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Abstract

Sensory neurons reconstruct the world from action potentials (spikes) impinging on
them. To effectively transfer information about the stimulus to the next processing
level, a neuron needs to be able to adapt its working range to the properties of the
stimulus. Here, we focus on the intrinsic neural properties that influence information
transfer in cortical neurons and how tightly their properties need to be tuned to the
stimulus statistics for them to be effective. We start by measuring the intrinsic
information encoding properties of putative excitatory and inhibitory neurons in L2/3
of the mouse barrel cortex. Excitatory neurons show high thresholds and strong
adaptation, making them fire sparsely and resulting in a strong compression of
information, whereas inhibitory neurons that favour fast spiking transfer more
information. Next, we turn to computational modelling and ask how two properties
influence information transfer: 1) spike-frequency adaptation and 2) the shape of the
IV-curve. We find that a subthreshold (but not threshold) adaptation, the ‘h-current’,
and a properly tuned leak conductance can increase the information transfer of a
neuron, whereas threshold adaptation can increase its working range. Finally, we verify
the effect of the IV-curve slope in our experimental recordings and show that excitatory
neurons form a more heterogeneous population than inhibitory neurons. These
relationships between intrinsic neural features and neural coding that had not been
quantified before will aid computational, theoretical and systems neuroscientists in
understanding how neuronal populations can alter their coding properties, such as
through the impact of neuromodulators. Why the variability of intrinsic properties of
excitatory neurons is larger than that of inhibitory ones is an exciting question, for
which future research is needed.

Author summary

Intracellular information transfer from synaptic input to output spike train is
necessarily lossy. Here, we explicitly measure the mutual information between a
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neuron’s input and spike output and show that information transfer is more lossy and
heterogeneous for excitatory than for inhibitory neurons. By using computational
modelling we show that the shape of the input-output curve as well as how fast a
neuron adapts to its input collectively determine the rate of information loss. These
insights will help both experimentalists and modellers in designing and simulating
experiments that investigate how network coding properties can adapt to the
environment, for instance through the effects of neuromodulators.

Introduction

Perception and other brain functions require information transmission and signal
transformation at each processing step. Specifically, for perception, stimuli that impinge
on sensory receptors are transferred via the brain stem and thalamus to cortical
networks: each of these processing steps results in information transfer and compression,
due to intracellular information transfer from synaptic input current to spike train. The
spike train of a single neuron though, can contain only a limited amount of information
about an incoming stimulus |1]. However, the working range of a neuron is typically
limited, more limited than the range of inputs a neuron might receive. A neuron’s
ability to adapt its working range to the properties of the stimulus is crucial for its
ability to transfer information about the stimulus to the next processing level |2-5]. For
example, if the input amplitude is too low, a neuron that cannot adapt will not respond,
whereas when the input amplitude is too large, a neuron that cannot adapt will enter
depolarization block or its output firing rate will be saturated, both resulting in a
neuron that does not respond adequately to changes in input and hence in a neuron
that does not transfer information. Therefore, neurons need to continually adapt their
working range (i.e. their excitability) in order to fit the dynamic range of the input.
They can do this by reducing synaptic strength [6[7] or by shifting (gain shift) or
widening (gain modulation) their intrinsic excitability [8H10|, This changing of the
intrinsic input-output curves happens on different timescales: from fast (spike frequency
adaptation [11]) to slow (homeostatic scaling, for reviews see [7,/12]). The dynamics of
such adaptation mechanisms impact the effectiveness of the adaptation in relation to
the stimulus dynamics: if the adaptation is too fast (relative to the input statistics), it
has no practical effect, but if it is too slow, it is constantly saturated and has no
dynamic effects. Here, we focus on the relatively fast adaptive changes in intrinsic
excitability and ask how such mechanisms influence information transfer in cortical
neurons and how tight their properties need to be tuned to the stimulus statistics for
them to have an effect.

We start by measuring the intrinsic information encoding properties of putative
excitatory (regular-spiking) and inhibitory (fast-spiking) neurons in L2/3 of the mouse
barrel cortex. We measure the effects of several intrinsic neural characteristics on the
information transfer from input current to output spike train, using a combination of
ex-vivo experiments [13}/14] and computational modelling. We aim to unravel how both
the threshold behaviour and the I-V curve shape of excitatory and inhibitory neurons
affect information transfer, using a recently developed method to estimate the mutual
information between input and output in an ex-vivo setup [15]. This method has several
advantages: instead of the traditionally long (~ 1 hour) experiments that are needed to
obtain a single mutual information estimate [16-20], this method needs only about 5
minutes of recording to obtain an information transfer estimate. Moreover, the
properties of the input current can be adapted to fit different cell type properties, and it
has an optimal observer model so that the measured information transfer can be
compared with the ‘optimal’ Bayesian Neuron information transfer [21]. Using this
method, we can simultaneously measure the information transfer from input current to
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output spike train and assess intrinsic cell properties, thereby showing how intrinsic cell
properties correlate with information transfer. In particular, putative excitatory
neurons show high thresholds and strong adaptation, making them fire sparsely and
resulting in a strong compression of information between input and output. Their
intrinsic properties are quite heterogeneous, showing a large variability. Putative
inhibitory neurons on the other hand have intrinsic properties that favour higher firing
rates, corresponding to a higher information processing rate. Their response properties
are more stereotypical than those of excitatory neurons.

The Bayesian neuron that is optimal for this task has two properties that distinguish
it from a standard leaky integrate-and-fire model: 1) spike-frequency adaptation and 2)
a non-linear I-V curve that results amongst others in the suppression of
hyperpolarization. To untangle how these mechanisms influence information transfer,
we turn to computational modelling. Firstly, we use an exponential integrate-and-fire
(expIF) model with two types of adaptation: subthreshold adaptation [22}/23] and
threshold adaptation [24] and research the effects of these two types of adaptation on
the information transfer in the aforementioned mutual information protocol. We find
that subthreshold adaptation increases the information transfer if tuned well, whereas
threshold adaptation increases the working range of the neuron over a broad range of
parameters. So despite the fact that at first glance these to forms of adaptation appear
to serve a similar purpose (i.e. reducing the firing rate of a neuron for strong stimuli), it
turns out that their effects are quite different. Secondly, we assess the effects of
changing the shape of the I-V curve (the right-hand-side of the membrane voltage
equation). We model the effects of suppression of hyperpolarization by adding an
instantaneous ‘h-current’ to the explF neuron, the effects of an instantaneous
subthreshold potassium current, and the effects of changing the leak conductance of the
neuron. We find that a well-tuned subthreshold (but not threshold) adaptation, the
‘h-current’, and a properly tuned leak conductance can increase the information transfer
of a neuron, whereas threshold adaptation can increase its working range.

Materials and methods

Experiments

All analyzed current clamp and simulation data and the code to analyze and simulate
them can be found in this repository: |https://doi.org/10.34973/4{3k-1s63. The voltage
clamp data are part of the dataset of da Silva Lantyer et al. (2018) [13].

Ethics statement

Animals used were Pval-cre and SSt-cre mice from 9 to 45 weeks kept with unlimited
access to water and food, housed in a 12-hour light/dark cycle. All experimental
procedures were performed according to Dutch law and approved by the Ethical
Committee for Animal Experimentation of Radboud University (RU DEC) as described
before (for further details, see [25,26]). Each mouse was perfused with iced and
oxygenated (95%05/5%C05) Slicing Medium (composition in mM: 108ChCI, 3K Cl,
26NaHCO3, 1.25NaH;PO4H50, 25 Glucose. H,O, 1CaCls.2H50, 6M gS0O4.TH50, 3
Na-Pyruvaat) under anaesthesia with 1,5ml Isoflurane.

