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Abstract

Declarative memory retrieval is thought to involve reinstatement of the neuronal activity patterns
elicited and encoded during a prior learning episode. Recently, it has been suggested that two mech-
anisms operate during reinstatement, dependent on task demands: individual memory items can be
reactivated simultaneously as a clustered occurrence or, alternatively, replayed sequentially as tem-
porally separate instances. In the current study, participants learned associations between images
that were embedded in a directed graph network and retained over a brief 8-minute consolidation
period. During a subsequent cued recall session, participants retrieved the learned information while
undergoing magnetoencephalographic (MEG) recording. Using a trained stimulus decoder, we found
evidence for clustered reactivation of learned material. Reactivation strength of individual items dur-
ing clustered reactivation decreased as a function of increasing graph distance, an ordering present
solely for successful retrieval but not with retrieval failure. In line with previous research, we found
evidence that sequential replay was dependent on retrieval performance and limited to low perform-
ers. The results provide further evidence for the existence of different performance-dependent re-
trieval mechanisms suggesting graded clustered reactivation as a plausible mechanism to search

within abstract cognitive maps.
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Introduction

Memory relies on three distinct stages: encoding (learning), consolidation (strengthening and
transforming) and retrieval (reinstating) of information. New episodic memories are learned by
encoding a representation, thought to be realized in a specific spatio-temporal neuronal firing pattern
in hippocampal and neocortical networks (Frank et al., 2000; Preston & Eichenbaum, 2013). These
firing patterns are reactivated during later rest or sleep, sometimes in fast sequential sequences, a
process linked to memory consolidation (Born & Wilhelm, 2012; Feld & Born, 2017). Similarly, during
retrieval, the same firing patterns seen during encoding are replayed in a manner that predicts
retrieval success (Carr et al., 2011; Foster, 2017). Even though replay has been studied most
intensely with respect to the hippocampus, a replay of memory traces in temporal succession is
suggested as a general mechanism for planning, consolidation, and retrieval (Buhry et al., 2011).
While a rich body of evidence exists in rodents (Ambrose et al., 2016; Chen & Wilson, 2023; Foster
& Knierim, 2012; Olafsdattir et al., 2018), the contributions of replay to memory storage and retrieval
in humans are only beginning to be understood (Brunec & Momennejad, 2022; Eichenlaub et al.,
2020; Fuentemilla et al., 2010; Wimmer et al., 2020).

Heretofore, one obstacle has been the difficulty in measuring sequential replay or general
network reactivation in humans (NB here we follow the definition of Genzel et al., 2020, where
reactivation is used as an umbrella term for any form of reoccurrence of a previously encoded neural
pattern related to information-encoding, and replay refers to reactivation events with a temporally
sequential nature). The most straightforward method would be to use intracranial
electroencephalography (iIEEG), though this is generally only feasible within individuals undergoing
treatment for epilepsy (Axmacher et al., 2008; Engel et al., 2005; Staresina et al., 2015; Zhang et
al., 2015). Another approach is to use functional magnetic resonance imaging (Schuck & Niv, 2019;
Wittkuhn & Schuck, 2021) though the latter is burdened by the challenge posed by the sluggishness
of the hemodynamic response. Researchers have recently started to leverage the spatio-temporal
precision of magnetoencephalography (MEG), in combination with machine learning based brain
decoding techniques, to reveal sequential human replay in humans across a range of settings that
includes memory, planning and inference (Eldar et al., 2018; Kurth-Nelson et al., 2016; Liu et al.,
2019; Liu, Mattar, et al., 2021; McFadyen et al., 2023; Nour et al., 2021; Wimmer et al., 2020, 2023;
Wise et al., 2021). Many of the latter studies deploy a novel statistical analysis technique, temporally
delayed linear modeling (Liu, Dolan, et al., 2021). TDLM, and its variants, has enabled identification
of sequential replay for previously learned material during resting state (Liu et al., 2019; Liu, Mattar,
et al., 2021), during planning of upcoming behavioral output (Eldar et al., 2020; Kurth-Nelson et al.,
2016; McFadyen et al., 2023; Wise et al., 2021) and retrieval (Wimmer et al., 2020).

In relation to memory, Wimmer et al. (2020) reported sequential reactivation of episodic
content after a single initial exposure during cued recall one day post-encoding. Specifically, they

showed participants eight short, narrated stories, each consisting of four different visual story anchor
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elements taken from six different categories (faces, buildings, body parts, objects, animals, and cars)
and a unique ending element. During a next day recall session, participants were shown two story
elements and asked whether both elements were part of the same story, and whether the second
appeared before or after the first. During the retrieval test they showed that stories were replayed in
reverse order to the prompt (i.e., when prompting element 3 and element 5, successful retrieval
would traverse element 5 through 4 and arrive at element 3). However, this effect was only found in
those with regular performance, while in high performers there was no evidence for temporal
succession. Instead, high performers simultaneously reactivated all related story elements at in a
clustered manner.

