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M Check for updates

Data analysis workflows in many scientific domains have become increasingly
complex and flexible. Here we assess the effect of this flexibility on the results of
functional magnetic resonance imaging by asking 70 independent teams to analyse
the same dataset, testing the same 9 ex-ante hypotheses'. The flexibility of analytical

approachesis exemplified by the fact that no two teams chose identical workflows to
analyse the data. This flexibility resulted in sizeable variation in the results of
hypothesis tests, even for teams whose statistical maps were highly correlated at
intermediate stages of the analysis pipeline. Variation in reported results was related
to several aspects of analysis methodology. Notably, ameta-analytical approach that
aggregated information across teams yielded a significant consensus in activated
regions. Furthermore, prediction markets of researchers in the field revealed an
overestimation of the likelihood of significant findings, even by researchers with
direct knowledge of the dataset®™. Our findings show that analytical flexibility can
have substantial effects on scientific conclusions, and identify factors that may be
related to variability in the analysis of functional magnetic resonance imaging. The
results emphasize the importance of validating and sharing complex analysis
workflows, and demonstrate the need for performing and reporting multiple analyses
of the same data. Potential approaches that could be used to mitigate issues related to
analytical variability are discussed.

Data analysis workflows in many areas of science have a large number of
analysis steps thatinvolve many possible choices (that is, “researcher
degrees of freedom”®’). Simulation studies show that variability in
analytical choices can have substantial effects onresults®, but its degree
and effectin practiceis unclear. Recent work in psychology addressed
this through a “many analysts” approach®, in which the same dataset
was analysed by a large number of groups, uncovering substantial
variability inbehavioural results across analysis teams. In the Neuroim-
aging Analysis Replication and Prediction Study (NARPS), we applied
asimilar approach to the domain of functional magnetic resonance
imaging (fMRI), the analysis workflows of which are complex and highly
variable. Our goal was to assess—with the highest possible ecological
validity—the degree and effect of analytical flexibility on fMRI results
in practice. In addition, we estimated the beliefs of researchers in the
field regarding the degree of variability in analysis outcomes using
prediction markets to test whether peers in the field could predict
the results®>.

Variability of results across teams

Thefirst aim of NARPS was to assess the real-world variability of results
across independent teams analysing the same dataset. The dataset
included fMRI data from 108 individuals, each performing one of two
versions of a task that was previously used to study decision-making
under risk™. The two versions were designed to address a debate on the
effect of gain and loss distributions on neural activity in this task'® 2
A full description of the dataset is available in a Data Descriptor’; the
dataset is openly available at https://doi.org/10.18112/openneuro.
ds001734.v1.0.4.
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Seventy teams (69 of whom had previous fMRI publications) were
provided withthe raw data, and an optional preprocessed version of the
dataset (with fMRIPrep'®). They were asked to analyse the data to test
nine ex-ante hypotheses (Extended Data Table 1), each consisting of a
description of activity inaspecificbrainregioninrelation toaparticular
feature of the task. They were given up to 100 days to report whether
each hypothesis was supported on the basis of awhole-brain-corrected
analysis (yes or no).Inaddition, each team submitted a detailed report
of the methods of analysis that they had used, together with unthres-
holded and thresholded statistical maps supporting each hypothesis
test (Extended Data Tables 2, 3a). To perform an ecologically valid
study testing the sources of variability that contribute to published
literature ‘in the wild’, the instructions to the teams were as minimal
aspossible. The only instructions were to perform the analysis as they
usually would in their own research laboratory and report the binary
decision on the basis of their own criteria for awhole-brain-corrected
result for the specific region described in the hypothesis. The dataset,
reports and collections were kept private until after the prediction
markets were closed.

