Homolog 3
37 Mediates the Development and Progression of Diabetic Retinopathy. *Diabetes*.

38 Potilinski MC, Lorenc V, Perisset S, Gallo JE (2020) Mechanisms behind Retinal Ganglion Cell Loss
39 in Diabetes and Therapeutic Approach. *Int J Mol Sci* 21.

40 Pulido MR, Diaz-Ruiz A, Jimenez-Gomez Y, Garcia-Navarro S, Gracia-Navarro F, Tinahones F,
41 Lopez-Miranda J, Fruhbeck G, Vazquez-Martinez R, Malagon MM (2011) Rab18 dynamics in
42 adipocytes in relation to lipogenesis, lipolysis and obesity. *PLoS One* 6:e22931.

43 Rubino V, La Rosa G, Pipicelli L, Carriero F, Damiano S, Santillo M, Terrazzano G, Ruggiero G,
44 Mondola P (2023) Insights on the Multifaceted Roles of Wild-Type and Mutated Superoxide
45 Dismutase 1 in Amyotrophic Lateral Sclerosis Pathogenesis. *Antioxidants (Basel)* 12.

46 Shen WC, Huang BQ, Yang J (2023) Regulatory mechanisms of retinal ganglion cell death in normal
47 tension glaucoma and potential therapies. *Neural Regen Res* 18:87-93.

48 Sucher NJ, Lipton SA, Dreyer EB (1997) Molecular basis of glutamate toxicity in retinal ganglion cells.
49 *Vision Res* 37:3483-3493.

50 Suo L, Dai W, Chen X, Qin X, Li G, Song S, Zhang D, Zhang C (2022) Proteomics analysis of N-
51 methyl-d-aspartate-induced cell death in retinal and optic nerves. *J Proteomics* 252:104427.