In memory research, declarative tasks often avail of item lists or paired associates (Barnett
et al., 2016; Cho et al., 2020; Feld et al., 2013; Kolibius et al., 2021; Roux et al., 2022; Schdnauer
et al., 2014; Stadler et al., 1999, 1999). When studying sequential replay, the task structure must
have a linear element (Liu et al., 2019; Liu, Mattar, et al., 2021; Wimmer et al., 2020; Wise et al.,
2021) and such linearity is a defining feature of episodic memory (Tulving, 1993). By contrast,
semantic memory is rarely organized linearly and instead involves complex and interconnected
knowledge networks or cognitive maps (Behrens et al., 2018) motivating researchers to investigate
how memory works when organized into a complex graph structure (Eldar et al., 2020; G. Feld et
al., 2021; Garvert et al., 2017; Schapiro et al., 2013; for an overview see Momennejad, 2020).
However, little is currently known regarding replay involvement in consolidation and retrieval

processes for information embedded in graph structures.

We examined the relationship of graph learning to reactivation and replay in a task where
participants learned a directed, cyclic graph, represented by ten connected images. Eight nodes had
exactly one direct predecessor and successor node, two hub nodes, each had two direct
predecessors and successors (See Figure 2B). The task was arranged such that participants could
not rely on simple pair mappings but needed to learn the context of each edge. Additionally, the
graph-structure was never shown to the participant as a ‘birds-eye-view’, encouraging implicit
learning of the underlying structure. Following a retention period, consisting of eight minutes eyes
closed resting state, participants then completed a cued recall task, which is the focus of the current

analysis.


https://doi.org/10.1101/2023.07.31.551234
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.31.551234; this version posted October 12, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Methods

Participants

We recruited thirty participants (15 men and 15 women) between 19 and 32 years old (mean age
24.7 years). Inclusion criteria were right-handedness, no claustrophobic tendencies, no current or
previous diagnosed mental disorder, non-smoker, fluency in German or English, age between 18
and 35 and normal or corrected-to-normal vision. Caffeine intake was requested to be restricted for
four hours before the experiment. Participants were recruited through the institute’s website and
mailing list and various local Facebook groups. A single participant was excluded due to a corrupted
data file and replaced with another participant. We acquired written informed consent from all
participants, including consent to share anonymized raw and processed data in an open access
online repository. The study was approved by the ethics committee of the Medical Faculty Mannheim
of Heidelberg University (ID: 2020-609). While we had preregistered the study design and an
analysis approach for the resting state data (https://aspredicted.org/kx9xh.pdf, #68915) here we

report analyses of the retrieval period. The current analysis conceptually replicates the analyses and
hypotheses of Wimmer et al. (2020) focusing on the retrieval period albeit in a much more complex
and therefore naturalistic paradigm and are therefore, despite not being preregistered, mainly of
confirmatory nature. We wish to maintain transparency by acknowledging that the findings from the
preregistered analysis concerning the resting state data, are being prepared for publication as part

of a distinct submission.
Procedure

Participants came to the laboratory for a single study session of approximately 2.5 hours. After filling
out a questionnaire about their general health, their vigilance state (Stanford Sleepiness Scale,
Hoddes et al., 1973) and mood (PANAS, Watson et al., 1988), participants performed five separate
tasks while in the MEG scanner. First, an eight-minute eyes-closed resting state was recorded. This
was followed by a localizer task (~30 minutes), in which all 10 items were presented 50 times in
pseudo-randomized order, using auditory and visual stimuli. Next, participants learned a sequence
of the 10 visual items embedded into a graph structure until they achieved 80% accuracy or reached
a maximum of six blocks (7 to 20 minutes). Following this, we recorded another eight-minutes eyes-
closed resting state to allow for initial consolidation and, finally, a cued recall testing session (four

minutes). For an overview see Figure 1.
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Figure 1: Experiment procedure in the MEG. Localizer task: The ten individual items were repeatedly
presented to the participant auditorily and visually to extract multisensory activity patterns. Learning:
Participants learned pseudo-randomly generated triplets of the ten items by trial and error. These triplets
were determined by an underlying graph structure. Participants were unaware of the exact structure and
graph layout. Consolidation: Eight minutes of resting state activity were recorded. Retrieval: Participants
recall was tested by cueing triplets from a sequence. The letters in the pictograms are placeholders for
individual images.

’

Stimulus material

Visual stimuli were taken from the colored version (Rossion & Pourtois, 2001) of the Snodgrass &
Vanderwart (1980) stimulus dataset. To increase brain pattern discriminability, images were chosen
with a focus on diversity of color, shape and category (see Figure 2B) and for having short descriptive
words (one or two syllables) both in German and English. Auditory stimuli were created using the
Google text-to-speech API, availing of the default male voice (SsmlVoiceGender. NEUTRAL) with the
image description labels, either in German or English, based on participants language preference.

