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Abstract

Post-translational modifications (PTMs) are under significant focus in molecular
biomedicine due to their importance in signal transduction in most cellular and organismal
processes. Characterization of PTMs, discrimination between functional and inert PTMs,
quantification of their occupancies and PTM crosstalk are demanding tasks in each
biosystem. On top of that, the study of each PTM often necessitates a particular laborious
experimental design. Here, we present a PTM-centric proteome informatic pipeline for
prediction of relevant PTMs in mass spectrometry-based proteomics data in the absence of
a priori information. Upon prediction, such PTMs can be incorporated in a refined database
search. As a practical application, we showed how this pipeline suggested performing
glycoproteomics in oral squamous cell carcinoma based on proteome profile of primary
tumors. Subsequently, using proteome profiling of treated cells with two PTM-modulating
kinase inhibitors, we experimentally identified cellular proteins that are differentially
expressed in response to multikinase inhibitors dasatinib and staurosporine.
Computational enrichment analysis was employed to determine the potential PTMs of
protein targets for both drugs. Finally, we conducted an additional round of database
search with the predicted PTMs. Our pipeline helped to analyze the enriched PTMs and
even the detected proteins that were not identified in the initial search. Our findings
support the idea of PTM-centric searching of MS data in proteomics based on
computational enrichment analysis and we propose that this approach be integrated into
future proteomics search engines.
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Main

Proteins are the primary functional units of cellular systems, but they often gain activity
when modified post-translationally. In addition to regulation of protein activity, their
function, stability/solubility, interactions with other biomolecules and their cellular
localization are governed by transient modulation of post-translational modifications
(PTMs)L 2. By regulating such diverse characteristics, PTMs can modulate the involvement
of proteins in biochemical reactions, signaling, transport, structural remodeling, gene
regulation, cell motility and cell death? #. Due to the importance of PTMs in signal
transduction in health and disease, the mechanisms, and kinetics of PTMs have turned into
an active research area>”.

Analysis of PTMs would provide valuable information regarding the status and function of
proteins upon diverse perturbations'?. Therefore, understanding the nature, quantity, and
temporal progression of PTMs has arguably been one of the most substantial contributions
of MS-based proteomics to modern biology!. However, the sub-stoichiometric nature and
dynamic regulation of PTMs makes it challenging to capture and detect PTMs!1. Thus,
unique enrichment techniques and sample-processing workflows are often required for
enriching PTMs before analysis by mass spectrometry?2.

Experimental techniques exploit the unique chemical properties of a given PTM for their
enrichment. For example, at both protein and peptide levels, PTM-directed antibodies can
be used to enrich a specific chemical group within a given proteome’. Another routinely
used strategy involves the enrichment of phosphorylated peptides (and/or proteins) using
metal oxide resins, such as titanium and zirconium!3. These enrichment strategies are very
prominent when modulation of a certain PTM is expected; for example, when investigating
the function of a kinase, modulation of phosphorylation levels is an expected outcome.

Furthermore, the inclusion of more PTMs in database searches can dramatically enlarge
the search space, imposing time constraints and heavily straining the search enginel4. It
should also be noted that including any extra PTMs increases the chance of false
identifications in a given database search and thus increasing the burden of proof for PTM
identification. Therefore, only most common PTMs, such as asparagine deamidation?>,
methionine oxidation and cysteine carbamidomethylation are usually included in routine
database searches.

Altogether, due to a lack of prior knowledge on the most important PTMs in a particular
study condition, many PTMs are usually not monitored. Although no practical issues exist
in the biochemical characterization of stable and common PTMs such as phosphorylation
or acetylation, researchers do not monitor them in the lack of presumption. Despite the
presence of proteome-wide PTM approaches such as ModifiComb16.17, the analysis of less-
common or unstable PTMs still remains challenging and needs a more complex study
design, especially for PTMs without highly specific antibodies or reagents.

Here, we present a thorough analysis of the advancements introduced by the PEIMAN2 R
package in the realm of PTM-centric discovery proteomics. We demonstrate the
effectiveness of the software package by conducting two extensive case studies: one
utilizing external public data and the other leveraging in-house data. These case studies


https://doi.org/10.1101/2022.11.09.515610
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.09.515610; this version posted October 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

collectively serve as strong evidence, validating the utility and potential applicability of our
proposed pipeline in practical proteomic research. The first case study highlights the
predictability of PEIMANZ in glycoproteome profiling, demonstrated by its application to
the analysis of oral squamous cell carcinoma (0SCC), utilizing pre-existing proteomic and
glycoproteomic data'®. Subsequently, an in-house case study focuses on the identification
of mechanistic proteins subject to differential expression by the multikinase inhibitors
dasatinib and staurosporine. This investigation involves deep expression profiling of the
A549 cell line, serving as a representative model for lung cancer. In both studies, a
PEIMANZ2-based search pipeline (as illustrated in Fig. 1) is employed to identify the
enriched PTMs among the differentially expressed proteins. Finally, these enriched PTMs
are seamlessly integrated into a refined database search, enabling an evaluation of the
PEIMAN?2 pipeline in the domain of PTM-centric discovery proteomics.
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Figure 1: An informatic pipeline for PTM-centric proteomics using PEIMANZ R package. The red dash line area
delineates the inputs and outputs of PEIMANZ R package, forming a PTM-centric proteomics pipeline.
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Results
PTM data extraction for PEIMAN2 R package