Overall, the rates of reported significant findings varied across
hypotheses (Fig. 1, Extended Data Table 1). Only one hypothesis
(hypothesis 5) showed a high rate of significant findings (84.3%),
whereas three other hypotheses showed consistent non-significant
findings across teams (5.7% significant findings). For the remaining
five hypotheses, the results were variable, with 21.4%to 37.1% of teams
reporting a significant result. The extent of the variation in results
across teams was quantified by the fraction of teams that reported a
result different from the majority of teams (that is, the absolute distance
from consensus). On average across the 9 hypotheses, 20% of teams
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Fig.1|Fractionofteamsreportingasignificantresult and prediction
marketbeliefs. The observed fraction of teams reporting significant results
(fundamental value, pink dots; n =70 analysis teams), as well as final market
prices for the team members markets (blue dots; n=83 active traders) and the
non-team members markets (green dots; n=65active traders). The
corresponding 95% confidence intervals are shown for each of the nine
hypotheses (note that hypotheses are sorted on the basis of the fundamental
value). Confidence intervals were constructed by assuming convergence of the
binomial distribution towards the normal.

reported a result that differed from the majority of teams. Given that
the maximum possible variation is 50%, the observed fraction of 20%
divergent results thus falls midway between complete consistency
across teams and completely random results, demonstrating that ana-
lytical choices have a major effect on reported results.

Factorsrelated to analytical variability

To examine the sources of the analytical variability in the reported
binary results, we analysed the pipelines used by the teams as well as
the unthresholded and thresholded statistical maps they provided.
There were no two teams with identical analysis pipelines. After exclu-
sions (Extended Data Table 3b), thresholded maps of 65 teams and
unthresholded (z- or ¢-statistic) maps of 64 teams wereincluded in the
analyses. Fully reproducible code for all analyses of the datareported
here is available at https://doi.org/10.5281/zenod0.3709273.

Variability of reported results

A set of mixed-effects logistic regression models identified several
analytical variables and image features that were associated with
reported outcomes (Extended Data Table 3c). The strongest factor
was spatial smoothness; higher estimated smoothness of the unthres-
holded statistical maps (estimated using the FMRIB Software Library
(FSL) smoothest function) was associated with a greater likelihood
of significant outcomes (P < 0.001, delta pseudo-R*=0.04; mean full
width at half-maximum, 9.69 mm, range 2.50-21.28 mm across teams).
Notably, although the estimated smoothness was related to the width
of the applied smoothing kernel (r= 0.71; median applied smooth-
ing 5mm, range 0-9 mm across teams), the applied smoothing value
itself was not significantly related to positive outcomes in a separate
analysis, suggesting that the relevant smoothness arose fromanalytical

steps beyond explicit smoothing (such as modelling of head motion;
P=0.014). An effect on outcomes was also found for the software pack-
age used (P=0.004, delta pseudo-R*=0.04; n=23 (SPM), n=21(FSL),
n=7(AFNI) and n=13 (other software package))—with FSL being associ-
ated withahigher likelihood of significant results across all hypotheses
compared to SPM; odds ratio = 6.69)—and for the effect of different
methods of multiple test correction (P=0.024, delta pseudo-R*=0.02:
n =48 (parametric), n =14 (nonparametric), n =2 (other)), with para-
metric correction methods resultingin higher rates of detection than
nonparametric methods. No significant effect was detected for the
use of standardized preprocessed data versus custom preprocess-
ing pipelines (48% of included teams used fMRIPrep; P=0.132) or for
the modelling of head motion parameters (used by 73% of the teams;
P=0.281). Nonparametric bootstrap analyses confirmed the significant
effect of spatial smoothness, but provided inconsistent support for
the effects of multiple testing and software package; because of low
power, these results should be interpreted with caution.

Variability of thresholded statistical maps

The nature of analytical variability was further explored by analysing
the statistical maps that were submitted by the research teams. The
thresholded maps were highly sparse. Binary agreement between thres-
holded maps over all voxels was relatively high (median per cent agree-
ment ranged from 93% to 99% across hypotheses), largely reflecting
agreement on which voxels were not active. However, whenrestricted
to voxels showing activation for any team, the overlap was very low
(mediansimilarity ranging from 0.00 to 0.06 across hypotheses). This
may reflect variability in the number of activated voxels found by each
team; for every hypothesis, the number of active voxels ranged across
teams from zero to tens of thousands (Extended Data Table 4a). Analysis
of the overlap between activated voxels showed that the proportion
of teams with activation in the most frequently activated voxel for a
given hypothesisranged between 0.23 and 0.77 (Extended Data Fig.1).