Auditory stimulus length ranged from 0.66 to 0.95 seconds.


https://doi.org/10.1101/2023.07.31.551234
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.31.551234; this version posted October 12, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Task description

A Localizer Trial B Sequence
Auditory Visual o P
Stimulus Stimulus b @ > ;"‘ g
0.75 -1.25 seconds 1-1.5 seconds 1 second \ N }% <~

‘)) Mountain

C Learning Trial

Predecessor Current D {: Choice D
Image Image Prompt Selected Feedback

0.75-1.25 1.5 seconds 1.5 seconds max 10 seconds 1 second 3 second
seconds

D Retrieval Trial

Precessor Current .
ITI Image Image I:{> Prompt ::> Choice

0.75-1.25 1.5 seconds 1.5 seconds max 10 seconds 1 second
seconds

Figure 2: Task structure: A) During the localizer task, a word describing the stimulus was played back via
headphones and the item then shown to the participant. In 4% of trials, the audio and visual cue did not
match and in this case, participants were instructed to press a button (attention check). B) Graph layout of
the task. Two elements could appear in two different triplets. The graph was directed such that each tuple
had exactly one successor (e.g., apple—zebra could only be followed by cake and not mug), but individual
items could have different successors (zebra alone could be followed by mug or cake). Participants never
saw the illustrated birds-eye-view. C) During learning, one node was randomly chosen as the current node in
each trial. First, its predecessor node was shown, then the current node was shown, then the participant was
given the choice of three items and must choose the correct node that followed the displayed cue tuple.
Feedback was then provided to the participant. This process was repeated until the participant reached 80%
accuracy for any block or reached a maximum of six blocks of learning. D) The retrieval testing followed the
same structure as the learning task, except that no feedback was given.

Localizer task
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In the localizer task, the ten graph items were shown to the participants repeatedly in a pseudo-
random order where a DeBruijn-sequence (DeBruijn, 1946) was used to ensure that the number of
transitions between any two stimuli was equal. Two runs of the localizer were performed per
participant, comprising 250 trials with 25 item repetitions. Each trial started with a fixation cross
followed by an inter-trial interval of 0.75 to 1.25 seconds. Next, to encourage a multi-sensory and
neural representation, the name of the to-be-shown image was played through in-ear head-phones
(maximum 0.95 seconds) followed 1.25 to 1.75 seconds later by the corresponding stimulus image,
shown for 1.0 second. As an attention check, in ~4% of the trials the auditory stimulus did not match
the image and participants were instructed to press a button as fast as possible to indicate detection
of an incongruent auditory-visual pair. A short break of maximum 30 seconds was scheduled every
80 trials. Between the two parts of the localizer task, another short break was allowed. Stimulus
order was randomized and balanced between subjects. To familiarize the participant with the task, a
short exemplar of the localizer task with dummy images was shown beforehand. All subsequent

analyses were performed using the visual stimulus onset as a point of reference.
Graph-Learning

The exact same images deployed in the localizer task were randomly assigned to nodes of the graph,
as shown in Figure 2B. Participants were instructed to learn a randomized sequence of elements
with the goal of reaching 80% performance within six blocks of learning. During each block,
participants were presented with each of the twelve edges of the graph exactly once, in a balanced,
pseudo-randomized order. After a fixation cross of 3.0 seconds a first image (predecessor) was
shown on the left of the screen. After 1.5 seconds, the second image (current image) appeared in
the middle of the screen. After another 1.5 seconds, three possible choices were displayed in vertical
order to the right of the two other images. One of the three choice options was the correct successor
of the cued edge. Of the two distractor stimuli, one was chosen from a distal location on the graph
(five to eight positions away from the current item), and one was chosen from a close location (two
to four positions away from the current item). Neither of the latter were directly connected to any of
the other elements onscreen. Participants were given a controller with three buttons to indicate their
answer. The correct item was then highlighted for 3.0 seconds, and the participant’s performance
was indicated (“correct” or “wrong”) (see Figure 2C). No audio was played during learning. The
participant was instructed to learn the sequence transitions by trial-and-error, and instructed that
there was no semantic connection between the items (i.e., that the sequence did not follow any
specific logic related to image content). Participants completed a minimum of two, and a maximum
of six blocks of learning. To prevent ceiling effects, learning was discontinued if a participant reached
80% accuracy during any block. To familiarize participants with the task, a short example with dummy
images was shown before the learning task. Triplets were shown in a random order and choices
were displayed in a pseudo-random position that ensured the on-screen position of the correct item

could never be at the same position for more than three consecutive trials. Distractor choices were
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balanced such that exposure to each individual item was approximately equal.
Resting State

After graph learning, participants completed a resting state session of eight minutes. Here, they were
instructed to close their eyes and “to not think of anything particular”. The resting state data are not

reported here.
Retrieval Test

After the resting state, we presented subjects with a single testing session block, which followed the
exact layout of the learning task with the exception that no feedback was provided as to whether

choices were correct or incorrect (Figure 2D).
MEG Acquisition and Pre-Processing

