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Abstract  

The link between metabolic syndrome (MetS) and neurodegenerative as well cerebrovascular 

conditions holds substantial implications for brain health in at-risk populations. This study 

elucidates the complex relationship between metabolic syndrome (MetS) and brain health by 

conducting a comprehensive examination of cardiometabolic risk factors, cortical 

morphology, and cognitive function in 40,087 individuals. Multivariate, data-driven statistics 

identified a latent dimension linking more severe MetS to widespread cortical abnormalities 

and lower cognitive performance, accounting for up to 77% of shared variance in the data. 

This dimension was replicable across sub-samples. Our results also suggest that MetS-related 

cortical effects are shaped by the regional cellular composition and macroscopic brain 

network organization. By leveraging extensive, multi-domain data combined with a 

dimensional stratification approach, our analysis provides profound insights into the 

association of MetS and brain health. These findings underscore the necessity for effective 

risk mitigation strategies aimed at maintaining brain integrity. 
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1 Introduction  

Metabolic syndrome (MetS) represents a cluster of cardiometabolic risk factors, including 

abdominal obesity, arterial hypertension, dyslipidemia, and insulin resistance [1]. With a 

prevalence of 23-35% in Western societies, it poses a considerable health challenge, 

promoting neurodegenerative and cerebrovascular diseases such as cognitive decline, 

dementia, and stroke [2–6]. As lifestyle and pharmacological interventions can modify the 

trajectory of MetS, advancing our understanding of its pathophysiological effects on brain 

structure and function as potential mediators of MetS-related neurological diseases is crucial 

to inform and motivate risk reduction strategies [7]. 

Magnetic resonance imaging (MRI) is a powerful non-invasive tool for examining the 

intricacies of neurological conditions in vivo. Among studies exploring MetS and brain 

structure, one of the most consistent findings has been alterations in cortical grey matter 

morphology [8]. Still, our understanding of the relationship between MetS and brain structure 

is constrained by several factors. To date, there have been only few studies on MetS effects 

on cortical grey matter integrity that are well-powered [9–12]. The majority of analyses are 

based on small sample sizes and report effects only on global measures of brain morphology 

or a priori-defined regions of interest, limiting their scope [12–14]. As a result, reported 

effects are heterogeneous and most likely difficult to reproduce [15]. Existing large-scale 

analyses on the isolated effects of individual risk factors (such as hypertension or obesity) do 

not account for the high covariance of MetS components driven by interacting 

pathophysiological effects, which may prevent them from capturing the whole picture of 

MetS as a risk factor composite [16–19]. In addition, analyses addressing the complex 

interrelationship of MetS, brain structure and cognitive functioning by investigating them in 

conjunction are scarce [8]. Lastly, while previous studies adopted a case-control design 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2023. ; https://doi.org/10.1101/2023.02.22.529531doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.22.529531
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 
 

treating MetS as a broad diagnostic category [10–12], a dimensional approach viewing MetS 

as a continuum could offer a more nuanced representation of the multivariate, continuous 

nature of the risk factor composite. 

Despite reports on MetS effects on cortical structure, the determinants and spatial effect 

patterns remain unclear. A growing body of evidence shows that spatial patterns of brain 

pathology are shaped by multi-scale neurobiological processes, ranging from the cellular 

level to regional dynamics to large-scale brain networks [20]. Accordingly, disease effects 

can not only be driven by local properties, when local patterns of tissue composition 

predispose individual regions to pathology, but also by topological properties of structural 

and functional brain networks [20,21]. Guided by these concepts, multi-modal analysis 

approaches could advance our understanding of the mechanisms influencing MetS effects on 

cortical morphology. 

We argue that further research leveraging extensive clinical and brain imaging data is 

required to explore MetS effects on cortical morphology. These examinations should 

integrate 1) a research methodology that strikes a balance between resolving the multivariate 

connection of MetS and brain structure while accounting for the high covariance of MetS 

components; 2) the recognition of impaired cognitive function as a pertinent consequence of 

MetS; and 3) the analysis of the spatial effect pattern of MetS and its possible determinants. 

To meet these research needs, we investigated cortical thickness measurements in a pooled 

sample of two large-scale population-based cohorts from the UK Biobank (UKB) and 

Hamburg City Health Study (HCHS) comprising in total 40,087 participants. Partial least 

squares correlation analysis (PLS) was employed to characterize MetS effects on regional 

cortical morphology. PLS is especially suitable for this research task as it identifies 

overarching latent relationships by establishing a data-driven multivariate mapping between 
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MetS components and cortical thickness. Furthermore, capitalizing on the cognitive 

phenotyping of both investigated cohorts, we examined the interrelation between MetS, 

cognitive function and cortical thickness. Finally, to uncover the determinants underlying 

differential MetS effects on cortical areas, we mapped local cellular as well as network 

topological attributes to observed MetS-associated cortical abnormalities. With this work, we 

aimed to advance the understanding of the fundamental principles underlying the 

neurobiology of MetS. 

2 Materials and methods  

2.1 Study population – the UK Biobank and Hamburg City Health Study 

Here, we investigated cross-sectional clinical and imaging data from two large-scale 

population-based cohort studies: 1) the UK Biobank (UKB, n = 39,668, age 45-80 years; 

application number 41655) and 2) the Hamburg City Health Study (HCHS, n = 2637, age 45-

74 years) [22,23]. Both studies recruit large study samples with neuroimaging data alongside 

detailed demographic and clinical assessment. Respectively, data for the first visit including a 

neuroimaging assessment were included. Individuals were excluded if they had a history or a 

current diagnosis of neurological or psychiatric disease. UKB individuals were excluded 

based on the non-cancer illnesses codes 

(http://biobank.ndph.ox.ac.uk/showcase/coding.cgi?id=6). Excluded conditions were 

Alzheimer’s disease; alcohol, opioid and other dependencies; amyotrophic lateral sclerosis; 

brain injury; brain abscess; chronic neurological problem; encephalitis; epilepsy; 

haemorrhage; head injury; meningitis; multiple sclerosis; Parkinson’s disease; skull fracture. 

