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Summary To drive behavior, the cortex must bridge sensory cues with future outcomes. However, the principles
by which cortical networks learn such sensory-behavioural transformations remain largely elusive. Here, we posit
that the cerebellum assumes a crucial role in driving cortical dynamics, thereby enabling rapid and flexible task ac-
quisition. We introduce a computational model of cerebellar networks which learn to drive cortical networks with
task-outcome predictions. First, using sensorimotor tasks we show that cerebellar feedback in the presence of min-
imal cortical plasticity is sufficient for rapid task acquisition and multiple task switching. Next, we demonstrate that,
when trained in working memory tasks, the cerebellum can also underlie the maintenance of cognitive-specific dy-
namics, explaining a range of optogenetic and behavioural observations. Finally, using our model we introduce a
systems consolidation theory in which task information is gradually transferred from the cerebellum to the cortex.
In summary, our findings suggest that cortico-cerebellar loops play a pivotal role in task acquisition, switching, and
consolidation within the brain.

Introduction
Learning to interact with the environment requires a continuous integration of fast-changing sensory cueswith future
behavioural outcomes. Growing evidence suggests that cortical dynamics integrate the task-specific information that
is needed for such sensory-behavioural transformations1–5. One dominating view in the field assumes that cortical
networks are themselves learnt or optimised leading to the rich dynamics required for task performance6–8. However,
to help ensure a stable representation of the world, cortical plasticity must be kept under control and relatively
weak9–12. This raises the question of how can the brain quickly acquire new task-specific dynamics in the presence
of relatively fixed cortical connectivity.

One possible solution is to consider feedback loops that drive cortical dynamics13. Computational studies have
extended recurrent neural networks (RNNs) models of cortical networks (Fig. 1A) to incorporate feedback loops for
task acquisition. One type of feedback loop drives RNN dynamics by projecting the readout back to the RNN14–16

(Fig. 1B). Building on this line of work, two recent theoretical studies have suggested that thalamo-cortical feedback
can both prepare and control RNN dynamics to achieve flexible motor sequencing17,18. All of these studies assume
that connectivity within the RNN itself remains fixed, thereby avoiding complex learning rules while being able to
reuse RNN dynamics for different contexts19. However, these approaches either assume a relatively simple feedback
(i.e. a linear combination of RNN activity) or rely on theoretically optimal, but biologically implausible , derivations
for the feedback signal. In particular, the possible role of more powerful, highly adaptable brain regions is often
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Figure 1. Schematic of cortical recurrent networks with different types of feedback. (A) Model variant with no feedback:
temporal external input (xt ) is fed to a cortical RNN (grey) and a linear readout layer (blue) produces the final model output (zt ). (B)
Model variant with readout-only feedback: in this scheme there is a feedback loop in which the RNN also receives readout predictions
as extra input14,16. (C) Model variant with cerebellar feedback: a copy of RNN activity (ht ) is sent to a (feedforward) cerebellar network
C, which feedbacks to the cortical network its own cerebellar predictions (ct ). (D) A key property of our cerebellar network is that it
learns via behavioural timing-specific learning rules, in linewith experimental observations32. In this learning rule the error between
the cerebellar prediction c and future behavioural outcomes y (150ms) triggers plasticity via climbing fibers at the parallel fibre input
of Purkinje cells.

overlooked.
Here we focus on the feedback loop between two key brain regions, the cortex and the cerebellum. The cerebel-

lum is a highly plastic system and is well placed to drive cortical dynamics via a set of stereotypical, but functionally
separable cortico-cerebellar loops20,21. Indeed, an ever-growing array of clinical22, functional imaging23,24, and op-
togenetic25–27 studies support an important cerebellar contribution to cortical activity in both motor and non-motor
domains. Recently, two hypotheses on the computational role of cortico-cerebellar loops have been put forward28–31.
The first asserts that the cerebellum reinforces cortical-dependent goal-directed behaviour by appropriately steering
or stabilising cortical states in real-time28,29. The second also promotes the cerebellum as a facilitator of goal-directed
cortical transitions, but it does so indirectly via teaching signals which lead to cortical plasticity30,31. Whilst these two
viewsmay co-exist, it is the former that is well placed to operate under weakly plastic cortical networks. Moreover, the
cerebellum acting as an instantaneous driver of cortical dynamics is in line with the fast activity-dependent cortico-
cerebellar interactions that have been observed experimentally25–27.

Here we put forward a computational framework in which the cerebellum learns to rapidly steer and stabilise
task-dependent cortical dynamics. We test this model on a variety of motor and non-motor tasks, proposing that
the cerebellum is optimised to support task acquisition in the cortex. This reduces the burden of learning in cortical
networks and allows a given cortical area to rapidly switch between different tasks. In line with this, we show that
a strong cortical dependence on cerebellar feedback arises after learning, consistent with recent behavioural and
optogenetic experiments. Finally, we use this model to put forward a cerebellar-to-cortical systems consolidation
theory, in which quickly learnt task-specific information encoded by the cerebellum is gradually transferred to the
cortex. Overall, we introduce a computationally and experimentally supported theory for cerebellar-supported task
acquisition, switching and consolidation in the brain.
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Results
A computational model of cerebellar-driven cortical dynamics for task acquisition
To study the role that cerebellar feedback can have in driving cortical dynamics during task acquisition, we explore
different variants of cortical RNNs: without feedback (Fig. 1A), with readout feedback (Fig. 1B)14,16 and with feedback
provided by a cortico-cerebellar loop (Fig. 1C). We introduce a model of cortico-cerebellar loops, in which a cortical
RNN is reciprocally connected to a feedforward cerebellar network C. In our model, temporal RNN representations
ht are passed onto the cerebellar network to compute task-specific predictions ct , which are then sent back to the
same cortical RNN. The final model output zt is then a linear readout of the RNN activity

ht = αht−1 + Whhf (ht−1) + Wihxt + WChct

zt = Wrdtf (ht),
(1)

where α denotes the cortical internal memory (or leak) of the RNN neurons, f (x) is the cortical activation function
which is set as tanh(x). Whh,Wih,WCh are the recurrent, input, and cerebellar weights onto the RNN respectively, and
Wrdt are the readout weights (see Supplementary Fig. S1 for a detailed schematic). For computational efficiency and
due to the relatively long duration of the tasks we train our model using a discrete approximation of a continuous
RNN (see Methods). To highlight the need for optimised network connectivity rather than inherent cortical memory
mechanisms, in our experiments we generally focus on small α = 0.1 (see Methods).

The cerebellar feedback ct is a feedforward computation C on the previous RNN activity

ct = C (f (ht−1)) = WPFf
C (WMFf (ht−1)) , (2)

whereWMF represent the cerebellar (input) mossy fibre (MF) weights onto granule cells (GC) andWPF the parallel fibre
(PF) weights from GC to Purkinje cells (PC), here representing the output. Together, these constitute the main stages
of processing in the cerebellum33–35. In general we modelWMF as highly divergent with an input/output ratio of 1:20
(see Methods) and f C(x) as a rectified linear function (ReLU), in line with the large numbers of cerebellar GCs and
responses36,37. As we demonstrate in our results, and consistent with prior work, the dimensionality expansion and
non-linearity at the GC layer enables better representations during learning.

We use biologically plausible gradient descent38 to optimise cortical weights during the acquisition of a given task
(Eq. 1). In particular, we minimise the temporal error Et = E(zt , yt), where yt denotes the desired task outcome at
time t and E is the task error function (see Methods). These weights can all be optimised simultaneously during
learning – we refer to this case as fully plastic. However, a key idea that we put forward in this study is that it is not
the neocortex, but in fact the cerebellum, which acts as a key driver for task acquisition. For this reason we highlight
the case in which RNN plasticity is constrained. In particular, we focus on conditions in which RNN plasticity is either
absent – fixed RNN case, or in which plasticity is strictly limited to its input synapses (i.e. only Wih,WCh in Eq. 1 are
plastic) – input plastic case. The latter case considers both plasticity at sensory and cerebello-cortical input during task
acquisition, in line with experimental observations showing plasticity at cerebellar pathways to the cortex39,40.

In contrast to cortical learning, the cerebellum is always optimised, through a separate but related cerebellar error
ECt . In line with classical models of the cerebellum33 we assume that learning occurs at the parallel fibresWPF, medi-
ated by climbing fibre error signals, whilst mossy fibres inputsWMF remain fixed. Like the cortical prediction error, the
cerebellar error function depends on the desired task outcome y. However, as we will see later, it is advantageous
for the cerebellum to provide predictions of future outcomes. To enable this we formulate a temporal cerebellar
learning rule. In this rule the cerebellum learns by comparing its own past output within a predefined time-window τ ,
with current desired outcomes (Fig. 1D), ECt = E(ct−τ , yt) – behavioural timing-specific learning rule. This learning rule
then predicts the need for temporally precise coordination between parallel fibre inputs and subsequent climbing
fibre error signals to achieve plasticity, in line with experimental findings32,41–45. Therefore, it enables the cerebellum
to predict future outcomes effectively, i.e. ct ≈ yt+τ . For our motor-based tasks we generally consider a cerebellar
time window of τ ≈ 150ms32 and for the later cognitive tasks use longer windows τ ≈ 600ms (see Methods).

