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Abstract

The link between metabolic syndrome (MetS) and neurodegenerative as well cerebrovascular
conditions holds substantial implications for brain health in at-risk populations. This study
elucidates the complex relationship between metabolic syndrome (MetS) and brain health by
conducting a comprehensive examination of cardiometabolic risk factors, cortical
morphology, and cognitive function in 40,087 individuals. Multivariate, data-driven statistics
identified a latent dimension linking more severe MetS to widespread cortical abnormalities
and lower cognitive performance, accounting for up to 77% of shared variance in the data.
This dimension was replicable across sub-samples. Our results also suggest that MetS-related
cortical effects are shaped by the regional cellular composition and macroscopic brain
network organization. By leveraging extensive, multi-domain data combined with a
dimensional dtratification approach, our analysis provides profound insights into the
association of MetS and brain health. These findings underscore the necessity for effective

risk mitigation strategies aimed at maintaining brain integrity.
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1 Introduction

Metabolic syndrome (MetS) represents a cluster of cardiometabolic risk factors, including
abdominal obesity, arterial hypertension, dyslipidemia, and insulin resistance [1]. With a
prevalence of 23-35% in Western societies, it poses a considerable health challenge,
promoting neurodegenerative and cerebrovascular diseases such as cognitive decline,
dementia, and stroke [2—6]. As lifestyle and pharmacologica interventions can modify the
trgjectory of MetS, advancing our understanding of its pathophysiological effects on brain
structure and function as potential mediators of MetS-related neurological diseases is crucia

to inform and motivate risk reduction strategies [7].

Magnetic resonance imaging (MRI) is a powerful non-invasive tool for examining the
intricacies of neurological conditions in vivo. Among studies exploring MetS and brain
structure, one of the most consistent findings has been alterations in cortical grey matter
morphology [8]. Still, our understanding of the relationship between MetS and brain structure
is constrained by several factors. To date, there have been only few studies on MetS effects
on cortical grey matter integrity that are well-powered [9-12]. The mgority of analyses are
based on small sample sizes and report effects only on global measures of brain morphology
or a priori-defined regions of interest, limiting their scope [12-14]. As a result, reported
effects are heterogeneous and most likely difficult to reproduce [15]. Existing large-scale
analyses on the isolated effects of individual risk factors (such as hypertension or obesity) do
not account for the high covariance of MetS components driven by interacting
pathophysiological effects, which may prevent them from capturing the whole picture of
MetS as a risk factor composite [16-19]. In addition, analyses addressing the complex
interrelationship of MetS, brain structure and cognitive functioning by investigating them in

conjunction are scarce [8]. Lastly, while previous studies adopted a case-control design
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treating MetS as a broad diagnostic category [10-12], adimensiona approach viewing MetS
as a continuum could offer a more nuanced representation of the multivariate, continuous

nature of the risk factor composite.

Despite reports on MetS effects on cortical structure, the determinants and spatial effect
patterns remain unclear. A growing body of evidence shows that spatial patterns of brain
pathology are shaped by multi-scale neurobiological processes, ranging from the cellular
level to regional dynamics to large-scale brain networks [20]. Accordingly, disease effects
can not only be driven by local properties, when local patterns of tissue composition
predispose individual regions to pathology, but also by topological properties of structural
and functional brain networks [20,21]. Guided by these concepts, multi-modal analysis
approaches could advance our understanding of the mechanisms influencing MetS effects on

cortical morphology.

We argue that further research leveraging extensive clinical and brain imaging data is
required to explore MetS effects on cortical morphology. These examinations should
integrate 1) a research methodology that strikes a balance between resolving the multivariate
connection of MetS and brain structure while accounting for the high covariance of MetS
components; 2) the recognition of impaired cognitive function as a pertinent consequence of

MetS; and 3) the analysis of the spatial effect pattern of MetS and its possible determinants.

To meet these research needs, we investigated cortical thickness measurements in a pooled
sample of two large-scale population-based cohorts from the UK Biobank (UKB) and
Hamburg City Health Study (HCHS) comprising in total 40,087 participants. Partial least
sguares correlation analysis (PLS) was employed to characterize MetS effects on regional
cortica morphology. PLS is especially suitable for this research task as it identifies

overarching latent relationships by establishing a data-driven multivariate mapping between
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MetS components and cortical thickness. Furthermore, capitalizing on the cognitive
phenotyping of both investigated cohorts, we examined the interrelation between MetS,
cognitive function and cortical thickness. Finally, to uncover the determinants underlying
differential MetS effects on cortical areas, we mapped local cellular as well as network
topological attributes to observed MetS-associated cortical abnormalities. With this work, we
amed to advance the understanding of the fundamental principles underlying the

neurobiology of MetS.