Slice electrophysiology

The brain was covered in 2% agarose and submerged in a Slicing Medium after which it
was sliced in 300 pM thickness using a VF-300 compresstome (Precisionary Instruments
LLC) and then incubated for 30 min in 37°C artificial cerebrospinal fluid (ACSF,
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composition in mM: 1200NaCL, 35 KCL, 13M gS04.7TH>0, 25CaCly.2H50, 100 %
Glucose.H20, 12.5NaH>PO4.H20, 250NaHCO3), oxygenated (95%02/5%CO53). The o
bath was then transferred to room temperature. Slices were allowed to accomodate to o

room temperature for 30 min and were kept in this bath until use. Slices were placed %
into the recording chamber under the microscope (Eclipse FN1, Nikon) and perfused o4
continuously at a rate of 1 ml/min with the oxygenated ACSF at room temperature. %
Patch pipettes for whole-cell recordings were pulled from borosilicate glass capillaries, %

1.0 mm outer diameter, 0.5mm inner diameter, on a pipette-puller (Sutter Instrument o7
Co. Model P-2000), until an impedance of 8+2 M2 for the tip was obtained. Pipettes o

were filled with a solution containing (in mM) 115C'sMeSOs3, 20CsCl, 10HEPES, %
2.5MgCly, ANas AT P, 0.4NaGT P, 10N a—phosphocreatine, 0.6 EGT A, 5Q X — 314 100
(Sigma). The whole cell access was obtained after reaching the gigaohm seal and 101
breaking the membrane. Upon entering the cell and the whole-cell mode, the membrane 102
potential was kept fixed at -70mV, outside stimulation. 103
Input current generation 104

Data acquisition was performed with HEKA EPC9 amplifier controlled via HEKA’s 105

PatchMaster software (version 2.90x.2), and subsequent analysis with MatLab 106
(Mathworks, v.2016b). Three types of experiments were performed: current clamp (CC) 107
step-and-hold, current clamp (CC) frozen noise, and voltage clamp (VC). 108

The current clamp (CC) step-and-hold protocol was performed in every cell and 109
used to distinguish between cell types, according to the firing rate and spike shape 110
(Fig . The protocol consisted of clamping the neuron at a baseline current Ipaseline, 111
corresponding to the one required to keep its membrane at -70mV, and providing a 112
500ms long stimulus of fixed current value I = Ihaseline + (40pA * step number), for a 113
total of 10 steps, reaching a maximum current injected of Iyaseline + 400pA. Between 114
each current injection step, a 5.5s recovery window was allowed. 115

Information transfer was measured using the ‘frozen noise’ method introduced by 116

Zeldenrust et al. [15]. To measure information transfer from input to spike train in short 17
periods of time, instead of the long measurements needed for the traditional methods 118
(see Introduction), the noisy input current injected into a neuron in the current clamp 19

setting was generated as the output of an artificial neural network (ANN) that 120
responded to a randomly appearing and disappearing preferred stimulus or ’hidden 121
state’ (Markov process) x: a binary variable that can take the values of 1 (preferred 122

stimulus present, ‘on-state’) and 0 (preferred stimulus absent, ‘off-state’, see Fig ) 123
This hidden state is switched on and off according to a Markov process with rates ro, 12
and rop. The advantage of using such a binary hidden state stimulus is that there is no 1

need to reconstruct the full input current (which is high-dimensional and therefore 126
requires long recordings), but it is sufficient to reconstruct the binary stimulus, for 127
which less data is needed. The N = 1000 neurons of the ANN fired Poisson spike trains, 1
whose firing rates were modulated by the hidden state stimulus, so that each neuron 120
fired with rate ¢°, when = 1, and ¢’ when z = 0. These rates were drawn from a 130

Gaussian distribution with mean i, (see Table and standard deviation o = \/§4q. =
Each spike was convolved with an exponential kernel with a unitary surface and a decay 1

time of 5ms. The spike trains from different presynaptic neurons contribute to the 133

output with weight w; = 10g(3$“ ). In order to choose the parameters of this input 134
off

current two considerations needed to be made: 135

1. The Markov process had rates ro, and 7, which correspond to a switching time 13
constant Tinput = 57— — since excitatory neurons do not fire at rates higher 137
than a few Hz, but the inhibitory neurons show a much broader working range, up 13
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Fig 1. Cell Classification with the CC step-and-hold protocol. A, B: We
selected neurons to record from the mouse somatosensory cortex (barrel cortex), in L2/3.
Visually, the shape and size of soma were a good indicator of the cell type: smaller and
roundish shapes would point towards fast-spiking neurons, while slightly larger and
triangular shapes would point to regular spiking (putative excitatory) neurons. C:
Example responses of an excitatory cell to a constant injected current. D: Example
responses of an inhibitory cell to a constant injected current. E: Cell classification using
agglomerative clustering based on the maximum firing frequency and spike width. Cells
were classified as inhibitory (blue) when they had a small spike half-width combined
with a high maximum firing rate and as excitatory (red) with a large spike half-width
and low maximum firing rate. In pink the cell(s) where the agglomerative clustering and
the initial classification disagreed (see Materials & Methods). F: Maximum firing
frequency distribution for incremental current injection amplitudes for inhibitory (blue)
and excitatory (red) neurons. G: Same as F, but for the latency of the first spike. H:
After-hyperpolarization distribution. I: Spike half-width distribution. For threshold
behaviour in the current-clamp step-and-hold protocol, see Supplementary Fig. S1.
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to 100 Hz (Fig[L), the information transfer could not be measured in the two
types of neurons with the same switching speed of the hidden state Tinpus, but the
switching speed of the hidden state needed to be adapted to the working range of
the neuron type. Fortunately, the method allows for keeping the information
about the hidden state in the input constant while changing Tisput, by adjusting
the mean firing rate of the ANN 1 (see Fig[2B). So the information transfer in
the two neuron types could still be compared by choosing a time constant Tinpus of
50 or 250 ms for inhibitory/fast spiking or excitatory/regular spiking neurons
respectively, with matching values of p, of 0.5 Hz or 0.1 Hz respectively (see Table
so that the mutual information between the input current and the hidden state
(MI;) was about 0.3 bit (Fig[2E). This target mutual information between the
input current and the hidden state was chosen so that the input current was
informative about the hidden state, but not too informative.

. The input generated by the ANN responding to the Markov Process (Inarkov(t))

is dimensionless. Therefore, this dimensionless theoretical “input current” needed
to be scaled to Ampere so that it could be injected into the neuron in a current
clamp setup. Therefore, the injected current was defined as

Iinjected = Thold + IscaleIMarkov(t). Here, the neuron was clamped a baseline
current Ipaseline, corresponding to the current required to keep its membrane at
-70mV, and Ig.ae was set at 2100 pA for excitatory and 700 pA for inhibitory cells
(see Table[L).

The scripts for generating this current can be found in this GitHub repository:
https://github.com/DepartmentofNeurophysiology / Analysis-tools-for-
electrophysiological-somatosensory-cortex-databank.

Table 1. Input parameters for the ex-vivo experiments.
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Parameter Excitatory cells Inhibitory cells
Number of artificial neurons NV 1000 1000
Hidden state time constant Tinput 250 ms (ron = 1.3 Hz, roy = 2.7 Hz) 50 ms (ron = 6.7 Hz, rop = 13.3 Hz)
Average firing rate artificial neurons p, | 0.1 Hz 0.5 Hz
Baseline input current It aseline (set so the cell was at -70 mV, see Fig (set so the cell was at -70 mV, see Fig
Amplitude input current Iscale 2100 pA 700 pA
Analysis window size 100 s 20 s
Number of measured cells 144 72 (+ 9 control)
Number of trials 220 78 (+11 control)
Analysis 163

Cell classification

Cells were classified using the following procedure: before the frozen noise injection, for
each cell, the response to a current-clamp step (CC-step) protocol was recorded. From
these recordings, the maximum firing rate, the average spike-halfwidth, and the average
after hyperpolarization (AHP) amplitude were extracted (Fig[I)). On-site, the cells were
classified by the experimenter based on the firing rate and the spike width. Based on
this initial classification the cell received the frozen noise input current with either
Tinput = 250 ms (excitatory neurons) or Tinpyt = 50 ms (inhibitory neurons). Offline,
the initial classification was verified using an agglomerative clustering protocol
(MATLAB ‘clusterdata’) to cluster the data into 2 groups (separated following Ward’s
method(Ward, 1963)), according to the maximum firing rate and the average spike-half
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Fig 2. Input for the CC frozen noise protocol. A: Overview of the frozen noise
method for input generation and measurement of mutual information (copied with
permission from ) B: Mutual information between the input current and the hidden
state, for different values of the switching speed of the hidden state (Tinput) and the
average firing rate of neurons in the ANN (average over 10 trials). The white squares
denote the used values for the input for the inhibitory (top left) and excitatory (bottom
right) neurons. C: Average (over the trial) input current and D: membrane potential for
all trials. Green data points/lines denote the control experiments where the inhibitory
neurons received the input current that was otherwise given to the excitatory neurons.
E: Mutual information between the hidden state and the input current, for all trials.
Note that because frozen noise was used, every frozen noise trial was actually the same.
Therefore, there are not many different realizations and hence not many different MI
values. F: Example injected frozen noise current for an excitatory neuron. The grey
shaded area corresponds to times when the hidden state was 1. G: Example injected
frozen noise current for an inhibitory neuron. H: Example resulting membrane potential
of an excitatory neuron. I: Example resulting membrane potential of an inhibitory
neuron,
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width (normalized to zero mean and unit standard deviation) reached during the
CC-Step protocol (Fig[IE). There was a single cell where the initial classification and
the post-hoc classification were in disagreement (Fig , pink star). We decided to keep
this cell in the original (inhibitory) group due to its position between the two clusters.

