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Abstract 

 

Declarative memory retrieval is thought to involve reinstatement of the neuronal activity patterns 

elicited and encoded during a prior learning episode. Recently, it has been suggested that two mech-

anisms operate during reinstatement, dependent on task demands: individual memory items can be 

reactivated simultaneously as a clustered occurrence or, alternatively, replayed sequentially as tem-

porally separate instances. In the current study, participants learned associations between images 

that were embedded in a directed graph network and retained over a brief 8-minute consolidation 

period. During a subsequent cued recall session, participants retrieved the learned information while 

undergoing magnetoencephalographic (MEG) recording. Using a trained stimulus decoder, we found 

evidence for clustered reactivation of learned material. Reactivation strength of individual items dur-

ing clustered reactivation decreased as a function of increasing graph distance, an ordering present 

solely for successful retrieval but not with retrieval failure. In line with previous research, we found 

evidence that sequential replay was dependent on retrieval performance and limited to low perform-

ers. The results provide further evidence for the existence of different performance-dependent re-

trieval mechanisms suggesting graded clustered reactivation as a plausible mechanism to search 

within abstract cognitive maps.  
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Introduction 

Memory relies on three distinct stages: encoding (learning), consolidation (strengthening and 

transforming) and retrieval (reinstating) of information. New episodic memories are learned by 

encoding a representation, thought to be realized in a specific spatio-temporal neuronal firing pattern 

in hippocampal and neocortical networks (Frank et al., 2000; Preston & Eichenbaum, 2013). These 

firing patterns are reactivated during later rest or sleep, sometimes in fast sequential sequences, a 

process linked to memory consolidation (Born & Wilhelm, 2012; Feld & Born, 2017). Similarly, during 

retrieval, the same firing patterns seen during encoding are replayed in a manner that predicts 

retrieval success (Carr et al., 2011; Foster, 2017). Even though replay has been studied most 

intensely with respect to the hippocampus, a replay of memory traces in temporal succession is 

suggested as a general mechanism for planning, consolidation, and retrieval (Buhry et al., 2011). 

While a rich body of evidence exists in rodents (Ambrose et al., 2016; Chen & Wilson, 2023; Foster 

& Knierim, 2012; Ólafsdóttir et al., 2018), the contributions of replay to memory storage and retrieval 

in humans are only beginning to be understood (Brunec & Momennejad, 2022; Eichenlaub et al., 

2020; Fuentemilla et al., 2010; Wimmer et al., 2020).  

 Heretofore, one obstacle has been the difficulty in measuring sequential replay or general 

network reactivation in humans (NB here we follow the definition of Genzel et al., 2020, where 

reactivation is used as an umbrella term for any form of reoccurrence of a previously encoded neural 

pattern related to information-encoding, and replay refers to reactivation events with a temporally 

sequential nature). The most straightforward method would be to use intracranial 

electroencephalography (iEEG), though this is generally only feasible within individuals undergoing 

treatment for epilepsy (Axmacher et al., 2008; Engel et al., 2005; Staresina et al., 2015; Zhang et 

al., 2015). Another approach is to use functional magnetic resonance imaging (Schuck & Niv, 2019; 

Wittkuhn & Schuck, 2021) though the latter is burdened by the challenge posed by the sluggishness 

of the hemodynamic response.  Researchers have recently started to leverage the spatio-temporal 

precision of magnetoencephalography (MEG), in combination with machine learning based brain 

decoding techniques, to reveal sequential human replay in humans across a range of settings that 

includes memory, planning and inference (Eldar et al., 2018; Kurth-Nelson et al., 2016; Liu et al., 

2019; Liu, Mattar, et al., 2021; McFadyen et al., 2023; Nour et al., 2021; Wimmer et al., 2020, 2023; 

Wise et al., 2021). Many of the latter studies deploy a novel statistical analysis technique, temporally 

delayed linear modeling (Liu, Dolan, et al., 2021). TDLM, and its variants, has enabled identification 

of sequential replay for previously learned material during resting state (Liu et al., 2019; Liu, Mattar, 

et al., 2021), during planning of upcoming behavioral output (Eldar et al., 2020; Kurth-Nelson et al., 

2016; McFadyen et al., 2023; Wise et al., 2021) and retrieval (Wimmer et al., 2020).  

In relation to memory, Wimmer et al. (2020) reported sequential reactivation of episodic 

content after a single initial exposure during cued recall one day post-encoding. Specifically, they 

showed participants eight short, narrated stories, each consisting of four different visual story anchor 
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elements taken from six different categories (faces, buildings, body parts, objects, animals, and cars) 

and a unique ending element. During a next day recall session, participants were shown two story 

elements and asked whether both elements were part of the same story, and whether the second 

appeared before or after the first. During the retrieval test they showed that stories were replayed in 

reverse order to the prompt (i.e., when prompting element 3 and element 5, successful retrieval 

would traverse element 5 through 4 and arrive at element 3). However, this effect was only found in 

those with regular performance, while in high performers there was no evidence for temporal 

succession. Instead, high performers simultaneously reactivated all related story elements at in a 

clustered manner. 