2 Materials and methods

2.1 Study population — the UK Biobank and Hamburg City Health Study

Here, we investigated cross-sectiona clinical and imaging data from two large-scale
population-based cohort studies: 1) the UK Biobank (UKB, n = 39,668, age 45-80 years,
application number 41655) and 2) the Hamburg City Health Study (HCHS, n = 2637, age 45-
74 years) [22,23]. Both studies recruit large study samples with neuroimaging data alongside
detailed demographic and clinical assessment. Respectively, data for the first visit including a
neuroimaging assessment were included. Individuals were excluded if they had a history or a
current diagnosis of neurological or psychiatric disease. UKB individuals were excluded
based on the non-cancer illnesses codes
(http://biobank.ndph.ox.ac.uk/showcase/coding.cgi?Zd=6).  Excluded conditions were
Alzheimer’s disease; alcohol, opioid and other dependencies, amyotrophic lateral scleross;
brain injury; brain abscess, chronic neurological problem; encephalitis;, epilepsy;
haemorrhage; head injury; meningitis, multiple sclerosis; Parkinson’s disease; skull fracture.
Same criteria were applied on HCHS individuals based on the neuroradiological evaluation
and self-reported diagnoses variables. To enhance comparability to previous studies we

supplemented a case-control analysis enabling to complement continuous multivariate
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statistical analyses by group statistics. Therefore, a MetS sample was identified based on the
consensus definition of the International Diabetes Federation (supplementary text S1) and

matched to a control cohort.

2.2 Ethics approval

The UKB was ethically approved by the North West Multi-Centre Research Ethics
Committee (MREC). Details on the UKB Ethics and Governance framework are provided
online (https://www.ukbiobank.ac.uk/media/Oxsbmfmw/egf.pdf). The HCHS was approved
by the local ethics committee of the Landesdrztekammer Hamburg (State of Hamburg
Chamber of Medical Practitioners, PV5131). Good Clinical Practice (GCP), Good
Epidemiological Practice (GEP) and the Declaration of Helsinki were the ethical guidelines
that governed the conduct of the HCHS [24]. Written informed consent was obtained from all

participants investigated in this work.

2.3 Clinica assessment

In the UK Biobank, a battery of cognitive tests is administered, most of which represent
shortened and computerized versions of established tests aiming for comprehensive and
concise assessment of cognition [25]. From this battery we investigated tests for executive
function and processing speed (Reaction Time Test, Symbol Digit Substitution Test, Tower
Rearranging Test, Trail Making Tests parts A and B), memory (Numeric Memory Test,
Paired Associate Learning Test, Prospective Memory Test) and reasoning (Fluid Intelligence
Test, Matrix Pattern Completion Test). Detailed descriptions of the individual tests can be
found elsewhere [26]. Furthermore, some tests (Matrix Pattern Completion Test, Numeric
Memory Test, Paired Associate Learning Test, Symbol Digit Substitution Test, Trail Making
Test and Tower Rearranging Test) are only administered to a subsample of the UKB imaging

cohort explaining the missing test results for a subgroup of participants.
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In the HCHS, cognitive testing was administered by a trained study nurse and included the
Animal Naming Test, Trail Making Test Part A and B, Verbal Fluency and Word List Recall
subtests of the Consortium to Establish a Registry for Alzheimer's Disease
Neuropsychological Assessment Battery (CERAD-Plus), as well as

the Clock Drawing Test [27,28].

2.4 MRI acquisition

The full UKB neuroimaging protocol can be found online
(https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf) [22]. MR images were
acquired on a 3-T Siemens Skyra MRI scanner (Siemens, Erlangen, Germany). T1-weighted
MRI used a 3D MPRAGE sequence with 1-mm isotropic resolution with the following
sequence parameters:. repetition time = 2000 ms, echo time = 2.01 ms, 256 axial dlices, dlice
thickness = 1 mm, and in-plane resolution = 1 x 1 mm. In the HCHS, MR images were
acquired as well on a 3-T Siemens Skyra MRI scanner. M easurements were performed with a
protocol as described in previous work [24]. In detail, for 3D T1-weighted anatomical
images, rapid acquisition gradient-echo sequence (MPRAGE) was used with the following
sequence parameters:. repetition time = 2500 ms, echo time = 2.12 ms, 256 axial dlices, dlice

thickness = 0.94 mm, and in-plane resolution = 0.83 x 0.83 mm.

2.5 Estimation cortical thickness

To achieve comparability and reproducibility, the preconfigured and containerized CAT12
pipeline (CAT12.7 r1743; https://github.comym-wierzbal/cat-container) was harnessed for
surface reconstruction and cortical thickness measurement building upon a projection-based
thickness estimation method [29]. Cortical thickness measures were normalized from
individual to 32k fsLR surface space (conte69) to ensure vertex correspondence across

subjects. Individuals with a CAT12 image quality rating lower than 75% were excluded
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during quality assessment. To facilitate large-scale data management while ensuring
provenance tracking and reproducibility, we employed the Datal.ad-based FAIRIly big

workflow for image data processing [30].

2.6 Statistical analysis

Statistical computations and plotting were performed in python 3.9.7 leveraging bctpy (v.
0.6.0), brainstat (v. 0.3.6), branSMASH (v. 0.11.0), the ENIGMA toolbox (v. 1.1.3).
matplotlib (v. 3.5.1), neuromaps (v. 0.0.1), numpy (v. 1.22.3), pandas (v. 1.4.2), pingouin (V.
0.5.1), pyls (v. 0.0.1), scikit-learn (v. 1.0.2), scipy (v. 1.7.3), seaborn (v. 0.11.2) aswell asin

matlab (v. 2021b) using ABAnnotate (v. 0.1.1).