Variability of unthresholded statistical maps

Analysis of the correlation between unthresholded z-statistic maps
across teams showed that for each hypothesis, alarge cluster of teams
had statistical maps that were strongly positively correlated with one
another (Fig. 2, Extended Data Fig. 2). The mean Spearman correlation
between all pairs of unthresholded maps (Extended Data Table 4b) was
moderate (mean correlation range 0.18-0.52 across hypotheses), with
higher correlations within the main cluster of analysis teams (range
0.44-0.85across hypotheses). An analysis of voxelwise heterogeneity
across unthresholded maps (equivalent to tau-squared) demonstrated
that inter-team variability was large—in many cases several times the
variability expected across different datasets (Extended Data Fig. 3a).

For hypotheses 1and 3, there was a subset of seven teams whose
unthresholded maps were anticorrelated with those of the main clus-
ter of teams. A comparison of the average map for the anticorrelated
cluster for hypotheses 1 and 3 confirmed that this map was highly
correlated (r=0.87) with the overall task-activation map, as previously
reported”. Further analysis showed that four of these teams used mod-
els that did not properly separate the parametric effect of gain from
overalltask activation; because of the anticorrelation of value-system
activations with task activations™, this model mis-specification led to
an anticorrelation with the parametric effects of gain. In two cases,
the model included multiple regressors that were correlated with
the gain parameter, which modified the interpretation of the primary
gains regressor, and for one additional team, modelling details were
not available.

Thediscrepancy between the overall correlations of unthresholded
maps and the divergence of reported binary results (even within the
highly correlated cluster) suggested that the variability in regional
results might be due to procedures related to statistical correction
for multiple comparisons and the subjective decision of teams onthe
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Fig. 2| Analytical variability in whole-brain statistical results for
hypothesis1(and hypothesis 3). a, Spearman correlation values between
whole-brain unthresholded statistical maps for each team (n= 64) were
computed and clustered according to their similarity (using Ward clustering on
Euclidean distances). Row colours (left) denote cluster membership (purple,
cluster1;blue, cluster2; grey, cluster 3); column colours (top) represent
hypothesis decisions (green, yes; red, no). Brackets represent clustering.

anatomical specification of regions of interest (ROIs). To test this, we
applied a consistent thresholding method and ROl specification on
the unthresholded maps across all teams for each hypothesis. This
showed thateven usinga correction method knownto beliberalanda
standard anatomical definition for all regions, the degree of variability
across results was qualitatively similar to that of the actual reported
decisions (Extended Data Fig. 4).
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b, Average statistical maps (thresholded at uncorrected z>2.0) for each of the
threeclusters shownontheleftina. The probability of reporting a positive
hypothesis outcome (P,.,) is presented for each cluster. L, left; R, right.
Unthresholded maps for hypotheses1and 3 areidentical (as they both relate to
the same contrast and group but differentregions), and the colours represent
reported results for hypothesis 1. Images can be viewed at https://identifiers.
org/neurovault.collection:6048.

We assessed the consistency across teams using an image-based
meta-analysis (accounting for correlations due to common data), which
demonstrated significant active voxels for all hypotheses except for
hypothesis 9 after false discovery rate (FDR) correction (Extended
Data Fig. 3b) and confirmatory evidence for hypotheses 2,4, 5and 6.
Theseresults show thatinconsistent results at the individual team level
underlie consistent results when the results of teams are combined.
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Prediction markets