52

53

54

55

56

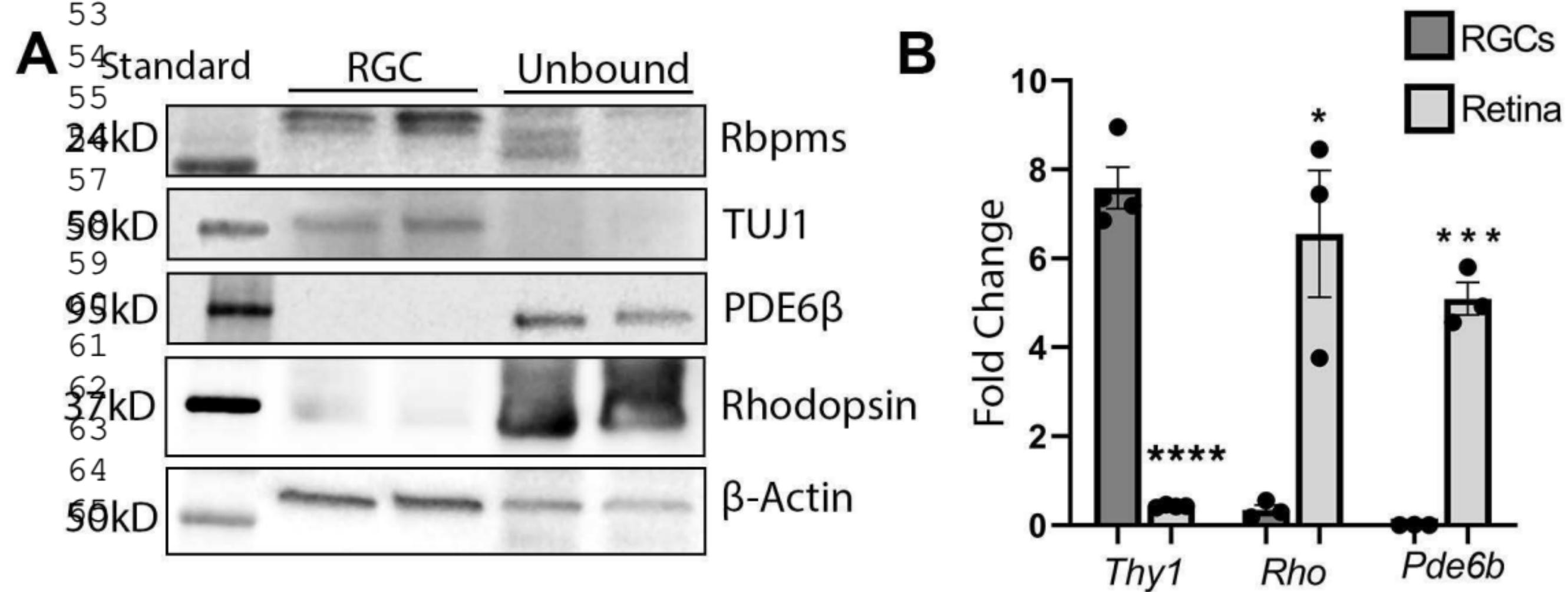
57

58

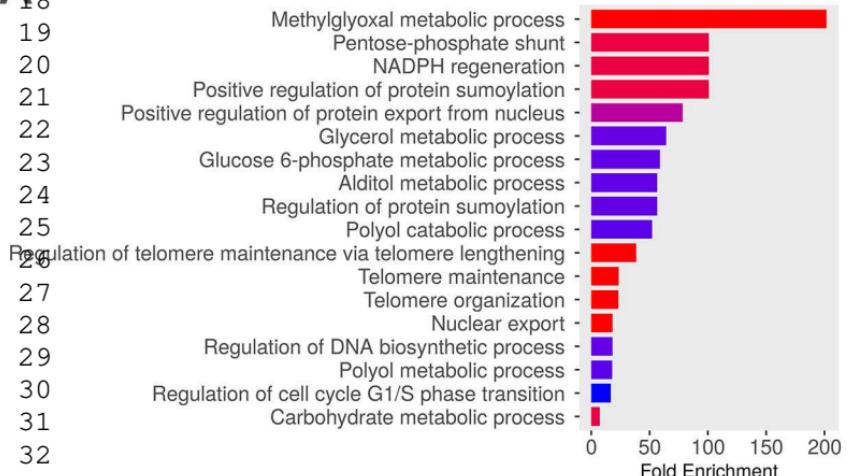
59

60