2.6.1 Partial least squares correlation analysis

To relate MetS components and cortical morphology, we performed a PLS using pyls
(https://github.com/rmarkello/pyls). PLS identifies covariance profiles that relate two sets of
variables in a data-driven double multivariate analysis [31]. Here, we related regional cortical
thickness measures to clinical measurements of MetS components, i.e.,, obesity (waist
circumference, hip circumference, waist-hip ratio, body mass index), arterial hypertension
(systolic blood pressure, diastolic blood pressure), dyslipidemia (high density lipoprotein,
low density lipoprotein, total cholesterol, triglycerides) and insuline resistance (blood
glucose). Before conducting the PLS, missing values were imputed via k-nearest neighbor
imputation (nneighbor = 4) with imputation only taking into account variables of the same
group, i.e, MetS component variables were imputed based on the remaining MetS
component data only and not based on demographic variables. To account for age, gender,
education and cohort (UKB/HCHS) as potential confounds, they were regressed out of

cortical thickness and M etS component data.
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We then performed PLS as described in previous work [32]. Methodological details are
covered in figure 1a and supplementary text S2. Cortical thickness measures were randomly
permuted (nrandom = 5000) to assess statistical significance of derived latent variables and
their corresponding covariance profiles. Subject-specific PLS scores were computed, where
higher scores signify stronger adherence of an individual to an identified covariance profile.
Bootstrap resampling (n = 5000) was performed to assess the contribution of individual
variables to the thickness-clinical relationship. Confidence intervals (95%) of singular vector
weights were computed for clinical variables to assess the significance of their contribution.
To estimate contributions of cortical regions, bootstrap ratios were computed as the singular
vector weight divided by the bootstrap-estimated standard error. A high bootstrap ratio is
indicative of aregion’s contribution, as a relevant region shows a high singular vector weight
alongside a small standard error implying stability across bootstraps. The bootstrap ratio
equals a z-score in case of anormally distributed bootstrap. Hence, brain region contributions
were considered significant if the bootstrap ratio was >1.96 or <-1.96 (95% confidence
interval). Overall model robustness was assessed via a 10-fold cross-validation by correlating

out-of-sample PLS scores within each fold.

2.6.2 Associations of cognitive and imaging data

As cognitive assessment differed between UKB and HCHS, cognitive variables were not
included in the main PLS analysis. To further explore the interrelationship of cortical
thickness and cognitive measures, we reconducted the PLS on the individual cohorts

including cognitive measures to the clinical variables.

2.6.3 Contextualization analysis

We investigated the impact of MetS on cortical thickness in the context of cell-specific gene

expression profiles and structural and functional brain network characteristics. (figure 1b-d).
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Therefore, we Schaefer-parcellated (400x7 and 100x7, v.1) the bootstrap ratio map and
related it to indices representing different gene expression and network topological properties

of the human cortex viaspatial correlations (Spearman correlation, 7,,,) on a group-level [33].

Virtual histology anaysis. We performed a virtual histology anaysis leveraging gene
transcription information to quantify the density of different cell populations across the
cortex. Genes corresponding with specific cell populations of the central nervous system
were identified based on a classification derived from single nucleus-RNA sequencing data
[34]. The gene-celltype mapping is provided by the PsychENCODE database
(http://resource.psychencode.org/Datasets/Derived/SC_Decomp/DER-

19 Single cell _markergenes TPM .xIsx) [35]. The abagen toolbox (v. 0.1.3) and the
ENIGMA toolbox (v. 1.1.3) were used to obtain regional microarray expression data of these
genes for Schaefer100x7 parcels based on the Allen Human Brain Atlas (AHBA) [36]. The
Schaefer100x7 atlas was used as it better matches the sampling density of the AHBA
eventually resulting in no parcels with missing values. Regional expression patterns of genes
corresponding to astrocytes, endothelial cells, excitatory neuron populations (Ex1-8),
inhibitory neuron populations (In1-8), microglia, and oligodendrocytes were extracted.
Instead of assessing the correspondence between MetS effects and the expression pattern of
each gene directly, we employed ensemble-based gene category enrichment analysis (GCEA)
as implemented in the ABAnnotate toolbox [37,38]. This approach represents a modification
to customary GCEA addressing the issues of gene-gene dependency through within-category
co-expression which is caused by shared spatial embedding as well as spatial autocorrelation
of cortical transcriptomics data [39]. In brief, gene transcription indices were averaged within
categories (here cell populations) and spatially correlated with the bootstrap ratio map.

Statistical significance was assessed by comparing the empirical correlation coefficients
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against a null distribution derived from surrogate maps with preserved spatial embedding and

autocorrelation computed via a spatial lag model [40].

Brain network topology. To investigate the cortical MetS effects pattern in the context of
brain network topology, three connectivity metrics were leveraged based on data from
structural and functional brain imaging: weighted degree centrality, neighborhood
abnormality as well as macroscale functional connectivity gradients as described previously
[32]. These were computed based on functional and structural consensus connectomes on
group-level derived from the Human Connectome Project Y oung Adults dataset comprised in
the ENIGMA toolbox [41,42]. Computation and derivation of the metrics are described in the
supplementary text S3. For this analysis, statistical significance of spatia correlations was
assessed via spin permutations (n = 1,000) which represent a null model preserving the
inherent spatial autocorrelation of cortical information [43]. Spin permutations are performed
by projecting parcel-wise data onto a sphere which then is randomly rotated. After rotation,
information is projected back on the surface and a permuted r,, is computed. A p-value is
computed comparing the empirical correlation coefficient to the permuted distribution. To
assure that our results do not depend on null model choice, we additionally tested our results
against a variogram-based null model implemented in the branSMASH toolbox
(https://github.com/murraylab/brainsmash) as well as a network rewiring null model with

preserved density and degree sequence [44,45].