The PEIMANZ2 R package contains as of September 2023 a database that encompasses
134,783 proteins from 14,457organisms, covering 515 PTM types. We compared the
distribution of the 10 most prevalent PTMs across all known organisms to gain insight into
the prevalence of PTMs in the current version of UniProt vs 2015 version. Figure 2 panel
(a) shows the distribution of the ten most common PTMs in the current version of UniProt.
“Phosphoprotein” had a frequency of 48,934 occurrences which is over 5 times greater
than "Methylation", which ranked as the tenth most frequent PTM with a frequency of
8,589 occurrences and displayed the highest increase rate (1.5-fold) over the past decade.
Panel (b) in the figure compares the changes in the frequencies of these ten most common
PTMs in the current and previous versions of UniProt database. Note that the database
version is denoted on the x axis and the y axis represents the frequency of PTMs. To better
highlight the changes, the frequency of PTMs is shown in log-10 base. Over the course of
the past seven years, we expected to discover a consistent pattern of growth among the top
10 selected PTMs. However, the rates of growth are not consistent among all terms. For
example, “Methylation”, “Phosphothreonine”, “Phosphoserine”, and have a higher rate of
growth compared to the other PTM-terms. This difference in the rate of growth might be
related to two reasons. First, the identification of some PTMs is subject to experimental
limitations, therefore we cannot expect a consistent rate of growth. Second, the assigned
biological activities of some PTMs such as phosphorylation has attracted more research
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Figure 2: An update on PTM statistics based on UniProt database. (A) The top ten most common PTMs in UniProt/SwissProt across all available
species. (B) The frequency changes of the ten most common PTMs in PEIMAN standalone software (2015) vs PEIMANZ R package (2023).

attention than some other PTMs.
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Furthermore, an examination of the PTM distribution among various species within
UniProt/SwissProt was undertaken. Tree maps were employed to visually represent this
distribution across eight model organisms, each selected to represent diverse taxonomic
branches (Supplementary Figure 1). The observed PTM distribution among these distinct
model organisms suggests the potential utility of PTMs for taxonomic discrimination within
the broader context of the tree of life, thereby prompting further avenues of research.
Additionally, a t-distributed Stochastic Neighbor Embedding (t-SNE) plot!® was generated
to provide a comprehensive visualization of how the PTM profiles of species enable the
classification of these organisms into four major super kingdoms (Supplementary Figure
2).

PEIMAN2 R package functionality

Previously, we introduced a computational enrichment analysis for PTMs by a standalone
software called “Post-translational modification Enrichment Integration and Matching
Analysis” or PEIMAN, to facilitate single enrichment analysis (SEA) based on PTMs in
proteomics studies??. SEA21 is a popular method providing insight into biological pathways
altered in disease or under various perturbations. The idea of SEA is to check whether the
genes/proteins with a specific biological feature in a given list are occurring more
frequently than by pure chance. As simple and powerful as this approach is, there are some
known drawbacks to it, including the difficulty of identifying significant signals from noise,
subjective interpretations among biologists, and for the same data getting different final list
of significant genes/proteins among different laboratories. Gene/Protein set enrichment is
an alternative way to resolve these problems, therefore we provided a new enrichment
method for PTM study called protein set enrichment analysis (PSEA) in an R package,
making this tool accessible for a broader community of researchers.

The PEIMAN2 R package offers a wider range of features and functionalities compared with
the PEIMAN standalone software. First note that SEA related functions are still included in
the PEIMAN2 R package and can be utilized by calling runEnrichment() and
plotEnrichment () function. As a new feature, PEIMAN2 package implements PSEA as an
additional tool for proteomics studies based on PTMs. runPSEA() function in the package
allows the user to perform a PSEA analysis on a given list of proteins for a specific
organism. This function requires a list of protein accession codes along with taxonomy
name of the organism. Some additional parameters of the function include enrichment
weighting (refer to the methods section for more details), number of permutations to
estimate the false discovery rate, FDR (default number of permutations is 1000), choice of
the method to adjust p-values, and a controlling cut off to include specific PTMs with a
certain occurrence rate in the analysis. A table of enriched proteins along with their
enrichment and normalized enriched score, adjusted p-value, FDR, and proteins in the
leading-edge is produced. For each PTM, the leading-edge proteins are the proteins that
show up in the ranked list at /or before the point where the enrichment score (ES) reaches
its maximum deviation from zero.

There are two functions available in the package to visualize the results of PSEA,
plotPSEA() and plotRunningScore(). The former is employed for generating plots
depicting the outcomes of a single PSEA analysis or for merging the findings from two
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separate PSEA analyses. These plots effectively display the normalized enrichment scores
associated with each PTM. The latter function is designed to produce running enrichment
score plots for each PTM featured in the table generated by the runPSEA() function. In each
plot, x-axis is the sorted protein list and y-axis is the enrichment score. The leading-edge
proteins are shown with a rug plot on the x-axis (for example see Supplementary Figure 3
and 4).

In PTM-centric proteomics, we recommend integrating PEIMANZ2 results into the workflow
of mass spectrometry data analysis. To do this, one can utilize SEA or PSEA to generate a
list of enriched terms. These are PTM terms of which the counts in a given list of protein is
statistically significant. The SEA and PSEA are two methods to obtain the list of enriched
PTM terms (see methods section for more details). The enriched terms can then be used to
extract the subset of protein modifications. These modifications can be used to search in a
proteomics search engine software to gain more insight into designing the experiment and
investigating the effect of a treatment on PTMs. For this purpose, we included functions to
prepare results for such a re-search in MaxQuant software. The results of SEA or PSEA can
be passed to sea2mass() or psea2mass() functions, respectively, to extract a subset of
protein modifications. This subset of chemical modifications can be used to parametrize the
search engine for mass spectrometry data, such as MaxQuant. For more information, we
have provided a detailed vignette manual along with the package and a Readme page on

PEIMANZ2’s GitHub directory (https://github.com/jafarilab/PEIMANZ2).