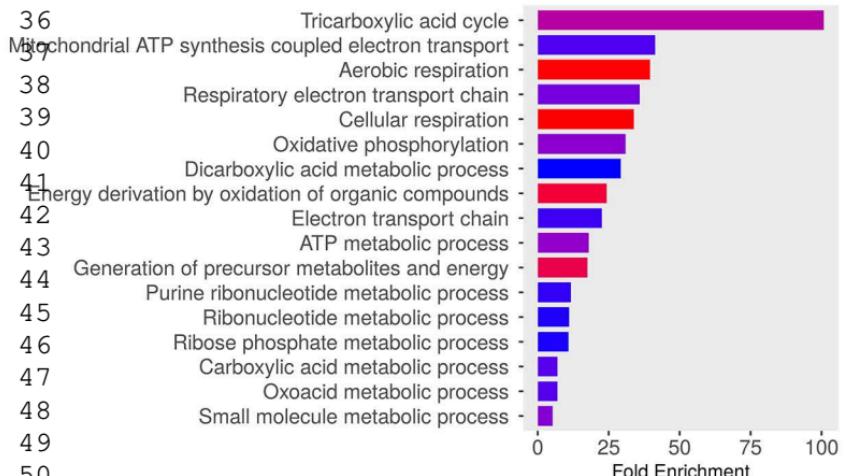
61

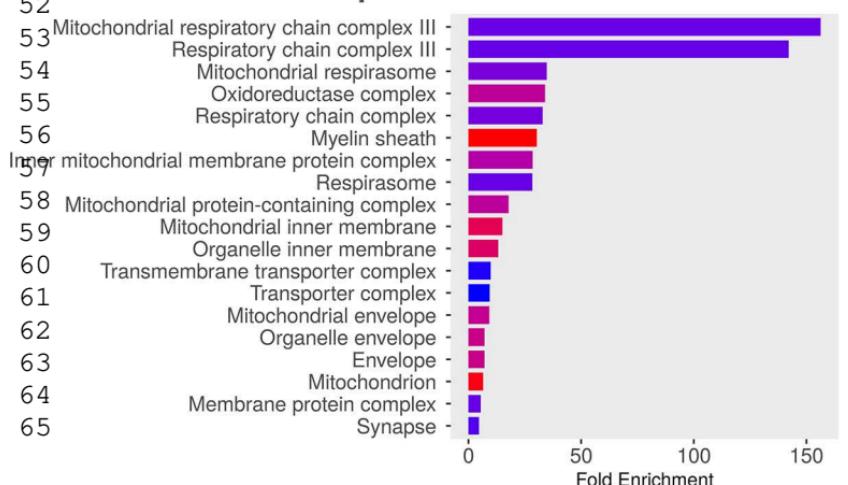

62

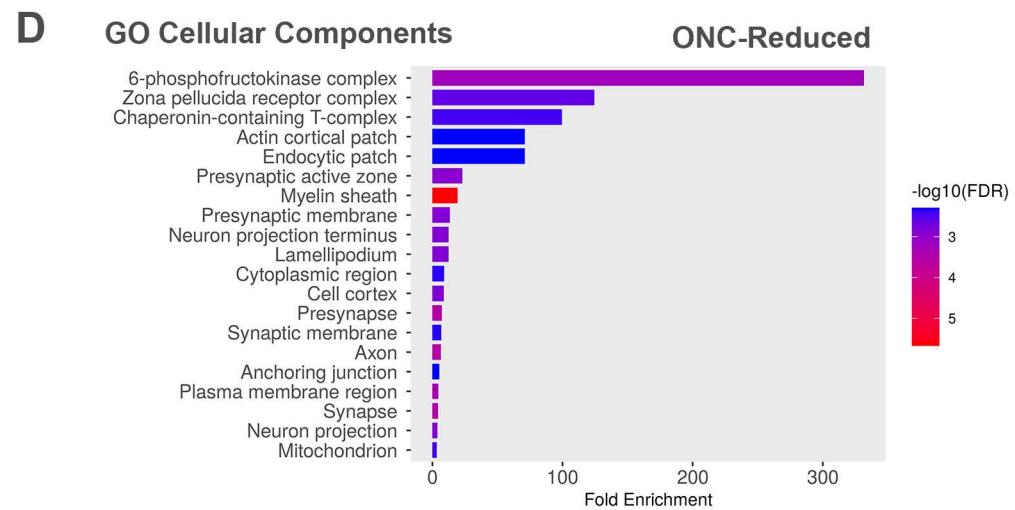