Same criteria were applied on HCHS individuals based on the neuroradiological evaluation 

and self-reported diagnoses variables. To enhance comparability to previous studies we 

supplemented a case-control analysis enabling to complement continuous multivariate 
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statistical analyses by group statistics. Therefore, a MetS sample was identified based on the 

consensus definition of the International Diabetes Federation (supplementary text S1) and 

matched to a control cohort. 

2.2 Ethics approval 

The UKB was ethically approved by the North West Multi-Centre Research Ethics 

Committee (MREC). Details on the UKB Ethics and Governance framework are provided 

online (https://www.ukbiobank.ac.uk/media/0xsbmfmw/egf.pdf). The HCHS was approved 

by the local ethics committee of the Landesärztekammer Hamburg (State of Hamburg 

Chamber of Medical Practitioners, PV5131). Good Clinical Practice (GCP), Good 

Epidemiological Practice (GEP) and the Declaration of Helsinki were the ethical guidelines 

that governed the conduct of the HCHS [24]. Written informed consent was obtained from all 

participants investigated in this work.  

2.3 Clinical assessment 

In the UK Biobank, a battery of cognitive tests is administered, most of which represent 

shortened and computerized versions of established tests aiming for comprehensive and 

concise assessment of cognition [25]. From this battery we investigated tests for executive 

function and processing speed (Reaction Time Test, Symbol Digit Substitution Test, Tower 

Rearranging Test, Trail Making Tests parts A and B), memory (Numeric Memory Test, 

Paired Associate Learning Test, Prospective Memory Test) and reasoning (Fluid Intelligence 

Test, Matrix Pattern Completion Test). Detailed descriptions of the individual tests can be 

found elsewhere [26]. Furthermore, some tests (Matrix Pattern Completion Test, Numeric 

Memory Test, Paired Associate Learning Test, Symbol Digit Substitution Test, Trail Making 

Test and Tower Rearranging Test) are only administered to a subsample of the UKB imaging 

cohort explaining the missing test results for a subgroup of participants. 
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In the HCHS, cognitive testing was administered by a trained study nurse and included the 

Animal Naming Test, Trail Making Test Part A and B, Verbal Fluency and Word List Recall 

subtests of the Consortium to Establish a Registry for Alzheimer’s Disease 

Neuropsychological Assessment Battery (CERAD-Plus), as well as 

the Clock Drawing Test [27,28]. 

2.4 MRI acquisition 

The full UKB neuroimaging protocol can be found online 

(https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf) [22]. MR images were 

acquired on a 3-T Siemens Skyra MRI scanner (Siemens, Erlangen, Germany). T1-weighted 

MRI used a 3D MPRAGE sequence with 1-mm isotropic resolution with the following 

sequence parameters: repetition time = 2000 ms, echo time = 2.01 ms, 256 axial slices, slice 

thickness = 1 mm, and in-plane resolution = 1 x 1 mm. In the HCHS, MR images were 

acquired as well on a 3-T Siemens Skyra MRI scanner. Measurements were performed with a 

protocol as described in previous work [24]. In detail, for 3D T1-weighted anatomical 

images, rapid acquisition gradient-echo sequence (MPRAGE) was used with the following 

sequence parameters: repetition time = 2500 ms, echo time = 2.12 ms, 256 axial slices, slice 

thickness = 0.94 mm, and in-plane resolution = 0.83 × 0.83 mm.  

2.5 Estimation cortical thickness 

To achieve comparability and reproducibility, the preconfigured and containerized CAT12 

pipeline (CAT12.7 r1743; https://github.com/m-wierzba/cat-container) was harnessed for 

surface reconstruction and cortical thickness measurement building upon a projection-based 

thickness estimation method [29]. Cortical thickness measures were normalized from 

individual to 32k fsLR surface space (conte69) to ensure vertex correspondence across 

subjects. Individuals with a CAT12 image quality rating lower than 75% were excluded 
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during quality assessment. To facilitate large-scale data management while ensuring 

provenance tracking and reproducibility, we employed the DataLad-based FAIRly big 

workflow for image data processing [30]. 

2.6 Statistical analysis 

Statistical computations and plotting were performed in python 3.9.7 leveraging bctpy (v. 

0.6.0), brainstat (v. 0.3.6), brainSMASH (v. 0.11.0), the ENIGMA toolbox (v. 1.1.3). 

matplotlib (v. 3.5.1), neuromaps (v. 0.0.1), numpy (v. 1.22.3), pandas (v. 1.4.2), pingouin (v. 

0.5.1), pyls (v. 0.0.1), scikit-learn (v. 1.0.2), scipy (v. 1.7.3), seaborn (v. 0.11.2) as well as in 

matlab (v. 2021b) using ABAnnotate (v. 0.1.1). 