 In memory research, declarative tasks often avail of item lists or paired associates (Barnett 

et al., 2016; Cho et al., 2020; Feld et al., 2013; Kolibius et al., 2021; Roux et al., 2022; Schönauer 

et al., 2014; Stadler et al., 1999, 1999).  When studying sequential replay, the task structure must 

have a linear element (Liu et al., 2019; Liu, Mattar, et al., 2021; Wimmer et al., 2020; Wise et al., 

2021) and such linearity is a defining feature of episodic memory (Tulving, 1993). By contrast, 

semantic memory is rarely organized linearly and instead involves complex and interconnected 

knowledge networks or cognitive maps (Behrens et al., 2018) motivating researchers to investigate 

how memory works when organized into a complex graph structure (Eldar et al., 2020; G. Feld et 

al., 2021; Garvert et al., 2017; Schapiro et al., 2013; for an overview see Momennejad, 2020). 

However, little is currently known regarding replay involvement in consolidation and retrieval 

processes for information embedded in graph structures.  

We examined the relationship of graph learning to reactivation and replay in a task where 

participants learned a directed, cyclic graph, represented by ten connected images. Eight nodes had 

exactly one direct predecessor and successor node, two hub nodes, each had two direct 

predecessors and successors (See Figure 2B). The task was arranged such that participants could 

not rely on simple pair mappings but needed to learn the context of each edge. Additionally, the 

graph-structure was never shown to the participant as a ‘birds-eye-view’, encouraging implicit 

learning of the underlying structure. Following a retention period, consisting of eight minutes eyes 

closed resting state, participants then completed a cued recall task, which is the focus of the current 

analysis.   
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Methods 

Participants 

We recruited thirty participants (15 men and 15 women) between 19 and 32 years old (mean age 

24.7 years). Inclusion criteria were right-handedness, no claustrophobic tendencies, no current or 

previous diagnosed mental disorder, non-smoker, fluency in German or English, age between 18 

and 35 and normal or corrected-to-normal vision. Caffeine intake was requested to be restricted for 

four hours before the experiment. Participants were recruited through the institute’s website and 

mailing list and various local Facebook groups. A single participant was excluded due to a corrupted 

data file and replaced with another participant. We acquired written informed consent from all 

participants, including consent to share anonymized raw and processed data in an open access 

online repository. The study was approved by the ethics committee of the Medical Faculty Mannheim 

of Heidelberg University (ID: 2020-609). While we had preregistered the study design and an 

analysis approach for the resting state data (https://aspredicted.org/kx9xh.pdf, #68915) here we 

report analyses of the retrieval period. The current analysis conceptually replicates the analyses and 

hypotheses of Wimmer et al. (2020) focusing on the retrieval period albeit in a much more complex 

and therefore naturalistic paradigm and are therefore, despite not being preregistered, mainly of 

confirmatory nature. We wish to maintain transparency by acknowledging that the findings from the 

preregistered analysis concerning the resting state data, are being prepared for publication as part 

of a distinct submission. 

Procedure 

Participants came to the laboratory for a single study session of approximately 2.5 hours. After filling 

out a questionnaire about their general health, their vigilance state (Stanford Sleepiness Scale, 

Hoddes et al., 1973) and mood (PANAS, Watson et al., 1988), participants performed five separate 

tasks while in the MEG scanner. First, an eight-minute eyes-closed resting state was recorded. This 

was followed by a localizer task (~30 minutes), in which all 10 items were presented 50 times in 

pseudo-randomized order, using auditory and visual stimuli. Next, participants learned a sequence 

of the 10 visual items embedded into a graph structure until they achieved 80% accuracy or reached 

a maximum of six blocks (7 to 20 minutes). Following this, we recorded another eight-minutes eyes-

closed resting state to allow for initial consolidation and, finally, a cued recall testing session (four 

minutes). For an overview see Figure 1. 
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Stimulus material 

Visual stimuli were taken from the colored version (Rossion & Pourtois, 2001) of the Snodgrass & 

Vanderwart (1980) stimulus dataset. To increase brain pattern discriminability, images were chosen 

with a focus on diversity of color, shape and category (see Figure 2B) and for having short descriptive 

words (one or two syllables) both in German and English. Auditory stimuli were created using the 

Google text-to-speech API, availing of the default male voice (SsmlVoiceGender.NEUTRAL) with the 

image description labels, either in German or English, based on participants language preference. 

Auditory stimulus length ranged from 0.66 to 0.95 seconds. 