Glycoproteomics case study with PEIMAN2

To evaluate and benchmark PEIMANZ2's efficiency in prediction of relevant PTMs in a given
proteomics study, we applied PEIMANZ to a recent study by Carnielli et al. 18, where they
perform proteomics and glycoproteomics profiling on samples from oral squamous cell
carcinoma (OSCC) patients. This study was based on the existing understanding of the
significant role of glycosylation in regulating crucial factors such as altered adhesion
behavior, migratory tendencies, and metastatic advancement of oral cancer cells. In this
study, primary tumor tissues, extracted through surgical procedures from OSCC patients
including those with and without lymph node metastasis, were subjected to proteomics
and glycoproteomics analyses. Through clustering analysis, the study quantitatively
juxtaposed the N-glycome and N-glycoproteome data across diverse patient groups. These
analyses, coupled with the exploration of an array of clinicopathological features using
patient metadata, revealed substantial changes in the abundance several N-glycopeptides,
establishing a compelling connection between glycoproteins and patient survival
outcomes.

To assess PEIMANZ2's ability in computationally enriching and predicting glycosylation
within the glycoproteome profiling dataset, we applied PEIMANZ to identify the enriched
PTMs (Fig. 3A & 3B). The analysis unveiled a pronounced enrichment of glycoprotein and
GPI-anchor amidated alanine, asparagine, and cysteine - findings that aligned with the
anticipated outcomes. Therefore, this analysis serves as a proof-of principle. Next, we
focused on the routine proteome profiles of both patient groups. Impressively, the PTMs
associated with glycoproteins were enriched significantly among the proteins exhibiting
differential expression (Fig. 3C & 3D). This finding shows that if a priori information on the
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involvement of glycosylation on the progression of 0SCC was missing, PEIMAN2 would
have been capable of predicting glycosylation related PTMs solely by using the routine
proteomics dataset, guiding the authors to perform subsequence glycoproteomics studies.
This insight is valuable in analogous situations where prior knowledge about the
significance of various PTMs in diverse biological and disease contexts is lacking.
Importantly, the matched proteomics and glycoproteomics data in this study was beneficial
and could be used as a perfect benchmark to showcase the applicability of PEIMANZ.

Subsequently, we continued with an in-house investigation on deep expression profiling of
cells treated with two kinase inhibitors that inhibit protein phosphorylation. The

overarching goal was to predict the modifications in the expression proteomics data and to
pinpoint mechanistic proteins that exhibit differential expression in response to treatment,
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reflecting potential pathways and mechanisms influenced by drug interventions.
Figure 3: Proteome and glycoproteome profiling in OSCC. (A) Volcano plots illustrate the OSCC glycoproteome, and (C) the

proteome, with data points color-coded to indicate differentially expressed proteins. Enriched PTMs in the (B) glycoproteome
and proteome (D) profiles are presented through the utilization of PEIMANZ.

Multikinase inhibitors case study with PEIMAN2

Since both drugs are multikinase inhibitors, the treatment would be expected to modulate
some phosphorylation events and/or modification occupancies, as shown before for
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AKT1/2 inhibitor and ipatasertib2. Therefore, we expected to see an enrichment of
phosphorylation PTM terms after applying PEIMANZ2 on the differentially expressed
proteins in response to both drugs. We tested four increasing concentrations of both drugs
in an A549 cell line model of lung cancer taking advantage of TMTpro 16 multiplexing?2. As
expected, a higher number of differentially expressed proteins were identified at higher
concentrations of drug. Then, we tested PEIMAN2 on all concentrations of drugs and
checked the number of differentially expressed proteins with annotated PTM term changes
at different drug concentration levels based on enrichment analysis. Panels (A) and (B) in
Figure 4, present fold changes of proteins between control and the highest concentration of
drugs (Conc.4) measured in log?2 scale versus their p-value derived from a two-sided t-test
with equal variance assumption for dasatinib and staurosporine drugs, respectively. In the
plot, each data point represents one protein, where rectangles denote the corresponding
enriched PTM terms. The presence of various PTMs on the differentially abundant proteins
can be observed on the plots. Figure 4 panels (C) and (D) present the distribution of
differentially expressed proteins for each PTM terms at various drug concentrations. Figure
4 panels (E) and (F) show the number of differentially expressed proteins for each drug
concentrations. The percentage on the bar indicates the proportion of proteins with
phosphorylation related PTM terms. One can note that as the concentration of drug
increases from the lowest concentration level (Conc.1) to Conc.4, the number of potential
protein targets with specific PTM terms increases. Therefore, we considered Conc.4 for the
downstream analyses including a refined MaxQuant database search. For emphasis, we
tried to detect actual PTMs in mass spectrometry data based on the PTMs that were
enriched in the identified proteins using PEIMAN2.