Calculation of mutual information

The mutual information between the hidden state and the input (M) or a spike train
(M Ispike train) Was estimated with the help of the hidden state  (see Input current
generation and Fig ) The method was explained in detail in Zeldenrust et al.
(2017) |15] and followed derivations from Deneve (2008) [21] and Lochmann and Denéve
(2011) [27]). Code for how to calculate the mutual information can be found in the
following repository: |https://github.com/DepartmentofNeurophysiology / Analysis-tools-
for-electrophysiological-somatosensory-cortex-databank as well as with the data.

In short, the mutual information was calculated using the following steps. The
estimated log-odds ratio L that the hidden state is 1, given the history of the input
until now I(t) can be estimated by integrating the following differential equation
(see [1521] for the derivation):

dL ; i
on =7on(1+ e ) —rog(1 + ") + I(t) — 0, (1)

where 0 = Zfil qt, — ¢’ is the constant offset of the input, which is chosen to equal to
0 by generating the input as explained before (drawing ¢’, and ¢’ from a Gaussian
distribution). Using the estimate of the log-odds ratio from equation over time, we
can now estimate the conditional entropy by averaging over time:

. 1 1
H,, = {(zlo —— ]+ (1—-2)lo 1— ——— Ditime- 2
o= (wlogs () + (1= o, (1= ) @)

Because the hidden state follows a memory-less Markov process, its entropy at every
moment in time equals

Ha;a;:Pl logQ(Pl)—(1—P1)10g2(1—P1). (3)
Here, P = Tjr‘; — s the prior probability that the hidden state equals 1. With the
canonical M1 = H,, — H,, , the mutual information between the input and the hidden

state can now be estimated. Similarly, the mutual information between a spike train
and the hidden state can be estimated by integrating equation [1| where the input I(¢) is
now replaced by the spike train input given by

Ispike train (t) =w- p(t)v (4)

where p(t) is the spike train of the neuron and, and its weight w is given by

w = logy (5)

Gon | (# spikes while x =1  total duration z = 0)
= 10 2 .
qoff

# spikes while x =0 " total duration z = 1

Parameter 0 = Zf\; Gon — Gott 18 calculated similarly based on the observed qo, and gt
in the spike train.

Note that even though theoretically M1 < 0, due to our approximation it can
happen that our estimate of Hy, > H,;, due to the integration method, and hence that
we find a small negative value of the MI between a spike train and the hidden state.
These are often cells that fire either at very low rates or have firing patterns that for
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other reasons deviate from a Poisson-like response (i.e. cells that stop firing during the
experiment). However, to maintain a complete overview of the data, we decided not to
discard those that have a low firing rate. However, we did exclude files with negative
values in the input current (where the wrong input current was saved) and files with a
vanishing firing rate.

In this manuscript, we mostly report on the unitless ‘Fraction of Information’ (FI)
in the output spike train:

MIS ike train
FI = —spike brain
MIinput (6)

The FI quantifies how much information about the hidden state is transferred from the
input current to the spike train, and thus quantifies which fraction of the information is
kept during the spike-generating process.

Threshold detection

The membrane potential threshold of each recorded spike in the Current Clamp (CC)
experiments was determined from the experimentally recorded membrane potential
using the method explained in [24]: in a window from 1 to 0.25 ms before each spike
maximum, the earliest time in the window at which either the first derivative exceeded
18 mV/ms or the second derivative exceeded 140 mV/ms2 was designated as the
threshold-time, and the threshold value was determined as the corresponding membrane
potential of that time point.

ROC curves

A Receiver Operator Characteristic (ROC) curve shows how well a system can be
classified into two binary classes by comparing the number of correctly detected
positives or ‘hits’ to the number of false positives or ‘false alarms’ depending on a
threshold parameter. Here, we assumed every trial had its own threshold, and we
defined a ‘hit’ as a period during which the hidden state was 1, in which at least 1
action potential was fired, and a ‘miss’ as a period during which the hidden state was 1,
in which no action potentials were fired. Similarly, we defined a ‘false alarm’ as a period
during which the hidden state was 0, in which at least 1 action potential was fired, and
a ‘correct reject’ as a period during which the hidden state was 0, in which no action
potentials were fired. So each period in which the hidden state was 1, was either defined
as a ‘hit’ or a ‘miss’, and each period in which the hidden state was 0, was either
defined as a ‘false alarm’ or a ‘correct reject’. The total number of hits was divided by
the total number of periods during which the hidden state was 1, which resulted in the
fraction of hits 0 < f < 1. Similarly, the fraction of ‘misses’, ‘false alarms’, and ‘correct
rejects’ were defined as the fraction of periods during which the hidden state was 1 but
no spike was fired, the fraction of periods during which the hidden state was 0, but a
spike was fired and the fraction of periods during which the hidden state was 0, and no
spike was fired, respectively. We calculated the fractions of hits, misses, false alarms,
and correct rejects for each spike train, as well as for a corresponding Poisson spike
train of the same length and with the same number of spikes. Note that for these
Poisson spike trains, the hit fraction is actually below the hit fraction = false alarm
fraction line, due to the nature of the hidden state: because the hidden state is more
often 0 than 1 (P; < 0.5), a random spike will have a higher chance of occurring during
a period where the hidden state equals 0. Therefore, the false alarm fraction will be
higher than the hit fraction for Poisson spike trains.
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Fitting of exponential functions

In the results, we fit saturating functions to how FI (eq @) depends on different input
variables © € {Iscale, 7 Tn }:

FI(x) = Flyax ( 2 1) , (7)

1 + e_)\z(l_woffset) -

where 7 is the firing rate of an output spike train, and r, = r - Tigpys is the unitless
firing rate normalized by the switching speed of the hidden state Tinput. We fit
parameters Fly,, and A, and in the case of = Iscale als0 Iscale, offset (I the case of
x € {r,r,} the offset value is set equal to 0). To fit these curves, we use Matlab’s ‘fit’
function, which automatically calculates 95 % confidence intervals. When the data does
not only saturate, but decreases again after the maximum, we include only data up to
the maximum.

Calculation of membrane capacitance and conductance using dynamic IV
curves

We used the derivation of Badel et al. (2008) [28] to calculate the membrane capacitance

(Cy) and conductance (g,,) for each analysis window. In short, we calculated d;/g“ from

- % between the values of

Iinj
Cr
—76 <V, < =74 mV for different values of C};,. The membrane capacitance C,, was
determined as the value of C};, for which the variance was minimized :

the recorded traces, and calculated the variance of

Iin' d m
Cy, = arg max Var( i _ 4V,

Cr, Cr, dt )

Next, we defined the membrane current as

AV

Im = Iinj - Cm?

and binned the I,,, — V},, curve in bins of 5 mV and calculated the average for each bin.

A linear fit was made for subthreshold voltage values (—200 < V,,, < —60 mV), and the
slope was defined as the membrane conductance g,,,. We excluded files where this fit
did not succeed (the value of g, was found to be negative).

Spike-triggered average

The whitened and regularized spike-triggered average (STA) was calculated as
STA(t) = (X" X uxrxI)\ (X7 p) (8)

where X is a stimulus-lag matrix, where each row is the stimulus vector with a different
lag (see [29-32]), X7 X is the correlation matrix and I is the identity matrix. Operator
‘\’ denotes multiplication with the inverse, and T denotes a transpose. Parameter A is a
regularization (i.e. smoothing) parameter which was set to 10 and y( X7 X) is the mean
of the diagonal of the correlation matrix. Finally, p denotes the spike train. The
resulting STA was normalized with the Lo norm.

Following the derivation of Slee et al. (2005) [33], the inner product of all
spike-triggering stimuli with the STA was calculated for each trial (P(stimulus—spike),
the posterior distribution), as well as the inner product of the same number of
random-triggered stimuli (P(stimulus), the prior distribution. With the
random-triggered stimuli, the prior distribution of the input was calculated, and
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compared to the distribution of spike-triggering stimuli (the posterior distribution).
With Bayes’ law, the shape of the threshold function could be calculated:

P(spike|stimulus) ~ P(stimulus|spike)/P(stimulus) (9)

However, if the distributions are not smooth due to limited sampling, the threshold
function cannot be calculated. Therefore, the difference in mean between the prior and
posterior was calculated for each neuron, and the distribution of means over all neurons
was shown.