 

 

 

 

 

 

 

Figure 1: Experiment procedure in the MEG. Localizer task: The ten individual items were repeatedly 

presented to the participant auditorily and visually to extract multisensory activity patterns. Learning: 

Participants learned pseudo-randomly generated triplets of the ten items by trial and error. These triplets 

were determined by an underlying graph structure. Participants were unaware of the exact structure and 

graph layout. Consolidation: Eight minutes of resting state activity were recorded. Retrieval: Participants’ 

recall was tested by cueing triplets from a sequence. The letters in the pictograms are placeholders for 

individual images. 
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Task description 

 

Localizer task 

Figure 2: Task structure: A) During the localizer task, a word describing the stimulus was played back via 

headphones and the item then shown to the participant. In 4% of trials, the audio and visual cue did not 

match and in this case, participants were instructed to press a button (attention check). B) Graph layout of 

the task. Two elements could appear in two different triplets. The graph was directed such that each tuple 

had exactly one successor (e.g., apple→zebra could only be followed by cake and not mug), but individual 

items could have different successors (zebra alone could be followed by mug or cake). Participants never 

saw the illustrated birds-eye-view. C) During learning, one node was randomly chosen as the current node in 

each trial. First, its predecessor node was shown, then the current node was shown, then the participant was 

given the choice of three items and must choose the correct node that followed the displayed cue tuple. 

Feedback was then provided to the participant. This process was repeated until the participant reached 80% 

accuracy for any block or reached a maximum of six blocks of learning. D) The retrieval testing followed the 

same structure as the learning task, except that no feedback was given.  
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In the localizer task, the ten graph items were shown to the participants repeatedly in a pseudo-

random order where a DeBruijn-sequence (DeBruijn, 1946) was used to ensure that the number of 

transitions between any two stimuli was equal. Two runs of the localizer were performed per 

participant, comprising 250 trials with 25 item repetitions. Each trial started with a fixation cross 

followed by an inter-trial interval of 0.75 to 1.25 seconds. Next, to encourage a multi-sensory and 

neural representation, the name of the to-be-shown image was played through in-ear head-phones 

(maximum 0.95 seconds) followed 1.25 to 1.75 seconds later by the corresponding stimulus image, 

shown for 1.0 second. As an attention check, in ~4% of the trials the auditory stimulus did not match 

the image and participants were instructed to press a button as fast as possible to indicate detection 

of an incongruent auditory-visual pair. A short break of maximum 30 seconds was scheduled every 

80 trials. Between the two parts of the localizer task, another short break was allowed. Stimulus 

order was randomized and balanced between subjects. To familiarize the participant with the task, a 

short exemplar of the localizer task with dummy images was shown beforehand. All subsequent 

analyses were performed using the visual stimulus onset as a point of reference. 

Graph-Learning  

The exact same images deployed in the localizer task were randomly assigned to nodes of the graph, 

as shown in Figure 2B. Participants were instructed to learn a randomized sequence of elements 

with the goal of reaching 80% performance within six blocks of learning. During each block, 

participants were presented with each of the twelve edges of the graph exactly once, in a balanced, 

pseudo-randomized order. After a fixation cross of 3.0 seconds a first image (predecessor) was 

shown on the left of the screen. After 1.5 seconds, the second image (current image) appeared in 

the middle of the screen. After another 1.5 seconds, three possible choices were displayed in vertical 

order to the right of the two other images. One of the three choice options was the correct successor 

of the cued edge. Of the two distractor stimuli, one was chosen from a distal location on the graph 

(five to eight positions away from the current item), and one was chosen from a close location (two 

to four positions away from the current item). Neither of the latter were directly connected to any of 

the other elements onscreen. Participants were given a controller with three buttons to indicate their 

answer. The correct item was then highlighted for 3.0 seconds, and the participant’s performance 

was indicated (“correct” or “wrong”) (see Figure 2C). No audio was played during learning. The 

participant was instructed to learn the sequence transitions by trial-and-error, and instructed that 

there was no semantic connection between the items (i.e., that the sequence did not follow any 

specific logic related to image content). Participants completed a minimum of two, and a maximum 

of six blocks of learning. To prevent ceiling effects, learning was discontinued if a participant reached 

80% accuracy during any block. To familiarize participants with the task, a short example with dummy 

images was shown before the learning task. Triplets were shown in a random order and choices 

were displayed in a pseudo-random position that ensured the on-screen position of the correct item 

could never be at the same position for more than three consecutive trials. Distractor choices were 
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balanced such that exposure to each individual item was approximately equal.  

Resting State  

After graph learning, participants completed a resting state session of eight minutes. Here, they were 

instructed to close their eyes and “to not think of anything particular”. The resting state data are not 

reported here.  

Retrieval Test 

After the resting state, we presented subjects with a single testing session block, which followed the 

exact layout of the learning task with the exception that no feedback was provided as to whether 

choices were correct or incorrect (Figure 2D). 