All p-values resulting from both contextualization analyses were FDR-corrected for multiple
comparisons. As we conducted this study mindful of the reuse of our resources, the MetS

effect maps are provided as separate supplementary files to enable further analyses.

2.6.4 Senditivity analyses

11
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To test whether the PLS indeed captures the effect of MetS on cortical thickness, we
conducted a group comparison as in previous studies of MetS. Besides descriptive group
statistics, individuals with MetS and matched controls were compared on a surface vertex-
level leveraging the BrainStat toolbox (v 0.3.6, https://brainstat.readthedocs.io/) [46]. A
genera linear model was applied correcting for age, gender, education and cohort effects.
Vertex-wise p-values were FDR-corrected for multiple comparisons. To demonstrate the
correspondence between the t-statistic and bootstrap ratio maps, we related them via spatial
correlation analyses. The t-statistic map was also used to sensitivity anayze the virtual

histology analysis and brain network contextualization.

To ensure that the brain network contextualization results were not biased by the connectome
choice, we reperformed the analysis with structural and functional group consensus
connectomes based on resting-state functional and diffusion-weighted MRI data from the
Hamburg City Health Study. The corresponding connectome reconstruction approaches were

described elsewhere [32].

3 Results
Sample characteristics

Application of exclusion criteria and quality assessment ruled out 2,188 UKB subjects and 30
HCHS subjects resulting in a final analysis sample of 40,087 individuals. For a flowchart
providing details on the sample selection procedure please refer to supplementary figure $4.
Descriptive statistics are listed in Table 1. To sensitivity analyze our results, as well as to
facilitate the comparison with previous reports which primarily rely on a case-control design,
we supplemented group statistics comparing individuals with clinicaly defined MetS and
matched controls, where applicable. Corresponding group analysis results are described in

more detail in supplementary materials Sb-11.
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3.1 Partial least squares correlation

We investigated the relationship between cortical thickness and clinical measures of MetS
(abdomina obesity, arterial hypertension, dyslipidemia, insulin resistance) in a PLS
considering al individuals from both studies (n=40,087). By this, we aimed to detect the
continuous effect of any MetS component independent from a formal binary classification of
MetS (present / not present). A correlation matrix relating all considered MetS component
measures is displayed in supplementary figure S12. Before conducting the PLS, cortical
thickness and clinical data were deconfounded for age, gender, education and cohort effects.

PLS identified seven significant latent variables which represent clinical-anatomical
dimensions relating MetS components to cortical thickness (supplementary table S13). The
first latent variable explained 77.48% of shared variance and was thus further investigated
(figure 2a). Specifically, the first latent variable corresponded with a covariance pattern of
lower severity of MetS (figure 2b; loadings [95% confidence interval]; waist circumference: -
228 [-.237,-.219], hip circumference: -.188 [-.197,-.179], waist-hip ratio: -.162 [-.171,-.152],
body mass index: -.230 [-.239,-.221], systolic blood pressure: -.098 [-.108,-.089], diastolic
blood pressure: -.121 [-.131,-.112], high density lipoprotein: .096 [.087,.106], low density
lipoprotein: -.013 [-.023,-.004], total cholesterol: .002 [-.008,.011], triglycerides: -.092 [-
.101,-.082], glucose: -.049 [-.058,-.040]). Notably, the obesity-related measures showed the
strongest contribution to the covariance profile as indicated by the highest loading to the
latent variable. Age (.004 [-.006,.013]), gender (.004 [-.005,.014]), education (.002 [-
.007,.010]) and cohort (.001 [-.008,.010]) did not significantly contribute to the latent
variable, which is compatible with sufficient effects of deconfounding. Details on the second
latent variable which explained 17.26% of shared variance are provided in supplementary

figure S14.
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singular vector weight

Bootstrap ratios (= ) were computed to identify cortical

bootstrap—estimated standard error

regions with a significant contribution to the covariance profile (see Methods). Cortical
thickness in orbitofrontal, lateral prefrontal, insular, anterior cingulate and temporal areas
contributed positively to the covariance pattern as indicated by a positive bootstrap ratio
(figure 2c). Thus, a higher cortical thickness in these areas corresponded with less obesity,
hypertension, dyslipidemia and insulin resistance and vice versg, i.e., lower cortical thickness
with increased severity of MetS. A negative bootstrap ratio was found in superior frontal,
parietal and occipital regions indicating that a higher cortical thickness in these regions
corresponded with a more pronounced expression of MetS components. This overall pattern
was confirmed via conventional, vertex-wise group comparisons of cortical thickness
measurements based on the binary classification of individuals with MetS and matched
controls (supplementary figure S11) as well as subsample analyses considering the UKB and
HCHS participants independently (supplementary figure S15-16). The correlation matrix of
al spatia effect maps investigated in this study (bootstrap ratio and Schaefer400-parcellated
t-statistic from group comparisons) is visualized in supplementary figure S17. All derived

effect size maps were significantly correlated (r;,=.70 - .99, prpr < .05) [33].