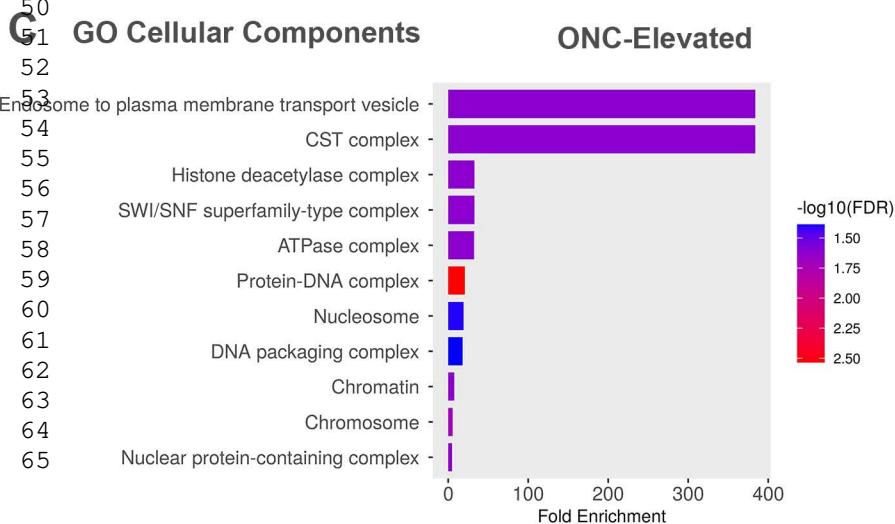
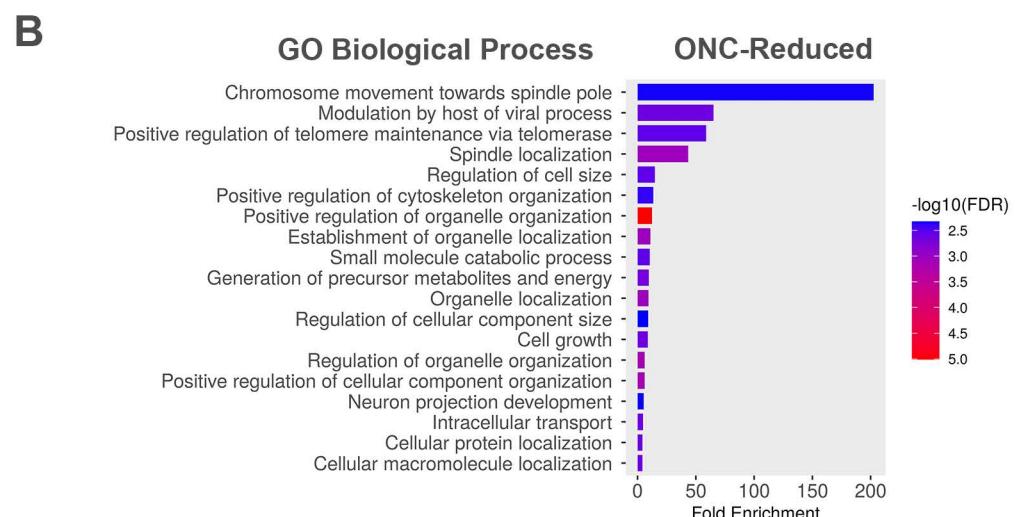
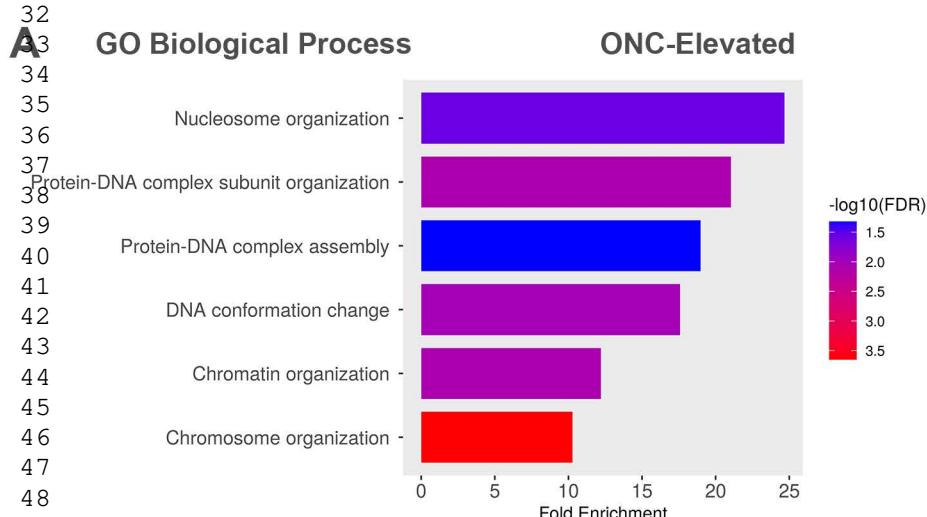
63