MEG Acquisition and Pre-Processing 

MEG was recorded in a passively shielded room with a MEGIN TRIUX (MEGIN Oy, Helsinki, Finland) 

with 306 sensors (204 planar gradiometers and 102 magnetometers) at 1000 Hz with a 0.1–330 Hz 

band-pass acquisition filter at the ZIPP facility of the Central Institute for Mental Health in Mannheim, 

Germany. Before each recording, empty room measurements made sure that no ill-functioning 

sensors were present.  Head movement was recorded using five head positioning coils. Bipolar 

vertical and horizontal electrooculography (EOG) as well as electrocardiography (ECG) was 

recorded. After recording, the MEGIN proprietary MaxFilter algorithm (version 2.2.14) was run using 

temporally extended signal space separation (tSSS) and movement correction with the MaxFilter 

default parameters (Taulu & Simola, 2006, raw data buffer length of 10 s, and a subspace correlation 

limit of .98. Bad channels were automatically detected at a detection limit of 7; none had to be 

excluded. The head movement correction algorithm used 200 ms windows and steps of 10 ms. The 

HPI coil fit accept limits were set at an error of 5 mm and a g-value of .98). Using the head movement 

correction algorithm, the signals were virtually re-positioned to the mean head position during the 

initial localizer task to ensure compatibility of sensor-level analysis across the recording blocks. The 

systematic trigger delay of our presentation system was measured and visual stimuli appeared 

consistently 19 milliseconds after their trigger value was written to the stimulus channel, however, to 

keep consistency with previous studies that do not report trigger delay, timings in this publication are 

reported uncorrected (i.e., ‘as is’, not corrected for this delay). 

 Data were pre-processed using Python-MNE (version 1.1, Gramfort, 2013). Data were down-

sampled to 100 Hz using the MNE function ‘resample’ (with default settings, which applies an anti-

aliasing filter before resampling with a brick-wall filter at the Nyquist frequency in the frequency 

domain) and ICA applied using the ‘picard’ algorithm (Ablin et al., 2018) on a 1 Hz high-pass filtered 

copy of the signal using 50 components. As recommended, ICA was set to ignore segments that 

were marked as bad by Autoreject (Jas et al., 2017) on two-second segments. Components 

belonging to EOG or ECG and muscle artifacts were identified and removed automatically using 

MNE functions ‘find_bads_eog’, ‘find_bads_ecg’ and ‘find_bads_emg’, using the EOG and ECG as 
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reference signals. Finally, to reduce noise and drift, data were filtered with a high-pass filter of 0.5 

Hz using the MNE filter default settings (hamming window FIR filter, -6 dB cutoff at 0.25 Hz, 53 dB 

stop-band attenuation, filter length 6.6 seconds). 

 Trials for the localizer task were created from -0.1 to 0.5 seconds relative to visual stimulus 

onset to train the decoders and for the retrieval task, from 0 to 1.5 seconds after onset of the second 

visual cue image. No baseline correction was applied. To detect artifacts, Autoreject was applied 

using the default settings, which repaired segments by interpolation in case artifacts were present in 

only a limited number of channels and rejected trials otherwise (see Supplement 1). Finally, to 

improve numerical stability, signals were re-scaled to similar ranges by multiplying values from 

gradiometers by 1e10 and from magnetometers by 2e11. These values were chosen empirically by 

matching histograms for both channel types. As outlier values can have significant influence on the 

computations, after re-scaling, values that were still above 1 or below -1 were “cutoff” and 

transformed to smaller values by multiplying with 1e-2. Anonymised and maxfiltered raw data are 

openly available at Zenodo (https://doi.org/10.5281/zenodo.8001755), code is made public on 

GitHub (https://github.com/CIMH-Clinical-Psychology/DeSMRRest-clustered-reactivation ). 

Decoding framework and training 

In line with previous investigations (Kurth-Nelson et al., 2016; Liu et al., 2019; Wimmer et al., 2020) 

we applied Lasso regularized logistic regression on sensor-level data of localizer trials using the 

Python package Scikit-Learn (Pedregosa et al., 2011). Decoders were trained separately for each 

participant, and each stimulus, using liblinear as a solver with 1000 maximum iterations and a L1 

regularization of C=6. This value was determined based on giving the best average cross-validated 

peak accuracy across all participants when searching within the parameter space of C = 1 to 20 in 

steps of 0.5 using the same approach as outlined below (note that Scikit-Learn shows stronger 

regularization with lower C values, opposite to e.g., MATLAB). To circumvent class imbalance due 

to trials removed by Autoreject, localizer trials were stratified such that they contained an equal 

number of trials from each stimulus presentation by randomly removing trials from over-represented 

classes. Using a cross validation schema (leaving one trial out for each stimulus per fold, i.e., 10 

trials left out per fold), for each participant the decoding accuracy was determined across time 

(Figure 3A). During cross validation, for each fold, decoders were trained on data of each 10 

milliseconds time step and tested on left out data from the same time step. Therefore, decoding 

accuracy reflects the separability of the stimulus classes by the sensor values for each time step 

independently. 
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Figure 3: A) Decoding accuracy of the currently displayed item during the localizer task for participants with a 

decoding accuracy higher than 30% (n=21). The mean peak time point across all participants corresponded 

to 210 ms, with an average decoding peak decoding accuracy of 42% (n=21). Note that the displayed graph 

combines accuracies across participants, where peak values were computed on an individual level and then 

averaged. Therefore, the indicated individual mean peak does not match the average at a group level. B) 

Memory performance of participants after completing the first block of learning, the last block (block 2 to 6, 

depending on speed of learning), and the test performance.  C) Classifier transfer within the localizer when 

trained and tested at different time points determined by cross validation. D) Classifier transfer from the 

localizer session to the retrieval session when trained at different time points during training and tested at 

different time points during cue presentation of the first (predecessor) image cue during retrieval. For B and C: 

Within the white outline, classification was significantly above chance level (cluster permutation testing, 

alpha<0.05).  