More specifically, for obtaining the most probable modifications changing under the
treatment, at the first step of analysis, we implemented PSEA method by calling runPSEA()
function on the samples treated with the highest concentration of drugs, to identify
enriched modification terms. As for permutation, we considered randomly permuting
scores of proteins 1000 times to adjust for FDR. A significance level of 5 percent along with
a reasonable cut-off for PTM frequency in UniProt/Swissprot was applied to each drug list,
separately. The exact modification of each enriched PTM was obtained by calling
psea2mass () function. The top five modifications for dasatinib were: ‘O-phospho-L-
threonine’, ‘N6-acetyl-L-lysine’, ‘N-acetyl-L-alanine’, ‘O4-phospho-L-tyrosine’, and ‘N-
acetyl-L-methionine’. The corresponding PTMs are: ‘Phosphothreonine’, ‘N6-acetyllysine’,
‘N-acetylalanine’, ‘Phosphotyrosine’, ‘N-acetylmethionine’. On the other hand, the top five
modifications for staurosporine were: ‘O-phospho-L-serine’, ‘O-phospho-L-threonine’, ‘04-
phospho-L-tyrosine’, ‘N-acetyl-L-alanine’, and ‘N-acetyl-L-methionine’. The corresponding
PTMs are: ‘Phosphoserine’, ‘Phosphoprotein’, ‘Acetylation’, ‘Phosphothreonine’, and ‘N6-
acetyllysine’. In Supplementary Figure 3 and 4, we show the running score plot of the top
five modifications shown in the integrated normalized enrichment score plot for dasatinib
and staurosporine, respectively. In summary, PSEA shows enriched phosphorylation for
both drug treatments (P-value < 0.05), however, the top PTMs for these kinase inhibitors
were distinct and specific. In the next step, we performed a refined search using MaxQuant,
where the top 5 modifications suggested by PEIMAN2 were added as further variable
modifications (other parameters were kept constant as with the initial search). Figure 4G
presents the integrated results of PSEA for two drugs. The x-axis in Figure 4G shows the
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normalized enrichment score obtained from 1000 permutations and y-axis shows the PTM
type.
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Figure 4: Volcano plot of fold change versus p-value colored by the sign of protein expression for both drugs; the PTMs annotated
in UniProt for each protein are shown in rectangles; (A) Dasatinib, (B) Staurosporine. The results are shown for concentration 4 vs.
vehicle treated cells. Bar plot of number of differentially expressed proteins with PTM at four concentration levels of both drugs
(see Supplementary data 1 and 2 for more details); (C) Dasatinib, (D) Staurosporine. The value of absolute numbers of
differentially expressed proteins carrying different PTMs at each concentration level is labeled in the bars of the plot; (E)
Dasatinib, (F) Staurosporine. The percentage of proteins with phosphorylation related PTMs are labeled on the bars. (G)
Integrated normalized enrichment score (NES) plot for both drugs colored by corrected p-value. The data points for dasatinib and
staurosporine are plotted with a filled circle and triangle, respectively. The points are colored with their corrected p-value
presented in log10 scale.
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Number of proteins, peptides, and sequence coverage before/after using PEIMAN2

First, we performed a quality control to ensure that the number of unique peptides,
sequence coverage, and g-values are not significantly changed after including additional
enriched modifications suggested by PEIMANZ on the proteomics search engine software,
i.e., MaxQuant. Note that the re-searching parameters (except the selected modifications)
as well as filtering criteria of selecting the identified proteins remained the same both
before/after including PEIMANZ2 suggestions. Figure 5 shows the box plot of sequence
coverage of proteins for each unique number of peptides colored by their g-value
before/after including additional enriched modifications suggested by PEIMANZ2. The
results of analysis before/after applying PEIMAN?2 for dasatinib and staurosporine are
presented in panels (A-B) and (C-D), respectively. For both drugs, the median of sequence
coverage at each unique number of peptides was similar before and after applying
PEIMANZ suggested modifications.
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Figure 5: PEIMAN?Z analysis-based before/after box plots for dasatinib and staurosporine. In these two pair plots (A:B and
C:D), the effect of including additional enriched modifications suggested by PEIMANZ on the search database by MaxQuant is
depicted based on sequence coverage versus the number of unique peptides for both drugs separately. Figure 5SEFGH:
PEIMANZ analysis-based before-and-after Venn diagrams and PTM frequency bar plots for dasatinib and staurosporine. The
Venn diagrams (A) and (C), respectively, depict the number of proteins identified by MaxQuant for dasatinib and
staurosporine before/after PEIMANZ analysis. Based on PEIMANZ analysis and re-searching the database by MaxQuant, the
frequency plot of identified modifications of proteins is depicted for each drug (B and D).

11


https://doi.org/10.1101/2022.11.09.515610
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.09.515610; this version posted October 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Then, we performed another quality control to check the number of proteins that were
identified before/after using PEIMAN2 and checked whether the newly identified proteins
carry any PTMs. Figure 5 panels (E) and (G) present the Venn diagrams of the number of
newly identified (or lost) proteins by MaxQuant before/after using PEIMAN?Z for dasatinib
and staurosporine drugs, respectively. In Figure 5, panels (F) and (H) depict the frequency
bar plot of identified modifications in newly identified proteins based on re-searching the
database by MaxQuant considering PEIMAN2 suggestions. For dasatinib 126 new proteins
were identified by including the modifications suggested by PEIMANZ. On the other hand,
52 proteins that were previously identified were lost in the refined search, suggesting that
their corresponding peptides did not pass the 1% FDR threshold set in MaxQuant search.
The majority of disappeared proteins were identified with two peptides in the initial
search, with a median score value of 2.861 and small Q values. Note that 86% of proteins
after including the suggested modification in the search had more than two peptides. There
were 6,418 proteins in common before/after using PEIMANZ. For staurosporine, refined
searched yielded 5,903 proteins that were also found in the initial database search.
Furthermore, 123 proteins were identified that were not included in the initial search
results, and 28 proteins were not found in the refined search after including PEIMAN2
suggested modifications. When comparing the results of the experiment before/after
including PEIMAN2 suggestions, this result implies that more than 97 percent of the
proteins that were quantified before/after PEIMANZ implementation in the refined
database search are the same. However, as a result of employing PEIMAN2, we now have
information regarding the PTM status of previously identified proteins in addition to
previously undiscovered proteins. It was interesting to investigate the types and frequency
of modifications in the newly identified proteins after searching MaxQuant by considering
PEIMANZ suggestions. In Figure 5, panels (F) and (H) show the bar plot frequency of PTMs
of newly identified proteins for two drugs dasatinib and staurosporine, respectively.