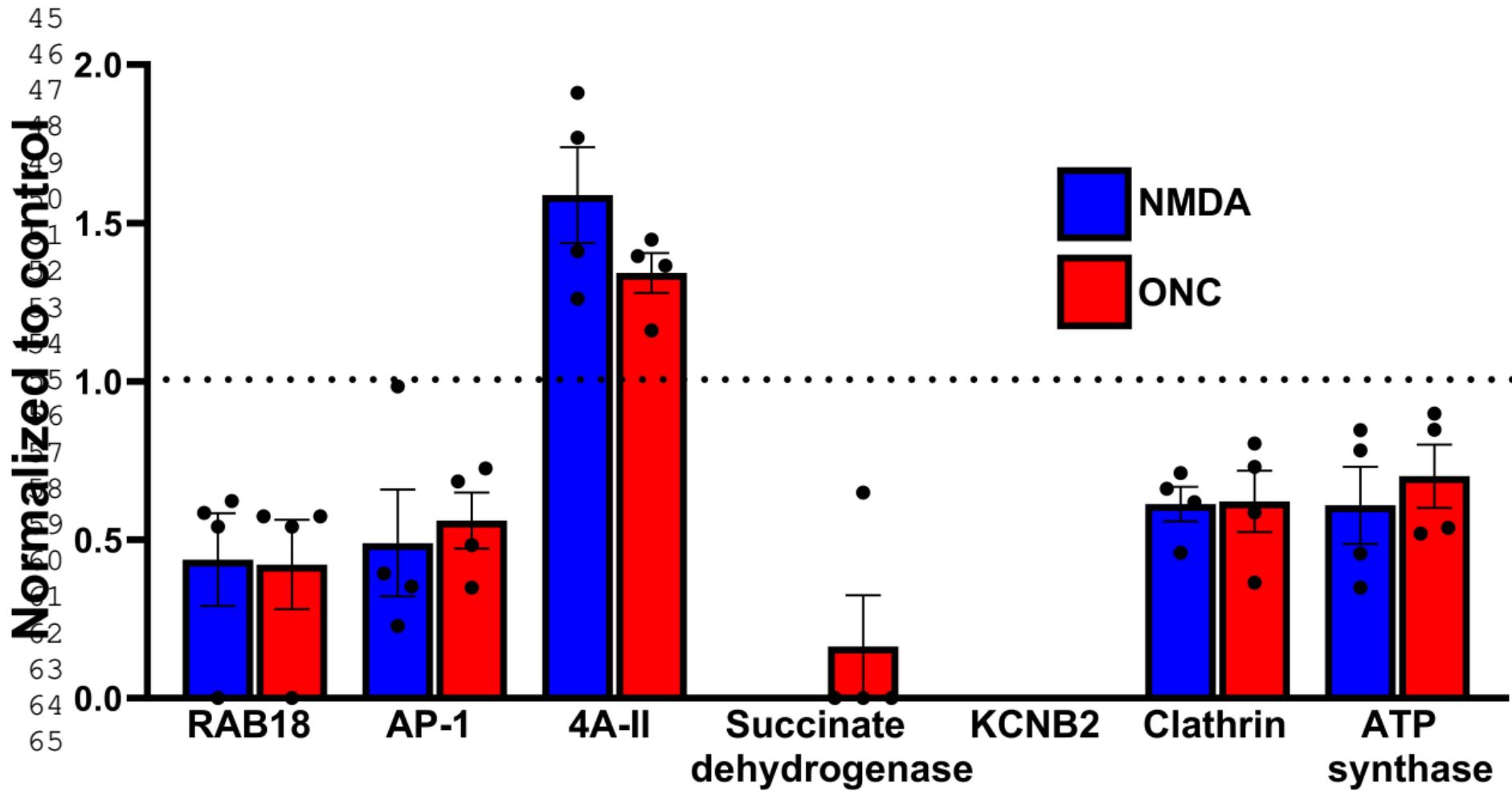

64

65


1 Tang Z, Zhang S, Lee C, Kumar A, Arjunan P, Li Y, Zhang F, Li X (2011) An optic nerve crush injury
2 murine model to study retinal ganglion cell survival. *J Vis Exp.*
3 Tannenberg RK, Scott HL, Westphalen RI, Dodd PR (2004) The identification and characterization of
4 excitotoxic nerve-endings in Alzheimer disease. *Curr Alzheimer Res* 1:11-25.
5 Thoreson WB, Witkovsky P (1999) Glutamate receptors and circuits in the vertebrate retina. *Prog*
6 *Retin Eye Res* 18:765-810.
7 Verbraak FD (2014) Neuroretinal degeneration in relation to vasculopathy in diabetes. *Diabetes*
8 63:3590-3592.
9 Verma A, Rani PK, Raman R, Pal SS, Laxmi G, Gupta M, Sahu C, Vaitheeswaran K, Sharma T
10 (2009) Is neuronal dysfunction an early sign of diabetic retinopathy? Microperimetry and
11 spectral domain optical coherence tomography (SD-OCT) study in individuals with diabetes,
12 but no diabetic retinopathy. *Eye (Lond)* 23:1824-1830.
13 Verma M, Lizama BN, Chu CT (2022) Excitotoxicity, calcium and mitochondria: a triad in synaptic
14 neurodegeneration. *Transl Neurodegener* 11:3.
15 Vujosevic S, Midena E (2013) Retinal layers changes in human preclinical and early clinical diabetic
16 retinopathy support early retinal neuronal and Muller cells alterations. *J Diabetes Res*
17 2013:905058.
18 Watkins TA, Wang B, Huntwork-Rodriguez S, Yang J, Jiang Z, Eastham-Anderson J, Modrusan Z,
19 Kaminker JS, Tessier-Lavigne M, Lewcock JW (2013) DLK initiates a transcriptional program
20 that couples apoptotic and regenerative responses to axonal injury. *Proceedings of the*
21 *National Academy of Sciences* 110:4039-4044.
22 Yumnamcha T, Guerra M, Singh LP, Ibrahim AS (2020) Metabolic Dysregulation and Neurovascular
23 Dysfunction in Diabetic Retinopathy. *Antioxidants (Basel)* 9.
24 Zhang L, Inoue M, Dong K, Yamamoto M (1998) Alterations in retrograde axonal transport in optic
25 nerve of type I and type II diabetic rats. *Kobe J Med Sci* 44:205-215.
26 Zhu Y, Zhang Y, Qi X, Lian Y, Che H, Jia J, Yang C, Xu Y, Chi X, Jiang W, Li Y, Mi J, Yang Y, Li X,
27 Tian G (2022) GAD1 alleviates injury-induced optic neurodegeneration by inhibiting retinal
28 ganglion cell apoptosis. *Exp Eye Res* 223:109201.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65