MEG was recorded in a passively shielded room with a MEGIN TRIUX (MEGIN Oy, Helsinki, Finland)
with 306 sensors (204 planar gradiometers and 102 magnetometers) at 1000 Hz with a 0.1-330 Hz
band-pass acquisition filter at the ZIPP facility of the Central Institute for Mental Health in Mannheim,
Germany. Before each recording, empty room measurements made sure that no ill-functioning
sensors were present. Head movement was recorded using five head positioning coils. Bipolar
vertical and horizontal electrooculography (EOG) as well as electrocardiography (ECG) was
recorded. After recording, the MEGIN proprietary MaxFilter algorithm (version 2.2.14) was run using
temporally extended signal space separation (tSSS) and movement correction with the MaxFilter
default parameters (Taulu & Simola, 2006, raw data buffer length of 10 s, and a subspace correlation
limit of .98. Bad channels were automatically detected at a detection limit of 7; none had to be
excluded. The head movement correction algorithm used 200 ms windows and steps of 10 ms. The
HPI coil fit accept limits were set at an error of 5 mm and a g-value of .98). Using the head movement
correction algorithm, the signals were virtually re-positioned to the mean head position during the
initial localizer task to ensure compatibility of sensor-level analysis across the recording blocks. The
systematic trigger delay of our presentation system was measured and visual stimuli appeared
consistently 19 milliseconds after their trigger value was written to the stimulus channel, however, to
keep consistency with previous studies that do not report trigger delay, timings in this publication are

reported uncorrected (i.e., ‘as is’, not corrected for this delay).

Data were pre-processed using Python-MNE (version 1.1, Gramfort, 2013). Data were down-
sampled to 100 Hz using the MNE function ‘resample’ (with default settings, which applies an anti-
aliasing filter before resampling with a brick-wall filter at the Nyquist frequency in the frequency
domain) and ICA applied using the ‘picard’ algorithm (Ablin et al., 2018) on a 1 Hz high-pass filtered
copy of the signal using 50 components. As recommended, ICA was set to ignore segments that
were marked as bad by Autoreject (Jas et al., 2017) on two-second segments. Components
belonging to EOG or ECG and muscle artifacts were identified and removed automatically using

MNE functions find_bads_eog’, find_bads_ecg’ and ‘find_bads_emg’, using the EOG and ECG as
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reference signals. Finally, to reduce noise and drift, data were filtered with a high-pass filter of 0.5
Hz using the MNE filter default settings (hamming window FIR filter, -6 dB cutoff at 0.25 Hz, 53 dB

stop-band attenuation, filter length 6.6 seconds).

Trials for the localizer task were created from -0.1 to 0.5 seconds relative to visual stimulus
onset to train the decoders and for the retrieval task, from 0 to 1.5 seconds after onset of the second
visual cue image. No baseline correction was applied. To detect artifacts, Autoreject was applied
using the default settings, which repaired segments by interpolation in case artifacts were present in
only a limited number of channels and rejected trials otherwise (see Supplement 1). Finally, to
improve numerical stability, signals were re-scaled to similar ranges by multiplying values from
gradiometers by 1e'® and from magnetometers by 2e'. These values were chosen empirically by
matching histograms for both channel types. As outlier values can have significant influence on the
computations, after re-scaling, values that were still above 1 or below -1 were “cutoff’” and
transformed to smaller values by multiplying with 1e2. Anonymised and maxfiltered raw data are
openly available at Zenodo (https://doi.org/10.5281/zenodo.8001755), code is made public on
GitHub (https://github.com/CIMH-Clinical-Psychology/DeSMRRest-clustered-reactivation ).

Decoding framework and training

In line with previous investigations (Kurth-Nelson et al., 2016; Liu et al., 2019; Wimmer et al., 2020)
we applied Lasso regularized logistic regression on sensor-level data of localizer trials using the
Python package Scikit-Learn (Pedregosa et al., 2011). Decoders were trained separately for each
participant, and each stimulus, using liblinear as a solver with 1000 maximum iterations and a L1
regularization of C=6. This value was determined based on giving the best average cross-validated
peak accuracy across all participants when searching within the parameter space of C = 1 to 20 in
steps of 0.5 using the same approach as outlined below (note that Scikit-Learn shows stronger
regularization with lower C values, opposite to e.g., MATLAB). To circumvent class imbalance due
to trials removed by Autoreject, localizer trials were stratified such that they contained an equal
number of trials from each stimulus presentation by randomly removing trials from over-represented
classes. Using a cross validation schema (leaving one trial out for each stimulus per fold, i.e., 10
trials left out per fold), for each participant the decoding accuracy was determined across time
(Figure 3A). During cross validation, for each fold, decoders were trained on data of each 10
milliseconds time step and tested on left out data from the same time step. Therefore, decoding
accuracy reflects the separability of the stimulus classes by the sensor values for each time step