For each participant, a final set of decoders (i.e., 10 decoders per participant, for each stimulus one 

decoder) were trained at 210 milliseconds after stimulus onset, a time point reflecting the average 

peak decoding time point computed for all participants (for individual decoding accuracy plots see 
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Supplement 3). For the final decoders, data from before the auditory stimulus onset was added as a 

negative class with a ratio of 1:2. Adding null data allows decoders to report low probabilities for all 

classes simultaneously in absence of a matching signal and reduces false positives while retaining 

relative probabilities between true classes. Together with use of a sparsity constraint on the logistic 

regression coefficients, this increases the sensitivity of sequence detection by reducing spatial 

correlations of decoder weights (see also Liu, Dolan, et al., 2021). For a visualization of relevant 

sensor positions see Supplement 5.  

Decoders were then applied to trials of the test session, starting from the stimulus onset of the 

second sequence cue (“current image”) to just prior to onset of the selection prompt (1.5 seconds). 

For each trial, this resulted in ten probability vectors across the trial, one for each item, in steps of 

10 milliseconds. These probabilities indicate the similarity of the current sensor-level activity to the 

activity pattern elicited by exposure to the stimulus and can therefore be used as a proxy for detecting 

active representations, akin to a representational pattern analysis approach (RSA, Grootswagers et 

al., 2017). As a sanity check, we confirmed that we could decode the currently on-screen image by 

applying the final trained decoders to the first image shown during test (predecessor stimulus, see 

Figure 3D). 

 

Sequential replay analysis 

To test whether individual items were reactivated in sequence at a particular time lag, we applied 

temporally delayed linear modeling (TDLM, Liu, Dolan, et al., 2021) on the time span after the 

stimulus onset of the sequence cue (“current image”). In brief, this method approximates a time 

lagged cross-correlation of the reactivation strength in the context of a particular transition pattern, 

quantifying the strength of a certain activity transition pattern distributed in time. 

Using a linear model, we first estimate evidence for sequential activation of the decoded item 

representations at different time lags. For each item 𝑖 at each time lag ∆𝑡 up to 250 milliseconds we 

estimated a linear model of form: 

𝑌𝑖 = 𝑌(∆𝑡) × 𝛽𝑖(∆𝑡) 

where 𝑌𝑖 contains the decoded probability output of the classifier of item 𝑖 and 𝑌(∆𝑡) is simply 𝑌 time 

lagged by ∆𝑡. When solving this equation for 𝛽𝑖(∆𝑡) we can estimate the predictive strength of 𝑌(∆𝑡) 

for the occurrence of 𝑌𝑖 at each time lag ∆𝑡. Calculated for each stimulus 𝑖, we then create an 

empirical transition matrix 𝑇𝑒(∆𝑡) that indexes evidence for a transition of any item 𝑗 to item 𝑖 at time 

lag ∆𝑡 (i.e., a 10x10 transition matrix per time lag, each column 𝑗 contains the predictive strength of 

𝑗 for each item 𝑖 at time lag ∆𝑡). These matrices are then combined with a ground truth transition 

matrix 𝑇 (encoding the valid sequence transitions of interest) by taking the Frobenius inner product. 

This returns a single value 𝑍∆𝑡 for each time lag, indicating how strongly the detected transitions in 
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the empirical data follow the expected task transitions, which we term “sequenceness”. Using 

different transition matrices to depict forward (𝑇𝑓) and backward (𝑇𝑏) replay, we quantified evidence 

for replay at different time lags for each trial separately. This process is applied to each trial 

individually, and resulting sequenceness values are averaged to provide a final sequenceness value 

per participant for each time lag ∆𝑡. To test for statistical significance, we create a baseline 

distribution by permuting the rows of the transition matrix 1000 times (creating transition matrices 

with random transitions; identity-based permutation, Liu, Dolan, et al., 2021) and calculate 

sequenceness across all time lags for each permutation. The null distribution is then constructed by 

taking the peak sequenceness across all time lags for each permutation. 

Differential reactivation analysis 

To test for clustered, non-sequential reactivation, we adopted a similar approach to that of Wimmer 

et al. (2020). As decoders were trained independently for each stimulus, all decoders reacted to 

presentation of any visual stimulus to some extent. By using differences in reactivation between 

stimuli, this aggregated approach allowed us to examine more closely whether near items are more 

strongly activated than distant items, thereby quantifying non-sequential reactivation with more 

sensitivity. For each trial, the mean probability of the two items following the current on-screen item 

were contrasted with the mean probability of all items further away by subtraction. The two items 

currently displayed on-screen (i.e., predecessor and current image) were excluded. As only few trials 

were available for this analysis per participant, the raw probabilities were noisy. Therefore, to address 

this we applied a Gaussian smoothing kernel (𝜎 = 1) to the probability vectors across the time 

dimension. By shuffling the stimulus labels 1000 times, we constructed an empirical permutation 

distribution to determine at which time points the differential reactivation of close items was 

significantly above chance (𝛼 = 0.05). 

Graph reactivation analysis 

To detect whether reactivation strength was modulated by underlying graph structure, we compared 

the raw reactivation strength of all items by distance on the directed graph. First, we calculated a 

time point of interest by computing the peak probability estimate of decoders across all trials. Then, 

for each participant, for each trial we sorted all nodes based on their distance to the current on-

screen item on the directed graph. Again, we smoothed probability values with a Gaussian kernel 

(𝜎 = 1) and ignored the predecessor on-screen item. Following this, we evaluated the sorted decoder 

probabilities at the previously determined peak time point. Using a repeated measures ANOVA on 

the mean probability values per distance per participant, we then estimated whether reactivation 

strength was modulated by graph distance. 

Exclusions 

Replay analysis relies on a successive detection of stimuli where the chance of detection 

exponentially decreases with each step (e.g., detecting two successive stimuli with a chance of 30% 
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leaves a 9% chance of detecting the replay event). Therefore, all participants with a peak decoding 

accuracy of below 30% were excluded from the analysis (nine participants), a threshold set before 

starting the analysis process. Additionally, as successful learning was necessary for the paradigm, 

we ensured all remaining participants had a retrieval performance of at least 50% (see Supplement 

2). 

 

Results 

Behavioral 

All but one participant learned the sequence of ten images embedded into the directed graph with 

partial overlap (Supplement 3). On average, participants needed 5 blocks of learning (range 2 to 6, 

see Supplement 4) and manifested a memory performance of 76% during their last block of learning 

(range: 50% to 100%). After eight minutes of rest, retrieval performance improved marginally to a 

mean of 82% (t=-2.053, p=0.053, effect size r=0.22, Figure 3). Note that since the last learning block 

included feedback, this marginal increase cannot necessarily be attributed to consolidation 

processes.  

Decoder training 

We first confirmed we could decode brain activity elicited by the ten items using a cross-validation 

approach. Indeed, decoders were able to separate the items presented during the localizer task (see 

Figure 3A) well, with an average peak decoding accuracy of ~42% across all participants (range: 

32% to 57%, chance level: 10%, excluding participants with peak accuracy < 30%, for all participants 

see Supplement 3). We calculated the time point of the mean peak accuracy for each participant 

separately and subsequently used the average best time point, across all included participants, at 

206 milliseconds (rounded to 210 milliseconds) for training of our final decoders. This value is very 

close in range to the time point found in previous studies (Kurth-Nelson et al., 2016; Liu et al., 2019; 

Liu, Mattar, et al., 2021; Wimmer et al., 2020). The decoders also transferred well to stimulus 

presentation during the retrieval trials and could effectively decode the current prompted image cue 

with above chance significance (cluster permutation test, see Figure 3D). 

Sequential forward replay in subjects with lower memory performance 

Next, we assessed whether there was evidence for sequential replay of the learned sequences 

during cued recall. Using TDLM we assessed whether decoded reactivation probabilities followed a 

sequential temporal pattern, in line with transitions on the directed graph. Here we focused on all 

allowed graph transitions and analyzed the entire time window, of 1500 milliseconds, after onset of 

the test cue ("current image”). We found positive sequenceness across all time lags for forward 

sequenceness, with a significant increase at around 40-50 milliseconds for forward sequenceness 

(Figure 4A). As discussed in Liu, Dolan et al. (2021), correction for multiple comparisons for this 
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sequenceness measure across time is non-trivial and the maximum of all permutations represents 

a highly conservative statistic. Due to this complexity, we additionally report the 95% percentile of 

sequenceness maximas across time per permutation. Nevertheless, as we did not have a pre-

defined time lag of interest beforehand, and to mitigate multiple-comparisons, we additionally 

computed the mean sequenceness across all computed time lags for each participant (similar as 

previously proposed in the context of a sliding window approach in Wise et al., 2021). This measure 

can help reveal an overall tendency for replay of task states that is invariant to a specific time lag. 

Our results show that across all participants, there is a significant increase in task-related forward 

sequential reactivation of states (p=0.027, two-sided permutation test with 1000 permutations; 95% 

of permutation maximas reached at 40-50 ms, Figure 4B). Following up on this, in a second analysis, 

we asked whether mean sequential replay was associated with memory performance and found a 

significant negative correlation between retrieval performance and forward replay (forward: r=-0.46, 

p=0.031; backward: r=-0.13, p=0.56, see Figure 4C). In line with previous results (Wimmer et al., 

2020) low-performing participants had higher forward sequenceness when compared to high-

performing participants, whose mean sequenceness tended towards zero. 