Subj ect-specific cortical thickness and clinical scores for the first latent variable were
computed. These scores indicate to which degree an individual expresses the corresponding
covariance profiles. By definition, the scores are correlated (ry, = .195, p<.005, figure 2d)
indicating that individuals exhibiting the clinical covariance pattern (severity of MetS
components) also express the cortical thickness pattern. This relationship was robust across a

10-fold cross-vaidation (avg. ry, = .21, supplementary table S18).

To examine the interrelationship of MetS components, cortical thickness and cognition, we

conducted the PLS in the UKB sample and the HCHS sample, separately, as the cognitive
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assessment varied between UKB and HCHS. Within the individual cohorts, cognitive
variables were included in the PLS as clinical variables alongside MetS components. The
resulting first latent variable associated a more severe risk profile with cortical thickness
abnormalities, but also worse cognitive performance as shown by respective loadings.
Significant cognitive loadings in the UKB analysis were identified for the Fluid Intelligence
Test (loadings [95% confidence interval]; .063 [.053,.072]), Matrix Pattern Completion Test
(.054 [.044,.064]), Numeric Memory Test (.032 [.022,.041]), Paired Associate Learning Test
(.051 [.041,.060]), Reaction Time Test (-.040 [-.049,-.030]), Symbol Digit Substitution Test
(.040[.030,.050]), Tower Rearranging Test (.035 [.025,.045]) and Trail Making Test Part B (-
.019 [-.029,-.009]) (supplementary figure S15b). A significant HCHS-specific cognitive
loading was found for the Multiple-choice Vocabulary Intelligence Test (.070 [.031,.109])
(supplementary figure S16b). Group comparisons of cognitive measures within the UKB and

HCHS subsamples are provided in supplementary tables S8-9.

3.2 Contextualization of M etS-associated cortical thickness abnormalities
We investigated whether the pattern of MetS effects on cortical structure is conditioned by
the regional density of specific cell populations and global brain network topology in a

surface-based contextualization analysis (see M ethods).

Therefore, we first used a virtual histology approach to relate the bootstrap ratio from PLS to
the differential expression of cell-type specific genes based on microarray data from the

Allen Human Brain Atlas [47]. The results are illustrated in figure 3. The bootstrap ratio was

significantly positively correlated with the density of endothelial cells (erp 192, prpr =

.013), microglia (erp = .268, prpr = .013), excitatory neurons type 8 (erp = .166, prpr =

.013), excitatory neurons type 6 (Z,. = .156, pypr = .002) and inhibitory neurons type 1

Tsp

(erp = .368, prpr = .036) indicating that MetS effects on cortical thickness are strongest in
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regions of the highest density of these cell types. No significant associations were found with
regard to the remaining excitatory neuron types (Ex1-Ex5, Ex7), inhibitory neurons (In2-1n8),
astrocytes and oligodendrocytes (supplementary table S19). As a sensitivity analysis, we
contextualized the t-statistic map derived from group statistics. The results remained stable

except for excitatory neurons type 6 (erp =.145, prpr = .123) and inhibitory neurons type 1

1t

rep = 432, Dppr = .108), which no longer showed a significant association (supplementary

materials S20-21).

Second, we associated the bootstrap ratio with three pre-selected measures of brain network
topology derived from group consensus functional and structural connectomes of the Human
Connectome Project (HCP) (figure 4): weighted degree centrality (marking brain network
hubs), neighborhood abnormality and macroscale functional connectivity gradients.[32] The
bootstrap ratio showed a medium positive correlation with the functional neighborhood
abnormality (rg, = 452, pspin = 002, Psmasn < 001, Prewire < .001) and a strong positive
correlation with the structural neighborhood abnormality (ry, = .770, pspin = <.001, Psmasn <
001, prewire < .001) indicating functional and structural interconnectedness of areas
experiencing similar MetS effects. These results remained significant when the t-statistic map
was contextualized instead of the bootstrap ratio as well as when neighborhood abnormality
measures were derived from consensus connectomes of the HCHS instead of the HCP
(supplementary figure S22-23). We found no significant associations for the remaining
indices of network topology, i.e., functional degree centrality (ry, = .162, pspi, = .362,
Dsmash = -362, Prewire = -876), structural degree centrality (ry, = .038, pspin = -393, Psmasn =
828, Drewire = -082) as well as functional cortical gradient 1 (ry, = .159, pepi = 293,

Psmash = 3627 Prewire = 018) and gradient 2 (Tsp = '-1901 Pspin = 2931 Psmash = 3621

Prewire = '001)-
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4 Discussion

We investigated the impact of metabolic syndrome on cortical thickness and cognitive
function in a large sample of individuals from two population-based neuroimaging studies.
We report three main findings: 1) multivariate, data-driven statistics revealed alatent variable
relating MetS and brain health: participants were distributed along a clinical-anatomical
dimension of interindividual variability, linking more severe MetS to widespread cortical
thickness abnormalities and lower cognitive performance; 2) negative MetS effects on
cortical thickness were strongest in orbitofrontal, lateral prefrontal, insular, cingulate and
temporal cortices; 3) this pattern of MetS-effects on cortical thickness appeared to be
conditioned by regional cell composition as well as functional and structural connectivity.
These findings were robust across sensitivity analyses. Collectively, our study provides a
comprehensive assessment of the multifaceted relationship between MetS and cortical

morphology.