To assess the variability between the STAs calculated for each cell, we calculated the
inner product between all pairs of STAs of inhibitory cells and between all pairs of STAs
of excitatory cells. Because excitatory cells fire less, the STAs are based on a lower
number of spikes for excitatory cells than for inhibitory cells. This in itself could
introduce a higher variability of the STAs. To control for this, we also calculated the
STAs for the inhibitory cells based on a comparable number of spikes as for the
excitatory cells: we matched each inhibitory trial to an excitatory trial and reduced the
number of spikes by only including the first spikes until they had the same amount of
spike, and discarding the rest. Subsequently, we calculated the STA based on this
reduced number of spikes, normalized them, calculated the posterior and prior for these,
and calculated the inner product between all pairs of these STAs.

Simulations

We performed two types of simulations: an optimal observer for this experiment, the
optimal ‘Bayesian neuron’ [21], and a more biologically realistic exponential
integrate-and-fire (explIF) neuron with subthreshold and/or threshold

adaptation [2224].

Optimal observer: Bayesian Neuron

Next to the possibility of information estimation in short time windows, the in vitro
information transfer method [15] has another advantage: the availability of an optimal
observer model. This ‘Bayesian neuron’ [21] is a spiking neuron model that optimally
integrates evidence about the hidden state from the ANN described above. It is optimal
given an efficient coding or redundancy reduction assumption: it only generates new
spikes if those spikes transfer new information about the hidden state, that cannot be
inferred from the past spikes in its spike train. In practice, the neuron performs a leaky
integration of the input, in order to calculate the log-odds ratio L for the hidden state
being 1 (NB Note the similarity with equation :

dL L L

E:ron(l—i—e ) —rose(1+e”)+ I(t) — 0, (10)
where 1o, and r.g are the switching speeds of the hidden state, and
0=>" (b= 1)Ngl, — g'g is the constant offset of the input generated by the ANN as
before, which is chosen to be equal to 0 in this paper. The neuron compares this
log-odds ratio from the input, L, with the log-odds ratio of the hidden state being 1
inferred from its own spike train, G:

dG

P Ton(1+ e*G) — rose(1 + 6G). (11)

Each time the log-odds ratio based on the input (L) exceeds the log-odds ratio based on
the output spike train (G) by an amount , a spike is fired:

wL>G+ 2.

! { a spike is fired . (12)

G—-G+n
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For the optimal observer, the parameters of the Bayesian neuron (ron, Tost, §) are the
same as the ones chosen for the hidden state and the ANN for generating the input. As
the model is made as an optimal observer for this input, the input does not have to be
scaled (Ipaseline = 0; Iscale = 1), making 1 the only free parameter of the Bayesian
neuron model. This precision parameter n describes the distance between the threshold
and the reset of the Bayesian neuron, or in other words, the precision with which G
tracks L. This parameter is varied in order to obtain the different firing rates in the
Results section (from 0.25 to 6 in steps of 0.25). Note that this neuron model has a
form of threshold adaptation: if it did not spike for a long time, G decays to its prior
value Gprior = log 7=, With each spike, G is increased by 7, and more input (larger L)
is needed to fire a splke thereby reducing its firing rate.

The simulated neurons received the same frozen noise input as used in the
experiments (see Input current generation), but unscaled (Ipascline = 0; Iscale = 1). The
simulations were performed in Matlab, using a standard forward Euler with a time step
of 0.05 ms.

ExplIF neuron with (sub)threshold adaptation and non-linear I-V curve

In order to obtain more biologically interpretable results, and to disentangle the
subthreshold and threshold effects of adaptation, we used the expIF neuron with
subthreshold [22,/23] and/or threshold [24] adaptation. The equations are given by

AV, (Vm—6)

m T (9r(Er — Vi) + gLAre 57 +1(t) —w + I ky) (13)
dw

g = a(Viy — Ep) —w (14)
df

7'0% = 000 - 07 (15)

where w describes the subthreshold adaptation and the threshold 6 decays to a steady
state

Vm —V;)

Oo =p* (Vi = Vi) + Vi + Ky xlog(l+e F ). (17)

A spike is defined when V;,, passes a cutoff value Vuiofr and is reset to a reset potential
‘/r = ‘/t + 5ATZ
a spike is fired
if Vm > chutoff : Vm — ‘/T . (18)
w—w+b

Moreover, we added the following instantaneous currents to the right-hand side of the
membrane potential equation in order to simulate non-linearities in the I-V curve:

Ih(vm) = ghkoo h( )(Vh -V ) (19)
1
koo (Vin) = Vv (20)
14 e
and
Iy = gKkoo,K(Vm)(VK - Vm) (21)
1
koot (Vin) = ————— (22)
I1+e *x
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To assess the effect of adaptation, we simulated 4 parameter regimes: 1) no
adaptation, 2) subthreshold adaptation only, 3) threshold adaptation only, and 4)
combined adaptation (both subthreshold and threshold adaptation), with the
parameters given in Table [2| To assess the effect of a non-linear I-V curve, we simulated
3 parameter regimes: 1) we added an instantaneous hyperpolarization-activated
depolarizing current, similar to an h-type current: ‘vary g,’, 2) we added an
instantaneous depolarization-activated hyperpolarizing current, similar to a
subthreshold potassium current: ‘vary gg’, 3) and we varied the leak-conductance:
‘vary gr,’, with the following parameters given in Table |3] Note that for large values of
Iscale the simulations diverge: the membrane potential diverges and no further spikes
are fired. These simulations are not included in the analyses.

Table 2. Parameters for the adaptive expIF model with (sub)threshold adaptation

regime — no subthreshold | threshold combined
parameter | | adaptation | adaptation adaptation | adaptation
Cm 50 pF 50 pF 50 pF 50 pF

Er =V, -70 mV -70 mV -70 mV -70 mV

qgr, 10 nS 10 nS 10 nS 10 nS

Ar 1 mV 1 mV 1 mV 1 mV

Tw n/a varied n/a varied

a 0 nS 4 nS 0 nS 4 nS

b 0 nA 0.0805 nA 0 nA 0.0805 nA
To n/a n/a varied varied

P 0 0 0 0

V; -67 mV -67 mV -67 mV -67 mV

Vi -63 mV -63 mV -63 mV -63 mV
K, 0 mV 0 mV 5 mV 5 mV

k; 5 mV 5 mV 5 mV 5mV

gh 0 nS 0 nS 0 nS 0 nS

JK 0 nS 0 nS 0 nS 0 nS
Thaseline 0 nA 0 nA 0 nA 0 nA

ITcate varied varied varied varied

Parameters for equations [13]-

The simulated neurons received the same frozen noise input as used in the
experiments (see Input current generation), but with a different scaling (see Tables
and . Simulations were performed in Brian 2 [34], using a standard forward Euler
with a time step of 0.025 ms.

Results

The goal of this research was to explore the relationship between intrinsic excitability
and information transfer. To that end, we first performed ‘classical’ step-and-hold
current clamp experiments in the mouse barrel cortex. Next, we used the ‘frozen noise’
protocol |15] to measure information transfer together with adaptive properties in these
two cell types. After that, we turn to computational modelling to entangle how different
biophysical mechanisms influence information processing in model cells. Finally, we
return to the experimental recordings to verify the results obtained from computational
modelling.
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Table 3. Parameters for the expIF model with non-linear I-V curve

Parameters for equations [13]-

regime — vary g | vary gk | vary gr
parameter |

Cim 50 pF 50 pF 50 pF
Er =1V, -70 mV | -70 mV -70 mV
gL 10 nS 10 nS varied
Ar 1 mV 1 mV 1 mV
T n/a n/a n/a

) n/a n/a n/a

Jh varied 0 nS 0 nS
Vil -82mV | n/a n/a nS
kn -9 mV n/a n/a

Vi -30 mV | n/a n/a

JK 0 nS varied 0 nS
Viale -60 mV | n/a n/a nS
kx 9mV n/a n/a

Vi -70 mV | n/a n/a
]baseline 0 nA 0 nA 0 nA
Icale varied varied varied

Information transfer in inhibitory and excitatory neurons
Excitatory neurons fire at low rates

Whole-cell recordings were made from pyramidal cells and interneurons in layer 2/3
(L2/3) of mouse barrel cortical slices [13]. Cells were classified as either ‘excitatory’ or
‘inhibitory’ based on their electrophysiological responses to a standard current-step
protocol (Fig [l see Materials & Methods). In response to depolarizing steps, excitatory
neurons show strong spike-frequency adaptation, limiting their maximum firing rate
(Fig[lf and Supplementary Table S1, see also |13]), whereas inhibitory neurons fire at
much higher rates.