A 17 GO Biological Process NMDA-Elevated


B 34 GO Biological Process NMDA-Reduced

C 51 GO Cellular Components NMDA-Reduced

1
2 **Table 1- Proteins differentially expressed following NMDA treatment**
3

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	Protein Name	Accession Number	p-value	Level compared to control
	40S ribosomal protein S10	P63325	0.011	elevated
	Peptidyl-prolyl cis-trans isomerase FKBP1A	P26883	0.030	elevated
	SUMO-activating enzyme subunit 1	Q9R1T2	0.001	elevated
	Probable ATP-dependent RNA helicase DDX28	Q9CWT6	0.029	elevated
	Metastasis-associated protein MTA2	Q9R190	0.011	elevated
	6-phosphogluconolactonase	Q9CQ60	0.014	elevated
	Plasminogen activator inhibitor 1 RNA-binding protein	Q9CY58	0.043	elevated
	Phosducin	Q9QW08	0.020	elevated
	Eukaryotic translation initiation factor 4B	Q8BGD9	0.015	elevated
	DnaJ homolog subfamily C member 8	Q6NZB0	0.041	elevated
	ADP-ribosylation factor-like protein 3	Q9WUL7	0.036	elevated
	Hypoxanthine-guanine phosphoribosyltransferase	P00493	0.048	elevated
	Inositol (Myo)-1(Or 4)-monophosphatase 1	Q924B0	0.033	elevated
	DNA-(apurinic or apyrimidinic site) lyase	P28352	0.001	elevated
	Ras GTPase-activating protein 4	Q6PFQ7	0.032	elevated
	Lactoylglutathione lyase	Q9CPU0	0.027	elevated
	Cold-inducible RNA-binding protein	P60824	0.034	elevated
	Eukaryotic initiation factor 4A-II	E9Q561	0.011	elevated
	Guanylate kinase	Q64520	0.042	elevated
	Elongation factor 1-beta	O70251	0.039	elevated
	Heterogeneous nuclear ribonucleoprotein F	Q9Z2X1	0.018	elevated
	T-complex protein 1 subunit delta	P80315	0.025	elevated
	14-3-3 protein epsilon	D6REF3	0.019	elevated
	SUMO-activating enzyme subunit 2	Q9Z1F9	0.041	elevated
	Acidic leucine-rich nuclear phosphoprotein 32 family member B	Q9EST5	0.049	elevated
	Triosephosphate isomerase	P17751	0.007	elevated
	Aspartate aminotransferase, cytoplasmic	P05201	0.050	elevated
	Tubulin alpha-1C chain	P68373	0.035	elevated
	Phosphoglycerate mutase 1	Q9DBJ1	0.029	elevated
	Heterogeneous nuclear ribonucleoprotein A1	P49312	0.027	elevated
	Heterogeneous nuclear ribonucleoproteins A2/B1	O88569	0.043	elevated
	Small nuclear ribonucleoprotein D3	Q91VM2	0.031	elevated
	CST complex subunit STN1	Q8K2X3	0.049	elevated
	UMP-CMP kinase	Q9DBP5	0.043	reduced
	ATP-dependent 6-phosphofructokinase, platelet type	Q9WUA3	0.035	reduced
	NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial	Q91VD9	0.016	reduced
	Aconitase hydratase, mitochondrial	Q99KI0	0.016	reduced
	Inorganic pyrophosphatase	Q9D819	0.038	reduced