2.6.1 Partial least squares correlation analysis 

To relate MetS components and cortical morphology, we performed a PLS using pyls 

(https://github.com/rmarkello/pyls). PLS identifies covariance profiles that relate two sets of 

variables in a data-driven double multivariate analysis [31]. Here, we related regional cortical 

thickness measures to clinical measurements of MetS components, i.e., obesity (waist 

circumference, hip circumference, waist-hip ratio, body mass index), arterial hypertension 

(systolic blood pressure, diastolic blood pressure), dyslipidemia (high density lipoprotein, 

low density lipoprotein, total cholesterol, triglycerides) and insuline resistance (blood 

glucose). Before conducting the PLS, missing values were imputed via k-nearest neighbor 

imputation (nneighbor = 4) with imputation only taking into account variables of the same 

group, i.e., MetS component variables were imputed based on the remaining MetS 

component data only and not based on demographic variables. To account for age, gender, 

education and cohort (UKB/HCHS) as potential confounds, they were regressed out of 

cortical thickness and MetS component data.  
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We then performed PLS as described in previous work [32]. Methodological details are 

covered in figure 1a and supplementary text S2. Cortical thickness measures were randomly 

permuted (nrandom = 5000) to assess statistical significance of derived latent variables and 

their corresponding covariance profiles. Subject-specific PLS scores were computed, where 

higher scores signify stronger adherence of an individual to an identified covariance profile. 

Bootstrap resampling (n = 5000) was performed to assess the contribution of individual 

variables to the thickness-clinical relationship. Confidence intervals (95%) of singular vector 

weights were computed for clinical variables to assess the significance of their contribution. 

To estimate contributions of cortical regions, bootstrap ratios were computed as the singular 

vector weight divided by the bootstrap-estimated standard error. A high bootstrap ratio is 

indicative of a region’s contribution, as a relevant region shows a high singular vector weight 

alongside a small standard error implying stability across bootstraps. The bootstrap ratio 

equals a z-score in case of a normally distributed bootstrap. Hence, brain region contributions 

were considered significant if the bootstrap ratio was >1.96 or <-1.96 (95% confidence 

interval). Overall model robustness was assessed via a 10-fold cross-validation by correlating 

out-of-sample PLS scores within each fold. 

2.6.2 Associations of cognitive and imaging data 

As cognitive assessment differed between UKB and HCHS, cognitive variables were not 

included in the main PLS analysis. To further explore the interrelationship of cortical 

thickness and cognitive measures, we reconducted the PLS on the individual cohorts 

including cognitive measures to the clinical variables. 

2.6.3 Contextualization analysis 

We investigated the impact of MetS on cortical thickness in the context of cell-specific gene 

expression profiles and structural and functional brain network characteristics. (figure 1b-d). 
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Therefore, we Schaefer-parcellated (400x7 and 100x7, v.1) the bootstrap ratio map and 

related it to indices representing different gene expression and network topological properties 

of the human cortex via spatial correlations (Spearman correlation, ���) on a group-level [33].  

Virtual histology analysis. We performed a virtual histology analysis leveraging gene 

transcription information to quantify the density of different cell populations across the 

cortex. Genes corresponding with specific cell populations of the central nervous system 

were identified based on a classification derived from single nucleus-RNA sequencing data 

[34]. The gene-celltype mapping is provided by the PsychENCODE database 

(http://resource.psychencode.org/Datasets/Derived/SC_Decomp/DER-

19_Single_cell_markergenes_TPM.xlsx) [35]. The abagen toolbox (v. 0.1.3) and the 

ENIGMA toolbox (v. 1.1.3) were used to obtain regional microarray expression data of these 

genes for Schaefer100x7 parcels based on the Allen Human Brain Atlas (AHBA) [36]. The 

Schaefer100x7 atlas was used as it better matches the sampling density of the AHBA 

eventually resulting in no parcels with missing values. Regional expression patterns of genes 

corresponding to astrocytes, endothelial cells, excitatory neuron populations (Ex1-8), 

inhibitory neuron populations (In1-8), microglia, and oligodendrocytes were extracted. 

Instead of assessing the correspondence between MetS effects and the expression pattern of 

each gene directly, we employed ensemble-based gene category enrichment analysis (GCEA) 

as implemented in the ABAnnotate toolbox [37,38]. This approach represents a modification 

to customary GCEA addressing the issues of gene-gene dependency through within-category 

co-expression which is caused by shared spatial embedding as well as spatial autocorrelation 

of cortical transcriptomics data [39]. In brief, gene transcription indices were averaged within 

categories (here cell populations) and spatially correlated with the bootstrap ratio map. 

Statistical significance was assessed by comparing the empirical correlation coefficients 
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against a null distribution derived from surrogate maps with preserved spatial embedding and 

autocorrelation computed via a spatial lag model [40]. 

Brain network topology. To investigate the cortical MetS effects pattern in the context of 

brain network topology, three connectivity metrics were leveraged based on data from 

structural and functional brain imaging: weighted degree centrality, neighborhood 

abnormality as well as macroscale functional connectivity gradients as described previously 

[32]. These were computed based on functional and structural consensus connectomes on 

group-level derived from the Human Connectome Project Young Adults dataset comprised in 

the ENIGMA toolbox [41,42]. Computation and derivation of the metrics are described in the 

supplementary text S3. For this analysis, statistical significance of spatial correlations was 

assessed via spin permutations (n = 1,000) which represent a null model preserving the 

inherent spatial autocorrelation of cortical information [43]. Spin permutations are performed 

by projecting parcel-wise data onto a sphere which then is randomly rotated. After rotation, 

information is projected back on the surface and a permuted ��� is computed. A p-value is 

computed comparing the empirical correlation coefficient to the permuted distribution. To 

assure that our results do not depend on null model choice, we additionally tested our results 

against a variogram-based null model implemented in the brainSMASH toolbox 

(https://github.com/murraylab/brainsmash) as well as a network rewiring null model with 

preserved density and degree sequence [44,45].  

All p-values resulting from both contextualization analyses were FDR-corrected for multiple 

comparisons. As we conducted this study mindful of the reuse of our resources, the MetS 

effect maps are provided as separate supplementary files to enable further analyses. 

2.6.4 Sensitivity analyses 
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To test whether the PLS indeed captures the effect of MetS on cortical thickness, we 

conducted a group comparison as in previous studies of MetS. Besides descriptive group 

statistics, individuals with MetS and matched controls were compared on a surface vertex-

level leveraging the BrainStat toolbox (v 0.3.6, https://brainstat.readthedocs.io/) [46]. A 

general linear model was applied correcting for age, gender, education and cohort effects. 

Vertex-wise p-values were FDR-corrected for multiple comparisons. To demonstrate the 

correspondence between the t-statistic and bootstrap ratio maps, we related them via spatial 

correlation analyses. The t-statistic map was also used to sensitivity analyze the virtual 

histology analysis and brain network contextualization. 

To ensure that the brain network contextualization results were not biased by the connectome 

choice, we reperformed the analysis with structural and functional group consensus 

connectomes based on resting-state functional and diffusion-weighted MRI data from the 

Hamburg City Health Study. The corresponding connectome reconstruction approaches were 

described elsewhere [32]. 

3 Results  

Sample characteristics 

Application of exclusion criteria and quality assessment ruled out 2,188 UKB subjects and 30 

HCHS subjects resulting in a final analysis sample of 40,087 individuals. For a flowchart 

providing details on the sample selection procedure please refer to supplementary figure S4. 

Descriptive statistics are listed in Table 1. To sensitivity analyze our results, as well as to 

facilitate the comparison with previous reports which primarily rely on a case-control design, 

we supplemented group statistics comparing individuals with clinically defined MetS and 

matched controls, where applicable. Corresponding group analysis results are described in 

more detail in supplementary materials S5-11. 
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3.1 Partial least squares correlation 

We investigated the relationship between cortical thickness and clinical measures of MetS 

(abdominal obesity, arterial hypertension, dyslipidemia, insulin resistance) in a PLS 

considering all individuals from both studies (n=40,087). By this, we aimed to detect the 

continuous effect of any MetS component independent from a formal binary classification of 

MetS (present / not present). A correlation matrix relating all considered MetS component 

measures is displayed in supplementary figure S12. Before conducting the PLS, cortical 

thickness and clinical data were deconfounded for age, gender, education and cohort effects.  

PLS identified seven significant latent variables which represent clinical-anatomical 

dimensions relating MetS components to cortical thickness (supplementary table S13). The 

first latent variable explained 77.48% of shared variance and was thus further investigated 

(figure 2a). Specifically, the first latent variable corresponded with a covariance pattern of 

lower severity of MetS (figure 2b; loadings [95% confidence interval]; waist circumference: -

.228 [-.237,-.219], hip circumference: -.188 [-.197,-.179], waist-hip ratio: -.162 [-.171,-.152], 

body mass index: -.230 [-.239,-.221], systolic blood pressure: -.098 [-.108,-.089], diastolic 

blood pressure: -.121 [-.131,-.112], high density lipoprotein: .096 [.087,.106], low density 

lipoprotein: -.013 [-.023,-.004],  total cholesterol: .002 [-.008,.011], triglycerides: -.092 [-

.101,-.082], glucose: -.049 [-.058,-.040]). Notably, the obesity-related measures showed the 

strongest contribution to the covariance profile as indicated by the highest loading to the 

latent variable. Age (.004 [-.006,.013]), gender (.004 [-.005,.014]), education (.002 [-

.007,.010]) and cohort (.001 [-.008,.010]) did not significantly contribute to the latent 

variable, which is compatible with sufficient effects of deconfounding. Details on the second 

latent variable which explained 17.26% of shared variance are provided in supplementary 

figure S14. 
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Bootstrap ratios (�  
�������	 ��
��	 ������

������	������������ ������	� �		�	
) were computed to identify cortical 

regions with a significant contribution to the covariance profile (see Methods). Cortical 

thickness in orbitofrontal, lateral prefrontal, insular, anterior cingulate and temporal areas 

contributed positively to the covariance pattern as indicated by a positive bootstrap ratio 

(figure 2c). Thus, a higher cortical thickness in these areas corresponded with less obesity, 

hypertension, dyslipidemia and insulin resistance and vice versa, i.e., lower cortical thickness 

with increased severity of MetS. A negative bootstrap ratio was found in superior frontal, 

parietal and occipital regions indicating that a higher cortical thickness in these regions 

corresponded with a more pronounced expression of MetS components. This overall pattern 

was confirmed via conventional, vertex-wise group comparisons of cortical thickness 

measurements based on the binary classification of individuals with MetS and matched 

controls (supplementary figure S11) as well as subsample analyses considering the UKB and 

HCHS participants independently (supplementary figure S15-16). The correlation matrix of 

all spatial effect maps investigated in this study (bootstrap ratio and Schaefer400-parcellated 

t-statistic from group comparisons) is visualized in supplementary figure S17. All derived 

effect size maps were significantly correlated (���=.70 - .99, ���� < .05) [33]. 

Subject-specific cortical thickness and clinical scores for the first latent variable were 

computed. These scores indicate to which degree an individual expresses the corresponding 

covariance profiles. By definition, the scores are correlated (��� = .195, �<.005, figure 2d) 

indicating that individuals exhibiting the clinical covariance pattern (severity of MetS 

components) also express the cortical thickness pattern. This relationship was robust across a 

10-fold cross-validation (avg. ��� = .21, supplementary table S18). 

To examine the interrelationship of MetS components, cortical thickness and cognition, we 

conducted the PLS in the UKB sample and the HCHS sample, separately, as the cognitive 
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assessment varied between UKB and HCHS. Within the individual cohorts, cognitive 

variables were included in the PLS as clinical variables alongside MetS components. The 

resulting first latent variable associated a more severe risk profile with cortical thickness 

abnormalities, but also worse cognitive performance as shown by respective loadings. 

Significant cognitive loadings in the UKB analysis were identified for the Fluid Intelligence 

Test (loadings [95% confidence interval]; .063 [.053,.072]), Matrix Pattern Completion Test 

(.054 [.044,.064]), Numeric Memory Test (.032 [.022,.041]), Paired Associate Learning Test 

(.051 [.041,.060]), Reaction Time Test (-.040 [-.049,-.030]), Symbol Digit Substitution Test 

(.040 [.030,.050]), Tower Rearranging Test (.035 [.025,.045]) and Trail Making Test Part B (-

.019 [-.029,-.009]) (supplementary figure S15b). A significant HCHS-specific cognitive 

loading was found for the Multiple-choice Vocabulary Intelligence Test (.070 [.031,.109]) 

(supplementary figure S16b). Group comparisons of cognitive measures within the UKB and 

HCHS subsamples are provided in supplementary tables S8-9. 

3.2 Contextualization of MetS-associated cortical thickness abnormalities 

We investigated whether the pattern of MetS effects on cortical structure is conditioned by 

the regional density of specific cell populations and global brain network topology in a 

surface-based contextualization analysis (see Methods).  

Therefore, we first used a virtual histology approach to relate the bootstrap ratio from PLS to 

the differential expression of cell-type specific genes based on microarray data from the 

Allen Human Brain Atlas [47]. The results are illustrated in figure 3. The bootstrap ratio was 

significantly positively correlated with the density of endothelial cells (�	��
 = .192, ���� = 

.013), microglia (�	��
 = .268, ���� = .013), excitatory neurons type 8 (�	��

 = .166, ���� = 

.013), excitatory neurons type 6 (�	��
 = .156, ���� = .002) and inhibitory neurons type 1 

(�	��
 = .368, ���� = .036) indicating that MetS effects on cortical thickness are strongest in 
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regions of the highest density of these cell types. No significant associations were found with 

regard to the remaining excitatory neuron types (Ex1-Ex5, Ex7), inhibitory neurons (In2-In8), 

astrocytes and oligodendrocytes (supplementary table S19). As a sensitivity analysis, we 

contextualized the t-statistic map derived from group statistics. The results remained stable 

except for excitatory neurons type 6 (�	��
 = .145, ���� = .123) and inhibitory neurons type 1 

(�	��
 = .432, ���� = .108), which no longer showed a significant association (supplementary 

materials S20-21). 

Second, we associated the bootstrap ratio with three pre-selected measures of  brain network 

topology derived from group consensus functional and structural connectomes of the Human 

Connectome Project (HCP) (figure 4): weighted degree centrality (marking brain network 

hubs), neighborhood abnormality and macroscale functional connectivity gradients.[32] The 

bootstrap ratio showed a medium positive correlation with the functional neighborhood 

abnormality (��� = .452, ����� = .002, ������  < .001, �	���	�  < .001) and a strong positive 

correlation with the structural neighborhood abnormality (��� = .770, ����� = <.001, ������  < 

.001, �	���	�  < .001) indicating functional and structural interconnectedness of areas 

experiencing similar MetS effects. These results remained significant when the t-statistic map 

was contextualized instead of the bootstrap ratio as well as when neighborhood abnormality 

measures were derived from consensus connectomes of the HCHS instead of the HCP 

(supplementary figure S22-23). We found no significant associations for the remaining 

indices of network topology, i.e., functional degree centrality (��� = .162, ����� = .362, 

������  = .362, �	���	� = .876), structural degree centrality (��� = .038, ����� = .393, ������  = 

.828, �	���	�  = .082) as well as functional cortical gradient 1 (��� = .159, ����� = .293, 

������  = .362, �	���	�  = .018)  and gradient 2 (��� = -.190, ����� = .293, ������  = .362, 

�	���	�  = .001).  
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4 Discussion  

We investigated the impact of metabolic syndrome on cortical thickness and cognitive 

function in a large sample of individuals from two population-based neuroimaging studies. 

We report three main findings: 1) multivariate, data-driven statistics revealed a latent variable 

relating MetS and brain health: participants were distributed along a clinical-anatomical 

dimension of interindividual variability, linking more severe MetS to widespread cortical 

thickness abnormalities and lower cognitive performance; 2) negative MetS effects on 

cortical thickness were strongest in orbitofrontal, lateral prefrontal, insular, cingulate and 

temporal cortices; 3) this pattern of MetS-effects on cortical thickness appeared to be 

conditioned by regional cell composition as well as functional and structural connectivity. 

These findings were robust across sensitivity analyses. Collectively, our study provides a 

comprehensive assessment of the multifaceted relationship between MetS and cortical 

morphology. 

MetS adversely impacts brain health through complex, interacting effects on the cerebral 

vasculature and parenchyma as shown by histopathological and imaging studies [19]. The 

pathophysiology of MetS involves atherosclerosis, which affects blood supply and triggers 

inflammation [48,49]; endothelial dysfunction reducing cerebral vasoreactivity [50]; 

breakdown of the blood-brain barrier inciting an inflammatory response [51]; oxidative stress 

causing neuronal and mitochondrial dysfunction [52]; and small vessel injury leading to 

various pathologies including white matter damage, microinfarcts and cerebral microbleeds 

[53].   

To address these interacting effects, we harnessed multivariate, data-driven statistics in form 

of a PLS in two large-scale population-based studies to probe for covariance profiles relating 

the full range of MetS components (such as obesity or arterial hypertension) to regional 

cortical thickness in a single analysis. PLS identified seven significant latent variables with 
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the first variable explaining the majority (77.48%) of shared variance within the imaging and 

clinical data (figure 2a). This finding suggests that the overall relationship of MetS and brain 

structure is low-dimensional, i.e., effects of MetS components on cortical thickness are 

relatively uniform despite the diversity of underlying pathomechanisms. PLS revealed that all 

MetS components were contributing to this latent signature. However, waist circumference, 

hip circumference, waist-hip ratio and body mass index consistently contributed higher than 

the remaining variables across conducted analyses which highlights obesity as the strongest 

driver of MetS-related cortical morphometric abnormalities.  

We interpret these findings as evidence that MetS-associated conditions jointly contribute to 

the harmful effects on brain structure rather than affecting it in a strictly individual manner. 

This notion is supported by previous work in the UKB demonstrating overlapping effects of 

individual risk factors on cortical morphology [54]. Specifically, the first latent variable 

related increased severity of obesity, dyslipidemia, arterial hypertension and insulin 

resistance with lower cortical thickness in orbitofrontal, lateral prefrontal, insular, cingulate 

and temporal cortices (figure 2b and 1c). This profile was consistent in separate PLS analyses 

of UKB and HCHS participants as well as group comparisons (supplementary figures S8 and 

S12-13). Previous research aligns with our detection of a MetS-associated frontotemporal 

morphometric abnormality pattern [9,13,55]. As a speculative causative pathway, human and 

animal studies have related the orbitofrontal, insular and anterior cingulate cortex to food-

related reward processing, taste and impulse regulation [55,56]. Conceivably, structural 

alterations of these brain regions are linked to brain functions and behaviors that exacerbate 

the risk profile leading to MetS [57,58]. Interestingly, we also observed a positive 

relationship between cortical thickness and MetS in the superior frontal, parietal and occipital 

lobe. Interpretation of this result is, however, less intuitive. We also noted a positive MetS-

cortical thickness association in superior frontal, parietal and occipital lobes, a less intuitive 
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finding that has been previously reported [60,61]. Although speculative, the positive effects 

might be due to MetS compensating cholesterol disruptions associated with 

neurodegenerative processes [62]. 

Cognitive performance has been consistently linked to cardiometabolic risk factors and 

structural brain abnormalities in health and disease [62]. Applying PLS to both datasets 

(UKB and HCHS) individually revealed that the identified latent variables were not only 

relating more severe MetS to cortical thickness abnormalities but also to worse cognitive 

performance (supplementary materials S15b and S16b). These associations were replicated 

by results from the group comparison highlighting worse performance in several cognitive 

domains in MetS (supplementary tables S8-9). As a potential mechanism underlying these 

associations, altered cortical structure has been shown to mediate the relationship between 

MetS and cognitive performance in a pediatric study and elderly patients with vascular 

cognitive impairment [64–66]. The detected latent variable might represent a continuous 

disease spectrum spanning from minor cognitive deficits due to a cardiometabolic risk profile 

to more severe vascular cognitive impairment and dementia. In support of this hypothesis, the 

determined cortical thickness abnormality pattern is consistent with the atrophy pattern found 

in vascular mild cognitive impairment and vascular dementia [65,66]. Collectively, we 

interpret these findings as evidence for an interrelationship between MetS, cognitive 

dysfunction and structural brain alteration. 

To better understand the emergence of the spatial pattern of MetS effects on cortical 

thickness, we conducted two brain surface-based contextualization analyses leveraging 

reference datasets of (1) local gene expression data and (2) properties of brain network 

topology. 

Using a virtual histology approach based on regional gene expression data, we investigated 

MetS effects in relation to cell population densities (figure 3).  As the main finding, we report 
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that higher MetS-related cortical abnormalities coincide with a higher regional density of 

endothelial cells. This aligns with the known role of endothelial dysfunction in MetS 

compromising tissues via chronic vascular inflammation, increased thrombosis risk and 

hypoperfusion due to altered vasoreactivity and vascular remodeling [50]. As endothelial 

density also indicates the degree of general tissue vascularization, well-vascularized regions 

are also likely more exposed to cardiometabolic risk factor effects in general [48]. Our results 

furthermore indicate that microglial density determines a brain region's susceptibility to MetS 

effects. Microglia are resident macrophages of the central nervous system sustaining neuronal 

integrity by maintaining a healthy microenvironment. Animal studies have linked microglia 

activation mediated by blood-brain barrier leakage and systemic inflammation to 

cardiometabolic risk [66,67]. Activated microglia can harm the brain structure by releasing 

reactive oxygen species, proinflammatory cytokines and proteinases [68]. Lastly, we found 

an association with the density of excitatory neurons of subtype 8. These neurons reside in 

cortical layer 6 and their axons mainly entertain long-range cortico-cortical and cortico-

thalamic connections [34,70]. Consequently, layer 6 neurons might be particularly 

susceptible to MetS effects due to their exposition to MetS-related white matter disease 

[24,71]. Taken together, the virtual histology analysis indicates that MetS effects on cortical 

thickness are conditioned by local cellular fingerprints. Our results underscore the role of 

endothelial cells and microglia in cardiometabolic risk affecting the structural integrity of the 

cerebral cortex. 

For the second approach, we contextualized MetS-effects on cortical thickness using 

principal topological properties of functional and structural brain networks. We found that 

regional MetS effects and those of functionally and structurally connected neighbors were 

correlated (figure 4d) - i.e., areas with similar MetS effects tended to be disproportionately 

interconnected. Put differently, MetS effects coincided within functional and structural brain 
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networks. Therefore, our findings provide evidence that a region's functional and structural 

network embedding – i.e., its individual profile of functional interactions as well as white 

matter fiber tract connections - determines its susceptibility to morphometric MetS effects. 

Multiple mechanisms might explain how connectivity conditions the cortical alterations 

related to MetS. For example, microvascular pathology might impair white matter fiber tracts 

leading to joint degeneration in interconnected cortical brain areas: that is, the occurrence of 

shared MetS effects within functionally and structurally connected neighborhoods is 

explained by their shared (dis-)connectivity profile [71]. In support of this, previous work 

using diffusion tensor imaging suggests that MetS-related microstructural white matter 

alterations preferentially occur in the frontal and temporal lobe, which spatially matches the 

frontotemporal morphometric differences observed in our work [72]. Furthermore, we 

speculate on an interplay between local and network-topological susceptibility in MetS: 

functional and structural connectivity may provide a scaffold for propagating MetS-related 

perturbation across the network in the sense of a spreading phenomenon - i.e., a region might 

be influenced by network-driven exposure to regions with higher local susceptibility. 

Observed degeneration of a region might be aggravated by malfunctional communication to 

other vulnerable regions including mechanisms of excitotoxicity, diminished excitation and 

metabolic stress [73].  

While this work’s strengths lie in a large sample size, high-quality MRI and clinical data, 

robust image processing, and a comprehensive methodology for examining MetS effects on 

brain health, it also has limitations. First, the virtual histology analysis relies on post-mortem 

brain samples, potentially different from in-vivo profiles. In addition, the predominance of 

UKB subjects may bias the results, and potential reliability issues of the cognitive assessment 

in the UK Biobank need to be acknowledged [74]. Lastly, the cross-sectional design restricts 

the ability for demonstrating causative effects. Longitudinal assessment of the surveyed 
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relationships would provide more robust evidence and therefore, future studies should move 

in this direction. 

5 Conclusion 

Our analysis revealed serious effects of MetS on brain health, complementing existing efforts 

to motivate and inform strategies for cardiometabolic risk reduction. In conjunction, a 

characteristic and reproducible structural imaging fingerprint associated with MetS was 

identified. This pattern of MetS-related cortical morphological abnormalities was governed 

by local histological as well as global network topological features. Collectively, our results 

highlight how an integrative, multi-modal analysis approach can lead to a more holistic 

understanding of the neural underpinnings of MetS and its risk components. 
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Figure 1. Methodology. a) Illustration of the partial least squares correlation analysis. 

Starting from two input matrices containing per-subject information of regional cortical 

thickness measures as well as clinical data (demographic and MetS-related risk factors) a 

correlation matrix is computed. This is subsequently subjected to singular value 

decomposition resulting in a set of mutually orthogonal latent variables. Latent variables each 

consist of a left singular vector (here, clinical covariance pattern), singular value and right 

singular vector (here, cortical thickness covariance profile). b-d) Contextualization analysis. 

b) Based on microarray gene expression data, the densities of different cell populations across 

the cortex were quantified. c) Based on functional and structural group-consensus 

connectomes based on data from the Human Connectome Project, metrics of functional and 

structural brain network topology were derived. d) Cell density as well as connectomic 

measures were related to the bootstrap ratio via spatial correlations. Modified from Petersen 

et al. and Zeighami et al. [32,76]. 

Abbreviations: Astro – astrocytes; DWI – diffusion-weighted magnetic resonance imaging; 

Endo – endothelial cells; Ex – excitatory neuron populations (Ex1-8); In – inhibitory neuron 

populations (In1-8); Micro – microglia; Oligo – oligodendrocytes; rs-fMRI – resting-state 

functional magnetic resonance imaging; SVD – singular value decomposition. 
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Figure 2. Partial least squares (PLS) analysis. a) Explained variance and p-values of latent 

variables. b) Clinical covariance profile. 95% confidence intervals were calculated via 

bootstrap resampling. Note that confound removal for age, gender, education and cohort was 

performed prior to PLS. c) Bootstrap ratio representing the covarying cortical thickness 

pattern. A high positive or negative bootstrap ratio indicates high contribution of a brain 

region to the overall covariance pattern. Vertices with a significant bootstrap ratio (> 1.96 or 

< -1.96) are highlighted by colors. d) Scatter plot relating subject-specific clinical and cortical 

thickness scores. Higher scores indicate higher adherence to the respective covariance profile. 

Abbreviations:  - Spearman correlation coefficient. 
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Figure 3. Virtual histology analysis. The correspondence between MetS effects (bootstrap 

ratio) and cell type-specific gene expression profiles was examined via an ensemble-based 

gene category enrichment analysis. a) Barplot displaying spatial correlation results. The bar 

height displays the significance level. Colors encode the aggregate z-transformed Spearman 

correlation coefficient relating the Schaefer100-parcellated bootstrap ratio and respective cell 

population densities. b) Scatter plots illustrating spatial correlations between MetS effects and 

exemplary cortical gene expression profiles per cell population significantly associated across 

analyses – i.e., endothelium, microglia and excitatory neurons type 8. Top 5 genes most 

strongly correlating with the bootstrap ratio map were visualized for each of these cell 

populations. Icons in the bottom right of each scatter plot indicate the corresponding cell 

type. A legend explaining the icons is provided at the bottom. First row: endothelium; second 

row: microglia; third row: excitatory neurons type 8. A corresponding plot illustrating the 

contextualization of the t-statistic derived from group statistics is shown in supplementary 

figure S20. Abbreviations:  – negative logarithm of the false discovery rate-

corrected p-value derived from spatial lag models [38,40];  – Spearman correlation 

coeffient.  – aggregate z-transformed Spearman correlation coefficient. 
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Figure 4. Brain network contextualization. Spatial correlation results derived from relating 

Schaefer400x7-parcellated cortical maps of MetS effects (bootstrap ratio) to network 

topological indices (red: functional connectivity, blue: structural connectivity). Scatter plots 

that illustrate the spatial relationship are supplemented by respective surface plots for 

anatomical localization. The color coding of cortical regions and associated dots corresponds. 

a) & b) Functional and structural degree centrality rank. c) & d) Functional and structural 

neighborhood abnormality. e) & f) Intrinsic functional network hierarchy represented by 

functional connectivity gradients 1 and 2. Complementary results concerning t-statistic maps 
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derived from group comparisons between MetS subjects and controls are presented in 

supplementary figure S22. Abbreviations: �	���	�  - p-value derived from network rewiring 

[45]; ������  - p-value derived from brainSMASH surrogates [44]; ����� - p-value derived 

from spin permutation results [43]; ��� - Spearman correlation coefficient.  
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12 Tables 

Table 1. Descriptive statistics UKB and HCHS 

Metric  Stata 

Age (years) 63.55 ± 7.59 (40087) 

Gender (% female) 46.47 (40087) 

Education (ISCED) 2.62 ± 0.73 (39944) 

 

Metabolic syndrome components 

Waist circumference (cm) 88.47 ± 12.71 (38800) 

Hip circumference (cm) 100.90 ± 8.79 (38801) 

Waist-hip ratio 0.88 ± 0.09 (38800) 

Body mass index 26.47 ± 4.37 (38701) 

RRsystolic (mmHg) 138.30 ± 18.57 (31234) 

RRdiastolic (mmHg) 78.88 ± 10.09 (31238) 

Antihypertensive therapy (%) 6.96 (39976) 

HDL (mg/dL) 61.76 ± 23.69 (34468) 

LDL (mg/dL) 137.38 ± 36.29 (37456) 

Cholesterol (mg/dL) 211.29 ± 56.42 (37531) 

Triglycerides (mg/dL) 148.90 ± 83.84 (37510) 

Lipid lowering therapy (%) 14.44 (39976) 

Blood glucose (mg/dL) 90.29 ± 17.58 (34432) 

Antidiabetic therapy (%) 0.45 (39976) 
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Imaging 

Mean cortical thickness (mm) 2.40 ± 0.09 (40087) 

  

Cognitive variables of the UK Biobank  

Fluid Intelligence 6.63 ± 2.06 (36510) 

Matrix Pattern Completion 7.99 ± 2.13 (25771) 

Numeric Memory Test 6.69 ± 1.52 (26780) 

Paired Associate Learning 6.92 ± 2.63 (26048) 

Prospective Memory 1.07 ± 0.39 (37192) 

Reaction Time (sec) 594.16 ± 109.08 (37015) 

Symbol Digit Substitution 18.96 ± 5.25 (25810) 

Tower Rearranging Test 9.91 ± 3.23 (25555) 

Trail Making Test A (sec) 223.03 ± 86.51 (26048) 

Trail Making Test B (sec) 550.01 ± 270.09 (26048) 

  

Cognitive variables of the Hamburg City Health Study  

Animal Naming Test 24.78 ± 6.92 (2416) 

Clock Drawing Test 6.43 ± 1.12 (2479) 

Trail Making Test A (sec) 40.09 ± 14.33 (2290) 

Trail Making Test B (sec) 90.05 ± 37.30 (2264) 

Multiple-Choice Vocabulary Intelligence Test 31.27 ± 3.58 (2026) 

Word List Recall 7.75 ± 1.84 (2342) 

Abbreviations: cm = centimeter, dL = deciliter, HDL = high density lipoprotein, ISCED = International 

Standard Classification of Education, mg = milligram, mm = millimeters, mmHg = millimeters of mercury, 
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RR = Blood pressure, sec = seconds 

aPresented as mean ± SD (N) 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2023. ; https://doi.org/10.1101/2023.02.22.529531doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.22.529531
http://creativecommons.org/licenses/by-nc-nd/4.0/


https://doi.org/10.1101/2023.02.22.529531
http://creativecommons.org/licenses/by-nc-nd/4.0/


https://doi.org/10.1101/2023.02.22.529531
http://creativecommons.org/licenses/by-nc-nd/4.0/


https://doi.org/10.1101/2023.02.22.529531
http://creativecommons.org/licenses/by-nc-nd/4.0/


https://doi.org/10.1101/2023.02.22.529531
http://creativecommons.org/licenses/by-nc-nd/4.0/


https://doi.org/10.1101/2023.02.22.529531
http://creativecommons.org/licenses/by-nc-nd/4.0/