To measure the information transfer from input current to output spike train,
traditionally long (~ 1 hour) experiments were needed to obtain a single mutual
information estimate [16-20]. To estimate the information transfer in a shorter time
period we used a recently developed method [15] that uses the output of an artificial
neural network (ANN) to generate the frozen noise current input used in our ex-vivo
experiments (Fig 7 see Materials & Methods). Such a frozen noise input constitutes
an optimum between giving naturalistic stimuli (as far as possible in an ex-vivo setup,
given that we do not have access to the spatiotemporal input distribution a cell would
normally receive), being able to assess information transfer, and being able to assess
membrane properties (which are typically only stably accessible in slice experiments).
The ANN responds to a randomly appearing and disappearing preferred stimulus or
’hidden state’ x (Markov process). This hidden binary state can either be ‘on’ (i.e.
x=1) or ‘off’ (i.e. x =0), and switches randomly between these states with time
constant Tinput. The neurons in the ANN respond to this hidden state with

Poisson-generated spike trains, of which the firing rate depends on the hidden state (i.e.

each neuron i responds with a rate of ¢/, when x =1, and a rate of ¢’ when z = 0).
The mutual information between the input current and the hidden state depends on

three properties of the ANN: the number of neurons (), the average firing rate of the
neurons (f4), and the time constant of the hidden state (Tinput). We can now compare
the mutual information between the input current and the hidden state with the mutual
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information between the output spike train and the hidden state. This has the
advantage that because the hidden state is low-dimensional (it has only two states), the
mutual information can be estimated in a short time-window.

Because of the differences in maximum firing rate between the excitatory and
inhibitory cells, it was not possible to use the exact same frozen noise input current for
the two cell types: Tinput had to be large for the excitatory neurons (neurons firing at a
low rate cannot transfer information about a fast-switching stimulus, so the hidden
state had to switch slowly), but this is not the case for the inhibitory neurons (which
fire at high rates, so the hidden state can switch fast, i.e. a small value for Tinpy¢ should
be used). However, the information in the input could be kept constant by adapting the
firing rates of the neurons in the ANN p, (Fig|2] see also Materials & Methods). This
resulted in the parameters in Table [I| for the frozen noise experiments to generate the
input currents shown in Fig [2|

Inhibitory neurons show broadband information transfer; Excitatory
neurons transfer less information and at low frequencies

By using the ‘frozen noise protocol’ as described before (see Materials & Methods

and [15]), the information transfer from the hidden state to the output spike train of a
single neuron can be estimated in a short time window. In order to obtain the
information transfer from the input current to the output spike train, we define the
unitless fraction of transferred information (FI) as the mutual information between the
spike train and the hidden state (M Ispike train divided by the mutual information
between the input current and the hidden state (M Iinput, see eq @ The FI quantifies
how much information about the hidden state is transferred from the input current to
the output spike train, and thus quantifies which fraction of the information is kept
during the spike-generating process. In Fig[3] we show the FT as a function of the firing
rate r, for inhibitory (blue) and excitatory (red) neurons, and compare it to the F'I
obtained from the ‘Bayesian Neuron’ (BN) model |21] for which parameters (see
Materials & Methods) were optimized for the input generated for the excitatory neurons
(pink) or inhibitory neurons (turquoise). Excitatory neurons transfer more information
at low firing rates (<~8 Hz) compared to inhibitory neurons. This is due to our choice
of slower switching speed (i.e. large Tinput) of the hidden state for excitatory neurons: a
fast-switching hidden state cannot be properly tracked by neurons firing at a low firing
rate (see also |15]). To compare inhibitory and excitatory neurons, we normalized the
firing rate of each neuron relative to the switching speed of the hidden state:

Tnp =7 Tinput (unitless). The FI was plotted as a function of this normalized firing rate
in Fig[3B. The FI increases up to a maximal value at about r,, = 1.5, after which the
FI appears to decrease again. Apparently, at very high firing rates, the transferred
information goes down due to too many spikes during x = 0. We fitted a saturating
function (see Materials & Methods) to the measured values, where F I,y is the
saturation value and A, is the rate with which this saturation value is reached (both
unitless). We fitted the data up to r, = 1.5, because we do not have a mathematical
description for the type of curve that saturates and then dips again (but note that all
panels and figures contain all data points, including those for r, > 1.5). In Fig and
F, the fit values and their 95% confidence intervals are shown. Inhibitory experimental
and BN values saturate around similar values (FIax = 0.65 (0.64 - 0.66) and Flyax =
0.64 (0.63 - 0.65) respectively), with experiments having a slightly lower rate (A, = 5.8
(5.6 - 6.0) and 7.7 (7.3 - 8.0) respectively). Excitatory neurons saturate at lower
experimental values (F' I, = 0.51 (0.48 - 0.54)) and slightly lower BN values (FI.x =
0.58 (0.54 - 0.63), and the saturation rates are also lower (A, = 4.5 (4.0 - 4.9) and A,
= 6.1 (5.0 - 7.2) respectively). This shows that in the case of the excitatory neurons, the
experimentally recorded spike trains transmit less information than the spike trains of
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the BN, whereas in the inhibitory case, the model and experimental spike trains perform
similarly. This means that inhibitory neurons perform close to optimal for representing
the hidden state, whereas excitatory neurons do not. As a control, we presented the
input for the excitatory neurons also to inhibitory neurons (Fig |3} green, F . = 0.63
(0.52 - 0.75), A, = 2.6 (1.6 - 3.7)); these inhibitory neurons fired at a higher normalized
rate (Fig|3| C) and performed better than the excitatory neurons. In conclusion,
putative interneurons transfer more information than putative excitatory neurons.

Inhibitory neurons perform well as classifiers

The setup with the hidden state makes it possible to show ’receiver-operator curves’
(ROCs): we define a ’hit’ as a period during which the hidden state was 1 (up-state), in
which at least 1 action potential was fired, and a 'miss’ as an up-state in which no
action potentials were fired. Similarly, we define a ’false alarm’ as a period during which
the hidden state was 0 (down-state), in which at least 1 action potential was fired, and
a ’correct reject’ as a down state in which no action potentials were fired. We then
define the ’hit fraction’ as the number of hits divided by the total number of up-states,
and similarly the false alarm fraction for the number of false alarms divided by the total
number of down-states. In Fig[@A the results are shown, for the same five conditions as
discussed above. For each experiment, a control experiment was simulated by generating
a Poisson spike train with the same number of spikes as the original experiment. Note
that this ’control’ is below the line hit fraction = false alarm fraction because the
hidden state is more often 0 than 1 (P, = %) Since the hidden state is longer in the ’0’
state, the probability that a random spike occurs when the hidden state equals 0 is
higher, hence the probability of a false alarm is higher than the probability of a hit.

Inhibitory neurons perform comparably to the BN, as shown in Fig[4 whereas the
excitatory neurons perform less optimally than their model counterparts. We performed
control experiments where input currents generated for excitatory neurons were injected
into inhibitory neurons, (green triangles in Fig 3| and . The results suggest that
interneurons perform comparably to (on the same curve as) excitatory neurons, but
with a lower discrimination threshold (i.e. with a higher firing rate), which is in
agreement with our previous observation that inhibitory neurons responded with a
higher firing rate than excitatory neurons. Note that inhibitory neurons fire slightly less
spikes during the up-states (Fig ) and the normalized firing rate in the up-state is
somewhat lower for the inhibitory neurons (Fig 4 ). Since the excitatory neurons fire
more spikes during the down states (Fig and), this corresponds to a lower
efficiency for excitatory neurons and a worse performance on the binary classification
task (Fig ) Indeed, the number of spikes per down state (Fig ) and normalized
firing rate in the down state (Fig ) differs between inhibitory and excitatory neurons
(Supplementary Tables S2 and S3). Note that most ’incorrect’ spikes are actually fired
shortly after a down switch (Fig —K), so they might be ’correct’ spikes that were a
few milliseconds too late. In conclusion, putative interneurons are better binary
classifiers than putative excitatory neurons.