independently.
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Figure 3: A) Decoding accuracy of the currently displayed item during the localizer task for participants with a
decoding accuracy higher than 30% (n=21). The mean peak time point across all participants corresponded
to 210 ms, with an average decoding peak decoding accuracy of 42% (n=21). Note that the displayed graph
combines accuracies across participants, where peak values were computed on an individual level and then
averaged. Therefore, the indicated individual mean peak does not match the average at a group level. B)
Memory performance of participants after completing the first block of learning, the last block (block 2 to 6,
depending on speed of learning), and the test performance. C) Classifier transfer within the localizer when
trained and tested at different time points determined by cross validation. D) Classifier transfer from the
localizer session to the retrieval session when trained at different time points during training and tested at
different time points during cue presentation of the first (predecessor) image cue during retrieval. For B and C:
Within the white outline, classification was significantly above chance level (cluster permutation testing,
alpha<0.05).

For each participant, a final set of decoders (i.e., 10 decoders per participant, for each stimulus one
decoder) were trained at 210 milliseconds after stimulus onset, a time point reflecting the average

peak decoding time point computed for all participants (for individual decoding accuracy plots see
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Supplement 3). For the final decoders, data from before the auditory stimulus onset was added as a
negative class with a ratio of 1:2. Adding null data allows decoders to report low probabilities for all
classes simultaneously in absence of a matching signal and reduces false positives while retaining
relative probabilities between true classes. Together with use of a sparsity constraint on the logistic
regression coefficients, this increases the sensitivity of sequence detection by reducing spatial
correlations of decoder weights (see also Liu, Dolan, et al., 2021). For a visualization of relevant

sensor positions see Supplement 5.

Decoders were then applied to trials of the test session, starting from the stimulus onset of the
second sequence cue (“‘current image”) to just prior to onset of the selection prompt (1.5 seconds).
For each trial, this resulted in ten probability vectors across the trial, one for each item, in steps of
10 milliseconds. These probabilities indicate the similarity of the current sensor-level activity to the
activity pattern elicited by exposure to the stimulus and can therefore be used as a proxy for detecting
active representations, akin to a representational pattern analysis approach (RSA, Grootswagers et
al., 2017). As a sanity check, we confirmed that we could decode the currently on-screen image by
applying the final trained decoders to the first image shown during test (predecessor stimulus, see
Figure 3D).

Sequential replay analysis

To test whether individual items were reactivated in sequence at a particular time lag, we applied
temporally delayed linear modeling (TDLM, Liu, Dolan, et al., 2021) on the time span after the
stimulus onset of the sequence cue (“‘current image”). In brief, this method approximates a time
lagged cross-correlation of the reactivation strength in the context of a particular transition pattern,

quantifying the strength of a certain activity transition pattern distributed in time.

Using a linear model, we first estimate evidence for sequential activation of the decoded item
representations at different time lags. For each item i at each time lag At up to 250 milliseconds we

estimated a linear model of form:
Y; = Y(At) X B;(At)

where Y; contains the decoded probability output of the classifier of item i and Y (At) is simply Y time
lagged by At. When solving this equation for §;(At) we can estimate the predictive strength of Y (At)
for the occurrence of Y; at each time lag At. Calculated for each stimulus i, we then create an
empirical transition matrix T, (At) that indexes evidence for a transition of any item j to item i at time
lag At (i.e., a 10x10 transition matrix per time lag, each column j contains the predictive strength of
j for each item i at time lag At). These matrices are then combined with a ground truth transition
matrix T (encoding the valid sequence transitions of interest) by taking the Frobenius inner product.

This returns a single value Z,, for each time lag, indicating how strongly the detected transitions in
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the empirical data follow the expected task transitions, which we term “sequenceness”. Using
different transition matrices to depict forward (Ty) and backward (T},) replay, we quantified evidence
for replay at different time lags for each trial separately. This process is applied to each trial
individually, and resulting sequenceness values are averaged to provide a final sequenceness value
per participant for each time lag At. To test for statistical significance, we create a baseline
distribution by permuting the rows of the transition matrix 1000 times (creating transition matrices
with random transitions; identity-based permutation, Liu, Dolan, et al., 2021) and calculate
sequenceness across all time lags for each permutation. The null distribution is then constructed by

taking the peak sequenceness across all time lags for each permutation.
Differential reactivation analysis

To test for clustered, non-sequential reactivation, we adopted a similar approach to that of Wimmer
et al. (2020). As decoders were trained independently for each stimulus, all decoders reacted to
presentation of any visual stimulus to some extent. By using differences in reactivation between
stimuli, this aggregated approach allowed us to examine more closely whether near items are more
strongly activated than distant items, thereby quantifying non-sequential reactivation with more
sensitivity. For each trial, the mean probability of the two items following the current on-screen item
were contrasted with the mean probability of all items further away by subtraction. The two items
currently displayed on-screen (i.e., predecessor and current image) were excluded. As only few trials
were available for this analysis per participant, the raw probabilities were noisy. Therefore, to address
this we applied a Gaussian smoothing kernel (o = 1) to the probability vectors across the time
dimension. By shuffling the stimulus labels 1000 times, we constructed an empirical permutation
distribution to determine at which time points the differential reactivation of close items was