1
2 **Table 1- Proteins differentially expressed following NMDA treatment**
3

Sodium/potassium-transporting ATPase subunit alpha-3	Q6PIC6	0.020	reduced
Sodium/potassium-transporting ATPase subunit alpha-1	Q8VDN2	0.022	reduced
N(G),N(G)-dimethylarginine dimethylaminohydrolase 1	Q9CWS0	0.044	reduced
Voltage-dependent anion-selective channel protein 2	Q60930	0.029	reduced
Protein piccolo	Q9QYX7	0.021	reduced
Cytochrome b-c1 complex subunit 2, mitochondrial	Q9DB77	0.017	reduced
Clathrin coat assembly protein AP180	Q61548	0.021	reduced
Mitochondrial carrier homolog 2	Q791V5	0.022	reduced
ATP synthase subunit d, mitochondrial	Q9DCX2	0.020	reduced
Leucine-rich repeat-containing protein 59	Q922Q8	0.013	reduced
Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial	Q8BMF4	0.044	reduced
Synaptogyrin-3	Q8R191	0.032	reduced
Enoyl-CoA delta isomerase 1, mitochondrial	P42125	0.049	reduced
MICOS complex subunit Mic60	Q8CAQ8	0.031	reduced
Ras-related protein Rab-18	P35293	0.002	reduced
Protein NipSnap homolog 1	O55125	0.037	reduced
Fumarate hydratase, mitochondrial	P97807	0.009	reduced
Transportin-1	Q8BFY9	0.043	reduced
MAGUK p55 subfamily member 2	Q9WV34	0.050	reduced
Calcium-binding mitochondrial carrier protein Aralar1	Q8BH59	0.001	reduced
Cytochrome c1, heme protein, mitochondrial	Q9D0M3	0.025	reduced
Alpha-actinin-4	P57780	0.018	reduced
Succinyl-CoA ligase [ADP-forming] subunit beta, mitochondrial	Q9Z2I9	0.025	reduced
Transforming protein RhoA	Q9QUI0	0.019	reduced
Microtubule-associated protein 6	Q7TSJ2	0.010	reduced
Spna2 protein	B9EKJ1	0.030	reduced
Isocitrate dehydrogenase [NAD] subunit, mitochondrial	Q91VA7	0.048	reduced
AP-1 complex subunit beta-1	O35643	0.024	reduced
Carbonic anhydrase 14	Q9WVT6	0.012	reduced
40S ribosomal protein S3a	P97351	0.023	reduced
Pyruvate dehydrogenase E1 component subunit beta, mitochondrial	Q9D051	0.023	reduced
60S acidic ribosomal protein P0	P14869	0.014	reduced
Ornithine aminotransferase, mitochondrial	P29758	0.047	reduced
Sideroflexin-3	Q91V61	0.003	reduced
Sodium- and chloride-dependent GABA transporter 3	P31650	0.044	reduced
NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial	Q8K3J1	0.007	reduced
Mannose-P-dolichol utilization defect 1 protein	Q9R0Q9	0.003	reduced
Catenin (Cadherin associated protein), alpha 1	Q6NV50	0.041	reduced
Importin subunit beta-1	P70168	0.046	reduced

1
2 **Table 1- Proteins differentially expressed following NMDA treatment**
3

Catenin beta-1	Q02248	0.010	reduced
Cytochrome b-c1 complex subunit Rieske, mitochondrial	Q9CR68	0.020	reduced
Pyridoxal kinase	Q8K183	0.034	reduced

1
2 **Table 2- Proteins Differentially expressed following ONC**
3

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	Protein Names	Accession Number	p-value Control vs ONC	Level compared to control
	Splicing factor 3A subunit 1	Q8K4Z5	0.050	elevated
	CST complex subunit STN1	Q8K2X3	0.028	elevated
	Stomatin-like protein 2, mitochondrial	Q99JB2	0.015	elevated
	DnaJ homolog subfamily C member 8	Q6NZB0	0.047	elevated
	Hepatoma-derived growth factor-related protein 2	Q3UMU9	0.013	elevated
	Ddx3x protein	B9EKE9	0.017	elevated
	von Willebrand factor A domain-containing protein 8	Q8CC88	0.039	elevated
	High mobility group protein B3	O54879	0.003	elevated
	DNA-(apurinic or apyrimidinic site) lyase	P28352	0.004	elevated
	Inosine-5'-monophosphate dehydrogenase 1	P50096	0.047	elevated
	Peptidyl-prolyl cis-trans isomerase A	P17742	0.020	elevated
	Histone H2B type 3-A	Q9D2U9	0.024	elevated
	Acidic leucine-rich nuclear phosphoprotein 32 family member E	P97822	0.035	elevated
	Histone H2B type 1-H	Q64478	0.024	elevated
	Cullin-associated NEDD8-dissociated protein 1	Q6ZQ38	0.048	elevated
	Heterogeneous nuclear ribonucleoprotein F	Q9Z2X1	0.029	elevated
	Eukaryotic initiation factor 4A-II	E9Q561	0.012	elevated
	Protein DEK	Q7TNV0	0.030	elevated
	Ras-related protein Rab-6A	P35279	0.028	elevated
	Peroxiredoxin-1	P35700	0.042	reduced
	Transketolase	P40142	0.028	reduced
	Dihydropyrimidinase-related protein 2	O08553	0.007	reduced
	Small nuclear ribonucleoprotein D3	Q91VM2	0.013	reduced
	ATP synthase subunit d, mitochondrial	Q9DCX2	0.028	reduced
	Cytoplasmic dynein 1 heavy chain 1	Q9JHU4	0.045	reduced
	T-complex protein 1 subunit gamma	P80318	0.037	reduced
	Fumarate hydratase, mitochondrial	P97807	0.038	reduced
	Actin-related protein 3	Q99JY9	0.022	reduced
	Synaptotagmin-1	P46096	0.028	reduced
	ATP-dependent 6-phosphofructokinase, liver type	P12382	0.008	reduced
	T-complex protein 1 subunit alpha	P11983	0.021	reduced
	Protein kinase, cAMP dependent regulatory, type II alpha	Q8K1M3	0.039	reduced
	Clathrin coat assembly protein AP180	Q61548	0.026	reduced
	Carbonic anhydrase 14	Q9WVT6	0.045	reduced
	Cofilin-1	P18760	0.024	reduced