Cerebellum learns to drive cortical dynamics during a line drawing task
To study the functional consequences of cortico-cerebellar loopswe first test themodel in amotor-based line drawing
task. In this task the model receives one out of six cues at the beginning of the task and learns to either remain still
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Figure 2. Cerebellum learns to drive cortical dynamics during a line drawing task. (A) Given one of six possible stimuli at the
first timestep the model must learn to draw a corresponding line (dotted black line) or remain still. Model output after training
is shown for three model architectures with a fixed RNN. (B) Learning curves of models in A (same colour-coding). MSE denotes
mean squared error. (C) Average training error across different levels of RNN internal memory (α) and plasticity (fixed RNN, input
plastic and fully plastic) for the no feedback and cerebellar feedback models; arrow denotes cortical internal memory used in the
other panels (α = 0.1). (D) Average training error of cortico-cerebellar model under varying numbers of granule cells and cerebellar
temporal windows (τ ). Orange arrow denotes default parameter choices. (E) Prediction error between cortical output and itself
(gray) or cortical output and cerebellar output (orange) for different temporal delays. (F) Evolution of first (upper panel) and second
(lower panel) principal components of cortical RNN for different stimuli, colour-coded as in (A) using small (τ = 0ms) and large
(τ = 250ms) cerebellar time windows. (G) Variance across cues from both first and second PCs (cf. F) for different cerebellar
temporal windows, τ . (H) Model output for different periods of cerebellar ablation (blue box represents period of ablation). (I)
Output x and y coordinates of the lines drawn in H. (J) Average model error across all inputs for ablation periods in H,I. (K) Average
error for different degrees of plasticity and ablation periods (left to right) as in H-J. (L) Average change in task error for models with
versus without cerebellar feedback during (black) and after (blue) training for different degrees of cortical plasticity. All results are
averaged over 5 different initial conditions. Error bars represent standard error of the mean.

or produce one out of five possible straight lines (Fig. 2A; see Methods). Feedback provided by desired outcomes
(i.e. straight lines) is provided at each timestep. Consistent with behavioural studies on cerebellar patients46, we find
that cerebellar feedback significantly improves learning of the task and final performance (Fig. 2A,B). The ability for
cerebellar feedback to facilitate learning does not depend on the degree of plasticity and internal memory in the
cortical RNN (Fig. 2C). Interestingly, a fixed RNN with a plastic cerebellum achieves the same learning performance
as a fully plastic or input plastic RNN. In contrast, when no feedback or a simple readout feedback is provided the
network can fail to learn the task due to the leaky properties of RNNs (Fig. 2B,C). Classical cerebellar models pose that
the cerebellum can act as a direct controller of motor tasks33. To contrast this view with our model we also train an
RNN with a direct cerebellar readout, which apart from the cortico-cerebellar feedback weights uses the same free
network parameters, and find it insufficient to learn the task (Supplementary Figs. S1 and S2).

Next, we study how two known cerebellar features: (i) a large number of granule cells and (ii) behavioural timing-
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specific plasticity rules contribute to task proficiency. We find that a combination of high numbers of granule cells with
a learning rule with a non-zero temporal horizon, τ , result in better cerebellar learning (Supplementary Fig. S3), which
in turn drives better cortical representations and overall task performance (Fig. 2D and Supplementary Figs. S3,S4).
Moreover, because both the cortical RNN readout and cerebellar network are trained on the same desired outcome,
we observe that cerebellar output effectively predicts cortical readout τms ahead (Fig. 2E). Our model thus provides
a theory of how the cerebellum learns to predict upcoming movements47,48.

The advantage of a large number of granule cells has been well studied is likely due to better linear separability
of its inputs49. However, what are the computational advantages of the cerebellum providing the cortical RNN with
expected future outcomes? Due to RNN leakiness, sensory cues are rapidly forgotten. Therefore a high cerebellar
τ gives the cerebellar network the ability to map RNN activity to desired outcomes early on in the task. Consistent
with this we find that the predictive cerebellar output drives outcome-dependent RNN representations (Fig. 2F,G).
This result showing potent initial drive of cortical activity could provide a justification for the observed role of the
cerebellum in movement initiation50,51.

Finally, to directly examine the role of cerebellar feedback on cortical dynamics, we inhibit - or “ablate” - cerebellar
output (i.e. ct = 0 in Eq. 1) during different stages of the task. In each case we observe significant impairment in
the model output which returns to baseline (Fig. 2H-J). Moreover, this effect is most detrimental to task performance
when ablation occurs at the start (Fig. 2K). These findings are consistent with the observed freezing effect of cerebellar
lesions on gait52. In line with both cortical and cerebellar networks working jointly to perform the task, we find that
when the RNN is fully plastic cerebellar ablations have a significant but reduced impact on the cortical dynamics
(Fig. 2K,L and Supplementary Fig. S5). We also observe that the cortical RNN is particularly sensitive to the presence
of noise in cerebellar output. When noise is added to its output it leads to irregular behaviour (Supplementary Fig. S6),
in line with the classical motor symptoms of cerebellar ataxia53.

Taken together, this motor-based task highlights the computational benefits of training a cerebellar network to
drive cortical dynamics, predicting that the cortex can critically depend on cerebellar feedback for successful task
execution. Furthermore, we demonstrate that cerebellar plasticity can effectively replace the need for local cortical
plasticity.

Cerebellar-mediated task switching in cortical networks
We have shown that cortico-cerebellar loops can enable successful task learning with minimal cortical plasticity. This
opens the possibility of reusing cortical networks across different contexts and behaviours.

To demonstrate the model’s ability to adapt and perform context-dependent task switching, we consider how
models trained in the line-drawing task can be retrained to a curl-field variant54. In particular, we analyse how the
cerebellar network can (i) successfully enable learning in a new task context and also (ii) rapidly revert, or switch, to a
previously learned context.

As expected, when the new task context is introduced to the model, there is a steep increase in error before
the model successfully learns the new task (Fig. 3A, left and middle). Notably, however, when the original task is
reintroduced, the fixed RNN model recovers the initial dynamics significantly faster than the fully plastic model and
more faithfully captures the behavioural data frommacaque monkeys54 (Fig. 3A, right). This relatively slow switching
back suggests that the fully plastic RNN is more prone to forgetting the original task9.

We then asked how the cerebellar network might enable even faster task switching. In line with observed context-
dependent activations55,56 and plasticity rules57 in the cerebellum, we consider cerebellar PFs which are task-specific.
The extent of task-specificity at PFs is modelled by the PF task overlap; full overlap (100%) would imply that the same
exact PFs are used across task contexts, while zero overlap (0%) implies that a completely different set of PFs is used
for each task respectively.

Our results show that the degree of PF task overlap predicts a tradeoff between the speed of learning the new
task and the ability to rapidly switch back to the original task (Fig. 3B). Specifically, whilst maximal PF task overlap is
beneficial when a new task is introduced, rapid switching is favoured when distinct PFs are used. To highlight the
ability to immediately switch back to the original task (zero-shot switch) we focus on the zero-overlap case. For the
fixed RNN, but not the fully plastic RNN, the model achieves near-perfect switching to the original task (Fig. 3C,D).
Consistent with the need to learn a new task all models show a substantial change in the neuronal activity (Fig. 3E
and Supplementary Fig. S7A). However, we expect that models with minimal local cortical plasticity should result in
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Figure 3. Context-dependent cerebellar feedback can enable multi-task learning and switching in the cortex. (A) Training
error of cortico-cerebellar models originally trained for line drawing (cf. Fig. 2; α = 0.5). The models continue to execute the line-
drawing task (left) before being trained on a novel curl-field variant of the task (middle) and then finally switch back to the original
task (right). Data from behavioural experiments in macaque monkeys is reproduced here for comparison (bottom;54). (B) Average
training error across different levels of parallel fibre (PF) task overlap for the different tasks for the fixed RNN (top) and fully plastic
(bottom)models. Task periods colour-coded as in A. Arrows denote degree of PF task overlap used in A and C-F. (C) Model output for
each of the three training periods defined in A for the zero-overlap condition; “zero-shot” output corresponds to the model output
in the first trial when task 1 is reintroduced. (D) Model retention score for task 1. The retention score is computed as the error of
task 1 during baseline over the error at the first trial after switching back to task 1. (E, F) Change in (E) activity and (F) covariance in
the RNN population between task 1 (baseline) and after learning task 2. Mean changes in experimental data in F are reproduced
(see Methods) from neuronal recordings obtained from premotor (PMd) and primary motor (M1) cortices in macaque monkeys54.
All results are averaged over 5 different initial conditions. Error bars represent standard error of the mean.

minimal changes in the underlying dynamics of both tasks. To test this, we measure changes in the the covariance
of the neuronal activity between the new task and the initial task (see Methods and58). As predicted, only the mod-
els with reduced cortical plasticity show the minimal changes observed experimentally (Fig. 3F and Supplementary
Fig. S7B). On the other hand, for the fully plastic model the dynamics acquired after switching back to the initial task
are significantly different to baseline (Supplementary Fig. S7C,D). This suggests that the fully plastic model learns a
new solution to the initial task, explaining its relative slowness in switching.

Overall, we apply ourmodels to demonstrate a cerebellar-driven solution tomulti-task learning and task switching.
We show that the underlying dynamics preserved by a fixed cortical RNN, supported by context-dependent cerebellar
feedback, can support rapid behavioural changes whilst minimising forgetting of previously acquired task knowledge.

Cerebellar temporal basis supports non-linear drawing task
Above we have modelled a case in which the cerebellum learns to drive cortical dynamics using a specific predictive
time-window (namely τ = 150ms). However, a recent study has revealed a diversity of temporal plasticity windows
to be at play in the cerebellum32,59 (Fig. 4A). Such diversity of temporal windows may enable the cerebellum to learn
a temporal basis for upcoming events, which may enhance the cerebellum’s ability to predict future outcomes.

6 of 38

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2023. ; https://doi.org/10.1101/2022.11.14.516257doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516257
http://creativecommons.org/licenses/by-nc/4.0/


time 
window (τ): 

150ms

150ms  0ms  250ms  

RNN 
teacher

prediction

prediction 
error

y

c

EC WChh
cortical input

WMF

WPF

climbing fibres

GCs

cerebellar temporal basis

delay 

Figure 4. Cerebellar temporal basis supports cortical dynamics of a non-linear digit drawing task. (A) Schematic of cerebellar
learning with a temporal basis. We consider multiple populations of Purkinje cells with different learning time windows τ . (B) Model
output after training for different input examples of the digit drawing task (fixed RNN; α = 0.1). (C) Learning curves of models in B
together with readout feedback model (blue). (D) Average training error across different levels of RNN cortical internal memory (α)
and plasticity assumptions. (E) Performance of cerebellar feedback for different numbers of granule cells and and cerebellar time
windows. Orange arrow indicates default parameter choices with a single cerebellar time window; red arrow indicates temporal
basis model with multiple time-windows. (F) Model output under control and cerebellar ablation conditions for example inputs
(digit 2 in upper panels and digit 4 in lower panels); dashed red line represents model output during and after ablation period.
(G) Average model error across all inputs for control (left) and ablation (right) conditions. (H) Average error for different degrees
of cortical plasticity and ablation periods (middle period illustrated in F,G). I, Average change in task error for models with versus
without cerebellar feedback during (black) and after (blue) training across different degrees of cortical plasticity. All results are
averaged over 5 different initial conditions. Error bars represent standard error of the mean.