MetS adversely impacts brain health through complex, interacting effects on the cerebral
vasculature and parenchyma as shown by histopathological and imaging studies [19]. The
pathophysiology of MetS involves atherosclerosis, which affects blood supply and triggers
inflammation [48,49]; endothelial dysfunction reducing cerebral vasoreactivity [50];
breakdown of the blood-brain barrier inciting an inflammatory response [51]; oxidative stress
causing neuronal and mitochondrial dysfunction [52]; and small vessel injury leading to
various pathologies including white matter damage, microinfarcts and cerebral microbleeds

[53].

To address these interacting effects, we harnessed multivariate, data-driven statistics in form
of a PLS in two large-scale population-based studies to probe for covariance profiles relating
the full range of MetS components (such as obesity or arterial hypertension) to regiona

cortical thickness in a single analysis. PLS identified seven significant latent variables with
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the first variable explaining the majority (77.48%) of shared variance within the imaging and
clinical data (figure 2a). This finding suggests that the overall relationship of MetS and brain
structure is low-dimensional, i.e., effects of MetS components on cortical thickness are
relatively uniform despite the diversity of underlying pathomechanisms. PLS revealed that all
MetS components were contributing to this latent signature. However, waist circumference,
hip circumference, waist-hip ratio and body mass index consistently contributed higher than
the remaining variables across conducted analyses which highlights obesity as the strongest

driver of MetS-related cortical morphometric abnormalities.

We interpret these findings as evidence that MetS-associated conditions jointly contribute to
the harmful effects on brain structure rather than affecting it in a strictly individual manner.
This notion is supported by previous work in the UKB demonstrating overlapping effects of
individual risk factors on cortical morphology [54]. Specificaly, the first latent variable
related increased severity of obesty, dyslipidemia, arterial hypertension and insulin
resistance with lower cortical thickness in orbitofrontal, lateral prefrontal, insular, cingulate
and temporal cortices (figure 2b and 1c). This profile was consistent in separate PLS analyses
of UKB and HCHS participants as well as group comparisons (supplementary figures S8 and
S12-13). Previous research aligns with our detection of a MetS-associated frontotemporal
morphometric abnormality pattern [9,13,55]. As a speculative causative pathway, human and
animal studies have related the orbitofrontal, insular and anterior cingulate cortex to food-
related reward processing, taste and impulse regulation [55,56]. Conceivably, structural
alterations of these brain regions are linked to brain functions and behaviors that exacerbate
the risk profile leading to MetS [57,58]. Interestingly, we also observed a positive
relationship between cortical thickness and MetS in the superior frontal, parietal and occipital
lobe. Interpretation of this result is, however, less intuitive. We also noted a positive MetS-

cortical thickness association in superior frontal, parietal and occipital lobes, a less intuitive
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finding that has been previously reported [60,61]. Although speculative, the positive effects
might be due to MetS compensating cholesterol disruptions associated with

neurodegenerative processes [62].

Cognitive performance has been consistently linked to cardiometabolic risk factors and
structural brain abnormalities in headth and disease [62]. Applying PLS to both datasets
(UKB and HCHY) individualy revealed that the identified latent variables were not only
relating more severe MetS to cortical thickness abnormalities but also to worse cognitive
performance (supplementary materials S15b and S16b). These associations were replicated
by results from the group comparison highlighting worse performance in several cognitive
domains in MetS (supplementary tables S8-9). As a potential mechanism underlying these
associations, altered cortical structure has been shown to mediate the relationship between
MetS and cognitive performance in a pediatric study and elderly patients with vascular
cognitive impairment [64—66]. The detected latent variable might represent a continuous
disease spectrum spanning from minor cognitive deficits due to a cardiometabolic risk profile
to more severe vascular cognitive impairment and dementia. In support of this hypothesis, the
determined cortical thickness abnormality pattern is consistent with the atrophy pattern found
in vascular mild cognitive impairment and vascular dementia [65,66]. Collectively, we
interpret these findings as evidence for an interrelationship between MetS, cognitive

dysfunction and structural brain alteration.

To better understand the emergence of the spatial pattern of MetS effects on cortical
thickness, we conducted two brain surface-based contextualization analyses leveraging

reference datasets of (1) local gene expression data and (2) properties of brain network
topology.