significantly above chance (a = 0.05).
Graph reactivation analysis

To detect whether reactivation strength was modulated by underlying graph structure, we compared
the raw reactivation strength of all items by distance on the directed graph. First, we calculated a
time point of interest by computing the peak probability estimate of decoders across all trials. Then,
for each participant, for each trial we sorted all nodes based on their distance to the current on-
screen item on the directed graph. Again, we smoothed probability values with a Gaussian kernel
(o = 1) and ignored the predecessor on-screen item. Following this, we evaluated the sorted decoder
probabilities at the previously determined peak time point. Using a repeated measures ANOVA on
the mean probability values per distance per participant, we then estimated whether reactivation

strength was modulated by graph distance.
Exclusions

Replay analysis relies on a successive detection of stimuli where the chance of detection

exponentially decreases with each step (e.g., detecting two successive stimuli with a chance of 30%
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leaves a 9% chance of detecting the replay event). Therefore, all participants with a peak decoding
accuracy of below 30% were excluded from the analysis (nine participants), a threshold set before
starting the analysis process. Additionally, as successful learning was necessary for the paradigm,
we ensured all remaining participants had a retrieval performance of at least 50% (see Supplement
2).

Results

Behavioral

All but one participant learned the sequence of ten images embedded into the directed graph with
partial overlap (Supplement 3). On average, participants needed 5 blocks of learning (range 2 to 6,
see Supplement 4) and manifested a memory performance of 76% during their last block of learning
(range: 50% to 100%). After eight minutes of rest, retrieval performance improved marginally to a
mean of 82% (t=-2.053, p=0.053, effect size r=0.22, Figure 3). Note that since the last learning block
included feedback, this marginal increase cannot necessarily be attributed to consolidation

processes.
Decoder training

We first confirmed we could decode brain activity elicited by the ten items using a cross-validation
approach. Indeed, decoders were able to separate the items presented during the localizer task (see
Figure 3A) well, with an average peak decoding accuracy of ~42% across all participants (range:
32% to 57%, chance level: 10%, excluding participants with peak accuracy < 30%, for all participants
see Supplement 3). We calculated the time point of the mean peak accuracy for each participant
separately and subsequently used the average best time point, across all included participants, at
206 milliseconds (rounded to 210 milliseconds) for training of our final decoders. This value is very
close in range to the time point found in previous studies (Kurth-Nelson et al., 2016; Liu et al., 2019;
Liu, Mattar, et al., 2021; Wimmer et al., 2020). The decoders also transferred well to stimulus
presentation during the retrieval trials and could effectively decode the current prompted image cue

with above chance significance (cluster permutation test, see Figure 3D).
Sequential forward replay in subjects with lower memory performance

Next, we assessed whether there was evidence for sequential replay of the learned sequences
during cued recall. Using TDLM we assessed whether decoded reactivation probabilities followed a
sequential temporal pattern, in line with transitions on the directed graph. Here we focused on all
allowed graph transitions and analyzed the entire time window, of 1500 milliseconds, after onset of
the test cue ("current image”). We found positive sequenceness across all time lags for forward
sequenceness, with a significant increase at around 40-50 milliseconds for forward sequenceness

(Figure 4A). As discussed in Liu, Dolan et al. (2021), correction for multiple comparisons for this
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sequenceness measure across time is non-trivial and the maximum of all permutations represents
a highly conservative statistic. Due to this complexity, we additionally report the 95% percentile of
sequenceness maximas across time per permutation. Nevertheless, as we did not have a pre-
defined time lag of interest beforehand, and to mitigate multiple-comparisons, we additionally
computed the mean sequenceness across all computed time lags for each participant (similar as
previously proposed in the context of a sliding window approach in Wise et al., 2021). This measure
can help reveal an overall tendency for replay of task states that is invariant to a specific time lag.
Our results show that across all participants, there is a significant increase in task-related forward
sequential reactivation of states (p=0.027, two-sided permutation test with 1000 permutations; 95%
of permutation maximas reached at 40-50 ms, Figure 4B). Following up on this, in a second analysis,
we asked whether mean sequential replay was associated with memory performance and found a
significant negative correlation between retrieval performance and forward replay (forward: r=-0.46,
p=0.031; backward: r=-0.13, p=0.56, see Figure 4C). In line with previous results (Wimmer et al.,
2020) low-performing participants had higher forward sequenceness when compared to high-
performing participants, whose mean sequenceness tended towards zero.