To demonstrate the benefit of diversity in temporal windowswe consider amore realistic (and challenging) variant
of the line-drawing task in which the model is now trained to produce a digit-like output (Fig. 4B; see Methods). This
task is selected so as to produce a non-linear and highly varied set of future desired outcomes and therefore the need
for richer cerebellar predictions. In particular, we consider a cerebellar network which simultaneously learns with a
range, or “temporal basis”, of time-windows τi ∈ [0ms, 250ms] such that its prediction effectively spans a relatively
long window of upcoming desired outcomes (see Methods).

We find this heterogeneity of cerebellar time windows to enable both faster learning and higher performance
thresholds (Fig. 4B,C and Supplementary Fig. S8). As expected, when considering the simpler line-drawing task hav-
ing multiple time windows does not improve learning (Fig. S8C). Moreover, in line with the results above, a fixed RNN
achieves a performance comparable to the plastic RNN models across different degrees of internal memory in the
cortical network (Fig. 4D). When comparing the network performance across different numbers of granule cells and
time-windows, we find that higher numbers of granule cells combined with multiple time-window learning achieves
the best average learning performance (Fig. 4E). Finally, as with the simpler line-drawing task, we find that cerebel-
lar ablation is detrimental to the maintenance and development of these representations (Fig. 4F-H) in a way that
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depends on the degree of cortical plasticity (Fig. 4I and Supplementary Fig. S9).
These results suggest that the diversity of behavioural-specific learning windows observed experimentally in the

cerebellum32,59 improve behaviour when in the presence of more challenging task conditions.

time 

L (-)

R (+)

ev
id

en
ce

right puff
left puff

0 100 200
training session

30%

40%

50%

er
ro

r (
%

)

no feedback
readout feedback
cerebellar feedback

0.0 0.2 0.4 0.6 0.8
cortical internal memory ( )

20%

10%

0%

10%

 a
ve

ra
ge

 tr
ai

ni
ng

er
ro

r (
%

)

fixed RNN
input plastic
fully plastic

0 3.8
L (-)

R (+)

be
lie

f  
  control

cerebellar ablation

0 3.8

time (s)
L (-)

R (+)

da
ta

-d
riv

en
m

od
el

   
   

 

0.0

0.5
data

1/3 2/3 3/3
cue period (frac.)

0.0

0.5

ctrl start mid. end delay full
ablation period

20%

30%

40%

50%

60%

er
ro

r (
%

)

data

fixed
RNN

input
plastic

fully
plastic

cortical plasticity 

30%

20%

10%

0%

10%

 e
rro

r (
%

)

0.25 0.50 0.75 1.00
cue duration (s)

30%

20%

10%

0%

 e
rro

r (
%

)

during
training
after
training

A B C

D E

F G H

no
rm

. w
ei

gh
t o

n 
ev

id
en

ce(P
)

(a
.u

)

Figure 5. Cortico-cerebellar model mimics mouse behaviour during evidence accumulation task. (A) Schematic of evidence
accumulation task26: a random sequence of non-zero inputs (“air puffs”) is delivered in the leftward (-) or rightward (+) direction.
The model must integrate this input and decide at the end of the task which side received more input overall. (B) Learning curves of
models (fixed RNN;α = 0.1) without feedback (grey), with readout feedback (blue) andwith cerebellar feedback (orange). (C) Change
in average training error of the cortico-cerebellar model with respect to the no feedback model across different levels of cortical
internal memory (α) and degrees of cortical plasticity. (D) Model beliefs over time without (orange) and with complete cerebellar
ablation (purple) in model (upper panels) and data-derived behavioural model (lower panels) reproduced from Deverett et al. 26 .
Thin model lines represent one example seed. Belief P denotes model output probability. (E) Normalised regression weights at
different periods of input presentation (cue) during control (upper) and ablation (lower) conditions for both model (orange line) and
behavioural data (black line). (F) Model and data error under different ablation periods and degrees of cortical plasticity. (G) Average
change in task error for models with versus without cerebellar feedback across different cue durations. (H) Average change in task
error for models with versus without cerebellar feedback during and after training across different degrees of cortical plasticity. All
model results are averaged over 5 different initial conditions. Error bars represent standard error of the mean.
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Cerebellar-driven cortical dynamics maintains beliefs in an evidence accumulation task
So far we have focused purely on motor-based tasks, but growing evidence strongly suggests that the cerebellum
also plays important roles in functions that go beyond direct motor control21,60,61. To demonstrate this we model
an evidence accumulation task that has been shown to be cerebellar-dependent26. In this study Deverett et al. 26

showed that optogenetic inhibition of the cerebellar output nuclei disrupts the ability of mice to determine whether
the left or right cheek received more air puffs over a period of time (Fig. 5A). Unlike the previous tasks, here the
desired outcome is only provided at the end of the task, making error-related signals highly sparse.

Similar to the motor tasks studied above, cerebellar feedback improves task learning relative to models without
feedback or with readout feedback (Fig. 5B). Moreover, a fixed RNN achieves performance comparable or even su-
perior to the fully plastic models across a range of degrees of cortical internal memory (Fig. 5C and Supplementary
Fig. S10). These results suggest that weakly plastic cortical networks driven by the cerebellum may also be sufficient
for learning cognitive-based tasks with sparse error information.

Next, our ablation analysis reveals strong similarities to the optogenetic observations by Deverett et al. 26 . In
particular, cerebellar ablation greatly impairs the model’s capacity to maintain and develop beliefs, mirroring the be-
havioural effects observed experimentally (Fig. 5D and Supplementary Fig. S11). Indeed, using the same behavioural
regression performed by Deverett et al. 26 (see Methods), we show that cerebellar ablation in latter periods leads to
a final choice in which information about previously seen inputs is greatly reduced (Fig. 5E), in line with experimental
findings. Because more information is effectively lost, we find that ablation near the end of the task has a particu-
larly detrimental impact on task performance, consistent with behavioural observations (Fig. 5F), and this leads to a
sub-chance ability to perform “history-centric” trials which rely more on initial inputs (Supplementary Fig. S11; see
Methods). These ablation results also emphasize that even though the cerebellum is trained with teaching signals
close to the end of the task, cerebellar predictions prove to be valuable earlier in the task (Fig. 5F). Finally, to demon-
strate that task performance also depends on cortical dynamics, we performed (partial) ablation to cortical RNN and
observed similar behavioural deficits (Fig. S12A-C).

Given that cerebellar feedback is necessary to preserve information over time and avoid leaky cortical dynamics,
we predicted that the behavioural effect of cerebellar ablation would depend on the timescale of the task and would
weaken for shorter task durations. Indeed, we find that the performance effect of ablation increases as a function of
task length (Fig. 5G and Supplementary Fig. S13; see Methods). Like in the previous motor-based tasks, our model
predicts that cerebellar feedback is particularly helpful when in the presence of weak cortical plasticity (Fig. 5G,H).

Overall, our model predicts that the proper maintenance of model selectivity depends critically on cerebellar
feedback during evidence accumulation. Consistent with behavioural results, these effects are emphasised when
cerebellar ablation occurs in the later stages of the task.

Cerebellar feedback sustains cortical dynamics in a delayed association task
Next we aim to demonstrate that cerebellar networks can also effectively drive cortical dynamics in tasks with long
delay periods, while capturing both neuronal and behavioural observations. To achieve this we model a delayed
association task which was recently shown to dependent on cortico-cerebellar loops25. In this study mice were pre-
sented with one of two stimuli (left or right) followed by a delay period, after which they were trained to lick in the
corresponding direction (Fig. 6A, top). At the same time neural selectivity was recorded both in the anterior lateral
motor cortex (ALM) - a workingmemory and planning region - as well as the cerebellar output nuclei (Fig. 6A, bottom).
Timed photoinhibition was used to reveal ALM selectivity to strongly depend on the cerebellar output nuclei, and vice
versa.

To model this task we follow the same protocol used experimentally25, where one of two possible cues are pre-
sented followed by a delay period, after which the model makes a cue-based response (left or right; see Methods).
Given the lack of sensory or teaching information during the delay period the cortico-cerebellar network it is particu-
larly vital in this task to sustain stimulus representations. It is important to note that a standard randomly initialised
RNN is unlikely to achieve this property, since memories of previous inputs naturally decay in the absence of task-
induced plasticity19.

We observe that cerebellar feedback consistently enables task acquisition (Supplementary Fig. S14), and identify a
particularly interesting casewhenplasticity in the RNN is limited strictly to its input synapses (input plastic). In this case
cerebellar feedback significantly improves cortical learning to reach near-perfect performance, whilst also enabling
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Figure 6. Cerebellar network sustains cortical dynamics during delayed association task in line with optogenetic experi-
ments. (A) (Top) Delayed association task; a sensory cue is presented followed by a delay and decision period25. (Bottom) The
cortico-cerebellar loop models the interactions between a working memory region and a cognitive module of the cerebellum. (B)
Learning curves of model without feedback (grey), readout feedback (blue) or cerebellar feedback (orange) for models with an input
plastic RNN (α = 0.1) . (C) Change in average training error of the cortico-cerebellar model with respect to the no feedback model
across different levels of cortical internal memory (α) and degrees of plasticity in the cortical RNN. (D) Cue selectivity during the
delay period without (left) and with cerebellar ablation (right; blue area denotes period of ablation and thin line shows control) in
the model (upper panels) and optogenetic experiments (lower panels) reproduced from Gao et al. 25 . (E) First decision principal
component (dPC) during the delay period without (left) and with (right) cerebellar ablation in the model (top) and in optogenetic
experiments (bottom)25. (F) Cue selectivity during the delay period with cerebellar ablation when using the fully plastic RNN (cf.
D). (G) Model error during cerebellar ablation (input plastic RNN; control error shown with dashed-dotted line). Dotted grey line
denotes chance level. (H) Average error from cerebellar ablation at different points during the delay period and different degrees
of cortical plasticity. (I) Average change in task error for models with versus without cerebellar feedback during and after training
across different degrees of cortical plasticity. (J) Model error for different numbers of cerebellar granule cells (GCs) and delay period
lengths in the delayed association task (fixed RNN; α = 0.1). (K) Signal-to-noise ratio (SNR) of RNN activities (left y-axis) and number
of GCs needed to decode the stimulus from these activities (right y-axis). Results are averaged over 5 different initial conditions.
Error bars represent standard error of the mean.
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a high degree of stability in task selectivity throughout the delay period (Fig. 6B-D and Supplementary Fig. S14). We
speculated that for this task input plasticity is particularly important, because the cerebellum is required to sustain
task-specific predictions in the RNN throughout the entire delay period. We verified this stronger cerebello-cortical
drive by using concepts from control theory62. In particular, we can explicitly relate cerebello-cortical optimisation to
a quantitative increase in the impact, or energy, of cerebellar feedback onto RNN activity (Supplementary Fig. S15; see
Methods). Moreover, the ability of the cerebellum to drive cortical dynamics should depend on the cortical network’s
ability to express those dynamics. In line with this view our results show that (even untrained) cortical recurrent
weights are important in maintaining cerebellar predictions over time (Supplementary Fig. S16).

Next, to demonstrate that the cerebellum helps drive task-specific dynamics in the cortical RNN we performed a
simulated ablation inwhich the cerebellum is transiently removed during the delay period. Consistent with in vivo neu-
ral recordings25, we find that both cerebellar and cortical ablation drastically disrupts cortical task selectivity (Fig. 6D
and Supplementary Fig. S12D-F). We next show a similar effect in the model’s latent dynamics: using demixed princi-
pal component analysis63 we observe that the choice component of the RNN’s population dynamics collapses rapidly
during the ablation period, consistent with neural data (Fig. 6E). As with the previous tasks, our model predicts that
this effect depends on the degree of plasticity in the cortical RNN. In particular, a fully plastic RNN notably fails to cap-
ture the strong dependence on cerebellar feedback as observed experimentally (Fig. 6F and Supplementary Fig. S17;
compare with Fig. 6D, bottom right). Indeed, we only observe an effect on performance consistent with experimental
findings when cortical plasticity is limited (Figs. 6F-I). Taken together our results suggest that the cerebellum, not the
cortex, is the primary site of learning during the acquisition of this working memory task25.

Overall, these results demonstrate that our model can capture working memory tasks and the observed depen-
dency of cortical dynamics on cerebellar input. Moreover, our model makes the prediction that the cerebellum is a
key site of plasticity during acquisition of delayed association tasks.

Cerebellar divergence decodes task-relevant signals from cortical memory
Asmentioned, a prevalent feature in classical cerebellar theories is that the divergence provided by the granular layer
enables a linear separation of similar inputs34,35,64. Whilst this has typically been studied using isolated models of the
cerebellum, it has recently been suggested that this feature may be of relevance in the context of memories in the
cortex which merge or “collapse” onto similar representations over time65.

We tested this in our model and observed that a large quantity of cerebellar granule cells is indeed particularly
valuable when the initial stimulus is followed by a long delay (Fig. 6J). In particular, our results show that as the signal-
to-noise ratio (SNR) of the cortical RNN activity decreases over time, more granule cells are required to decode the
stimulus from that activity (Fig. 6K; see Methods). The model therefore demonstrates that the cerebellum is uniquely
placed to decode cortical representations whose task-relevant signals naturally weaken over time. This may explain
recent experimental results which suggest the cerebellum is particularly important for tasks which induce long delay
periods66.

Cerebellar task knowledge can be consolidated in the cortex
In each of the previous tasks, cerebellar feedback is shown to mediate learning and the maintenance of task-specific
cortical dynamics. However, the neocortex is known to encode long-term representations of tasks10. This suggests a
need for a “consolidation” period, during which the memory stored in the cerebellum may be transferred to cortical
areas.

To demonstrate cerebellar-to-cortical systems consolidation in ourmodel we develop consolidation-specific learn-
ing rules. To achieve consolidation we train cortical recurrent weights to mimic cerebellar input (see Methods). In
principle, this should be readily attainable, since the addition of cortico-cerebellar feedback itself can be interpreted
as a low-rank modification of the RNN weights67. We also gradually decay the cerebellar-to-cortical input weights
so that over training the cerebellum stops driving the cortical network, thereby giving full control of the task to the
cortical RNN (Fig. 7A).

We tested this computational theory of consolidation on the cortico-cerebellar models (input plastic condition)
trained on the previous delayed association task (Fig. 6D, top left). We consider two types of learning rule. The first is
a simple biologically plausible rule, which depends on the ratio of cerebellar-to-cortical input and total RNN activity.
Specifically, the recurrent weight wij from cortical neuron i to j evolves according to ∆conswij =

W
j
Ch

ct∑
k f (hk,t )

where W j
Ch
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Figure 7. Cerebellum can mediate task consolidation in the cortex. (A) Schematic of proposed theory of cerebellar-to-cortical
task consolidation. During the initial learning phase (left), task representations are primarily driven by the cerebellum and RNN con-
nectivity is not yet task-specialised. During the consolidation phase there is a period of cerebellar-to-cortical (CC) task information
transfer (middle), whereby CC interaction drives plasticity in the cortical RNN. After consolidation (right), the RNN can operate ef-
fectively without the need for cerebellar input. The colour of the structures reflects the importance of each component throughout
consolidation. (B) Model error in the delayed association task (Fig. 6) throughout consolidation with (purple) and without (orange)
cerebellar ablation. For reference an optimal consolidation model is also given (green). Dotted black line denotes chance. (C) Model
selectivity with and without cerebellar ablation at different stages of the consolidation process; titles colour coded according to
arrows in B. (D) Strength of the cerebellar-to-cortical weights (WCh; top), local cortical weights (Whh; middle) and change in local
cortical weights (∆Whh; bottom) over the period of consolidation. Strength and change is measured by the Euclidean norm. (E) Co-
sine similarity between cRNN (RNN and cerebellar network) activities before and during consolidation. (F) Cosine similarity between
the learned recurrent input currents (generated locally in the cortical RNN) during consolidation and the total cortical input current
(generated locally and by cerebellar-cortical input) in the pre-consolidation network. Similarity of the consolidation model is shown
in orange and the optimal consolidation model in green. (G) Task error after the consolidation period for models with different
initial degrees of performance prior to consolidation. Results are averaged over 5 different initial conditions. Error bars represent
standard error of the mean.

is the jth row ofWCh and the denominator a normalising factor, which may be computed by cortical interneurons68.
For comparison we also consider a theoretically optimal (but biologically unrealistic) rule based on a least squares
solution (see Methods).

In both cases, we observe that the RNNs gradually learn to perform the task without the need for cerebellar
input (Fig. 7B,C). During this period, the cerebello-cortical weights decay gradually to zero, whilst relatively small
but important weight modifications take place within the cortical RNN (Fig. 7D). By construction of the learning rule,
the cerebello-cortical activities throughout the consolidation period closely resemble, or “replay”, their original pre-
consolidation values, and the RNN is eventually able to independently recreate the (pre-consolidation) cerebellar-
dependent dynamics (Fig. 7E,F). Such “replay” of task-dependent dynamics is consistent with experimental observa-
tions of cerebello-cortical interactions during sleep69.

We also find that a model with fixed RNN connectivity does not perform as well as the input plastic condition
(Supplementary Fig. S18). This is likely due to better network stability when in the presence of the input plastic,
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compared to the purely fixed RNN (Figs. S17A,B and Supplementary Fig. S19). Related to this, we find that models
which have not yet perfected the task exhibit worse performance after consolidation (Fig. 7G).

In summary, the framework we introduce here suggest that the cortico-cerebellar loops may play an important
role in systems consolidation by gradually transferring the rapidly learnt cerebellar knowledge to the cortex.

Discussion
Growing experimental evidence suggests that cortico-cerebellar loops support behaviour, but their computational
roles have remained unclear. Here we have introduced a systems-level modelling framework in which a feedforward
cerebellar network receives the state of a cortical RNN and provides task-specific predictions in return. In our model,
cerebellar feedback facilitates learning by shaping the underlying cortical dynamics during motor and cognitive tasks
in a way that is consistent with both behavioural and optogenetic studies. Our work suggests that the cerebellum is
a key site of learning in the brain, allowing for rapid context-switching of cortical dynamics that underlie behaviour.
We finish by introducing a theory of cerebellar-to-cortical system consolidation, in which task-specific knowledge is
gradually transferred to the cortical network.

Our model is related to previous network architectures in that it uses feedback to enhance neuronal representa-
tions and selectivity in an otherwise fixed RNN, thereby facilitating task-relevant downstream processes15,16. There
is a growing interest in neuroscience on the role that feedback can play in cortical circuits. For example, two recent
theoretical studies demonstrate how thalamic feedback implemented by cortico-thalamic loops can flexibly prepare
and execute motor sequences17,18. We highlight two key computational differences in our work. First, in our model
feedback is not derived by a linear function of the RNN (as usually done when using simple readout or thalamic
networks), but from a divergent cerebellar-like feedforward network (Fig. 1). Second, our model incorporates be-
havioural timing-specific learning rules in line with experimental findings32,41,43–45. We show that these cerebellar
features improve task-acquisition against a standard readout feedback architecture14–16 (Figs. 2, 4, 5 and 6).

By retraining cortico-cerebellar networks in a novel task we propose a key role of the cerebellum in task switching
(Fig. 3). In particular, we show that cerebellar feedback may provide a solution to the problem of context-dependent
adaptation, which requires (i) an ability to learn a new context but also (ii) an instant retrieval of appropriate response
to previously learned contexts70,71. Interestingly, we observe that while recurrent cortical plasticity enables adapta-
tion to a new task context there is catastrophic forgetting of the original context. This is at odds with well-known
behaviour in the primate, and provides a computational explanation for why local modifications in the monkey cor-
tex during motor adaptation appear to be limited54. In our model rapid task switching is achieved by context-specific
activation of cerebellar parallel fibres. In future work it would be of interest to compare different mechanisms by
which the cerebellum may realise context-dependent processing; for example, a recent study has suggested that
dendritic gating via cerebellar interneurons may perform this role72. Moreover, recent observations suggest that the
cerebellar-driven thalamus enables context-dependent responses in the cortex for movement initiation51,56 and cog-
nitive tasks73. Indeed, our work suggests that fast context-switching is easier to incorporate in the relatively simple,
divergent and rapidly learnable feedforward architecture of the cerebellum compared to the highly intricate cortical
RNNs with weak plasticity.

There are a number of other well described cerebellar properties that would be of interest to study in the context
of our framework. For example, incorporating the pontine, cerebellar and thalamic nuclei as intermediate filters74,75,
enforcing sparse mossy fibre connectivity34,35,76, and considering synaptic plasticity driven primarily by long-term
depression32, are all likely to offer important biological and computational insights.

A unifying model of the cortico-cerebellar loop, and indeed the cerebellum itself, must extend to non-motor tasks.
Recent task-based fMRI studies have revealed functional diversity of the cerebellar cortex across a range of cognitive
functions23. Our model inherently implies a high degree of heterogeneity – it suggests that different modules would
be required to drive different parts of the cortex that in turn underlie different cognitive functions. In this study we
modeled recent behavioural and optogenetic experimental observations25,26 which directly implicate the cerebellum
in supporting cortical dynamics during evidence accumulation and delayed association tasks (Figs. 5 and 6). In par-
ticular, our results show that cortico-cerebellar interactions are enough to learn tasks with highly sparse teaching
signals (i.e. only at the end of the task). Furthermore, the model predicts that the cerebellar influence becomes most
pronounced during longer task durations (typically in the order of seconds). This phenomenon is attributed to both
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the preservation of task-specific dynamics through the cortico-cerebellar loop and the cerebellum’s intrinsic capacity,
which is enhanced by its extensive hidden granular layer, to disentangle task-specific information from overlapping
cortical dynamics. Significantly, we can best capture experimental observations in conditions in which RNN plasticity
is limited, making the prediction that the cerebellum is the primary site of learning for these tasks. This provides an
alternative to the commonly assumed view that cortical areas are optimised for specific tasks6–8.

In ourmodel the cerebellumdrives cortical dynamics based on prediction error signals that depend on the desired
task outcome. In the case of the working memory tasks and in line with the experimental task setup, the desired
outcome can be interpreted as a reward signal. Therefore, from this perspective, the cerebellum learns to predict
future rewarding events. This is consistent with the growing literature showing that the cerebellum encodes reward-
related signals61,77,78 and receives projections from the reward system79. However, it remains to be tested exactly
how the reward-predictive representations developed by our model compare to those found experimentally.

Here we have also introduced a theory of cerebello-cortical task consolidation. Our theory suggests that cere-
bellar and cortical learning may operate at different timescales: after an initial fast stage of learning driven by the
cerebellum, a period of consolidation ensue in which the cortex gradually acquires task-specific knowledge encoded
in the cerebellum (Fig. 7). This view of systems task consolidation is in line with growing experimental evidence sug-
gesting an important role of cerebellar-to-cortical task consolidation69,80,81. For example, Xu et al. 69 have observed
similar replay-like cerebellar-to-cortical task-specific neuronal dynamics in awake and sleep. Such combination of
fast and gradual learning is reminiscent of recent experimental results which suggest significantly faster timescales
of plasticity in the hippocampus compared to the prefrontal cortex during a cognitive task82. Moreover, the consoli-
dation period can be related to the idea that a task-optimised cerebellum can be utilised as a cortical teacher30,31. It is
in principle possible for cerebellar-thalamo-cortical projections to support this dual role of the cerebellum as both a
driver and teacher of cortical states. Indeed, anatomical evidence suggests that this could occur by providing “driving”
and “teaching” input to basal and apical dendrites of cortical pyramidal cells, respectively83.

Our work highlights commonalities of cortico-cerebellar interactions in motor and cognitive tasks alike. However,
it also suggests interesting differences. The first marked distinction relates to the increased significance of cerebellar-
to-cortical (input) plasticity during pure working memory (Fig. 6). This is in line with recent experimental evidence
showing stronger plasticity at higher-order thalamo-cortical pathways40. Indeed, because of the need to sustain
information during the delay period without sensory or teaching input, it is advantageous for the network to encode
a point attractor-like state (see Supplementary Fig. S17, left). Cerebello-cortical plasticity39,40 may thus enable greater
controllability of cerebellar feedback to push the network to these states during working memory tasks, but less so
in motor-based tasks62 (Supplementary Fig. S15).

Related to the point above, the second differencewe highlight is about cerebello-cortical consolidation beingmore
readily achieved when in the presence of networks with stable dynamics (cf. Fig. 7 and Supplementary Fig. S18). We
speculate that unstable network dynamics make cerebellar-to-cortical consolidation less reliable. Therefore, we pre-
dict that while cerebellar-to-cortical systems consolidation might be possible for near perfected tasks which involve
discrete stable representations (e.g. workingmemory tasks), for taskswhich are not yet fully learned, or which require
faster, more dynamic responses (as often required in the motor domain), cerebellar control is likely to be required
throughout life.

To conclude, our work suggests that while the cortex encodes a stablemodel of the world, it is the cerebellum that
allows for quick and flexible adaptation to new environmental conditions. This new cerebellar-guided knowledge can
then be gradually consolidated in the cortex.
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Methods
Model architecture and training

No feedback Readout feedback Cerebellar feedback No feedback
(cerebellar readout)

ht αht−1 + Whhf (ht−1)

+ Wihxt

αht−1 + Whhf (ht−1)

+ Wihxt+ Wzhzt

αht−1 + Whhf (ht−1)

+ Wihxt+ WChct

αht−1 + Whhf (ht−1)

+ Wihxt

zt Wrdtf (ht) Wrdtf (ht) Wrdtf (ht) C(f (ht))

ct NA NA C(f (ht−1)) NA

Table S1. Dynamics of the different model variants, where ht is the cortical RNN state, zt the readout and ct cerebellar feedback.
For the experiments presented here we set f = tanh and C is the cerebellar feedforward network with one hidden layer, C (f (h)) =

WPFf
C (WMFf (h)). Whh , RNN recurrent weights;Wih , stimulus-to-RNN weights;Wrdt, (cortical) readout weights;WCh , cerebellar-to-

RNN weights;WMF, cerebellar mossy fibre weights;WPF, cerebellar parallel fibre weights; f C set as ReLU.

The complete dynamics of eachmodel architecture that we consider (Supplementary Fig. S1; no feedback, readout
feedback, cerebellar feedback, no feedback with cerebellar readout) are given in Table S1. In all of our simulations
we use a recurrent neural network (RNN) with 50 time-discrete units (see section below).

Unless otherwise stated, the feedforward cerebellar network contains a single hidden layer with 1000 units (gran-
ule cells), but other hidden layer sizes are also considered (Figs. 2D and 4E). This yields a divergence from the cortical
RNN to the cerebellar granular layer of 50:1000 = 1:20. The cerebellar output layer, which we interpret as Purkinje
cells, on the other hand, mirrors the desired task outcome and is therefore of significantly lower dimensionality (3 in
evidence accumulation task and 2 in all other tasks).

For each task simulation, network parameters are initialised as follows. The RNN input, recurrent and cerebellar
feedback weights Wih, Whh, WCh are drawn from a uniform distribution W init ∼ U(−a, a) where a = 1√

size(RNN)
= 1√

50
.

The readout weightsWrdt and cerebellar weights,WMF,WPF, are initialised according to U(−bk , bk) where bk denotes
the “kaiming bound” He et al. 84 (slope s =

√
5). The biases of the cortical readout are drawn from U(− 1√

nin
, 1√

nin
),

where nin denotes the input size of the layer. In line with existing models of cortical networks16, in our model we do
not obey Dale’s law and use a tanh activation function. In future work it would be of interest to test a variant of our
model with explicit excitatory and inhibitory cortical populations. We conducted each task simulation with 5 random
seeds for initialisation.

During the learning of a task model parameters are updated using gradient descent from the task error signal
E =

∑
t Et with respect to to themodel parameters (see section below). For each dataset each training session covers

1000 random examples, presented to the model in batch sizes of 10 which we call a “trial”. The test set (used after
training) also covers 1000 randomly generated examples. When analysing the learned network dynamics (e.g. model
output with and without cerebellar ablation) the model with the best validation error during training was selected.
An ADAM optimiser85 was used with initial learning rate η = 0.001 for the RNN (when plastic), readout and cerebellar
network, except for the delayed association task for which we found an RNN learning rate of η = 0.0025 to provide
more stable learning. The different plasticity constraints of the entire model - termed “fixed RNN”, “input plastic”, and
“fully plastic” - are defined with respect to the cortical parameters of Eq. 1 as follows. For the fixed RNN case, only
the cortical readout weightsWrdt are learned. For the input plastic case, RNN input weights andWih andWCh are also
learned. Finally, for the fully plastic case, the recurrent weightWhh is also learned. In all of these cases the cerebellar
“parallel fibres” WPF are learned, whilst the “mossy fibres” WMF remain constant, in line with mossy fibres synapses
being (relatively) stable33,86.

In each of the considered tasks we report the change in error during and after training as a result of cerebellar
feedback (Figs. 2L,4I,5H,6I,). The change in error during training is computed as the average difference in training
error between the cerebellar feedback and no feedback models. The change in error after training is computed as
the average difference in test error between a trained cerebellar feedback model, and a trained cerebellar feedback
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model subject to cerebellar ablation. As in the main results this cerebellar ablation after training may be transient. In
particular, for the line drawing and digit drawing tasks we consider transient ablation during the middle period of the
task, for the delayed association task we consider transient ablation as Fig. 6D-G, and for the evidence accumulation
task we consider full cerebellar ablation.

Continuous dynamics of RNN model
A continuous version of our RNN can be expressed as

τM ḣ = −h + Rm (Whhf (h) + Wihx + WChc)

z = Wrdtf (h),
(3)

where τM is themembrane time constant (not to be confusedwith the cerebellar timewindow τ ), Rm is themembrane
resistance, and f is the rate-based non-linearity which we set as f = tanh. Discretising Eqs. 3 with timesteps of ∆t

yields equations in Table S1, where α = exp(− ∆t
τM

). Note that as in38 we ignore the (1− α)Rm. This simplifies notation
and has no effect on dynamics if model weights are scaled accordingly. In general we use τM ≈ 20ms and ∆t = 50ms
for the drawing tasks (Figs. 2,3 and 4) and a higher τM ≈ 90ms with ∆t = 200ms for the cognitive tasks (Figs. 5,6 and
7) in line with6). In both cases this gives us a cortical internal memory α = 0.1.

Cortical and cerebellar learning rules
When the desired task outcome yt is provided the associated error is computed as Et = E(zt , yt) for the cortical
network and ECt = E(ct−τ , yt) for the cerebellar network, where E denotes the task error function (mean squared
error and cross-entropy loss for regression and classification tasks respectively) and τ is the cerebellar time window.
The error gradients for the readout and cerebellar weightsWrdt,WPF can then be obtained locally with a simple delta-
rule on the gradient of the error signal. That is,

∆Wrdt = η
dE

dWrdt
= η

dEt

dzt
f (ht)

>

∆WPF = η
dECt
dWPF

= η
dEC

dct−τ
GC>t−τ ,

(4)

where η denotes the learning rate of the cortico-cerebellar network and GC denotes the hidden granule cell activity
of the cerebellar network which is computed as GCt = f C (WMFf (ht−1)) (cf. Eq. 2).

For the input/recurrentweightsWih,WCh,Whh - whenplastic - obtaining error gradients ismore difficult as temporal
dependencies need to be considered. To improve biological feasibility in this work we avoid backpropagation through
time (BPTT) and instead use the eprop algorithm38. Details can be found in38, but the main idea is that BPTT can be
approximated with a mixture of locally computed synaptic eligibility traces and current learning signal. Specifically,
the error gradient for a given synapse wji from neuron i to j is computed as

∆wji = η
∂E

∂wji
= η

∑
t

Lt
j ε

t
ji , (5)

where for ease of notation we now use the superscript to denote timestep t and Lt
j = ∂Et

∂htj
is the neuron j learn-

ing signal (obtained by one-step backpropagation through space except for the cerebellar readout architecture in
Supplementary Fig. S1D). εtji is the synaptic eligibility trace of wji which is computed as defined recursively by

εtji =
∂ht

j

∂ht−1
j

εt−1
ji +

∂ht
∂wji

, (6)

where ε0
ji is initialised as zero. Note that the terms in Eq. 6 are locally available to the synapse. In the case of our

network dynamics (Eq. 1), the eligibility trace is simply defined by εtji = αεt−1
ji + ai , where ai is the activation of the

presynaptic neuron i (e.g. tanh(hi ) or ci ).
For all weights, the error gradients are accumulated across multiple examples (i.e. batch update) and timesteps

before the weights themselves are updated.
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Learning rules for cerebellar-to-cortical consolidation
A period of “consolidation” is considered for the trained models of the delayed association task (Fig. 7 and Supple-
mentary Fig. S18). During this period the model is presented with further trials (batch size 10) of training data but
without their associated targets. The forward dynamics of themodel then run as normal (Eq. 1) but nowwe use a con-
solidation learning rule for the RNN weights. We consider both an optimal learning rule which uses the least-squares
algorithm and also a simple biological learning rule.

We first present the optimal consolidation learning rule, since thismotivates the biological rule. Wewant to change
the recurrent (cortico-cortical) input to match the cerebellar-cortico input over the task. To this end we concatenate
the time-dependent RNN activitiesH =

⊕
t≥1 ht and cerebellar output activities C =

⊕
t≥1 ht , where⊕ denotes vector

concatenation. We then set the change in recurrent weight ∆consWhh with ∆consWhh = ηcons
RNNF

lsq where ηcons
RNN is the RNN

consolidation learning rate and F lsq is the least-squares solution

F lsqf (H) = WChC. (7)

At the same time the cerebellar-cortical weightsWCh decay according to

∆W cons
Ch = −ηcons

Ch WCh, (8)

where ηcons
Ch is the rate of cerebellar-cortical decay. In the experiments shown we select ηcons

Ch = ηcons
RNN = 0.1.

For the biological learning rule, the cerebellar-cortical weight decays as in Eq. 8 but now the RNN weights are
updated according to the ratio of cerebellar feedback against the whole population activity. That is, for the recurrent
weight from neuron i to neuron j we have

∆conswij = ηcons
RNN

cerebellar input to j

total RNN activity
= ηcons

RNN

W j
Chct∑

k f (hk,t)
, (9)

for arbitrary timestep t and whereW j
Ch denotes the jth row of the cerebellar-cortical weightWCh.

To demonstrate that Eq. 9 leads to changes in cortico-cortico inputwhich are proportional to the cerebellar-cortical
input, we see that the change in recurrent input to a given RNN neuron j at time t becomes

∆W j
hhf (ht)︸ ︷︷ ︸

∆ recurrent input

=
∑

i∈RNN

∆w
(hh)
ij f (hi ,t)

=
∑

i∈RNN

ηcons
RNN

(
W j
Chct∑

k∈RNN f (hk,t)

)
f (hi ,t)

∝ 1∑
k∈RNN f (hk,t)

W j
Chct

∑
i∈RNN

f (hi ,t)

= W j
Chct .︸ ︷︷ ︸

cerebellar input

That is, we recover a solution (up to proportionality) to Eq. 7. For this biological learning rule, to improve network
stability, we found it beneficial to increase the RNN consolidation learning rate such that ηcons

RNN = 3ηcons
Ch = 0.3 (where

∆conswij is accumulated over the whole sequence). This explains the initially faster learning (over the first few trials)
for the biological learning rule (Fig. 7F).

For this consolidation learning period a learning optimiser is not used (i.e. ADAM is not used). Note that these
consolidation learning rules do not require information about the desired task outcome (i.e. target) and are in that
sense unsupervised.

Demixed principal component analysis
To study the response dynamics specific to task variables in the delayed association task (Fig. 6) we perform demixed
principal component analysis (dPCA)63. dPCA extracts low-dimensional components that explain maximum popula-
tion variance constrained by task-specific variables. As a result we obtain principal components that are specific to
task variables; in this case the task variable of interest is animal/model choice. The neural data we provide as input to
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dPCA is a three-dimensional array (n, s, t) with each dimension representing average neuronal activity (concatenated
across animals/seeds), choice identity and time, respectively. dPCA is applied to the model representations (after
learning) and neural data acquired in25.

Task details
1. Line drawing task
For the line drawing task, the model has to transform one of six possible 10-dimensional binary inputs x ∈ [0, 1]10 at
timestep 1 into an associative “go” 2-dimensional line yline (for five of the inputs) or a “no-go” stay at the origin (for one
of the inputs). The starting point for each line is the origin, and the endpoints of each line are evenly spaced on the
edge of the unit circle (see Fig. 2A, black dashed line). The model learns to draw the line over 20 discrete timesteps,
with the intermediate target points spaced evenly, i.e. for a line with endpoint yend we have yline = {0, y1, y2, ... , yend} =

{0, 1×yend
19

, 2×yend
19

, ... , 19×yend
19
}.

For the stimulus timestep (timestep 1) as well as the remaining 19 timesteps, the model receives (through itsWih

connection) zero-mean Gaussian noise ξ ∼ N (0; 0.12). Model errors are computed as the mean-squared error to
the target response. Unless otherwise stated a cerebellar time window τ = 3 timesteps (≈ 150ms when α = 0.1) is
used. The prediction error across time delay t0 between cortical output and cerebellar (or cortical) output (Fig. 2E) is
computed as the cue/time average ||ct+t0 − zt ||, where ||.|| is the Euclidean norm.

To analyse the effects of cerebellar ablation we consider partial cerebellar ablation at the start, middle, and end of
the sequence (Fig. 2h-k and Supplementary Fig. S5). The specific timewindows of these ablation periods are timesteps
[1-6, 8-13, 15-20] (inclusive), respectively.
Curl-field variant: Once the models of the line drawing task are trained, we tested whether they could re-translate the
same external inputs to a curl-field variant of the task (see e.g.54). For this we selected models with cortical internal
memory α = 0.5, since we found this resulted in faster learning which was comparable to the presented experimental
data54, but we find α = 0.1 (as presented in Fig. 2) also learns but more slowly. Switching and learning this curl-field
new task “context” involved retraining the models to new desired outcomes (central grey curves in Fig. 3C).

Specifically, the curl-field target responses have the same end-point for each line (or same “no-go” zero cue),
but intermediate target points now form a semi-ellipse between the origin and the respective end-point. Given the

desired endpoint yend =

(
y 0

end

y 1
end

)
, this can be parameterised by

yt =

(
y 0
t

y 1
t

)
=

(
y0

end
2

+ 1
2

cos θ cos t − 1
2

sin θ sin t
y1

end
2

+ 1
2

sin θ cos t + 1
2

cos θ sin t

)
, (10)

where θ = arctan(
y1

end

y0
end

) is the angle to the end point and t runs uniformly between 0 and π (or, for direction towards
(xend, yend) as in our experiments, from π to 2π).

To test how context-dependent cerebellar processing could enable rapid task switching, we considered the extent
to which parallel fibre (PF) weights are shared across task contexts. In particular, we label the percentage of PFs used
for each context as the PF task overlap. For example, if the PF task overlap is 25%, then 25% of the PFs used for
cerebellar processing apply to both task contexts, whilst 75% specifically apply (and are trained) to the current context.
Before learning, the PFs which are not shared (i.e. only apply to the curl-field context) are initialised randomly as in
the original line-drawing task.

Neuronal activity and covariance during task switching: The change in activities and change in covariances (Fig. 3D-F
and Supplementary Fig. S7) are computed as in58. We record the RNN time-dependent activities (post non-linearity)
given 1000 input examples in multiple periods: task 1 baseline, task 2 and task 1 switching (Fig. 3A). For the latter two
periods these are recorded at their respective end, whilst we take two samples of the baseline period at its start and
end. The change in activity between any two periods P1 and P2 is the average change in activity for a given neuron i ,
which is given by

∆
(P1,P2)
act hi =

|hP2
i − hP1

i |
stdi

, (11)

where hP1
i , hP2

i are the time-varying input-dependent activities of neuron i for periods P1, P2 respectively, and stdi is
the standard deviation of that neuron in the start of the task 1 baseline period. Here |.| denotes the average (absolute)
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difference in activity across timesteps and input examples.
For each period, we also compute the covariancematrix of the RNNpopulation. The change in covariance between

two sessions ∆
(P1,P2)
cov is then computed as 1 minus the Pearson correlation between their respective covariance ma-

trices58.
For the task 2 and task 1 switching periods we report changeswith respect to the start of the task 1 baseline period.

To account for natural variability in the network and better compare to the neural data in54, we normalise the changes
by taking away the changes observed within the baseline period itself. For example, the change in covariance in the
task 2 period is ∆

(B1,T2)
cov −∆

(B1,B2)
cov , where B1, B2, T2 are the start of the task 1 baseline, end of task 1 baseline, and

(end of) task 2 respectively. We apply the same normalisation to the reported experimental changes in the monkey
M1 and PmD54; this normalisation leads to (average) near-zero change for the M1 activity and PmD (Fig. 3F).

The number of training trials for training in task 2 shown in Fig. 3A (500 trials) leads to good, but not perfect,
performance. To demonstrate that the models can eventually perform task 2 to a close to perfect standard, the
model outputs presented in Fig. 3C underwent 1000 trials of training.

2. Digit drawing task
For the digit drawing task the inputs are the same as the 10-dimensional binary vectors used in the line drawing task,
except now the model must draw an associative digit over 20 timesteps instead of line (Fig. 4A). The targets ydigit are
constructedmanually within the space [0, 1]2 and resemble the digits from 0 to 5 (inclusive). For exact implementation
refer to the provided code (see below).

For the standardmodelwith cerebellar feedback a cerebellar timewindow τ = 3 timesteps (≈ 150mswhenα = 0.1)
is generally used. For the model using cerebellar feedback with a temporal basis, we model the cerebellum with a
range of time windows, i.e. τ = {τi}i for some distinct τi ≥ 0ms. In this task we consider τ = {τi}i=5

i=0 with τi = i

timesteps (i.e. 0-250ms), so that the final cerebellar output is a concatenation of task predictions which span over
the proceeding 250ms period. Explicitly, after training we have cerebellar feedback, ct ≈

⊕i=5
i=0 yt+i , where ⊕ denotes

vector concatenation.
Zero-mean Gaussian noise ξ ∼ N (0; 0.12) is added to the input at each timestep. Model errors are computed as

the mean-squared error to the target response.
To analyse the effects of cerebellar ablation we consider the same partial cerebellar ablation periods as in the

line-drawing task. That is, we consider cerebellar ablation at the start, middle, and end of the sequence (Fig. 4 and
Supplementary Fig. S9), which correspond to timesteps [1-6, 8-13, 15-20] (inclusive), respectively.

3. Evidence accumulation task
In the evidence accumulation task the model receives 2-dimensional binary inputs (i.e. x ∈ [0, 1]2) over a presentation
period of T pres = 45 timesteps. A non-zero input can occur for at most one of the two dimensions; that is, xt ∈
{(1 0)>, (0 1)>, (0 0)>}, where the rate of zero inputs xt = (0 0)> defines the sparsity of input ρ (ρ = 0.7 in our
simulations). After this presentation of input there is then a delay period of T del = 5 timesteps after which the model
must classify at which dimension more non-zero input was received (or whether the number at each dimension was
the same). That is, the desired outcome y takes one of three values which respectively correspond to more input in
the first dimension, more input in the second dimension, or the same. This task resembles the experimental structure
of26, in which mice were trained to select the side of their whiskers which received more air puffs .

Zero-mean Gaussian noise ξ ∼ N (0; 0.12) is added to the input at each timestep. Model errors are defined by
the cross-entropy loss to the target response.. Model “belief” (Figs 5D and S11) is defined as the model probability
(obtained by applying a softmax on the readout) of the correct classification. Unless otherwise stated a cerebellar
time window τ = 3 timesteps (≈ 600ms when α = 0.1) is used. For both readout and cerebellar feedback models, we
apply a softmax operation to the feedback returned to the RNN so as to bound its values between 0 and 1.

To analyse the effects of cerebellar ablation we consider full cerebellar ablation (for the entire sequence 1-50;
see Fig. 5D and Supplementary Fig. S11A-C, left) and also partial periods of ablation: at the start, middle, and end
of the sequence (Fig. 5E,F and Supplementary Fig. S11A-C, right). The specific time windows of these partial ablation
periods are timesteps [1-15, 15-30, 30-45] (inclusive), respectively. To improve readability of our results, the mean
error presented in the training curves for this task is smoothed using a Savitzky-Golay filter with window length 25
and polynomial order 3.

24 of 38

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2023. ; https://doi.org/10.1101/2022.11.14.516257doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516257
http://creativecommons.org/licenses/by-nc/4.0/


To compute the dependence ofmodel choice on inputs over different temporal bins (Fig. 5F), we follow themethod
in26. In particular, we divide the presentation period evenly into 3 time windows - [1-15, 16-30, 31-45] - and fit the
model choice according to a logistic regression model

ŷ = S(β1E1 + β2E2 + β3E3), (12)

where ŷ denotes the predicted model choice probability, S is the sigmoid logistic function, Ei = #Ri − #Li is the
different in the total number of ‘right’ and ‘left’ inputs in window i , and βi is the respective weight on that window. ŷ
is fitted to minimise the negative log likelihood of the observed model decisions. We present the normalised weights
of each window βi

β1+β2+β3
.

History-centric cases: In line with26, we observe cerebellar ablation to be particularly detrimental to input examples
for which correct classification would depend on adequately maintaining past inputs (Fig. 5E,F and Supplementary
Fig. S11), which we refer to as “history-centric” examples. We define an input example as being history-centric if
exposure only to the final third of the input sequence would lead strictly to the wrong answer. That is, examples
(x, y) such that the “final-third target” yfinal third = max(

∑T=50
t=33 x0

t ,
∑T=50

t=33 x1
t ) is not equal to the desired outcome y =

max(
∑T=50

t=1 x0
t ,
∑T=50

t=1 x1
t ).

Sub-second task lengths To identify whether dependency on cerebellar feedback holds for shorter timescales, we
consider cue presentation periods from 0.1 − 1s (Fig. 5G). For these simulations there is no delay period and the
sparsity of input is ρ = 0.5. We apply a finer time discretisation so that ∆t = 10ms; we redefine the cortical internal
memory α and rescale the network parameters accordingly. The cerebellar network is trained with a time window
τ = 3 timesteps in each case.

4. Delayed association task
In the delayed association task the model must associate one of two 10-dimensional binary inputs at timestep 1 to
a desired binary response y at timestep T , where T is the sequence length or “delay” period25. We select T = 15

timesteps but also consider other lengths (Fig. 6J). The task error (as presented in the main text) is defined at the end
of the sequence. For stability, we train the network output 5 timesteps from the end of the sequence (timestep 10
onwards when T = 15).

Zero-mean Gaussian noise ξ ∼ N (0; 0.12) is added to the input at each timestep. Model errors are defined by
the cross-entropy loss to the target response. Model “selectivity” is defined as the model output (readout) at the
dimension of the correct classification (prior to the softmax operation). Unless otherwise stated a cerebellar time
window τ = 3 timesteps (≈ 600ms when α = 0.1) is used. For both readout and cerebellar feedback models, we apply
a softmax operation to the feedback returned to the RNN so as to bound its values between 0 and 1.

To analyse the effects of cerebellar ablation we consider cerebellar ablation within a particular time window be-
tween timesteps 8-12 (inclusive) which approximately mirrors the timings in25 (Fig. 6D,E and Supplementary Fig. S17)
and also partial ablation periods during the start, middle, and end of the sequence (Fig. 6F). The specific timewindows
of these partial ablation periods are timesteps [1-5, 6-10, 11-15], respectively. To improve readability of our results,
the mean error presented in the training curves for this task is smoothed using a Savitzky-Golay filter with window
length 25 and polynomial order 3.

For this task we consider how the model evolves during a consolidation period (Fig. 7). At the end of each consol-
idation trial we observe the model error (Fig. 7B), activity (Fig. 7E) and recurrent input (Fig. 7F) over a test set of 1000
randomly generated examples. The activity here is the concatenation of activity in the cortical RNN and the hidden
layer of the cerebellar network (over all examples and timesteps). We compute the cosine similarity between these
activities and the initial activities prior to consolidation; for comparison we also the cosine similarity been the initial
activities and a shuffled version of the initial activities (averaged over 100 samples). To analyse how the recurrent
input changes we proceed as follows. At each timestep we consider the cortical RNN state h and cerebellar feedback
c. We then compute the cosine similarity betweenWhhh andW pre

hh h+W pre
Ch c, whereW pre

hh ,W pre
Ch are the pre-consolidation

RNN weights and cerebellar-cortical weights, respectively.

Control-theoretic estimation of cerebellar feedback
For the delayed association task we analyse cerebellar-to-cortical input from a control-theoretic point of view. In
particular, we quantify the effect of plasticity in the pathway between the cerebellar network and cortical RNN (WCh)
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on cortical activations by estimating the energy cerebellar feedback induces in RNN state space62. This level of energy
reflects the potency of feedback onto the RNN: a low energywould reveal a suppressed RNN response, whereas a high
energy would reveal an amplified response. We speculated that these two cases would arise from a non-optimised
WC〈 and optimisedWC〈, respectively (Supplementary Fig. S15A).

As per Kao and Hennequin 62 , we compute the energy of cerebellar feedback through the controllability Gramian
P associated with RNN dynamics. Informally, P describes the “intrinsic manifold” of the RNN and describes the direc-
tions in which the RNN is most (or least) likely to visit. Formally, given a direction v in state space, the average energy
generated along direction v is

σ(v) = v>Pv. (13)

In general, the Gramian matrix P is only defined for linear systems. In this work we therefore generalise the notion
of controllability for the non-linear RNN dynamics as defined in Eq. 1. Here we use the noise covariance matrix Σ in
its place, which for linear systems is shown to be equivalent to the Gramian, Σ = P 62. Explicitly, we compute Σ as
the time-course average covariance of RNN hidden activations ht under noisy inputs which follow a Wiener process.
That is, Σ = Et [cov(Ht)] where Ht = {h1

t , h2
t , · · · , hN

t } is a set of N samples of RNN states which each evolve according
to

ht = αht−1 + Whhf (ht−1) + WChct + ξt ; ξi ,t ∼Wiener process. (14)

In our experiments we use N = 500 samples and simulate Eq. 14. To ignore intrinsic RNN transients that occur at the
start of simulation, we discard the RNN states during the first 5 simulation timesteps when computing Σ. The energy
generated from cerebellar feedback is then σ(hC) = (hC)>ΣhC , where hC = WChc

||WChc||
is the normalised direction being

driven by the cerebellum in RNN state space. We report the energy generated (during the noise dynamics of Eq. 14)
by cerebellar feedback at timestep 10, a time chosen strictly after the initial RNN transient phase (Supplementary
Fig. S15B). For comparison we compare this to the energy generated by 100 random sample directions v ∼ N (0, I )

where I is the identity matrix. To enable greater interpretability we then normalise these energies by its highest
possible value max||v||=1 v

>Σv; i.e. the input which elicits maximal amplification of RNN dynamics. This value can be
computed as u>Σu where u is the principal eigenvector of Σ.

Cerebellum decodes low-signal cortical representations
For the delayed association task we discussed the need for a greater number of hidden cerebellar units (granule cells)
to achieve good task performance (Fig. 6J). In particular, we find that the number of granule cells (GCs) required is
inversely proportional to the signal-to-noise (SNR) of the RNN hidden neurons.
To estimate SNR(RNN) in the models for the delayed association task (Fig. 6K, left axis), we suppose that the activity
population activity in the RNN can be divided into two components such that f (h) = ζ+ω, where ζ is a task-dependent
component which depends on the current task condition s (i.e. left or right stimulus), and ω is a task agnostic compo-
nent which does not depend on s (but instead depends on, for example, intrinsic RNN connectivity and noise). The
SNR is then defined as the ratio of the variance of these two respective components: SNR(RNN) =

σ2
ζ

σ2
ω
.

We compute the variance of the task-agnostic component as the (average) variance of the population under the
same task stimulus s , i.e. σ2

ω = Es [Var(f (h)|s]. Be equally calculating the total variance σ2
rnn = Var(f (h)), the variance

of the task-relevant component is then simply computed as the difference to the total variance, i.e. σ2
ζ = σ2

rnn − σ2
ω.

To determine the minimum number of granule cells required to decode the stimulus from the RNN activity (Fig. 6K,
right axis), we tested whether the cerebellar network could be trained to successfully discriminate the stimulus after
40 training sessions for varying quantities of granule cells (quantities as described below). The cerebellar network
was deemed to successfully decode the stimulus if, for at least 4 of the 5 seeds, the average error during the last 4
training sessions was less than 5%.

Data and code availability
We used the PyTorch library for all neural network models. The code and respective simulated data used for our
experiments is available at https://github.com/neuralml/ccLoops.

26 of 38

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2023. ; https://doi.org/10.1101/2022.11.14.516257doi: bioRxiv preprint 

https://github.com/neuralml/ccLoops
https://doi.org/10.1101/2022.11.14.516257
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Information
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Figure S1. Different model architectures (extension of Fig. 1). (A) No feedback; temporal input is fed to a cortical RNN (grey) and
a linear readout layer (blue) produces the final model output. (B) Readout feedback; now there is a feedback loop in which the RNN
also receives readout predictions as extra input14,16. (C) Cerebellar feedback; a copy of RNN activity is sent to a distinct but connected
cerebellar network C, which then returns its predictions back to the RNN as extra input. (D) No feedback with cerebellar readout; like
in C a cerebellar network is attached to the RNN, but now it is used directly as the final readout and there is no “cortico-cerebellar
loop”. Model activity and weight vectors are represented with the same notation as Eqs. 1 and 2 (see also Table S1).
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Figure S2. Model learning in the line drawing task. (A) Training curves (cortical internal memory α = 0.1) for the different models
with fixed (left), input plastic (middle) and fully plastic (right) RNN. Green denotes themodel where no feedback is applied to the RNN
but the readout network (usually linear) now has the same architecture as the cerebellar network. (B) Average error over training
across different cortical internal memory α.
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Figure S3. Training curves over different cerebellar parameters. We show the learning curves for the cortical network (solid
line) and cerebellar network (dotted line) for the line drawing task. On each miniplot the x-axis represents the training session and
y-axis the mean-squared error. The cerebellar error for an example seed is shown in the inset of the model conditions used in the
main text (1000 granule cells, time window τ = 150ms), over different task examples during training (upper) and over time within
one task example (lower).
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denotes a specific cerebellar parameter configuration (1 of the 18 in Supplementary Fig. S3) and initialisation seed (1 of 5). r denotes
the Pearson correlation.
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Figure S5. Ablation results for the input and fully plastic RNN. Model output (left, middle) and error (right) for example line
drawing input under cerebellar ablation for an (A) input plastic and (B) fully plastic RNN. For the corresponding fixed RNN case see
Fig. 2H-J.
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Figure S6. Cerebellar noise induces ataxic-like impairments. (A) Output for trained models on the line drawing task under
different levels of cerebellar noise cnoise

t = ct + ξt with ξt ∼ N (0;σ2
CI); blue output is for “no go” cue (where model is trained to

remain at zero). (B) Model error under various degrees of input and cerebellar noise.
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Figure S7. Multi-task learning and switching across different levels of parallel fibre (PF) overlap. (A,B) Change in (A) activity
and (B) covariance in RNNpopulation between the line-drawing task 1 (baseline) and task 2which is a curl-field variant. (C,D) Change
in (C) activity and (D) covariance in RNN population between task 1 (baseline) and task 1 (post re-learning) after switching back from
task 2. (E) Task 1 retention score, which is computed as the error of task 1 during baseline over the error at the first trial after
switching back to task 1.
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Figure S8. Model learning in the digit drawing task. (A) Training curves (cortical internal memory α = 0.1) for the different
models with a fixed (left), input plastic (middle) and fully plastic (right) RNN plasticity assumptions. Green denotes the model where
no feedback is applied to the RNN but the readout network (usually linear) now has the same architecture as the cerebellar network.
(B) Average error over training across different cortical internal memory α. (C) Model error (fixed RNN; α = 0.1) at the end of training
(averaged over last 10 training sessions) for different cerebellar time windows for (left) line drawing task (cf. Fig. 2) and (right) digit
drawing task.
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Figure S9. Ablation results for the digit drawing task. A-C, Model output (left) and error (right) for digit drawing input under
cerebellar ablation for a (A) fixed, (B) input plastic, and (C) fully plastic RNN. Model output shown after cerebellar ablation with
dotted lines.
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Figure S10. Model learning in the evidence accumulation task. (A) Training curves (cortical internal memory α = 0.1) for the
different models with a fixed RNN (left), input plastic (middle) and fully plastic (right) RNN. Green denotes the model where no
feedback is applied to the RNN but the readout network (usually linear) now has the same architecture as the cerebellar network.
(B) Average error over training across different levels of cortical internal memory α.
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Figure S11. Additional cerebellar ablation results for evidence accumulation task. (A-C) Model output (left) and error (right)
with and without cerebellar ablation (model output shows full cerebellar ablation case) for (A) fixed, (B) input plastic, and (C) fully
plastic RNN. (D) The error for different ablation periods across these RNN plasticity conditions over all test examples. (E) The error
for different ablation periods across different RNN plasticity conditions, but only over “history-centric” inputs. (F) The difference
between D and E.
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Figure S12. Effect of cortical ablation in working memory tasks. In this analysis 75% of cortical RNN neurons are silenced (after
training). (A-C) Cortical ablation during the evidence accumulation task (fixed RNN). (A) Model output without (orange) and without
(purple) cortical ablation over the whole task period. (B) Normalised regression weights at different periods of input presentation
(cue) during control (upper) and cortical ablation (lower; ablation period denoted in blue) conditions. (C) Model error under different
ablation periods. (D-F) Delayed association task (input plastic RNN). (D) Cue selectivity in the cerebellar network during the delay
period without (left) and with cortical ablation (ablation period denoted in blue) conditions for example input in model (upper
panels) and experimental data (lower panels) reproduced from Gao et al. 25 . (E) (Cortical) model error during delay period with (left)
and without (right) cortical ablation. (F) Average error from cortical ablation at different periods during the task delay period and
different degrees of plasticity. Experimental data shown in black.
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Figure S13. Effect of cerebellar ablation on evidence accumulation task with varying cue durations. (A) Test error over
different cue durations for models trained with cerebellar feedback (orange), models trained with cerebellar feedback but now
subject to cerebellar ablation (light blue), and models trained without cerebellar feedback (grey), with a fixed (left), input plastic
(middle) or fully plastic (right) RNN. (B) Average change in training error over different cue durations for models with versus without
cerebellar component during and after training.
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Figure S14. Learning curves in the delayed association task. (A) Training curves (cortical internal memory α = 0.1) for the
different models with a fixed (left), input plastic (middle) and fully plastic (right) RNN. Green denotes the model where no feedback
is applied to the RNN but the readout network (usually linear) now has the same architecture as the cerebellar network. (B) Average
error over training across different cortical internal memory α.
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Figure S15. A control-theoretic perspective of the cortico-cerebellar loop. (A) Illustrative schematic of cerebellar (orange) and
cortical (grey) activities. Depending on the cerebellar-cortical connectivity WCh , the same cerebellar output c might suppress (top
right) or amplify (bottom right) RNN trajectories. (B) The energy (see Methods) generated by random and cerebellar feedback for
models trained with varying degrees of plasticity in the delayed association task (Fig. 6). The energy is normalised by the maximum
possible energy generated by inputs that achieve the greatest cortical response (see Methods).
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Figure S16. Cerebellar feedbackwith cortical recurrent connectivity is necessary to learn long-range temporal associations.
(A) Training curves (cortical internal memory α = 0.1) with cerebellar feedback but zero recurrent weights (Whh = 0) with a fixed
(left) and input plastic (right) RNN. (B) Average error over training across different cortical internal memory α.
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Figure S17. Additional cerebellar ablation results for the delayed association task. (A-C) Model output (top) and error (bottom)
for the delayed association task without (left) and with (right) cerebellar ablation with a (A) fixed, (B) input plastic, and (C) fully plastic
RNN. Thin line after ablation shows control model. (D) Model error as a function of ablation length (centred around the middle of
the delay period). Experimental data reproduced from Gao et al. 25 . Dotted black line denotes chance.
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Figure S18. Cerebellar-to-cortical consolidation of the delayed association task with fixed RNN models. (A) Accuracy of
control and cerebellar ablation conditions (dotted line denotes chance) and the corresponding (B) strength of the cerebellar-cortical
pathway (WCh) over consolidation. Green denotes control condition with theoretically optimal learning rule. (C) Cosine similarity
between cortico-cortical input and total cortical input (i.e. cerebellar-cortical and cortico-cortical inputs) pre-consolidation. Similarity
of the consolidation model is shown in orange and the optimal consolidation model in green. (D) Model selectivity for example
(external) input in control and cerebellar ablation conditions at different stages of the consolidation process; colour coded by arrow
times in A.
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Figure S19. Cerebellar-to-cortical consolidation in linedraw task (fixed RNN). (A) Error (mean-squared error) of control and
cerebellar ablation conditions and the corresponding (B) strength of the cerebellar-cortical pathway (WCh) over consolidation. Green
denotes control condition with theoretically optimal learning rule. (C) Cosine similarity between cortico-cortical input and total
cortical input (i.e. cerebellar-cortical and cortico-cortical inputs) pre-consolidation. Similarity of the consolidation model is shown in
orange and the optimal consolidationmodel in green. Note that even though the similarity between thesemodels is high, their small
differences result in significant changes in the overall trajectory of cortico-cerebellar activity, resulting in poor final performance.
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