PTMs on protein targets of drugs

We investigated the differential protein expression analysis before/after considering
PEIMAN2’s suggestions in the database search. Figure 6 presents the fold change of
proteins for each drug compared to control group, before/after considering PEIMAN2’s
suggestions separately. The fold change is calculated as the log2 base of proportion of two
sample means (Conc.4 vs control). The data points are colored depending on the results of
a two-sample t-test (with equal variance assumption) before/after incorporating
PEIMANZ2’s suggestions in the database search. For example, purple color indicates that a
protein was significantly different in Conc.4 group vs control group, both before/after
using modification suggestions. These are drug targets that were found repeatedly by
MaxQuant and whose PTM status was clarified by PEIMANZ2. The panels in Figure 6 shows
the distinct modifications of proteins, if any.
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Figure 6: Differential analysis of proteins in response to the treatments before/after applying PEIMANZ. The
fold changes of proteins with respect to untreated cells for each drug compared is displayed before/after
considering PEIMANZ'’s recommendations for incorporating enriched modifications in the database search. Four
distinct colors were also used to depict the p-values of the t-statistics before/after PEIMANZ analysis. Using
shape icons, differential expressed proteins with distinct modifications are also indicated.

13


https://doi.org/10.1101/2022.11.09.515610
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.09.515610; this version posted October 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[t is interesting to note that proteins that changed significantly before incorporating
PEIMAN2’s suggestions are still statistically significant after considering the suggestions
(purple color dots) with an enriched modification. In addition, the proteins that were not
significantly changed before and became significant after including modification in
MaxQuant search, are modified too. In comparison to other PTMs, the level of
phosphorylated proteins is also more decreased or perturbed, necessitating further
research to determine whether this phenomenon is because of the primary or secondary
effects of inhibitors on protein targets. The above findings are consistent for both drugs.
These results suggest that studies on drug targets and mechanism of action considering
PTMs are helpful for identifying new proteins that are involved in drug mechanism of
action. Basically, by including relevant PTMs in database search, the results of studies on
different perturbations can be brought closer to reality using PEIMANZ2.

Monitoring of PTM changes after PEIMANZ2 implementation

Finally, we investigated the perturbation of the quantified PTMs upon treatment with
dasatinib and staurosporine at the peptide level. First, the intensity of a given peptide was
normalized by total intensity for each TMT channel. Then this normalized intensity was
divided by the sum normalized intensity of the other peptides not carrying any PTMs for
the same protein. The latter normalization would cancel the effect of abundance changes in
the protein level upon treatment with the drug. Finally, we provided the trend of
abundance changes for each modified peptides across different concentrations vs.
respective controls and the results for all the PTM-carrying peptides for both dasatinib and
staurosporine are shown in Supplementary Figure 5. While some modified peptides show a
trend of decreasing or increasing abundance in a concentration-dependent manner, some
other PTM-carrying peptides are unchanged upon different treatments, as expected. For
example, the levels of two phosphopeptides (with three phosphothreonine) belonging to
myristoylated alanine-rich C-kinase substrate (MARCKS) decreased by 1.5-fold upon
treatment with the highest concentration of dasatinib. The PTM-carrying peptides
following a concentration-dependent trend could be involved in drug mechanism of action.

Discussion

In the present work, we introduce an informatic pipeline called PTM-centric proteomics for
prediction of relevant PTMs using PEIMAN2 R package. We illustrate the efficacy of this
tool in predicting pertinent PTMs for highly expressed proteins in response to
perturbations or interventions. Our demonstrations highlight that the inclusion of these
predicted modifications in a refined database search leads to the identification of a greater
number of proteins and the detection of PTMs on the most highly expressed proteins.
When the answer to the research question lies beyond expression proteomics (usually
does), in order to explain a particular phenotype, these findings are highly relevant and
informative.

Any alterations in PTM processing in response to perturbations can potentially impact
various biochemical and biophysical aspects of proteins, subsequently affecting the cellular
and even organismal phenotype. For example, a simple hypusination event on elF5A drives
protein synthesis and cell proliferation?3. Therefore, PTM studies are one of the major
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forefronts or proteomics research and their widespread use is not limited only to mammals
or eukaryota. PTM types and sites in bacteria, archaea, and even viral proteins have been
characterized and reported in an extensive number of studies2426, These PTMs can
modulate protein turnover?’, stability/solubility? 8 28 29, folding and localization of
proteins, the interactions between proteins3?, genome function3?, the trafficking of
molecules??, cell signaling 33 and the activation of receptors34. For instance, in our first case
study, we leveraged recently published data that elucidated the influence of N-
glycosylation on key clinicopathological features and patient survival in the context of oral
cancer!8. In addition, since many proteins include numerous PTMs and one PTM can
change the prevalence or occupancy of others, a phenomenon known as PTM crosstalk, it is
difficult to understand these complex control mechanisms without characterization and
analysis of PTMs35.