 

Figure 4: A) Strength of forward and backward sequenceness across different time lags up to 250 ms during 

the 1500 ms window after cue onset. Two significance thresholds are shown: Conservative threshold of the 

maximum of 1000 permutations of classification labels across all time lags and the 95% percentiles (see 

Methods section for details). B) Permutation distribution of mean sequenceness values across 1000 state 

permutations. Observed mean sequenceness is indicated with a red line. C) Association between memory 

performance and mean sequenceness value computed across all trials, and time lags, for each participant. 

 

 

Closer nodes show stronger reactivation than distant nodes 
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Next, in a complementary analysis, we asked whether a non-sequential clustered reactivation of 

items occurs after onset of a cue image (as shown previously for high performers in Wimmer et al., 

2020). We compared reactivation strength of the two items following the cue image with all items 

with a distance of more than two steps, subtracting the mean decoded reactivation probabilities from 

each other. Using this differential reactivation, we found that near items were significantly reactivated 

compared to items further away within a time window of 220 ms to 260 ms after cue onset (Figure 

5A, p<0.05, permutation test with 10000 shuffles).  

To further explore the relation of reactivation strength and graph distances, we analyzed the mean 

reactivation strength by item distance at peak classifier probabilities and found reactivation strength 

significantly related to graph distance (repeated measures ANOVA, F(4, 80)=2.98, p=0.023 Figure 

5B). When subdividing trials into correct and incorrect responses, we found that this relationship was 

only significant for trials where a participant successfully retrieved the currently prompted sequence 

excerpt (repeated measures ANOVA, F(4, 80)=5.0, p=0.001 for correctly answered trials, Figure 5C). 

For incorrect trials we found no evidence for this relationship (F(4, 48)=1.45 p=0.230 for incorrectly 

answered trials), albeit we found no interaction between distance and response type (F(4, 48)=1.8, 

p=0.13). Note, that the last two analysis are based on n = 14 since 7 participants had no incorrect 

trials.  

Questionnaire results 

Participants were concentrated and alert as indicated by the Stanford Sleepiness Scale (M = 2.3, 

SD = 0.6, range 1-3). Participants’ summed positive affect score was on average 33.2 (SD = 4.5), 

their summed negative affect score was on average 12.2 (SD = 1.9) (PANAS). 
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Figure 5: Clustered Reactivation: A) Differential reactivation probability between off-screen items that were 

up to two steps ahead of the current stimulus cue vs. distant items that were more than two steps away on 

the graph for trials with correct answers. Between 220 and 260 ms the next items are simultaneously 

reactivated significantly more than items that are further away (p<0.05; permutation test with 10000 shuffles). 

B) Reactivation strength of items after retrieval cue onset by distance of items to the currently on-screen 

stimulus. A significant negative correlation between distance on a directional graph and reactivation strength 

can be seen (p=0.008). C) Same as B, but subdivided into trials in which participants answered correctly 

(left) and in which participants did not know the correct answer (right). A correlation between reactivation 

strength and distance can only be seen in case of successful retrieval (but see also limitations for a 

discussion of the low trial and participant number in this sub-analysis). Mean probability values are marked 

by black dots. D) Example activations of a successful retrieval (left) and a failed retrieval (right), sorted by 

distance to current cue. Colors indicate probability estimates of the decoders. Indicated time points in D) are 

after onset of the current image cue.  
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Discussion 

We combined a graph-based learning task with machine learning to study neuronal events linked to 

memory retrieval. Participants learned triplets of associated images by trial and error, where these 

were components of a simple directed graph with ten nodes and twelve edges. Using machine 

learning decoding of simultaneously recorded MEG data we asked what brain processes are linked 

to retrieval of this learned information, and how this related to the underlying graph structure. We 

found evidence that graph items are retrieved by a simultaneous, clustered, reactivation of items and 

that the associated reactivation strength relates to graph distances.  

 Memory retrieval is thought to involve reinstatement of previously evoked item-related neural 

activity patterns (Danker & Anderson, 2010; Johnson & Rugg, 2007; Staresina et al., 2012). Both 

spatial and abstract information is purported to be encoded into cognitive maps within the 

hippocampus and related structures (Behrens et al., 2018; Bellmund et al., 2018; Epstein et al., 

2017; Garvert et al., 2017; O’Keefe & Nadel, 1979; Peer et al., 2021). While, for example, spatial 

distance within cognitive maps is encoded within hippocampal firing patterns (Theves et al., 2019), 

it is unclear how competing, abstract, candidate representations are accessed during retrieval 

(Kerrén et al., 2018, 2022; Spiers, 2020). Two separate mechanisms seem plausible. First, depth-

first search might enable inferences in not yet fully consolidated cognitive maps by sequential replay 

of potential candidates (Mattar & Daw, 2018; Nyberg et al., 2022); second, breadth-first search could 

be deployed involving simultaneous activation of candidates when these are sufficiently consolidated 

within maps that  support non-interfering co-reactivation of competing representations (Mattar & 

Lengyel, 2022), or when exhaustive replay would be too expensive computationally. Indeed, 

consistent with this, Wimmer et al., (2020) showed that for regular memory performance, sequential 

and temporally spaced reactivation of items seems to ‘piece together’ individual elements. This is 

contrasted with high performers who showed a clustered, simultaneous, reactivation profile. We 

replicate this clustered reactivation and show that its strength reflects distance on a graph structure. 