Using a virtual histology approach based on regional gene expression data, we investigated

MetS effects in relation to cell population densities (figure 3). Asthe main finding, we report
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that higher MetS-related cortical abnormalities coincide with a higher regional density of
endothelial cells. This aligns with the known role of endothelial dysfunction in MetS
compromising tissues via chronic vascular inflammation, increased thrombosis risk and
hypoperfusion due to altered vasoreactivity and vascular remodeling [50]. As endothelial
density also indicates the degree of general tissue vascularization, well-vascularized regions
are also likely more exposed to cardiometabolic risk factor effects in general [48]. Our results
furthermore indicate that microglial density determines a brain region's susceptibility to MetS
effects. Microglia are resident macrophages of the central nervous system sustaining neuronal
integrity by maintaining a healthy microenvironment. Animal studies have linked microglia
activation mediated by blood-brain barrier leakage and systemic inflammation to
cardiometabolic risk [66,67]. Activated microglia can harm the brain structure by releasing
reactive oxygen species, proinflammatory cytokines and proteinases [68]. Lastly, we found
an association with the density of excitatory neurons of subtype 8. These neurons reside in
cortical layer 6 and their axons mainly entertain long-range cortico-cortical and cortico-
thalamic connections [34,70]. Consequently, layer 6 neurons might be particularly
susceptible to MetS effects due to their exposition to MetS-related white matter disease
[24,71]. Taken together, the virtual histology analysis indicates that MetS effects on cortical
thickness are conditioned by local cellular fingerprints. Our results underscore the role of
endothelial cells and microgliain cardiometabolic risk affecting the structural integrity of the

cerebral cortex.

For the second approach, we contextualized MetS-effects on cortical thickness using
principal topological properties of functional and structural brain networks. We found that
regional MetS effects and those of functionally and structurally connected neighbors were
correlated (figure 4d) - i.e., areas with similar MetS effects tended to be disproportionately

interconnected. Put differently, MetS effects coincided within functional and structural brain
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networks. Therefore, our findings provide evidence that a region's functional and structural
network embedding — i.e,, its individual profile of functional interactions as well as white
matter fiber tract connections - determines its susceptibility to morphometric MetS effects.
Multiple mechanisms might explain how connectivity conditions the cortical aterations
related to MetS. For example, microvascular pathology might impair white matter fiber tracts
leading to joint degeneration in interconnected cortical brain areas: that is, the occurrence of
shared MetS effects within functionally and structurally connected neighborhoods is
explained by their shared (dis-)connectivity profile [71]. In support of this, previous work
using diffusion tensor imaging suggests that MetS-related microstructural white matter
alterations preferentially occur in the frontal and temporal lobe, which spatially matches the
frontotemporal morphometric differences observed in our work [72]. Furthermore, we
speculate on an interplay between local and network-topological susceptibility in MetS:
functional and structural connectivity may provide a scaffold for propagating MetS-related
perturbation across the network in the sense of a spreading phenomenon - i.e., aregion might
be influenced by network-driven exposure to regions with higher local susceptibility.
Observed degeneration of a region might be aggravated by malfunctional communication to
other vulnerable regions including mechanisms of excitotoxicity, diminished excitation and

metabolic stress[73].

While this work’s strengths lie in a large sample size, high-quality MRI and clinical data,
robust image processing, and a comprehensive methodology for examining MetS effects on
brain health, it also has limitations. First, the virtual histology analysis relies on post-mortem
brain samples, potentially different from in-vivo profiles. In addition, the predominance of
UKB subjects may bias the results, and potential reliability issues of the cognitive assessment
in the UK Biobank need to be acknowledged [74]. Lastly, the cross-sectional design restricts

the ability for demonstrating causative effects. Longitudinal assessment of the surveyed
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relationships would provide more robust evidence and therefore, future studies should move

in this direction.

5 Conclusion

Our analysis revealed serious effects of MetS on brain health, complementing existing efforts
to motivate and inform strategies for cardiometabolic risk reduction. In conjunction, a
characteristic and reproducible structural imaging fingerprint associated with MetS was
identified. This pattern of MetS-related cortical morphological abnormalities was governed
by local histological as well as globa network topological features. Collectively, our results
highlight how an integrative, multi-modal analysis approach can lead to a more holistic

understanding of the neural underpinnings of MetS and its risk components.
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Figure 1. Methodology. a) Illustration of the partial least squares correlation analysis.
Starting from two input matrices containing per-subject information of regional cortical
thickness measures as well as clinical data (demographic and MetSrelated risk factors) a
correlation matrix is computed. This is subsequently subjected to singular value
decomposition resulting in aset of mutually orthogonal latent variables. Latent variables each
consist of a left singular vector (here, clinical covariance pattern), singular value and right
singular vector (here, cortical thickness covariance profile). b-d) Contextualization analysis.
b) Based on microarray gene expression data, the densities of different cell populations across
the cortex were quantified. ¢) Based on functional and structural group-consensus
connectomes based on data from the Human Connectome Project, metrics of functional and
structural brain network topology were derived. d) Cell density as well as connectomic
measures were related to the bootstrap ratio via spatia correlations. Modified from Petersen

et a. and Zeighami e al. [32,76].

Abbreviations: Astro — astrocytes, DWI — diffusion-weighted magnetic resonance imaging;
Endo — endothelial cells; Ex — excitatory neuron populations (Ex1-8); In — inhibitory neuron
populations (In1-8); Micro — microglia; Oligo — oligodendrocytes; rs-fMRI — resting-state

functional magnetic resonance imaging; SVD — singular value decompasition.
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Figure 2. Partial least squares (PLS) analysis. @) Explained variance and p-values of latent

variables. b) Clinical covariance profile. 95% confidence intervals were calculated via

bootstrap resampling. Note that confound removal for age, gender, education and cohort was

performed prior to PLS. c) Bootstrap ratio representing the covarying cortical thickness

pattern. A high positive or negative bootstrap ratio indicates high contribution of a brain

region to the overall covariance pattern. Vertices with a significant bootstrap ratio (> 1.96 or

<-1.96) are highlighted by colors. d) Scatter plot relating subject-specific clinical and cortical

thickness scores. Higher scores indicate higher adherence to the respective covariance profile.