There have been many efforts to focus on investigating the identity and effect of a single
PTM or multiple PTMs on protein function3¢-38, Although mass spectrometry-based
proteomics is the golden standard for PTM analyses, the high-throughput experimental
procedures used to identify PTMs are labor intensive and time-consuming3®. Suppose one
has a presumption about the role of protein phosphorylation. In that case, we need to
design a phosphoproteomics study using titanium/zirconium dioxide-based beads to
enrich phosphopeptides with high specificity. Otherwise, the study design is independent
of adding extra experimental steps and routine proteomics database searches are applied.
In spite of these advances, PTM identification is not the focal point of any proteomics
investigation that lacks a prior PTM-specific hypothesis. Therefore, there is an immediate
demand for computational methodologies and effective tools that can predict PTMs that
are most probably found in a given biological sample or are occurring upon a specific
perturbation®.

Savitski et al. provided a computational method called ModifiComb based on the difference
between the molecular masses and the retention time of the modified and unmodified
peptides!’. The authors provided a method that is independent of PTM-related priori
assumptions. Compared to searching all possible modifications, this method succeeded to
reduce search space and, as a result, the propensity of false positive PTM identification. To
improve the understanding of this dark matter of proteomics, Kong et al. also presented a
fragment-ion indexing method and implemented it into MSFragger tool to computationally
speed up searching proteomics database with PTMs#0. 41, However, both methods rely on
the identification of unmodified peptides to compute differences in mass and retention
time. It should also be noted that not all detectable chemical modifications in mass spectra
have a biological significance and cannot be inferred as functional PTMs, whereas PEIMAN2
provides enrichment analysis to avoid the detection of inert stochastically modified
peptides.

We believe that PTM-centric proteomics based on enrichment analysis is a successful
attempt to bring the results of perturbational studies closer to reality. Such predictions
present opportunities for developing myriad PTM-related hypotheses and a particular
follow-up experimental design in biological studies. To carry out PTM-centric proteomics,
it is recommended to incorporate PEIMAN?2 after the initial round of mass spectrometry
database search and analysis in order to carry out a second round of refined mass
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spectrometry database search and downstream analysis with a given set of PTMs.
PEIMAN?2 is not dependent on data from any MS instrument and can be easily integrated
into the majority of existing data analysis pipelines. Accordingly, PEIMANZ has the
potential to become a valuable option for routine analysis of the most probable PTMs in
shotgun proteomics data. Furthermore, the application of this software package is expected
to enhance the exploration of PTM crosstalk in the contexts of both homeostasis and
disease.

Methods

Cell culture

Human lung carcinoma A549 were grown in McCoy’s 5A medium, supplemented with 10%
FBS superior (Biochrom, Berlin, Germany), 2 mM L-glutamine (Lonza, Wakersville, MD,
USA) and 100 units/mL penicillin/streptomycin (Gibco, Invitrogen) and incubated at 37 °C
in 5% COZ2. Cells were routinely checked for mycoplasma contamination by PCR and low
passage number cells from ATCC were used in the experiments.

Cell viability assay

Cell viability upon compound treatment was measured using CellTiter-Blue assay
(Promega) according to manufacturer protocol and the LC50s were determined as the
concentration of compound causing 50% cytotoxicity.

Multikinase inhibitor treatment

After seeding 250,000 A549 cells in triplicates in 6 well plates, cells were allowed to grow
for 24 h, after which they were treated with the compounds for 24 h in triplicates.
Dasatinib was profiled at 100 nM, 1 uM, 5 uM and 25 uM. Staurosporine was profiled at 8
nM, 40 nM, 200 nM and 1 uM. Cells treated with DMSO were used as controls.

Table 1: TMT labeling scheme for the experiments

Compounds Dasatinib Staurosporine

TMT126 Control replicate 1 Control replicate 1
TMT127N Control replicate 2 Control replicate 2
TMT127C Control replicate 3 Control replicate 3
TMT128N 100 nMreplicate 1 8 nM replicate 1
TMT128C 100 nMreplicate 2 8 nM replicate 2
TMT129N 100 nM replicate 3 8 nM replicate 3
TMT129C 1 uMreplicate 1 40 nM replicate 1
TMT130N 1 uM replicate 2 40 nM replicate 2
TMT130C 1 uM replicate 3 40 nM replicate 3
TMT131N 5 uMreplicate 1 200 nM replicate 1
TMT131C 5 uM replicate 2 200 nM replicate 2
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Compounds Dasatinib Staurosporine
TMT132N 5 uM replicate 3 200 nM replicate 3
TMT132C 25 uMreplicate1 1 uM replicate 1
TMT133N 25 uMreplicate2 1 uM replicate 2
TMT133C 25 uMreplicate 3 1 uM replicate 3

LC-MS/MS sample preparation

Sample preparation was done according to our previous protocol2, After treatment, cells
were trypsinized, washed with PBS and lysed with the lysis buffer (8 M urea, 1% SDS, 50
mM Tris pH 8.5). Protein concentration was measured using Pierce BCA Protein Assay Kit
(Thermo), and the volumes corresponding to 25 pg of protein was transferred from each
sample to new low-bind Eppendorf tubes. DTT was added to a final concentration of 10 mM
and samples were incubated for 1 h at room temperature. Subsequently, iodoacetamide
(IAA) was added to a final concentration of 50 mM and samples were incubated at room
temperature for 1 h in the dark. The reaction was quenched by adding an additional 10 mM
of DTT. After precipitation of proteins using methanol/chloroform, the semi-dry protein
pellets were dissolved in 25 pL of 8 M urea in 20 mM EPPS (pH 8.5) and were then diluted
with EPPS buffer to reduce urea concentration to 4 M. Lysyl Endopeptidase (Wako) was
added ata 1:75 w/w ratio to protein and incubated at room temperature overnight. After
diluting urea to 1 M, trypsin (Promega) was added at the ratio of 1:75 w/w and the samples
were incubated for 6 h at room temperature. TMT reagents were added 4x by weight to
each sample, followed by incubation for 2 h at room temperature. The reaction was
quenched by addition of 0.5% hydroxylamine. Samples were combined, acidified by TFA,
cleaned using Sep-Pak (Waters) and dried using a DNA 120 SpeedVac concentrator
(Thermo). Samples were resuspended in 20 mM ammonium hydroxide and separated into
96 fractions on an XBrigde BEH C18 2.1x150 mm column (Waters; Cat#186003023), using
a Dionex Ultimate 3000 2DLC system (Thermo Scientific) over a 48 min gradient of 1-63%
B (B=20 mM ammonium hydroxide in acetonitrile) in three steps (1-23.5% B in 42 min,
23.5-54% B in 4 min and then 54-63%B in 2 min) at 200 uL/min flow. Fractions were then
concatenated into 24 samples in sequential order (e.g. A1, C1, E1 and G1).

Proteomics

After resuspension in 0.1% FA (Fluka), fractions (1 ug) were analyzed by LC-MS/MS.
Samples were loaded onto a 50 cm column (EASY-Spray, 75 um internal diameter (ID),
PepMap C18, 2 um beads, 100 A pore size) connected to a nanoflow Dionex UltiMate 3000
UHPLC system (Thermo) and eluted in an organic solvent gradient increasing from 4% to
26% (B: 98% ACN, 0.1% FA, 2% H20) at a flow rate of 300 nL/min over a total 110 min
method time. The eluent was ionized by electrospray and mass spectra of the molecular
ions were acquired with an Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific)
in data-dependent mode at MS1 resolution of 120,000 and MS2 resolution of 60,000, in the
m/z range from 400 to 1600. Peptide fragmentation was performed via higher-energy
collision dissociation (HCD) with energy set at 35 NCE and MS2 isolation width at 1.6 Th.
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Proteomic Data, Bioinformatic and statistical Analysis

The raw LC-MS data were analyzed MaxQuant version 1.6.2.3 43, The Andromeda search
engine #* was run against the International Protein Index (human version
UP000005640_9606, 92957 entries). Methionine oxidation was selected as variable
modifications, while cysteine carbamidomethylation was set as a fixed modification. No
more than two missed cleavages were allowed, and a 1% FDR was used as a filter at both
protein and peptide levels. All the contaminants were removed in the first step and only
proteins with at least two peptides and a Qvalue less than of 5% were considered in all
cases. After PEIMANZ analysis, the mentioned modifications were added to the raw LC-MS
search. All the experiments were performed in triplicates. Two-tailed Student t-test was
applied to calculate p-value. The data were normalized by the total intensity of each TMT
channel and subsequently, the expression ratio for each protein was calculated relative to
the DMSO-treated controls.

PEIMAN2 R package

At the first step, we downloaded 569,794 “Reviewed (UniProt), Manually annotated”
proteins (as of September 2023 from UniProt online repository, available at
https://www.uniprot.org). The database records various useful functional information
about proteins. We reduced the size of file by narrowing each protein record to include
unique UniProt accession code (AC), organism taxonomy name (0S), keywords (KW) and
features (FT). We were particularly interested in KW and FT as any manually curated
information regarding PTM are available in these fields. At the next step, we used R
software to build a database to obtain PTM profile of proteins for all species. In our search
for PTMs in proteins, we used a list of controlled PTM vocabulary provided by UniProt
(available at
https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complet
e/docs/ptmlist.txt). To find proteins with any PTM modification, we searched the
downloaded file against controlled PTM vocabulary by looking into KW and FT entry of
each protein. The presence of any PTM in CROSSLNK, LIPID, or MOD_RES feature of any
protein was of interest. At the time of preparing this manuscript, we obtained the PTM
profile of 134,783 proteins. To keep up with monthly changes in UniProt, we automated the
preparation process and will update the database each month accordingly. The latest
PEIMAN2 scripts and PEIMANZ2 database are available at JafariLab GitHub repository
(https://github.com/jafarilab/PEIMANZ).

Enrichment Analysis
Single Enrichment Analysis (SEA)

The enrichment analysis is a powerful strategy which facilitates the identification of
biological processes for a list of genes or proteins. The SEA is known as one of the
traditional methods to infer the biological functions in a given list of genes. The analysis in
SEA starts with a list of differentially expressed genes provided by researcher (selected
with some criteria: p-value or fold-change). The idea behind SEA is to test if the number of
genes in the list with a certain biological function (for example PTM) is significantly

18


https://doi.org/10.1101/2022.11.09.515610
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.09.515610; this version posted October 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

different from occurrence through random chance. In a general sense, enrichment analysis
investigates whether a group of genes or proteins are over/under-presented for a specific
biological pathway in a large set of genes/proteins. Different statistical methods are
introduced to measure this discrepancy such as Chi-Square, Fisher’s exact test, and
hypergeometric test. We previously implemented a standalone software to run SEA in a list
of proteins and infer any enriched modification by applying a hypergeometric test8. The
idea in PEIMAN standalone software and PEIMAN?2 is to investigate if a subset of proteins is
over/under presented for any particular PTM, in a large set of proteins. We here briefly
describe the idea of hypergeometric test in this context. Assume there are N proteins in the
database and K(< N) of these proteins have one of the known modifications, for example
“Acetylation”. We pass a list of n proteins. We can apply hypergeometric test to check if
“Acetylation” is over-under/represented in the sample list of n proteins using a
hypergeometric test. The p-value of such a test is calculated as:

P —value = Z %

X=m

min (K,n)

This simple idea is very helpful in inferring biological meaning from a large list of genes. In
the next section, we discuss some of the weaknesses associated with SEA and review an
alternative powerful approach to SEA.

Protein Set Enrichment Analysis (PSEA)

SEA takes a list of differentially expressed genes/proteins and identifies if there is a
significant overrepresentation of genes or proteins associated with a specific biological
feature. However, SEA has known limitations that warrant consideration*. Firstly, when
correcting for multiple testing, the resulting p-values may render no genes or proteins
differentially significant, particularly when real differences are subtle compared to
inherent noise. Secondly, the final list generated by SEA may contain a multitude of
declared significant genes or proteins, which can pose challenges in interpretation and may
lead to subjective interpretations among biologists with varying expertise. Thirdly, single
gene or protein enrichment analysis has the potential to overlook important effects on
pathways. Lastly, it is not uncommon for different research laboratory groups to report
multiple lists of significant genes or proteins for the same perturbation or biological
process.

Gene set enrichment analysis or GSEA has been introduced by Subramanian et al. > to
overcome these drawbacks. We briefly highlight the key points of GSEA method here. GSEA
is applied on profiles of genome-wide expression data that belongs to two experimental
groups (control vs treatment). Genes are then sorted based on a given score, for example
correlation between their expression profile or the class they belong to. A set of genes, S, is
defined as genes that belong to a certain set with a distinct biological annotation (e.g.,
metabolic pathway, GO category, PTM). The idea behind GSEA is to identify if the members
of set S tend to show more often toward the top (or bottom) of the gene list or are
randomly distributed throughout the list.
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The GSEA method can be summarized in three steps as follows. First, an enrichment score
(ES) is calculated to measure if the gene set S is over-presented at the top or bottom of the
ranked gene list. This is achieved by calculating a signed version of the Kolmogorov-
Smirnov statistic while running from the top to the bottom of the ranked list. Whenever we
encounter a gene in the S set, the value of the statistic is increased proportional to an
exponent power of the gene’s score. Likewise, when the gene is not in the S set, the value of
statistic is decreased. The enrichment score for gene set S is defined as the maximum
observed deviation from zero in the running score profile. In the second step, the
significance of calculated ES score for a given list of genes is evaluated by randomly
permuting the score of each gene for certain number of times (usually 1000 times) and
calculating ES for each random profile to generate a null distribution for the ES. A p-value
based on the permutations is calculated according to the null distribution. Finally, GSEA
accounts for the effect of multiple testing by calculating FDR. This is achieved by
normalizing ES score of each gene set relative to gene set size. For more details refer to
supplementary material of 31,

Inspired by the idea and usefulness of GSEA in elucidating biological inferences in a given
list of genes, we implement protein set enrichment analysis or PSEA in PEIMANZ2 package
to infer biological meaning from a list of proteins. In our work, the gene sets are replaced
by a set of proteins that belong to a certain modification group, for example “Acetylation”.
For any list of protein given by researcher, the set of proteins with a certain modification
are identified. For each set of proteins, we calculate enrichment score and assess the
significance of ES by the methods described in 43. Finally, we provide a list of modification
that are most probably enriched in a given list. All these functionalities are implemented in
an R package to serve a broader community of researchers. For more details on
functionality of package, please read the Vignette and Readme page at PEIMAN2 GitHub

page.
Data availability

The LC-MS/MS raw data files and extracted peptides and protein abundances are deposited
in the jPOST repository of the ProteomeXchange Consortium #¢ under the dataset
identifiers PXD037679 and PXD037681

Code availability

All analyses reported in this study used the statistical software R (v.4.0.0). The R package
can be found on GitHub (https://github.com/jafarilab/PEIMANZ2).
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Supplementary Figures
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Supplementary Figure 1: PTM frequency treemaps for eight popular organisms from diverse taxonomic branches of life.
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Supplementary Figure 2: The t-SNE plots based on PTM profiles in four super kingdoms of life, i.e., Archaea,
Bacteria, Eukaryota and Viruses (panels A-D). Each dot in the plots presents one organism. The red and grey colors
indicates if the point (organism) belongs to corresponding super kingdom of life or not. Note that we anticipate a
more uniform distribution of viruses across all three of the other phyla of life (Panel D).
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Supplementary Figure 3: The running score plot of the first top five PTMs identified on differentially expressed proteins
upon dasatinib treatment. The x-axis is the ranked protein based on their score and the y-axis is their enrichment score. The
rug in the x-axis indicates the proteins with the corresponding PTM. The position of maximum running enrichment score is
denoted by a red dashed line.
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Supplementary Figure 4: The running score plot of the first top five PTMS identified on differentially expressed proteins
upon staurosporine treatment. The x-axis is the ranked protein based on their score and the y-axis is their enrichment score.
The rug in the x-axis indicates the proteins with the corresponding PTM. The position of maximum running enrichment score
is denoted by a red dashed line.

*ATTACHED PDF FILE*

Supplementary Figure 5: The modified peptides with probabilities. The modified peptides with all above-mentioned PTMs
are listed separately upon dasatinib and staurosporine treatment. The x-axis is the four drug concentrations and the control,
and the y-axis is the proportional abundance of the corresponding peptide compared to unmodified peptide (see
Supplementary data 3 and 4 for more details).

Supplementary data
Supplementary data 1. A table of all identified proteins for dasatinib following PTM-centric proteome informatic pipeline.

Supplementary data 2. A table of all identified proteins for staurosporine following PTM-centric proteome informatic
pipeline.

Supplementary data 3. A compiled table of all PTM-carrying peptides for dasatinib and calculated final fold changes that
are plotted in Supp figure 5.

Supplementary data 4. A compiled table of all PTM-carrying peptides for staurosporine and calculated final fold changes
that are plotted in Supp figure 5.
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