A Sequenceness during cued test B Permutation distribution C Perf. x sequenceness

forward forward forward
r=-0.46 p=0.031

observed

e 0 p=0.027 v 1.0
[} (]
c = 40 <
] = ©
g 0.00 3 Eos
(] o o
C:T forward sequenceness 20 E
9 _0.024 --- perm.max, 206
95%
0 50 100 150 200 250 —0.01 0.00 0.01 -0.02 0.00 0.02
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Figure 4: A) Strength of forward and backward sequenceness across different time lags up to 250 ms during
the 1500 ms window after cue onset. Two significance thresholds are shown: Conservative threshold of the
maximum of 1000 permutations of classification labels across all time lags and the 95% percentiles (see
Methods section for details). B) Permutation distribution of mean sequenceness values across 1000 state
permutations. Observed mean sequenceness is indicated with a red line. C) Association between memory

performance and mean sequenceness value computed across all trials, and time lags, for each participant.

Closer nodes show stronger reactivation than distant nodes
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Next, in a complementary analysis, we asked whether a non-sequential clustered reactivation of
items occurs after onset of a cue image (as shown previously for high performers in Wimmer et al.,
2020). We compared reactivation strength of the two items following the cue image with all items
with a distance of more than two steps, subtracting the mean decoded reactivation probabilities from
each other. Using this differential reactivation, we found that near items were significantly reactivated
compared to items further away within a time window of 220 ms to 260 ms after cue onset (Figure
5A, p<0.05, permutation test with 10000 shuffles).

To further explore the relation of reactivation strength and graph distances, we analyzed the mean
reactivation strength by item distance at peak classifier probabilities and found reactivation strength
significantly related to graph distance (repeated measures ANOVA, F(4, 80)=2.98, p=0.023 Figure
5B). When subdividing trials into correct and incorrect responses, we found that this relationship was
only significant for trials where a participant successfully retrieved the currently prompted sequence
excerpt (repeated measures ANOVA, F(4, 80)=5.0, p=0.001 for correctly answered trials, Figure 5C).
For incorrect trials we found no evidence for this relationship (F(4, 48)=1.45 p=0.230 for incorrectly
answered trials), albeit we found no interaction between distance and response type (F(4, 48)=1.8,
p=0.13). Note, that the last two analysis are based on n = 14 since 7 participants had no incorrect

trials.
Questionnaire results

Participants were concentrated and alert as indicated by the Stanford Sleepiness Scale (M = 2.3,
SD = 0.6, range 1-3). Participants’ summed positive affect score was on average 33.2 (SD = 4.5),

their summed negative affect score was on average 12.2 (SD = 1.9) (PANAS).
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Figure 5: Clustered Reactivation: A) Differential reactivation probability between off-screen items that were
up to two steps ahead of the current stimulus cue vs. distant items that were more than two steps away on
the graph for trials with correct answers. Between 220 and 260 ms the next items are simultaneously
reactivated significantly more than items that are further away (p<0.05; permutation test with 10000 shuffles).
B) Reactivation strength of items after retrieval cue onset by distance of items to the currently on-screen
stimulus. A significant negative correlation between distance on a directional graph and reactivation strength
can be seen (p=0.008). C) Same as B, but subdivided into trials in which participants answered correctly
(left) and in which participants did not know the correct answer (right). A correlation between reactivation
strength and distance can only be seen in case of successful retrieval (but see also limitations for a
discussion of the low trial and participant number in this sub-analysis). Mean probability values are marked
by black dots. D) Example activations of a successful retrieval (left) and a failed retrieval (right), sorted by
distance to current cue. Colors indicate probability estimates of the decoders. Indicated time points in D) are
after onset of the current image cue.
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Discussion

We combined a graph-based learning task with machine learning to study neuronal events linked to
memory retrieval. Participants learned triplets of associated images by trial and error, where these
were components of a simple directed graph with ten nodes and twelve edges. Using machine
learning decoding of simultaneously recorded MEG data we asked what brain processes are linked
to retrieval of this learned information, and how this related to the underlying graph structure. We
found evidence that graph items are retrieved by a simultaneous, clustered, reactivation of items and
that the associated reactivation strength relates to graph distances.

Memory retrieval is thought to involve reinstatement of previously evoked item-related neural
activity patterns (Danker & Anderson, 2010; Johnson & Rugg, 2007; Staresina et al., 2012). Both
spatial and abstract information is purported to be encoded into cognitive maps within the
hippocampus and related structures (Behrens et al., 2018; Bellmund et al., 2018; Epstein et al.,
2017; Garvert et al., 2017; O’Keefe & Nadel, 1979; Peer et al., 2021). While, for example, spatial
distance within cognitive maps is encoded within hippocampal firing patterns (Theves et al., 2019),
it is unclear how competing, abstract, candidate representations are accessed during retrieval
(Kerrén et al., 2018, 2022; Spiers, 2020). Two separate mechanisms seem plausible. First, depth-
first search might enable inferences in not yet fully consolidated cognitive maps by sequential replay
of potential candidates (Mattar & Daw, 2018; Nyberg et al., 2022); second, breadth-first search could
be deployed involving simultaneous activation of candidates when these are sufficiently consolidated
within maps that support non-interfering co-reactivation of competing representations (Mattar &
Lengyel, 2022), or when exhaustive replay would be too expensive computationally. Indeed,
consistent with this, Wimmer et al., (2020) showed that for regular memory performance, sequential
and temporally spaced reactivation of items seems to ‘piece together’ individual elements. This is
contrasted with high performers who showed a clustered, simultaneous, reactivation profile. We
replicate this clustered reactivation and show that its strength reflects distance on a graph structure.
This complements previous findings of graded pattern similarity during memory search representing
distance within the search space (Manning et al., 2011; Tarder-Stoll et al., 2023). As this effect was

evident only for correct choices the finding points to its importance for task performance.