Dynamic threshold of both neuron types

To assess how intrinsic properties of the putative interneurons and pyramidal cells
correlate with their information transfer capabilities in this setup, we next assess the
threshold adaptation of these neuron types. In Fig[5| we show the threshold behaviour
of the inhibitory and excitatory neurons. The membrane potential threshold of each
spike was determined based on the method of [24] (see Materials & Methods). We show
the distribution of the membrane potential as a function of the inter-spike interval (ISI,
Fig and E). For both inhibitory and excitatory neurons, the membrane potential
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Fig 3. Inhibitory neurons transfer more information. A: Fraction of information
kept during the spike generating process (F'I, see eq. @ as a function of the firing rate,
for inhibitory neurons (blue) and excitatory neurons (red). In green, the control
experiments where the inhibitory neurons received the input current that was normally
given to the excitatory neurons (Tinpuy = 250 ms). In turquoise and pink, the
simulations with the Bayesian Neuron (Materials & Methods, see Table |1| for parameter
values). B: Fraction of information kept during the spike generating process, as a
function of the normalized firing rate (normalized by the switching speed of the hidden
state: v, =7 - Tinput, See Table. The solid lines denote fits of the data up to a
normalized firing frequency of r, = 1.5 (eq. (7), Materials and Methods).
Colors/markers the same as in A. C: and D: Normalized firing frequency and FI
distribution of the spike trains in all conditions. E: Zoom of B. F: and G: Fit values and
their 95% confidence intervals (error bars) for parameters Fln.x (F) and A, (G), see
eq. (7). Data from 144 excitatory neurons (220 trials), 72 inhibitory neurons (78 trials)
and 9 control inhibitory neurons (11 trials). NB Note that even though theoretically
MTI > 0, due to our approximation, our estimate of MI can take small negative values
(see Materials & Methods).
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Fig 4. Binary classification. A) Receiver Operator Curve (ROC), where the hit rate
was defined as the fraction of up-states, in which at least 1 action potential was fired.
Similarly, the false alarm rate was defined as the fraction of down-states, in which at
least 1 action potential was fired. In black the results for Poisson spike trains with firing
rates matched to those of the experimental/simulation conditions are shown. B)
Distribution of the number of spikes per period where the hidden state was 1 (up state),
for inhibitory neurons (blue) and excitatory neurons (red). C) Same as B), but for
periods where the hidden state was 0 (down state). D) Firing rate r distribution in the
up-state. E) Firing rate r distribution in the down-state. F) Normalized firing rate r,
distribution in the up-state G) Normalized firing rate r, distribution in the down-state.
H) Delay (in ms) of each correct spike since the state switches from down to up. I)
Delay (in ms) of each incorrect spike since the state switches from up to down. J)
Normalized delay (delay/7, unitless) of each correct spike since the state switches from
down to up. K) Normalized delay of each incorrect spike since the state switch from up
to down. The results of hypotheses test for A-F are in Supplementary Table S2 and S3.
Data from 144 excitatory neurons (220 trials), 72 inhibitory neurons (78 trials), and 9
control inhibitory neurons (11 trials).

October 12, 2023

18,33


https://doi.org/10.1101/2020.11.06.371658
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.06.371658; this version posted October 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

INHIBITORY EXCITATORY
iSi evoiution Average membrane potentiai Average membrane potentiai 2 1S evolution
B 5[4[3[2]1 6 5[4[3]2|1 ]
50 50
As. soB s =D S 30
E £ E £
e P
$- 5o Sf o % -40
b} e - 3
2 2 2 \ 2
g 5 g g%
£ & L g £
- 1T | -60
0 100 200 -50 -40 -30 20 -10 ) -50 -40 30 20 10 0 0 100
isi (ms) time relative to spike (ms) time relative to spike (ms) isi (ms)
Window 1 Window 2 Window 3 Window 1 Window 2 Window 3
©=082*V_ +-1.37 6=054*V_+-11.35 6=039*V_+-1901 ©=056*V_+-11.19 6=016*V_+-26.16 ©=012*V,_+-2761
c 520 R=0.82 20 R =0.61 20 R=0.52 20 R=06 20 R=0.25 p
540 40 - 40 . -40 ] 40 = =
3 = — —
@
£-60 -60 60 60 -60 K
T 80 -60 40 -80 -60 40 80 -60 -40 -80 -60 40 -80 60 -40
Wi 4 Window 5 Window 6 Window 4 Window 5 Window 6
©=029'V_ +-24.05 ©=025'V, +-26.1 ©=0.22V,_ +-26.65 ©=013"V,_ +-27.02 62013V, +-26.25 ©=0.16*V, +-24.03

R =0.47 R =043 R=0.33 20 R=0.26 R =0.26 R=0.22

) ) F ' “ v
- — 2 = =3
- = - e - R - . -
—_— -40 i -40 == -40 -40
R R -60 -60 -60

-60 -40 -80 -60 -40 -80 -60 -40 -80 -60 -40 -80 -60 -40 -80 -60
average V,_ (m\) average V,_ (mV) average V,_ (mV) average V,_ (m\) average V,_ (mV) average V,_ (mV)

Fig 5. Dynamic threshold. A-C) Inhibitory neurons. D-F) Excitatory Neurons. A)
Distribution of membrane potential threshold values (see Materials & Methods) for each
inter-spike interval (IST); normalized per ISI. B) Average spike shape (shaded region
denotes standard deviation). Vertical lines denote the windows in C. C) Heatmap and
regression for the relation between the threshold and the average membrane potential in
the given window. D-F) Same as in A-C, but for excitatory neurons. This is all in the
Frozen Noise protocol, for threshold behaviour in the current-clamp step-and-hold
protocol, see Supplementary Fig. S1.
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threshold goes up with short ISIs, as expected, and for long ISIs the threshold is low.
This effect has a long time scale (at least several tens of milliseconds), longer than
expected based on the relative refractory period alone (typically less than ten
milliseconds). The thresholds of excitatory neurons are almost 10 mV higher than those
of inhibitory neurons (Fig ,E, Supplementary Fig 1A-C). Next to the ISI, the
threshold also depends on the history of the membrane potential (Fig 7F): we
calculated the regression between the action potential threshold and the average
membrane potential in different windows preceding the spike. There is a strong
correlation between the threshold and the membrane potential immediately preceding
the spike for both neuron types, which reduces gradually with time before the spike.
However, for both neuron types, some relation between the membrane potential several
tens of milliseconds before the spike and the threshold is still visible. The current clamp
step protocol (Supplementary Fig 1) confirms the overall higher thresholds
(Supplementary Fig 1A,B) and strong spike-frequency adaptation (Supplementary Fig
1D) for excitatory neurons. The threshold adaptation rate however, shows significant
differences between fast spiking and regular spiking neurons at current injection
intensities ranging from 4240 to +320pA, while they do not show significant changes at
lower or higher intensities, possibly due to low firing rates or reaching a steady state
firing rate. (Supplementary Fig 1C, Table S1).

So in conclusion, both inhibitory and excitatory neurons show a dynamic threshold
behaviour, with inhibitory neurons having much lower thresholds, so they can fire at
high rates, whereas the dynamic threshold of excitatory neurons promotes low-frequency
firing and shows stronger adaptation.

Information transfer in simulated neuron models

In the experimental data, we saw that both fast-spiking interneurons and regular
spiking excitatory neurons transfer a significant amount of information about the
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hidden state, not much less than the optimal Bayesian neuron, as they adapt their spike
threshold to the dynamics of the stimulus. The goal of this research was to explore the
relationship between intrinsic excitability and information transfer. The Bayesian
neuron that is optimal for this task has two properties that distinguish it from a
standard integrate-and-fire model: 1) spike-frequency adaptation and 2) a non-linear
I-V curve. To untangle how these mechanisms influence information transfer, we turn to
computational modelling. We use an exponential integrate-and-fire (expIF) model and
adapt both its adaptation and the shape of the IV-curve, to explore how these affect
information transfer.

Information transfer in neuron models with (sub)threshold adaptation

In the previous section, we saw that both inhibitory and excitatory neurons show a
dynamic threshold behaviour, suggesting that both cell types have in theory the
adaptation mechanisms that can influence information transfer, as is also present in the
Bayesian Neuron. In biophysical models, spike-frequency adaptation can be
implemented in different ways [11]. Particularly, in the expIF model, it has been
implemented as either a subthreshold process [22,|23] or as an adaptation of the spike
threshold [24]. We research the effects of these two types of adaptation on the
information transfer in the aforementioned mutual information protocol.

In Fig[6[C, we first note that the ‘slow’ input to the excitatory neurons is apparently
more difficult to transfer than the ‘fast’ one: the exact same expIF model transfers less
of the ‘slow’ input information (red) than of the ‘fast’ one (blue). Next, in Fig[fD-G, we
show that adding threshold adaptation does not increase the amount of information that
is transferred by the neuron. However, it does shift its working range towards higher
values of the input amplitude Isca1e, effectively increasing its working range. Contrasting,
in Fig [(H-K, we show that adding subthreshold adaptation does increase the maximum
information transfer when it is properly tuned, i.e. when the time constant of
adaptation fits the input properties. However, too slow adaptation suppresses the firing
rate too much (Fig [6JJ,K), resulting in a reduction of information transfer.

We ask whether the effects on information transfer are a result of a higher firing rate,
or of a better detection. Therefore, we turn to the ROC curves discussed before. In Fig
[7 we show that both forms of adaptation do not change the shape of the ROC curve.
However, we do note that for the ‘slow’ input, the expIF neuron performs much worse
than both the Bayesian neuron and the experimentally recorded neurons.

In conclusion, we see that subthreshold, but not threshold, adaptation can increase
the maximum information transfer. Threshold adaptation, on the other hand, can
increase the working range of the neuron. Moreover, an expIF neuron performs worse
than both the Bayesian neuron and the experimentally recorded neurons. Since the
Bayesian neuron differs from the expIF model in its IV curve, we next determine how
information transfer is influenced by the shape of the IV curve.

The shape of the IV curve

We assess the effects of changing the shape of the I-V curve (the right-hand side of the
membrane voltage equation). The Bayesian neuron, tailor-made to transfer information
efficiently for this type of input, has two features that distinguish it from a classical
integrate-and-fire model: an adaptation mechanism, discussed in the previous
paragraph, and a non-linear IV-curve, as can be seen in Fig[BA: the amplitude of the
IV-curve increases exponentially when moving away from the steady-state value (dotted
vertical line). We add such non-linearities in the expIF neuron in a biologically realistic
way, to see how they would influence the classification (ROC curve) and the information
transfer. Firstly we model the effects of the suppression of hyperpolarization (i.e.
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Fig 6. Effects of the dynamics of adaptation on information transfer. A-C)
No adaptation. D-G) Threshold adaptation. H-K) Subthreshold adaptation. L-N)
Combined adaptation. Left column: ‘slow’ input (time constant hidden state Tinpus =
250 ms). Middle column: ‘fast’ input (time constant hidden state Tinput = 50 ms).
Right column: ‘slow’ and ‘fast’ input together. A) Fraction of information (FI, black)
and normalized firing rate r,, (pink) as a function of the input amplitude Igcq)e for the
explF model without adaptation. B) same as A but for the ‘fast’ input. C) Fraction of
information as a function of the normalized firing rate for the ‘slow’ (red) and ‘fast’
(blue) input for the expIF model without adaptation. D) Fraction of information
(colorbar) as a function of the input amplitude Isca1e for the expIF model with threshold
adaptation with different adaptation time constants T,qap (vertical axis) receiving the
‘slow’ input. E) Same as D, but for the ‘fast’ input. F) Fraction of information as a
function of the normalized firing rate for the ‘slow’ input or the expIF model with
threshold adaptation with different adaptation time constants Taqap (colours). G) Same
as F, but for the ‘fast’ input. H-K) Same as D-G, but for the expIF model with
subthreshold adaptation. L-N) Same as A-C, but for the model with both threshold
(Tadap = 1 ms and subthreshold (T,dap = 10 ms adaptation.
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Fig 7. Effects of the dynamics of adaptation on binary classification. A)
Receiver Operator Curve (ROC) (see also Fig[4]) for the expIF neuron with threshold
adaptation (colors denote time constant) receiving ‘slow’ input. Note that the
adaptation does not change the shape of the ROC curve, and that the neuron performs
much worse than the Bayesian neuron (pink). B) Same as A, but for subthreshold
adaptation. C) Same as A, but for the neuron receiving ‘fast’ input and the response of
the Bayesian neuron in turquoise. D) Same as C, but for the neuron with subthreshold
adaptation.

increasing slope of the IV curve when hyperpolarizing the cell) by adding an
instantaneous ‘h-current’ to the explF neuron (see Materials & methods), as shown in
Fig . Next, we model the effects of the suppression of depolarization (i.e. increasing
slope of the IV curve when depolarizing the cell) by adding an instantaneous
subthreshold potassium current, as shown in Fig [§C. Finally, we also change the overall
slope, but not the shape of the IV curve, by changing the leak conductance of the
neuron, as shown in Fig . In Fig and J, we show that adding the ‘h-current’ (with
conductance gp,) does not change the shape of the ROC curve. However, its effect is
similar to lowering the detection threshold (i.e. the values shift over the curve towards
higher hit and false alarm fractions). On the contrary, the addition of the potassium
current (with conductance g ) does not change the shape of the ROC curve, but its
effect is similar to an increase in the detection threshold (i.e. the values shift over the
curve towards lower hit and false alarm fractions, Fig and K). Changing the overall
slope of the IV curve (i.e. the ‘leak conductance’ gr,) does change the shape of the ROC
curve (Fig|8H and L): for the slow input current (7input = 250 ms) it needs to be tuned
to a lower value (gz, ~ 1 nS) than for the faster input current (7input = 50 ms) for
optimal information transfer and classification.

The effects seen in the ROC curves are confirmed by the information transfer
measurements: in Fig[0A, D, G and J we show that adding an ‘h-current’ can strongly
increase the information transfer of the expIF neuron, by increasing its firing rate.
Adding a subthreshold instantaneous potassium current shows the opposite effect: it
decreases both firing rates and information transfer (Fig , E, H and K). Finally, the
slope of the IV curve needs to be matched to the input statistics: the slow input needs a
flatter IV-curve (lower g ) than the fast input for information transfer (Fig[9C, F, I and
L).
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constant) receiving ‘slow’ input. Note that only g7, changes the shape of the ROC curve.
I-L) Same as E-H, but for the neuron receiving ‘fast’ input.
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In conclusion, we saw that the recorded excitatory neurons perform better for slow
input than the explF model with or without adaptation; in fact, these neurons perform
similarly to the optimal simulated model (the Bayesian Neuron). Recorded inhibitory
neurons perform close to optimal for fast input, a result well captured with an expIF
model that includes an adaptation mechanism. Threshold adaptation increases the
working range of the expIF model, but does not increase, or even slightly reduces, the
amount of transferred information. Subthreshold adaptation, on the other hand, does
not increase the working range but does increase the maximum transferred information
if correctly tuned. Neither form of adaptation changes the shape of the ROC curve. The
slope of the IV curve does play an important role in the information transfer and needs
to be tuned to the statistics of the input. To check this conclusion, we will next assess
this statement in our experimental recordings.

Back to the recordings: dynamic IV curve unravels the relationship between
membrane conductance and information transfer

We assess the relation between the slope of the IV-curve and the information transfer,
by determining the dynamic IV-curve [28] for each of our recordings (see Materials and
Methods). In figure we show the fraction of transferred information (FI) as a
function of the membrane conductance g,, and membrane capacitance C,, (Fig[10] A
and B) and as a function of the membrane time constant 7,,, (Fig|10|C and D). As in
the expIF model simulations, we can conclude that the fraction of transferred
information depends on the slope of the IV-curve: we see a clear inverse relation
between membrane conductance and transferred information. However, the recorded
neurons show quite a large variability of intrinsic properties, in particular the regular
spiking excitatory neurons. To assess how this large heterogeneity of excitatory neurons
influences their response properties, we calculate their spike-triggered averages.

Back to the recordings: Response heterogeneity of the Spike-Triggered
Average

In Fig. we show the normalized spike-triggered averages (STAs) for spikes of
inhibitory (A and E) and excitatory neurons (C). The filter was whitened and
regularized (see Materials & Methods). Next, the projection values of spike-triggering
and random currents were calculated (see Fig for an example for 1 cell), and the
distance between the means of the distributions for random and spike-triggering
currents was calculated for each cell (Fig[ITD). The average STAs for all inhibitory (Fig
[11A, blue) and excitatory (Fig [L1]C, red) neurons were quite similar, but the traces for
individual neurons (grey lines) were much more variable for excitatory neurons than
inhibitory neurons. This indicates that the excitatory neurons have a higher variability
in their feature selectivity of incoming current stimuli than inhibitory neurons, as was
expected from the higher intrinsic variability discussed in the previous section. However,
it is also possible that this is an effect of the lower number of spikes available for
excitatory neurons. To control for this possibility, we calculated the STAs for spike
trains of inhibitory neurons, where the number of spikes was reduced to match an 186
excitatory trial (Fig 7 brown). For all three groups (inhibitory, excitatory, and
inhibitory control spike trains) we calculated the inner product between all calculated
STAs. Fig shows the distributions of these inner products, and it is clear that both
inhibitory full and control spike trains are much less variable (inner product closer to 1)
than the excitatory spike trains (two-sample Kolmogorov-Smirnov test E-I p = 0, E-C
p < le —223, I-C p < le — 228). The distribution of all distances between the means is
shown in Figs[TID. The distances between the distributions, measured in standard
deviations of the prior (random triggered currents) distribution, are much higher for

October 12, 2023

2433

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654


https://doi.org/10.1101/2020.11.06.371658
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.06.371658; this version posted October 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

INHIBITORY EXCITATORY
10 Fl versus 9m and C"1 ! Fl versus 9m and Cm
3
A 0.8
25
0.6
2 @
c15 . 045
o [
1 02
0.5
4 0
0 : 0
0 2 4 6 0 2 4 6
C,(F) x10™ Cn(F) x10™M
Fl versus 1/Tm
0.8
__06 .
[2} [}
%] %]
< <
04 ., =
= ol % 3
o -k i ® e
0.2 g’ °
$e
L]
0 ° .
0 1 2 3 3
1/ (s 1/ (s

Fig 10. Effects of the dynamic I'V-curve shape on information transfer of
recorded neurons. A) Fraction of transferred information FI as a function of the
membrane conductance g, and capacitance Cy, for inhibitory neurons. B) Same as A),
but for excitatory neurons. C) Fraction of transferred information FI as a function of
the inverse of the membrane time constant 7, for inhibitory neurons. D) Same as C),
but for excitatory neurons.
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excitatory neurons than for inhibitory neurons, indicating that excitatory neurons are
more selective (p-values two-sample t-test: E-I p < 1le — 28, E-C p < le — 24, I-C

p = 0.14). In conclusion, excitatory cells fire less than inhibitory cells and are therefore
more selective, but at the same time, there is more variability between excitatory
neurons in what input features they respond to than between inhibitory cells.

Conclusion and discussion

In summary, we measured the differences in information transfer between (putative)
inhibitory interneurons and excitatory pyramidal cells in the cerebral cortex. We
utilised a technique in which the input current was generated by an Artificial Neural
Network (ANN), with each artificial cell firing Poisson spike trains whose firing rate was
modulated by the absence or presence of the stimulus |15]. We discovered that
excitatory cells are more selective due to their greater information compression.
Inhibitory neurons exhibit a near-optimal response, transferring a great deal of
input-related information at relatively rapid rates. In a computational model, the
mechanisms that can explain such differences in information transfer were investigated.
We evaluated the effects of (sub)threshold adaptation and the IV curve’s shape. We
discovered that adaptation increases information transfer (subthreshold adaptation) and
the working range (threshold adaptation). In addition, the shape of the IV-curve plays
a crucial role in determining the information transfer: the slope must correspond to the
input characteristics, and the suppression of hyperpolarization, such as by a ’h-current,’
can increase the information transfer. The effects are summarised in Table 4] Although
the current experimental data does not permit an explicit test of the effects of
(sub)threshold adaptation and/or "h-current,’ the relationship between information
transfer and the slope of the (dynamic) IV-curve (the membrane conductance) can be
evaluated. As predicted, we observe an inverse relationship between membrane
conductance and information transfer. Finally, we find that both the intrinsic
(membrane conductance) and response (STA, FI) properties of excitatory neurons are
more heterogeneous, compared to inhibitory neurons.

Table 4. Conclusions of the Exponential IF model simulations

IV curve (g1.)

(if tuned properly)

Mechanism Max information transfer | Working range ROC curve
threshold adaptation unchanged /reduced increased / shift to unchanged
higher amplitudes
subthreshold adaptation | increased unchanged unchanged
(if tuned properly)
steepness increased depends on tuning better detection

if tuned properly

hyperpolarized part
IV curve (gp,)

increased at the cost of
higher firing rate

shift to lower amplitudes

unchanged shape
shift towards higher rates

depolarized part
IV curve (gx)

decreased

shift to higher amplitudes

shape unchanged
shift towards lower rates

It has been shown repeatedly, that the spiking behaviour of cortical neurons can be

fitted relatively well with a simple threshold model with an extra feedback
variable [22,[241|35H45] and the heterogeneity in such cell properties has been

investigated in excitatory (but not inhibitory) cells [46]. With this manuscript, we add a
functional dimension to these basic properties of cortical spike initiation: We show how
different mechanistic features of cortical cells can influence their information transfer

and binary classification. Of course, we did not explore all mechanisms available to the
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Fig 11. Linear filtering properties of recorded neurons. A) Whitened and
regularized (see Materials and Methods) Spike-Triggered average (STA) for inhibitory
neurons. The STAs for individual neurons are shown as thin grey lines, and the average
over neurons is shown as a thick coloured line. B) Example of a prior (random triggered,
black line) and posterior (spike-triggered, blue line) distribution of stimulus projection
values for a single inhibitory neuron. C) Same as A), but for excitatory neurons. D)
Distribution of the differences between the means (see arrow in B) between the prior
and posterior distribution over all neurons.-E) Same as A), but for the reduced (i.e.
fewer spikes) spike trains of the inhibitory neurons. F) Distribution of the inner
products between the STAs for the three groups (note that because the STAs are
normalized by the L2-norm, the maximal value of the inner product is limited to 1).
Data from 144 excitatory neurons (220 trials) and 72 inhibitory neurons (78 trials).
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cell. For instance, in this simplified cell model we could not assess the difference in
information transfer between ‘type 1’ (or integrator) and ‘type 2’ (or resonator) cells, as
this can only be modelled as a difference in the bifurcation from resting to spiking (a
saddle-node versus a Hopf bifurcation). Moreover, we used the expIF model as a
proof-of-principle of the effects of different intrinsic cell properties on information
transfer and did not extensively fit the model to the experimental data. Indeed, the
recorded spike trains are better classifiers than even the best-performing expIF model
for the slow input current, suggesting that there are more relevant dynamic properties
that are not captured by such a simplified model. However, using such a simple setup
allows us to make several predictions that can be tested experimentally: we predicted
that 1) blocking ‘h-currents’ will decrease the amount of information that is transferred
2) blocking subthreshold potassium currents will not have such an effect, and 3) there is
an optimal range for the membrane conductance.

The heterogeneity of neuron properties has received much interest lately: for
instance, it has been shown that heterogeneity in neural populations can increase coding
robustness and efficiency [47], help optimize information transmission [48], increase
network responsiveness [49], promote robust learning [50], help to control the dynamic
repertoire of neural populations [51] and improve the performance on several
tasks [52,53]. Here, we show that in particular, the population of excitatory neurons of
the barrel cortex shows a large variability in their intrinsic and response properties.
Why the variability of the properties of excitatory neurons is larger than that of
inhibitory ones is an exciting question, which is a subject for future experimental and
computational evaluation. Moreover, the intrinsic properties of cortical neurons are
under top-down influence by neuromodulators such as serotonin, acetylcholine and
dopamine [54,/55]. Using the protocol described herein, it will be possible to investigate
how these neuromodulators affect the intrinsic neural properties and, consequently, their
information transfer. This will help reveal how the specific actions of these
neuromodulators on the intrinsic properties of specific cell classes affects information
transfer in the cortex. By investigating the relationship between intrinsic neuron
properties and information transfer, we can begin to predict the effect of top-down
processes on cortical processing.
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Fig 12. S1 Fig Threshold behaviour in the current clamp step-and-hold
protocol. A) Thresholds of all spikes during the step protocol. B) Thresholds of the
first spikes after the step current initiation. IC Threshold adaptation: difference in
threshold between the first and the last spike of the response. D) Last ISI length
relative to the first ISI of the response. Excitatory (red) and inhibitory (blue) neurons.
NB Results for significance testing in table S1.

S1 Table. Supplementary Table S1: Statistical tests of the comparison between
excitatory and inhibitory neurons in the current clamp step protocol.
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S2 Table. Supplementary Table S2: Statistical tests of the comparison between
excitatory and inhibitory neurons in the frozen noise protocol (see main text Fig. 5).
P-values were compared to a threshold of 5% / 6 groups = 29 0.83 % (Bonferroni
correction).

S3 Table. Supplementary Table S3: Statistical tests of the comparison between
excitatory and inhibitory neurons receiving the control frozen noise stimulus (see main
text Fig. 5). P-values were compared to a threshold 34 of 5% / 6 groups = 0.83 %
(Bonferroni correction).
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