Abbreviations:

- Spearman correlation coefficient.
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Figure 3. Virtual histology analysis. The correspondence between MetS effects (bootstrap

ratio) and cell type-specific gene expression profiles was examined via an ensemble-based
gene category enrichment analysis. a) Barplot displaying spatial correlation results. The bar
height displays the significance level. Colors encode the aggregate z-transformed Spearman
correlation coefficient relating the Schaefer100-parcellated bootstrap ratio and respective cell
population densities. b) Scatter plotsillustrating spatial correlations between MetS effects and
exemplary cortical gene expression profiles per cell population significantly associated across
analyses — i.e., endothelium, microglia and excitatory neurons type 8. Top 5 genes most
strongly correlating with the bootstrap ratio map were visualized for each of these cell
populations. Icons in the bottom right of each scatter plot indicate the corresponding cell
type. A legend explaining the icons is provided at the bottom. First row: endothelium; second
row: microglia; third row: excitatory neurons type 8. A corresponding plot illustrating the
contextualization of the t-statistic derived from group statistics is shown in supplementary
figure S20. Abbreviations: — negative logarithm of the false discovery rate-
corrected p-value derived from spatial lag models [38,40]; — Spearman correlation

coeffient. — aggregate z-transformed Spearman correlation coefficient.
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Figure 4. Brain network contextualization. Spatial correlation results derived from relating
Schaefer400x7-parcellated cortical maps of MetS effects (bootstrap ratio) to network
topological indices (red: functional connectivity, blue: structural connectivity). Scatter plots
that illustrate the spatial relationship are supplemented by respective surface plots for
anatomical localization. The color coding of cortical regions and associated dots corresponds.
a) & b) Functional and structural degree centrality rank. ¢) & d) Functional and structural
neighborhood abnormality. €) & f) Intrinsic functional network hierarchy represented by

functional connectivity gradients 1 and 2. Complementary results concerning t-statistic maps
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derived from group comparisons between MetS subjects and controls are presented in
supplementary figure S22. Abbreviations: p,...ire - P-vaue derived from network rewiring
[45]; Dsmasn - P-value derived from brainSMASH surrogates [44]; pgpin - P-value derived

from spin permutation results [43]; 75, - Spearman correlation coefficient.
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Table 1. Descriptive statistics UKB and HCHS

Metric Stat?

Age (years) 63.55 + 7.59 (40087)
Gender (% female) 46.47 (40087)
Education (ISCED) 2.62 + 0.73 (39944)

M etabolic syndr ome components

Waigt circumference (cm) 88.47 + 12.71 (38800)
Hip circumference (cm) 100.90 £ 8.79 (38801)
Waigt-hip ratio 0.88 = 0.09 (38800)
Body mass index 26.47 + 4.37 (38701)

RRwﬁolic (mmH g)

RRgiastolic (MMHQ)

Antihypertensive therapy (%)

HDL (mg/dL)

LDL (mg/dL)

Cholesterol (mg/dL)

Triglycerides (mg/dL)

Lipid lowering therapy (%)

Blood glucose (mg/dL)

Antidiabetic therapy (%)
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138.30 + 18.57 (31234)

78.88 + 10.09 (31238)

6.96 (39976)

61.76 + 23.69 (34468)

137.38 + 36.29 (37456)

211.29 + 56.42 (37531)

148.90 + 83.84 (37510)

14.44 (39976)

90.29 + 17.58 (34432)

0.45 (39976)
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Imaging

Mean cortical thickness (mm) 2.40 £ 0.09 (40087)

Cognitive variables of the UK Biobank

Fluid Inteligence 6.63 + 2.06 (36510)
Matrix Pattern Completion 7.99 + 2.13 (25771)
Numeric Memory Test 6.69 + 1.52 (26780)
Paired Associate L earning 6.92 + 2.63 (26048)
Prospective Memory 1.07 £ 0.39 (37192)
Reaction Time (sec) 594.16 + 109.08 (37015)
Symbol Digit Substitution 18.96 + 5.25 (25810)
Tower Rearranging Test 9.91 + 3.23 (25555)
Trail Making Test A (sec) 223.03 + 86.51 (26048)
Trail Making Test B (sec) 550.01 + 270.09 (26048)

Cognitive variables of the Hamburg City Health Study

Animal Naming Test 24.78 + 6.92 (2416)
Clock Drawing Test 6.43 £ 1.12 (2479)
Trail Making Test A (sec) 40.09 + 14.33 (2290)
Trail Making Test B (sec) 90.05 + 37.30 (2264)
Multiple-Choice Vocabulary Intelligence Test 31.27 + 3.58 (2026)
Word List Recall 7.75+ 1.84 (2342)

Abbreviations: cm = centimeter, dL = deciliter, HDL = high density lipoprotein, ISCED = International

Standard Classification of Education, mg = milligram, mm = millimeters, mmHg = millimeters of mercury,
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RR = Blood pressure, sec = seconds

#Presented as mean + SD (N)
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