This complements previous findings of graded pattern similarity during memory search representing 

distance within the search space (Manning et al., 2011; Tarder-Stoll et al., 2023). As this effect was 

evident only for correct choices the finding points to its importance for task performance.  

 In line with Wimmer et al. (2020), we found that the strength of replay was linked to weaker 

memory performance. This suggests that the expression of sequential replay or simultaneous 

reactivation depends on the stability of an underlying memory trace. However, we acknowledge that 

it remains unclear which factors enable recruitment of either of these mechanisms. A crucial step in 

consolidation encompasses an integration of memory representations into existing networks (Dudai 

et al., 2015; Sekeres et al., 2017). In Wimmer et al. (2020), participants had little exposure to the 

learning material and replay was measured after a substantial retention period that included sleep, 

where the latter is considered to strengthen and transform memories via repeated replay 
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(Diekelmann & Born, 2010; Feld & Born, 2017). This contrasts with the current task design, which 

involved several blocks of learning and retrieval and only a relatively brief period of consolidation.  

Intriguingly, it has been speculated that retrieval practice may elicit the same transformation 

of memory traces as offline replay (Antony et al., 2017). Following this reasoning, it is possible that 

both consolidation during sleep and repeated practice have similar effects on the transformation of 

memories, and consequently the mechanisms that support their subsequent retrieval. This possibility 

is especially interesting in the light of retrieval practice enhancing memory performance more than 

is the case for restudy (McDermott, 2021) and is also in line with evidence that replay during rest 

prioritizes weakly learned memories (Schapiro et al., 2018). It is known that retrieval practice reduces 

the pattern similarity of competing memory traces in the hippocampus (Hulbert & Norman, 2015) 

and, as in the case of our graph-based task, may enable clustered reactivation since differences in 

timing of reactivation are no longer required to distinguish correct from incorrect items. Therefore, 

we speculate that clustered reactivation may be a physiological correlate of retrieval facilitated either 

by repeated retrieval testing-based learning (as in our study) or by sleep dependent memory 

consolidation (as in Wimmer et al., 2020). This implies that there may be a switch from sequential 

replay to clustered reactivation corresponding to when learned material can be accessed 

simultaneously without interference. This suggestion could be systematically investigated by, for 

example, manipulating retrieval practice, retention interval, and the difficulty of a graph-based task. 

While we closely follow the analysis approach taken in Wimmer et al., (2020), we did not explicitly 

preregister the confirmatory analysis of the retrieval data as such. We do acknowledge that only a 

somewhat limited number of trials were available for analysis, impacting especially the analysis of 

incorrect answers. In addition, the number of low-performing participants was low in our study which 

would render a performance-dependent sub-analysis underpowered. 

In conclusion, the reported findings support a role of clustered reactivation mechanism for well-

learned items during memory retrieval. When interconnected semantic information is retrieved, the 

retrieval process seems to resemble a breadth-first search, with items sorted by neural activation 

strength. Additionally, we find that sequential replay relates to low memory performance. The likely 

coexistence of two types of retrieval process, recruited dependent on the participants’ learning 

experience, is an important direction for future research. Using more complex memory tasks, such 

as explicitly learned associations of graph networks, should enable a more systematic study of this 

process. Finally, we suggest that accessing information embedded in a knowledge network may 

benefit from recruitment of either process, replay or reactivation, on the fly. 

Data availability 

MaxFiltered and anonymized MEG raw data as well as behavioural results are available at Zenodo 

(https://doi.org/10.5281/zenodo.8001755).  
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Code availability 

The code of the analysis as well as the experiment paradigm and the stimulus material is available 

at https://github.com/CIMH-Clinical-Psychology/DeSMRRest-clustered-reactivation. 

 

Supplement figures 

For supplementary figures of this draft, see after references. 
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Supplement 

 

 

 

Supplement 1: Percentage of rejected trials for each participant. Artifacts were detected automatically by 

AutoReject. If possible, channels were interpolated for the affected time span, else the trial was rejected. 
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Supplement 2: Excluded participants based on decoding accuracy and memory performance during 

testing. 
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Supplement 3: Decoding accuracy across time determined by a leave-one-out cross-validation per 

participant. 

Supplement 4: Number of learning blocks that each participant completed. 

Learning was stopped if participants reached at least 80% memory 

performance in a block or if they reached 6 blocks. 
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Supplement 5: Percentage of sensors relevant for each image across all participants (beta weight of sensor 

location unequal to zero). Larger/darker dots indicate more participants' decoders' used information from this 

sensor. The largest dot indicates that this sensor was used for all participants for this image for this image. 

The smallest/lightest dot indicates that almost no participant's decoder used information from this sensor. 
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