1
2 **Table 2- Proteins Differentially expressed following ONC**
3

Mitochondrial 2-oxoglutarate/malate carrier protein	Q9CR62	0.048	reduced
Ras-related protein Rab-18	P35293	0.002	reduced
Kras protein	Q5J7N1	0.027	reduced
AP-1 complex subunit beta-1	O35643	0.005	reduced
Enoyl-CoA hydratase, mitochondrial	Q8BH95	0.045	reduced
Transforming protein RhoA	Q9QUI0	0.037	reduced
Prohibitin	P67778	0.044	reduced
Transportin-1	Q8BFY9	0.040	reduced
26S proteasome non-ATPase regulatory subunit 2	Q8VDM4	0.023	reduced
Tubby-related protein 1	Q9Z273	0.042	reduced
Pyridoxal phosphate phosphatase	P60487	0.031	reduced
Protein NipSnap homolog 2	O55126	0.019	reduced
ATP-dependent 6-phosphofructokinase, muscle type	P47857	0.045	reduced
RNA-binding protein EWS	Q61545	0.018	reduced
Glycogen phosphorylase, brain form	Q8CI94	0.004	reduced
Ornithine aminotransferase, mitochondrial	P29758	0.048	reduced
Moesin	P26041	0.007	reduced
Microtubule-associated protein 6	Q7TSJ2	0.008	reduced
Catenin (Cadherin associated protein), alpha 1	Q6NV50	0.043	reduced
N(G),N(G)-dimethylarginine dimethylaminohydrolase 1	Q9CWS0	0.009	reduced
Sodium- and chloride-dependent GABA transporter 3	P31650	0.037	reduced
UMP-CMP kinase	Q9DBP5	0.008	reduced
Catenin beta-1	Q02248	0.009	reduced
Vesicle-associated membrane protein-associated protein A	Q9WV55	0.030	reduced
Protein disulfide-isomerase A4	P08003	0.044	reduced
Importin subunit beta-1	P70168	0.029	reduced

1
2 **Table 3- Proteins differentially expressed in both NMDA and ONC groups**
3

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	Protein Name	Accession Number	p-value control vs NMDA	p-value control vs ONC	Level- NMDA vs control	Level- ONC vs control
	Ras-related protein Rab-18	P35293	0.002	0.002	reduced	reduced
	DNA-(apurinic or apyrimidinic site) lyase	P28352	0.001	0.004	elevated	elevated
	AP-1 complex subunit beta-1	O35643	0.024	0.005	reduced	reduced
	UMP-CMP kinase	Q9DBP5	0.043	0.008	reduced	reduced
	Microtubule-associated protein 6	Q7TSJ2	0.010	0.008	reduced	reduced
	N(G),N(G)-dimethylarginine dimethylaminohydrolase 1	Q9CWS0	0.044	0.009	reduced	reduced
	Catenin beta-1	Q02248	0.010	0.009	reduced	reduced
	Eukaryotic initiation factor 4A-II	E9Q561	0.011	0.012	elevated	elevated
	Small nuclear ribonucleoprotein D3	Q91VM2	0.031	0.013	elevated	reduced
	Clathrin coat assembly protein AP180	Q61548	0.021	0.026	reduced	reduced
	ATP synthase subunit d, mitochondrial	Q9DCX2	0.020	0.028	reduced	reduced
	CST complex subunit STN1	Q8K2X3	0.049	0.028	elevated	elevated
	Importin subunit beta-1	P70168	0.046	0.029	reduced	reduced
	Heterogeneous nuclear ribonucleoprotein F	Q9Z2X1	0.018	0.029	elevated	elevated
	Sodium- and chloride-dependent GABA transporter 3	P31650	0.044	0.037	reduced	reduced
	Transforming protein RhoA	Q9QUI0	0.019	0.037	reduced	reduced
	Fumarate hydratase, mitochondrial	P97807	0.009	0.038	reduced	reduced
	Transportin-1	Q8BFY9	0.043	0.040	reduced	reduced
	Catenin (Cadherin associated protein), alpha 1	Q6NV50	0.041	0.043	reduced	reduced
	Carbonic anhydrase 14	Q9WVT6	0.012	0.045	reduced	reduced
	DnaJ homolog subfamily C member 8	Q6NZB0	0.041	0.047	elevated	elevated
	Ornithine aminotransferase, mitochondrial	P29758	0.047	0.048	reduced	reduced

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: