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Abstract 

Post-translational modifications (PTMs) are under significant focus in molecular 
biomedicine due to their importance in signal transduction in most cellular and organismal 
processes. Characterization of PTMs, discrimination between functional and inert PTMs, 
quantification of their occupancies and PTM crosstalk are demanding tasks in each 
biosystem. On top of that, the study of each PTM often necessitates a particular laborious 
experimental design. Here, we present a PTM-centric proteome informatic pipeline for 
prediction of relevant PTMs in mass spectrometry-based proteomics data in the absence of 
a priori information. Upon prediction, such PTMs can be incorporated in a refined database 
search. As a practical application, we showed how this pipeline suggested performing 
glycoproteomics in oral squamous cell carcinoma based on proteome profile of primary 
tumors. Subsequently, using proteome profiling of treated cells with two PTM-modulating 
kinase inhibitors, we experimentally identified cellular proteins that are differentially 
expressed in response to multikinase inhibitors dasatinib and staurosporine. 
Computational enrichment analysis was employed to determine the potential PTMs of 
protein targets for both drugs. Finally, we conducted an additional round of database 
search with the predicted PTMs. Our pipeline helped to analyze the enriched PTMs and 
even the detected proteins that were not identified in the initial search. Our findings 
support the idea of PTM-centric searching of MS data in proteomics based on 
computational enrichment analysis and we propose that this approach be integrated into 
future proteomics search engines. 
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Main 

Proteins are the primary functional units of cellular systems, but they often gain activity 
when modified post-translationally. In addition to regulation of protein activity, their 
function, stability/solubility, interactions with other biomolecules and their cellular 
localization are governed by transient modulation of post-translational modifications 
(PTMs)1, 2. By regulating such diverse characteristics, PTMs can modulate the involvement 
of proteins in biochemical reactions, signaling, transport, structural remodeling, gene 
regulation, cell motility and cell death3, 4. Due to the importance of PTMs in signal 
transduction in health and disease, the mechanisms, and kinetics of PTMs have turned into 
an active research area5-9.  

Analysis of PTMs would provide valuable information regarding the status and function of 
proteins upon diverse perturbations10. Therefore, understanding the nature, quantity, and 
temporal progression of PTMs has arguably been one of the most substantial contributions 
of MS-based proteomics to modern biology1. However, the sub-stoichiometric nature and 
dynamic regulation of PTMs makes it challenging to capture and detect PTMs11. Thus, 
unique enrichment techniques and sample-processing workflows are often required for 
enriching PTMs before analysis by mass spectrometry12. 

Experimental techniques exploit the unique chemical properties of a given PTM for their 
enrichment. For example, at both protein and peptide levels, PTM-directed antibodies can 
be used to enrich a specific chemical group within a given proteome1. Another routinely 
used strategy involves the enrichment of phosphorylated peptides (and/or proteins) using 
metal oxide resins, such as titanium and zirconium13. These enrichment strategies are very 
prominent when modulation of a certain PTM is expected; for example, when investigating 
the function of a kinase, modulation of phosphorylation levels is an expected outcome.  

Furthermore, the inclusion of more PTMs in database searches can dramatically enlarge 
the search space, imposing time constraints and heavily straining the search engine14. It 
should also be noted that including any extra PTMs increases the chance of false 
identifications in a given database search and thus increasing the burden of proof for PTM 
identification. Therefore, only most common PTMs, such as asparagine deamidation15, 
methionine oxidation and cysteine carbamidomethylation are usually included in routine 
database searches.  

Altogether, due to a lack of prior knowledge on the most important PTMs in a particular 
study condition, many PTMs are usually not monitored. Although no practical issues exist 
in the biochemical characterization of stable and common PTMs such as phosphorylation 
or acetylation, researchers do not monitor them in the lack of presumption. Despite the 
presence of proteome-wide PTM approaches such as ModifiComb16, 17, the analysis of less-
common or unstable PTMs still remains challenging and needs a more complex study 
design, especially for PTMs without highly specific antibodies or reagents. 

Here, we present a thorough analysis of the advancements introduced by the PEIMAN2 R 
package in the realm of PTM-centric discovery proteomics. We demonstrate the 
effectiveness of the software package by conducting two extensive case studies: one 
utilizing external public data and the other leveraging in-house data. These case studies 
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collectively serve as strong evidence, validating the utility and potential applicability of our 
proposed pipeline in practical proteomic research. The first case study highlights the 
predictability of PEIMAN2 in glycoproteome profiling, demonstrated by its application to 
the analysis of oral squamous cell carcinoma (OSCC), utilizing pre-existing proteomic and 
glycoproteomic data18. Subsequently, an in-house case study focuses on the identification 
of mechanistic proteins subject to differential expression by the multikinase inhibitors 
dasatinib and staurosporine. This investigation involves deep expression profiling of the 
A549 cell line, serving as a representative model for lung cancer. In both studies, a 
PEIMAN2-based search pipeline (as illustrated in Fig. 1) is employed to identify the 
enriched PTMs among the differentially expressed proteins. Finally, these enriched PTMs 
are seamlessly integrated into a refined database search, enabling an evaluation of the 
PEIMAN2 pipeline in the domain of PTM-centric discovery proteomics. 

Figure 1: An informatic pipeline for PTM-centric proteomics using PEIMAN2 R package. The red dash line area 
delineates the inputs and outputs of PEIMAN2 R package, forming a PTM-centric proteomics pipeline. 
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Results  

PTM data extraction for PEIMAN2 R package 

The PEIMAN2 R package contains as of September 2023 a database that encompasses 
134,783 proteins from 14,457organisms, covering 515 PTM types. We compared the 
distribution of the 10 most prevalent PTMs across all known organisms to gain insight into 
the prevalence of PTMs in the current version of UniProt vs 2015 version. Figure 2 panel 
(a) shows the distribution of the ten most common PTMs in the current version of UniProt. 
<Phosphoprotein= had a frequency of 48,934 occurrences which is over 5 times greater 
than "Methylation", which ranked as the tenth most frequent PTM with a frequency of 
8,589 occurrences and displayed the highest increase rate (1.5-fold) over the past decade. 
Panel (b) in the figure compares the changes in the frequencies of these ten most common 
PTMs in the current and previous versions of UniProt database. Note that the database 
version is denoted on the x axis and the y axis represents the frequency of PTMs. To better 
highlight the changes, the frequency of PTMs is shown in log-10 base. Over the course of 
the past seven years, we expected to discover a consistent pattern of growth among the top 
10 selected PTMs. However, the rates of growth are not consistent among all terms. For 
example, <Methylation=, <Phosphothreonine=, <Phosphoserine=, and have a higher rate of 
growth compared to the other PTM-terms. This difference in the rate of growth might be 
related to two reasons. First, the identification of some PTMs is subject to experimental 
limitations, therefore we cannot expect a consistent rate of growth. Second, the assigned 
biological activities of some PTMs such as phosphorylation has attracted more research 

attention than some other PTMs. 

 

Figure 2: An update on PTM statistics based on UniProt database. (A) The top ten most common PTMs in UniProt/SwissProt across all available 
species. (B) The frequency changes of the ten most common PTMs in PEIMAN standalone software (2015) vs PEIMAN2 R package (2023). 

A B 
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Furthermore, an examination of the PTM distribution among various species within 
UniProt/SwissProt was undertaken. Tree maps were employed to visually represent this 
distribution across eight model organisms, each selected to represent diverse taxonomic 
branches (Supplementary Figure 1). The observed PTM distribution among these distinct 
model organisms suggests the potential utility of PTMs for taxonomic discrimination within 
the broader context of the tree of life, thereby prompting further avenues of research. 
Additionally, a t-distributed Stochastic Neighbor Embedding (t-SNE) plot19 was generated 
to provide a comprehensive visualization of how the PTM profiles of species enable the 
classification of these organisms into four major super kingdoms (Supplementary Figure 
2).   

PEIMAN2 R package functionality 

Previously, we introduced a computational enrichment analysis for PTMs by a standalone 
software called <Post-translational modification Enrichment Integration and Matching 
Analysis= or PEIMAN, to facilitate single enrichment analysis (SEA) based on PTMs in 
proteomics studies20. SEA21 is a popular method providing insight into biological pathways 
altered in disease or under various perturbations. The idea of SEA is to check whether the 
genes/proteins with a specific biological feature in a given list are occurring more 
frequently than by pure chance. As simple and powerful as this approach is, there are some 
known drawbacks to it, including the difficulty of identifying significant signals from noise, 
subjective interpretations among biologists, and for the same data getting different final list 
of significant genes/proteins among different laboratories. Gene/Protein set enrichment is 
an alternative way to resolve these problems, therefore we provided a new enrichment 
method for PTM study called protein set enrichment analysis (PSEA) in an R package, 
making this tool accessible for a broader community of researchers. 

The PEIMAN2 R package offers a wider range of features and functionalities compared with 
the PEIMAN standalone software. First note that SEA related functions are still included in 
the PEIMAN2 R package and can be utilized by calling runEnrichment() and 
plotEnrichment() function. As a new feature, PEIMAN2 package implements PSEA as an 
additional tool for proteomics studies based on PTMs. runPSEA() function in the package 
allows the user to perform a PSEA analysis on a given list of proteins for a specific 
organism. This function requires a list of protein accession codes along with taxonomy 
name of the organism. Some additional parameters of the function include enrichment 
weighting (refer to the methods section for more details), number of permutations to 
estimate the false discovery rate, FDR (default number of permutations is 1000), choice of 
the method to adjust p-values, and a controlling cut off to include specific PTMs with a 
certain occurrence rate in the analysis. A table of enriched proteins along with their 
enrichment and normalized enriched score, adjusted p-value, FDR, and proteins in the 
leading-edge is produced. For each PTM, the leading-edge proteins are the proteins that 
show up in the ranked list at /or before the point where the enrichment score (ES) reaches 
its maximum deviation from zero. 

There are two functions available in the package to visualize the results of PSEA, 
plotPSEA() and plotRunningScore(). The former is employed for generating plots 
depicting the outcomes of a single PSEA analysis or for merging the findings from two 
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separate PSEA analyses. These plots effectively display the normalized enrichment scores 
associated with each PTM. The latter function is designed to produce running enrichment 
score plots for each PTM featured in the table generated by the runPSEA() function. In each 
plot, x-axis is the sorted protein list and y-axis is the enrichment score. The leading-edge 
proteins are shown with a rug plot on the x-axis (for example see Supplementary Figure 3 
and 4).  

In PTM-centric proteomics, we recommend integrating PEIMAN2 results into the workflow 
of mass spectrometry data analysis. To do this, one can utilize SEA or PSEA to generate a 
list of enriched terms. These are PTM terms of which the counts in a given list of protein is 
statistically significant. The SEA and PSEA are two methods to obtain the list of enriched 
PTM terms (see methods section for more details). The enriched terms can then be used to 
extract the subset of protein modifications. These modifications can be used to search in a 
proteomics search engine software to gain more insight into designing the experiment and 
investigating the effect of a treatment on PTMs. For this purpose, we included functions to 
prepare results for such a re-search in MaxQuant software. The results of SEA or PSEA can 
be passed to sea2mass() or psea2mass() functions, respectively, to extract a subset of 
protein modifications. This subset of chemical modifications can be used to parametrize the 
search engine for mass spectrometry data, such as MaxQuant. For more information, we 
have provided a detailed vignette manual along with the package and a Readme page on 
PEIMAN2’s GitHub directory (https://github.com/jafarilab/PEIMAN2). 

Glycoproteomics case study with PEIMAN2 

To evaluate and benchmark PEIMAN2's efficiency in prediction of relevant PTMs in a given 
proteomics study, we applied PEIMAN2 to a recent study by Carnielli et al. 18, where they 
perform proteomics and glycoproteomics profiling on samples from oral squamous cell 
carcinoma (OSCC) patients. This study was based on the existing understanding of the 
significant role of glycosylation in regulating crucial factors such as altered adhesion 
behavior, migratory tendencies, and metastatic advancement of oral cancer cells. In this 
study, primary tumor tissues, extracted through surgical procedures from OSCC patients 
including those with and without lymph node metastasis, were subjected to proteomics 
and glycoproteomics analyses. Through clustering analysis, the study quantitatively 
juxtaposed the N-glycome and N-glycoproteome data across diverse patient groups. These 
analyses, coupled with the exploration of an array of clinicopathological features using 
patient metadata, revealed substantial changes in the abundance several N-glycopeptides, 
establishing a compelling connection between glycoproteins and patient survival 
outcomes. 

To assess PEIMAN2's ability in computationally enriching and predicting glycosylation 
within the glycoproteome profiling dataset, we applied PEIMAN2 to identify the enriched 
PTMs (Fig. 3A & 3B). The analysis unveiled a pronounced enrichment of glycoprotein and 
GPI-anchor amidated alanine, asparagine, and cysteine – findings that aligned with the 
anticipated outcomes. Therefore, this analysis serves as a proof-of principle. Next, we 
focused on the routine proteome profiles of both patient groups. Impressively, the PTMs 
associated with glycoproteins were enriched significantly among the proteins exhibiting 
differential expression (Fig. 3C & 3D). This finding shows that if a priori information on the 
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involvement of glycosylation on the progression of OSCC was missing, PEIMAN2 would 
have been capable of predicting glycosylation related PTMs solely by using the routine 
proteomics dataset, guiding the authors to perform subsequence glycoproteomics studies. 
This insight is valuable in analogous situations where prior knowledge about the 
significance of various PTMs in diverse biological and disease contexts is lacking. 
Importantly, the matched proteomics and glycoproteomics data in this study was beneficial 
and could be used as a perfect benchmark to showcase the applicability of PEIMAN2. 

Subsequently, we continued with an in-house investigation on deep expression profiling of 
cells treated with two kinase inhibitors that inhibit protein phosphorylation. The 
overarching goal was to predict the modifications in the expression proteomics data and to 
pinpoint mechanistic proteins that exhibit differential expression in response to treatment, 

reflecting potential pathways and mechanisms influenced by drug interventions. 

Figure 3: Proteome and glycoproteome profiling in OSCC. (A) Volcano plots illustrate the OSCC glycoproteome, and (C) the 
proteome, with data points color-coded to indicate differentially expressed proteins. Enriched PTMs in the (B) glycoproteome 

and proteome (D) profiles are presented through the utilization of PEIMAN2. 

 

Multikinase inhibitors case study with PEIMAN2 

Since both drugs are multikinase inhibitors, the treatment would be expected to modulate 
some phosphorylation events and/or modification occupancies, as shown before for 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2023. ; https://doi.org/10.1101/2022.11.09.515610doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.09.515610
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

AKT1/2 inhibitor and ipatasertib2. Therefore, we expected to see an enrichment of 
phosphorylation PTM terms after applying PEIMAN2 on the differentially expressed 
proteins in response to both drugs. We tested four increasing concentrations of both drugs 
in an A549 cell line model of lung cancer taking advantage of TMTpro 16 multiplexing22. As 
expected, a higher number of differentially expressed proteins were identified at higher 
concentrations of drug. Then, we tested PEIMAN2 on all concentrations of drugs and 
checked the number of differentially expressed proteins with annotated PTM term changes 
at different drug concentration levels based on enrichment analysis. Panels (A) and (B) in 
Figure 4, present fold changes of proteins between control and the highest concentration of 
drugs (Conc.4) measured in log2 scale versus their p-value derived from a two-sided t-test 
with equal variance assumption for dasatinib and staurosporine drugs, respectively. In the 
plot, each data point represents one protein, where rectangles denote the corresponding 
enriched PTM terms. The presence of various PTMs on the differentially abundant proteins 
can be observed on the plots. Figure 4 panels (C) and (D) present the distribution of 
differentially expressed proteins for each PTM terms at various drug concentrations. Figure 
4 panels (E) and (F) show the number of differentially expressed proteins for each drug 
concentrations. The percentage on the bar indicates the proportion of proteins with 
phosphorylation related PTM terms. One can note that as the concentration of drug 
increases from the lowest concentration level (Conc.1) to Conc.4, the number of potential 
protein targets with specific PTM terms increases. Therefore, we considered Conc.4 for the 
downstream analyses including a refined MaxQuant database search.  For emphasis, we 
tried to detect actual PTMs in mass spectrometry data based on the PTMs that were 
enriched in the identified proteins using PEIMAN2. 

More specifically, for obtaining the most probable modifications changing under the 
treatment, at the first step of analysis, we implemented PSEA method by calling runPSEA() 
function on the samples treated with the highest concentration of drugs, to identify 
enriched modification terms. As for permutation, we considered randomly permuting 
scores of proteins 1000 times to adjust for FDR. A significance level of 5 percent along with 
a reasonable cut-off for PTM frequency in UniProt/Swissprot was applied to each drug list, 
separately. The exact modification of each enriched PTM was obtained by calling 
psea2mass() function. The top five modifications for dasatinib were: ‘O-phospho-L-
threonine’, ‘N6-acetyl-L-lysine’, ‘N-acetyl-L-alanine’, ‘O4-phospho-L-tyrosine’, and ‘N-
acetyl-L-methionine’. The corresponding PTMs are: ‘Phosphothreonine’, ‘N6-acetyllysine’, 
‘N-acetylalanine’, ‘Phosphotyrosine’, ‘N-acetylmethionine’. On the other hand, the top five 
modifications for staurosporine were: ‘O-phospho-L-serine’, ‘O-phospho-L-threonine’, ‘O4-
phospho-L-tyrosine’, ‘N-acetyl-L-alanine’, and ‘N-acetyl-L-methionine’. The corresponding 
PTMs are: ‘Phosphoserine’, ‘Phosphoprotein’, ‘Acetylation’, ‘Phosphothreonine’, and ‘N6-
acetyllysine’. In Supplementary Figure 3 and 4, we show the running score plot of the top 
five modifications shown in the integrated normalized enrichment score plot for dasatinib 
and staurosporine, respectively. In summary, PSEA shows enriched phosphorylation for 
both drug treatments (P-value < 0.05), however, the top PTMs for these kinase inhibitors 
were distinct and specific. In the next step, we performed a refined search using MaxQuant, 
where the top 5 modifications suggested by PEIMAN2 were added as further variable 
modifications (other parameters were kept constant as with the initial search). Figure 4G 
presents the integrated results of PSEA for two drugs. The x-axis in Figure 4G shows the 
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normalized enrichment score obtained from 1000 permutations and y-axis shows the PTM 
type.  

 

 

 

Figure 4: Volcano plot of fold change versus p-value colored by the sign of protein expression for both drugs; the PTMs annotated 

in UniProt for each protein are shown in rectangles; (A) Dasatinib, (B) Staurosporine. The results are shown for concentration 4 vs. 
vehicle treated cells. Bar plot of number of differentially expressed proteins with PTM at four concentration levels of both drugs 

(see Supplementary data 1 and 2 for more details); (C) Dasatinib, (D) Staurosporine. The value of absolute numbers of 

differentially expressed proteins carrying different PTMs at each concentration level is labeled in the bars of the plot; (E) 
Dasatinib, (F) Staurosporine. The percentage of proteins with phosphorylation related PTMs are labeled on the bars. (G) 

Integrated normalized enrichment score (NES) plot for both drugs colored by corrected p-value. The data points for dasatinib and 
staurosporine are plotted with a filled circle and triangle, respectively. The points are colored with their corrected p-value 

presented in log10 scale. 
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Number of proteins, peptides, and sequence coverage before/after using PEIMAN2 

First, we performed a quality control to ensure that the number of unique peptides, 
sequence coverage, and q-values are not significantly changed after including additional 
enriched modifications suggested by PEIMAN2 on the proteomics search engine software, 
i.e., MaxQuant. Note that the re-searching parameters (except the selected modifications) 
as well as filtering criteria of selecting the identified proteins remained the same both 
before/after including PEIMAN2 suggestions. Figure 5 shows the box plot of sequence 
coverage of proteins for each unique number of peptides colored by their q-value 
before/after including additional enriched modifications suggested by PEIMAN2. The 
results of analysis before/after applying PEIMAN2 for dasatinib and staurosporine are 
presented in panels (A-B) and (C-D), respectively. For both drugs, the median of sequence 
coverage at each unique number of peptides was similar before and after applying 
PEIMAN2 suggested modifications.  
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Figure 5: PEIMAN2 analysis-based before/after box plots for dasatinib and staurosporine. In these two pair plots (A:B and 
C:D), the effect of including additional enriched modifications suggested by PEIMAN2 on the search database by MaxQuant is 

depicted based on sequence coverage versus the number of unique peptides for both drugs separately. Figure 5EFGH: 

PEIMAN2 analysis-based before-and-after Venn diagrams and PTM frequency bar plots for dasatinib and staurosporine. The 
Venn diagrams (A) and (C), respectively, depict the number of proteins identified by MaxQuant for dasatinib and 

staurosporine before/after PEIMAN2 analysis. Based on PEIMAN2 analysis and re-searching the database by MaxQuant, the 
frequency plot of identified modifications of proteins is depicted for each drug (B and D). 
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Then, we performed another quality control to check the number of proteins that were 
identified before/after using PEIMAN2 and checked whether the newly identified proteins 
carry any PTMs. Figure 5 panels (E) and (G) present the Venn diagrams of the number of 
newly identified (or lost) proteins by MaxQuant before/after using PEIMAN2 for dasatinib 
and staurosporine drugs, respectively. In Figure 5, panels (F) and (H) depict the frequency 
bar plot of identified modifications in newly identified proteins based on re-searching the 
database by MaxQuant considering PEIMAN2 suggestions. For dasatinib 126 new proteins 
were identified by including the modifications suggested by PEIMAN2. On the other hand, 
52 proteins that were previously identified were lost in the refined search, suggesting that 
their corresponding peptides did not pass the 1% FDR threshold set in MaxQuant search. 
The majority of disappeared proteins were identified with two peptides in the initial 
search, with a median score value of 2.861 and small Q values. Note that 86% of proteins 
after including the suggested modification in the search had more than two peptides. There 
were 6,418 proteins in common before/after using PEIMAN2. For staurosporine, refined 
searched yielded 5,903 proteins that were also found in the initial database search. 
Furthermore, 123 proteins were identified that were not included in the initial search 
results, and 28 proteins were not found in the refined search after including PEIMAN2 
suggested modifications. When comparing the results of the experiment before/after 
including PEIMAN2 suggestions, this result implies that more than 97 percent of the 
proteins that were quantified before/after PEIMAN2 implementation in the refined 
database search are the same. However, as a result of employing PEIMAN2, we now have 
information regarding the PTM status of previously identified proteins in addition to 
previously undiscovered proteins. It was interesting to investigate the types and frequency 
of modifications in the newly identified proteins after searching MaxQuant by considering 
PEIMAN2 suggestions. In Figure 5, panels (F) and (H) show the bar plot frequency of PTMs 
of newly identified proteins for two drugs dasatinib and staurosporine, respectively.  

PTMs on protein targets of drugs 

We investigated the differential protein expression analysis before/after considering 
PEIMAN2’s suggestions in the database search. Figure 6 presents the fold change of 
proteins for each drug compared to control group, before/after considering PEIMAN2’s 
suggestions separately. The fold change is calculated as the log2 base of proportion of two 
sample means (Conc.4 vs control). The data points are colored depending on the results of 
a two-sample t-test (with equal variance assumption) before/after incorporating 
PEIMAN2’s suggestions in the database search. For example, purple color indicates that a 
protein was significantly different in Conc.4 group vs control group, both before/after 
using modification suggestions. These are drug targets that were found repeatedly by 
MaxQuant and whose PTM status was clarified by PEIMAN2. The panels in Figure 6 shows 
the distinct modifications of proteins, if any. 
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Figure 6: Differential analysis of proteins in response to the treatments before/after applying PEIMAN2. The 

fold changes of proteins with respect to untreated cells for each drug compared is displayed before/after 
considering PEIMAN2’s recommendations for incorporating enriched modifications in the database search. Four 

distinct colors were also used to depict the p-values of the t-statistics before/after PEIMAN2 analysis. Using 

shape icons, differential expressed proteins with distinct modifications are also indicated. 
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It is interesting to note that proteins that changed significantly before incorporating 
PEIMAN2’s suggestions are still statistically significant after considering the suggestions 
(purple color dots) with an enriched modification. In addition, the proteins that were not 
significantly changed before and became significant after including modification in 
MaxQuant search, are modified too. In comparison to other PTMs, the level of 
phosphorylated proteins is also more decreased or perturbed, necessitating further 
research to determine whether this phenomenon is because of the primary or secondary 
effects of inhibitors on protein targets. The above findings are consistent for both drugs. 
These results suggest that studies on drug targets and mechanism of action considering 
PTMs are helpful for identifying new proteins that are involved in drug mechanism of 
action. Basically, by including relevant PTMs in database search, the results of studies on 
different perturbations can be brought closer to reality using PEIMAN2.  

Monitoring of PTM changes after PEIMAN2 implementation 

Finally, we investigated the perturbation of the quantified PTMs upon treatment with 
dasatinib and staurosporine at the peptide level. First, the intensity of a given peptide was 
normalized by total intensity for each TMT channel. Then this normalized intensity was 
divided by the sum normalized intensity of the other peptides not carrying any PTMs for 
the same protein. The latter normalization would cancel the effect of abundance changes in 
the protein level upon treatment with the drug. Finally, we provided the trend of 
abundance changes for each modified peptides across different concentrations vs. 
respective controls and the results for all the PTM-carrying peptides for both dasatinib and 
staurosporine are shown in Supplementary Figure 5. While some modified peptides show a 
trend of decreasing or increasing abundance in a concentration-dependent manner, some 
other PTM-carrying peptides are unchanged upon different treatments, as expected. For 
example, the levels of two phosphopeptides (with three phosphothreonine) belonging to 
myristoylated alanine-rich C-kinase substrate (MARCKS) decreased by 1.5-fold upon 
treatment with the highest concentration of dasatinib. The PTM-carrying peptides 
following a concentration-dependent trend could be involved in drug mechanism of action. 

Discussion 

In the present work, we introduce an informatic pipeline called PTM-centric proteomics for 
prediction of relevant PTMs using PEIMAN2 R package. We illustrate the efficacy of this 
tool in predicting pertinent PTMs for highly expressed proteins in response to 
perturbations or interventions. Our demonstrations highlight that the inclusion of these 
predicted modifications in a refined database search leads to the identification of a greater 
number of proteins and the detection of PTMs on the most highly expressed proteins. 
When the answer to the research question lies beyond expression proteomics (usually 
does), in order to explain a particular phenotype, these findings are highly relevant and 
informative. 

Any alterations in PTM processing in response to perturbations can potentially impact 
various biochemical and biophysical aspects of proteins, subsequently affecting the cellular 
and even organismal phenotype. For example, a simple hypusination event on eIF5A drives 
protein synthesis and cell proliferation23.  Therefore, PTM studies are one of the major 
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forefronts or proteomics research and their widespread use is not limited only to mammals 
or eukaryota. PTM types and sites in bacteria, archaea, and even viral proteins have been 
characterized and reported in an extensive number of studies24-26. These PTMs can 
modulate protein turnover27, stability/solubility2, 8, 28, 29, folding and localization of 
proteins, the interactions between proteins30, genome function31, the trafficking of 
molecules32, cell signaling 33 and the activation of receptors34. For instance, in our first case 
study, we leveraged recently published data that elucidated the influence of N-
glycosylation on key clinicopathological features and patient survival in the context of oral 
cancer18. In addition, since many proteins include numerous PTMs and one PTM can 
change the prevalence or occupancy of others, a phenomenon known as PTM crosstalk, it is 
difficult to understand these complex control mechanisms without characterization and 
analysis of PTMs35. 

There have been many efforts to focus on investigating the identity and effect of a single 
PTM or multiple PTMs on protein function36-38. Although mass spectrometry-based 
proteomics is the golden standard for PTM analyses, the high-throughput experimental 
procedures used to identify PTMs are labor intensive and time-consuming39. Suppose one 
has a presumption about the role of protein phosphorylation. In that case, we need to 
design a phosphoproteomics study using titanium/zirconium dioxide-based beads to 
enrich phosphopeptides with high specificity. Otherwise, the study design is independent 
of adding extra experimental steps and routine proteomics database searches are applied. 
In spite of these advances, PTM identification is not the focal point of any proteomics 
investigation that lacks a prior PTM-specific hypothesis. Therefore, there is an immediate 
demand for computational methodologies and effective tools that can predict PTMs that 
are most probably found in a given biological sample or are occurring upon a specific 
perturbation6.  

Savitski et al. provided a computational method called ModifiComb based on the difference 
between the molecular masses and the retention time of the modified and unmodified 
peptides17.  The authors provided a method that is independent of PTM-related priori 
assumptions. Compared to searching all possible modifications, this method succeeded to 
reduce search space and, as a result, the propensity of false positive PTM identification. To 
improve the understanding of this dark matter of proteomics, Kong et al. also presented a 
fragment-ion indexing method and implemented it into MSFragger tool to computationally 
speed up searching proteomics database with PTMs40, 41. However, both methods rely on 
the identification of unmodified peptides to compute differences in mass and retention 
time. It should also be noted that not all detectable chemical modifications in mass spectra 
have a biological significance and cannot be inferred as functional PTMs, whereas PEIMAN2 
provides enrichment analysis to avoid the detection of inert stochastically modified 
peptides. 

We believe that PTM-centric proteomics based on enrichment analysis is a successful 
attempt to bring the results of perturbational studies closer to reality. Such predictions 
present opportunities for developing myriad PTM-related hypotheses and a particular 
follow-up experimental design in biological studies. To carry out PTM-centric proteomics, 
it is recommended to incorporate PEIMAN2 after the initial round of mass spectrometry 
database search and analysis in order to carry out a second round of refined mass 
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spectrometry database search and downstream analysis with a given set of PTMs. 
PEIMAN2 is not dependent on data from any MS instrument and can be easily integrated 
into the majority of existing data analysis pipelines. Accordingly, PEIMAN2 has the 
potential to become a valuable option for routine analysis of the most probable PTMs in 
shotgun proteomics data. Furthermore, the application of this software package is expected 
to enhance the exploration of PTM crosstalk in the contexts of both homeostasis and 
disease. 

Methods 

Cell culture 

Human lung carcinoma A549 were grown in McCoy’s 5A medium, supplemented with 10% 
FBS superior (Biochrom, Berlin, Germany), 2 mM L-glutamine (Lonza, Wakersville, MD, 
USA) and 100 units/mL penicillin/streptomycin (Gibco, Invitrogen) and incubated at 37 °C 
in 5% CO2. Cells were routinely checked for mycoplasma contamination by PCR and low 
passage number cells from ATCC were used in the experiments. 

Cell viability assay 

Cell viability upon compound treatment was measured using CellTiter-Blue assay 
(Promega) according to manufacturer protocol and the LC50s were determined as the 
concentration of compound causing 50% cytotoxicity. 

Multikinase inhibitor treatment  

After seeding 250,000 A549 cells in triplicates in 6 well plates, cells were allowed to grow 
for 24 h, after which they were treated with the compounds for 24 h in triplicates. 
Dasatinib was profiled at 100 nM, 1 �M, 5 �M and 25 �M. Staurosporine was profiled at 8 
nM, 40 nM, 200 nM and 1 �M. Cells treated with DMSO were used as controls. 

Table 1: TMT labeling scheme for the experiments 

Compounds Dasatinib Staurosporine 

TMT126 Control replicate 1 Control replicate 1 

TMT127N Control replicate 2 Control replicate 2 

TMT127C Control replicate 3 Control replicate 3 

TMT128N 100 nM replicate 1 8 nM replicate 1 

TMT128C 100 nM replicate 2 8 nM replicate 2 

TMT129N 100 nM replicate 3 8 nM replicate 3 

TMT129C 1 �M replicate 1 40 nM replicate 1 

TMT130N 1 �M replicate 2 40 nM replicate 2 

TMT130C 1 �M replicate 3 40 nM replicate 3 

TMT131N 5 �M replicate 1 200 nM replicate 1 

TMT131C 5 �M replicate 2 200 nM replicate 2 
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Compounds Dasatinib Staurosporine 

TMT132N 5 �M replicate 3 200 nM replicate 3 

TMT132C 25 �M replicate 1 1 �M replicate 1 

TMT133N 25 �M replicate 2 1 �M replicate 2 

TMT133C 25 �M replicate 3 1 �M replicate 3 

LC-MS/MS sample preparation 

Sample preparation was done according to our previous protocol42. After treatment, cells 
were trypsinized, washed with PBS and lysed with the lysis buffer (8 M urea, 1% SDS, 50 
mM Tris pH 8.5). Protein concentration was measured using Pierce BCA Protein Assay Kit 
(Thermo), and the volumes corresponding to 25 µg of protein was transferred from each 
sample to new low-bind Eppendorf tubes. DTT was added to a final concentration of 10 mM 
and samples were incubated for 1 h at room temperature. Subsequently, iodoacetamide 
(IAA) was added to a final concentration of 50 mM and samples were incubated at room 
temperature for 1 h in the dark. The reaction was quenched by adding an additional 10 mM 
of DTT. After precipitation of proteins using methanol/chloroform, the semi-dry protein 
pellets were dissolved in 25 µL of 8 M urea in 20 mM EPPS (pH 8.5) and were then diluted 
with EPPS buffer to reduce urea concentration to 4 M. Lysyl Endopeptidase (Wako) was 
added at a 1:75 w/w ratio to protein and incubated at room temperature overnight. After 
diluting urea to 1 M, trypsin (Promega) was added at the ratio of 1:75 w/w and the samples 
were incubated for 6 h at room temperature. TMT reagents were added 4x by weight to 
each sample, followed by incubation for 2 h at room temperature. The reaction was 
quenched by addition of 0.5% hydroxylamine. Samples were combined, acidified by TFA, 
cleaned using Sep-Pak (Waters) and dried using a DNA 120 SpeedVac concentrator 
(Thermo). Samples were resuspended in 20 mM ammonium hydroxide and separated into 
96 fractions on an XBrigde BEH C18 2.1x150 mm column (Waters; Cat#186003023), using 
a Dionex Ultimate 3000 2DLC system (Thermo Scientific) over a 48 min gradient of 1-63% 
B (B=20 mM ammonium hydroxide in acetonitrile) in three steps (1-23.5% B in 42 min, 
23.5-54% B in 4 min and then 54-63%B in 2 min) at 200 �L/min flow. Fractions were then 
concatenated into 24 samples in sequential order (e.g. A1, C1, E1 and G1). 

Proteomics 

After resuspension in 0.1% FA (Fluka), fractions (1 �g) were analyzed by LC-MS/MS. 
Samples were loaded onto a 50 cm column (EASY-Spray, 75 �m internal diameter (ID), 
PepMap C18, 2 �m beads, 100 Å pore size) connected to a nanoflow Dionex UltiMate 3000 
UHPLC system (Thermo) and eluted in an organic solvent gradient increasing from 4% to 
26% (B: 98% ACN, 0.1% FA, 2% H2O) at a flow rate of 300 nL/min over a total 110 min 
method time. The eluent was ionized by electrospray and mass spectra of the molecular 
ions were acquired with an Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific) 
in data-dependent mode at MS1 resolution of 120,000 and MS2 resolution of 60,000, in the 
m/z range from 400 to 1600. Peptide fragmentation was performed via higher-energy 
collision dissociation (HCD) with energy set at 35 NCE and MS2 isolation width at 1.6 Th. 
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Proteomic Data, Bioinformatic and statistical Analysis 

The raw LC-MS data were analyzed MaxQuant version 1.6.2.3 43. The Andromeda search 
engine 44 was run against the International Protein Index (human version 
UP000005640_9606, 92957 entries). Methionine oxidation was selected as variable 
modifications, while cysteine carbamidomethylation was set as a fixed modification. No 
more than two missed cleavages were allowed, and a 1% FDR was used as a filter at both 
protein and peptide levels. All the contaminants were removed in the first step and only 
proteins with at least two peptides and a Qvalue less than of 5% were considered in all 
cases. After PEIMAN2 analysis, the mentioned modifications were added to the raw LC-MS 
search. All the experiments were performed in triplicates. Two-tailed Student t-test was 
applied to calculate p-value. The data were normalized by the total intensity of each TMT 
channel and subsequently, the expression ratio for each protein was calculated relative to 
the DMSO-treated controls. 

PEIMAN2 R package 

At the first step, we downloaded 569,794 <Reviewed (UniProt), Manually annotated= 
proteins (as of September 2023 from UniProt online repository, available at 
https://www.uniprot.org). The database records various useful functional information 
about proteins. We reduced the size of file by narrowing each protein record to include 
unique UniProt accession code (AC), organism taxonomy name (OS), keywords (KW) and 
features (FT). We were particularly interested in KW and FT as any manually curated 
information regarding PTM are available in these fields. At the next step, we used R 
software to build a database to obtain PTM profile of proteins for all species. In our search 
for PTMs in proteins, we used a list of controlled PTM vocabulary provided by UniProt 
(available at 
https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complet
e/docs/ptmlist.txt). To find proteins with any PTM modification, we searched the 
downloaded file against controlled PTM vocabulary by looking into KW and FT entry of 
each protein. The presence of any PTM in CROSSLNK, LIPID, or MOD_RES feature of any 
protein was of interest. At the time of preparing this manuscript, we obtained the PTM 
profile of 134,783 proteins. To keep up with monthly changes in UniProt, we automated the 
preparation process and will update the database each month accordingly. The latest 
PEIMAN2 scripts and PEIMAN2 database are available at JafariLab GitHub repository 
(https://github.com/jafarilab/PEIMAN2). 

Enrichment Analysis 

Single Enrichment Analysis (SEA) 

The enrichment analysis is a powerful strategy which facilitates the identification of 
biological processes for a list of genes or proteins. The SEA is known as one of the 
traditional methods to infer the biological functions in a given list of genes. The analysis in 
SEA starts with a list of differentially expressed genes provided by researcher (selected 
with some criteria: p-value or fold-change). The idea behind SEA is to test if the number of 
genes in the list with a certain biological function (for example PTM) is significantly 
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different from occurrence through random chance. In a general sense, enrichment analysis 
investigates whether a group of genes or proteins are over/under-presented for a specific 
biological pathway in a large set of genes/proteins. Different statistical methods are 
introduced to measure this discrepancy such as Chi-Square, Fisher’s exact test, and 
hypergeometric test. We previously implemented a standalone software to run SEA in a list 
of proteins and infer any enriched modification by applying a hypergeometric test18. The 
idea in PEIMAN standalone software and PEIMAN2 is to investigate if a subset of proteins is 
over/under presented for any particular PTM, in a large set of proteins. We here briefly 
describe the idea of hypergeometric test in this context. Assume there are � proteins in the 
database and ��� �� of these proteins have one of the known modifications, for example 
<Acetylation=. We pass a list of � proteins. We can apply hypergeometric test to check if 
<Acetylation= is over-under/represented in the sample list of � proteins using a 
hypergeometric test. The p-value of such a test is calculated as: 

� 	 
��
� �  � ��

�
�����

���
�

��

�
�

��	 ��,�


���

 

This simple idea is very helpful in inferring biological meaning from a large list of genes. In 
the next section, we discuss some of the weaknesses associated with SEA and review an 
alternative powerful approach to SEA. 

Protein Set Enrichment Analysis (PSEA) 

SEA takes a list of differentially expressed genes/proteins and identifies if there is a 
significant overrepresentation of genes or proteins associated with a specific biological 
feature. However, SEA has known limitations that warrant consideration45. Firstly, when 
correcting for multiple testing, the resulting p-values may render no genes or proteins 
differentially significant, particularly when real differences are subtle compared to 
inherent noise. Secondly, the final list generated by SEA may contain a multitude of 
declared significant genes or proteins, which can pose challenges in interpretation and may 
lead to subjective interpretations among biologists with varying expertise. Thirdly, single 
gene or protein enrichment analysis has the potential to overlook important effects on 
pathways. Lastly, it is not uncommon for different research laboratory groups to report 
multiple lists of significant genes or proteins for the same perturbation or biological 
process. 

Gene set enrichment analysis or GSEA has been introduced by Subramanian et al. 45 to 
overcome these drawbacks. We briefly highlight the key points of GSEA method here. GSEA 
is applied on profiles of genome-wide expression data that belongs to two experimental 
groups (control vs treatment). Genes are then sorted based on a given score, for example 
correlation between their expression profile or the class they belong to. A set of genes, S, is 
defined as genes that belong to a certain set with a distinct biological annotation (e.g., 
metabolic pathway, GO category, PTM). The idea behind GSEA is to identify if the members 
of set S tend to show more often toward the top (or bottom) of the gene list or are 
randomly distributed throughout the list. 
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The GSEA method can be summarized in three steps as follows. First, an enrichment score 
(ES) is calculated to measure if the gene set S is over-presented at the top or bottom of the 
ranked gene list. This is achieved by calculating a signed version of the Kolmogorov-
Smirnov statistic while running from the top to the bottom of the ranked list. Whenever we 
encounter a gene in the S set, the value of the statistic is increased proportional to an 
exponent power of the gene’s score. Likewise, when the gene is not in the S set, the value of 
statistic is decreased. The enrichment score for gene set S is defined as the maximum 
observed deviation from zero in the running score profile. In the second step, the 
significance of calculated ES score for a given list of genes is evaluated by randomly 
permuting the score of each gene for certain number of times (usually 1000 times) and 
calculating ES for each random profile to generate a null distribution for the ES. A p-value 
based on the permutations is calculated according to the null distribution. Finally, GSEA 
accounts for the effect of multiple testing by calculating FDR. This is achieved by 
normalizing ES score of each gene set relative to gene set size. For more details refer to 
supplementary material of 31. 

Inspired by the idea and usefulness of GSEA in elucidating biological inferences in a given 
list of genes, we implement protein set enrichment analysis or PSEA in PEIMAN2 package 
to infer biological meaning from a list of proteins. In our work, the gene sets are replaced 
by a set of proteins that belong to a certain modification group, for example <Acetylation=. 
For any list of protein given by researcher, the set of proteins with a certain modification 
are identified. For each set of proteins, we calculate enrichment score and assess the 
significance of ES by the methods described in 43. Finally, we provide a list of modification 
that are most probably enriched in a given list. All these functionalities are implemented in 
an R package to serve a broader community of researchers. For more details on 
functionality of package, please read the Vignette and Readme page at PEIMAN2 GitHub 
page. 

Data availability 

The LC-MS/MS raw data files and extracted peptides and protein abundances are deposited 
in the jPOST repository of the ProteomeXchange Consortium 46 under the dataset 
identifiers PXD037679 and PXD037681  

Code availability 

All analyses reported in this study used the statistical software R (v.4.0.0). The R package 
can be found on GitHub (https://github.com/jafarilab/PEIMAN2). 
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Supplementary information 

Supplementary Figures 

 

Supplementary Figure 1: PTM frequency treemaps for eight popular organisms from diverse taxonomic branches of life. 
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Supplementary Figure 2: The t-SNE plots based on PTM profiles in four super kingdoms of life, i.e., Archaea, 

Bacteria, Eukaryota and Viruses (panels A-D). Each dot in the plots presents one organism. The red and grey colors 
indicates if the point (organism) belongs to corresponding super kingdom of life or not. Note that we anticipate a 

more uniform distribution of viruses across all three of the other phyla of life (Panel D). 
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Supplementary Figure 3: The running score plot of the first top five PTMs identified on differentially expressed proteins 

upon dasatinib treatment. The x-axis is the ranked protein based on their score and the y-axis is their enrichment score. The 

rug in the x-axis indicates the proteins with the corresponding PTM. The position of maximum running enrichment score is 

denoted by a red dashed line.  
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Supplementary Figure 4: The running score plot of the first top five PTMS identified on differentially expressed proteins 

upon staurosporine treatment. The x-axis is the ranked protein based on their score and the y-axis is their enrichment score. 

The rug in the x-axis indicates the proteins with the corresponding PTM. The position of maximum running enrichment score 

is denoted by a red dashed line. 

 

 

*ATTACHED PDF FILE* 

Supplementary Figure 5: The modified peptides with probabilities. The modified peptides with all above-mentioned PTMs 

are listed separately upon dasatinib and staurosporine treatment. The x-axis is the four drug concentrations and the control, 

and the y-axis is the proportional abundance of the corresponding peptide compared to unmodified peptide (see 

Supplementary data 3 and 4 for more details). 

 

Supplementary data 

Supplementary data 1. A table of all identified proteins for dasatinib following PTM-centric proteome informatic pipeline. 

Supplementary data 2. A table of all identified proteins for staurosporine following PTM-centric proteome informatic 

pipeline. 

Supplementary data 3. A compiled table of all PTM-carrying peptides for dasatinib and calculated final fold changes that 

are plotted in Supp figure 5. 

Supplementary data 4. A compiled table of all PTM-carrying peptides for staurosporine and calculated final fold changes 

that are plotted in Supp figure 5.
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