In line with Wimmer et al. (2020), we found that the strength of replay was linked to weaker
memory performance. This suggests that the expression of sequential replay or simultaneous
reactivation depends on the stability of an underlying memory trace. However, we acknowledge that
it remains unclear which factors enable recruitment of either of these mechanisms. A crucial step in
consolidation encompasses an integration of memory representations into existing networks (Dudai
et al., 2015; Sekeres et al., 2017). In Wimmer et al. (2020), participants had little exposure to the
learning material and replay was measured after a substantial retention period that included sleep,

where the latter is considered to strengthen and transform memories via repeated replay
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(Diekelmann & Born, 2010; Feld & Born, 2017). This contrasts with the current task design, which

involved several blocks of learning and retrieval and only a relatively brief period of consolidation.

Intriguingly, it has been speculated that retrieval practice may elicit the same transformation
of memory traces as offline replay (Antony et al., 2017). Following this reasoning, it is possible that
both consolidation during sleep and repeated practice have similar effects on the transformation of
memories, and consequently the mechanisms that support their subsequent retrieval. This possibility
is especially interesting in the light of retrieval practice enhancing memory performance more than
is the case for restudy (McDermott, 2021) and is also in line with evidence that replay during rest
prioritizes weakly learned memories (Schapiro et al., 2018). It is known that retrieval practice reduces
the pattern similarity of competing memory traces in the hippocampus (Hulbert & Norman, 2015)
and, as in the case of our graph-based task, may enable clustered reactivation since differences in
timing of reactivation are no longer required to distinguish correct from incorrect items. Therefore,
we speculate that clustered reactivation may be a physiological correlate of retrieval facilitated either
by repeated retrieval testing-based learning (as in our study) or by sleep dependent memory
consolidation (as in Wimmer et al., 2020). This implies that there may be a switch from sequential
replay to clustered reactivation corresponding to when learned material can be accessed
simultaneously without interference. This suggestion could be systematically investigated by, for
example, manipulating retrieval practice, retention interval, and the difficulty of a graph-based task.
While we closely follow the analysis approach taken in Wimmer et al., (2020), we did not explicitly
preregister the confirmatory analysis of the retrieval data as such. We do acknowledge that only a
somewhat limited number of trials were available for analysis, impacting especially the analysis of
incorrect answers. In addition, the number of low-performing participants was low in our study which

would render a performance-dependent sub-analysis underpowered.

In conclusion, the reported findings support a role of clustered reactivation mechanism for well-
learned items during memory retrieval. When interconnected semantic information is retrieved, the
retrieval process seems to resemble a breadth-first search, with items sorted by neural activation
strength. Additionally, we find that sequential replay relates to low memory performance. The likely
coexistence of two types of retrieval process, recruited dependent on the participants’ learning
experience, is an important direction for future research. Using more complex memory tasks, such
as explicitly learned associations of graph networks, should enable a more systematic study of this
process. Finally, we suggest that accessing information embedded in a knowledge network may

benefit from recruitment of either process, replay or reactivation, on the fly.

Data availability

MaxFiltered and anonymized MEG raw data as well as behavioural results are available at Zenodo
(https://doi.org/10.5281/zen0odo.8001755).
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Code availability

The code of the analysis as well as the experiment paradigm and the stimulus material is available

at https://qithub.com/CIMH-Clinical-Psychology/DeSMRRest-clustered-reactivation.

Supplement figures

For supplementary figures of this draft, see after references.
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Supplement 1: Percentage of rejected trials for each participant. Artifacts were detected automatically by

AutoReject. If possible, channels were interpolated for the affected time span, else the trial was rejected.
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Supplement 2: Excluded participants based on decoding accuracy and memory performance during

testing.
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Supplement 3: Decoding accuracy across time determined by a leave-one-out cross-validation per

participant.

Number of learning blocks per participant

Count

2 3 4 5 6
n blocks

Supplement 4: Number of learning blocks that each participant completed.
Learning was stopped if participants reached at least 80% memory

performance in a block or if they reached 6 blocks.
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Sensor distribution for different images

apple / Apfel mountain / Berg clown / Clown bike / Fahrrad

Supplement 5: Percentage of sensors relevant for each image across all participants (beta weight of sensor
location unequal to zero). Larger/darker dots indicate more participants' decoders’ used information from this
sensor. The largest dot indicates that this sensor was used for all participants for this image for this image.

The smallest/lightest dot indicates that almost no participant's decoder used information from this sensor.
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