The second aim of NARPS was to test whether peers in the field could
predict the results, using prediction marketsin which researcherstrade
on the outcomes of scientific analyses and receive monetary payouts
based on performance. Prediction markets have been used to assess
the replicability of scientific hypothesesinthe social sciences, and have
revealed correlations between market prices and actual scientific out-
comes” . We performed two separate prediction markets: one involving
members from analysis teams (‘team members’ market) and another
independent market for researchers who had not participated in the
analysis (‘non-team members’ market). The markets were open for 10
consecutive days approximately 1.5 months after all analysis teams
had submitted their results (which were kept confidential). On each
market, traders were provided with tokens worth US$50, and traded
viaanonline market platformon the fraction of teams that reported a
significant result for each hypothesis (thatis, the fundamental values).
The market prices serve as measures of the aggregate beliefs of traders
for the fraction of teams reporting asignificant result for each hypoth-
esis. Overall, n= 65 traders actively traded in the non-team members
market and n=_83 traded in the team members market. After the mar-
kets closed, traders were paid on the basis of their performance inthe
markets. The analysis of the markets was preregistered on the Open
Science Framework (OSF) (https://osf.io/59ksz/). Note that because
some analyses were performed on the final market prices (that is, the
predictions of the markets), for which there is one value per hypothesis
per market, the number of observations for each of the markets was
low (n=9), leading to limited statistical power. Therefore, the results
should be interpreted with caution.

The predictions of the markets ranged from 0.073 t0 0.952 (m=0.599,
s.d. =0.325) in the team members market and from 0.476 to 0.882
(m=0.690, s.d.=0.137) in the non-team members market. Except for
hypothesis 7in the team members market, all predictions were outside
the 95% confidence intervals of the fundamental values (Fig. 1, Extended
Data Table 5a). The Spearman correlation between the fundamental
values and the predictions of the markets was significant for the team
members market (r=0.962, P< 0.001, n=9) but not for the non-team
members market (r=0.553, P=0.122, n =9), nor between the predic-
tions of both markets (r=0.500,P=0.170,n=9).

Wilcoxon signed-rank tests suggested that traders in both markets
systematically overestimated the fundamental values (team members:
z=2.886,P=0.004, n=9; non-team members: 2=2.660, P=0.008,
n=9).Theresultin the team members market was not driven by an
overrepresentation of teams who reported significant results (Supple-
mentary Methods and Supplementary Results). Predictionsinthe team
members market did not significantly differ fromthosein the non-team
members market (Wilcoxonsigned-rank test,z=1.035,P=0.301,n=9),
butas mentioned above, statistical power for this test was limited. Team
members generally traded in the direction consistent with the results
of their own team (Extended Data Table 5b), which may explain why
their collective predictions were more accurate than those of non-team
members (Fig.1). Additional results are presented in the Supplementary
Information (see also Extended Data Fig. 5, Extended Data Table 5).

Discussion

The analysis of asingle fMRI dataset by 70 independent analysis teams,
allof whom used different analysis pipelines, revealed substantial vari-
ability in reported binary results, with high levels of disagreement
across teams for most of the tested hypotheses. For every hypothesis,
atleast four different analysis pipelines could be found that were used
inpractice by research groupsin the field and resulted in asignificant
outcome. Our findings highlight the fact that it is hard to estimate
the reproducibility of single studies that are performed using a sin-
gle analysis pipeline. Notably, analyses of the underlying statistical

parametric maps on which the hypothesis tests were based revealed
greater consistency than would be expected from those inferences, and
significant consensusin activated regions across teams was observed
using meta-analysis. Teams with highly correlated underlying unthres-
holded statistical maps nonetheless reported different hypothesis
outcomes (Fig. 2). Detailed analysis of the workflow descriptions and
statistical results that were submitted by the analysis teamsidentified
several common analytical variables that were related to differential
reporting of significant outcomes, including the spatial smoothness
of'the data (aresult of multiple factorsbeyond the applied smoothing
kernel), the choice of analysis software and the correction method;
however, the last two were not consistently supported by nonparamet-
ricbootstrap analyses. In addition, we identified model-specification
errors for several analysis teams, which led to statistical maps that
were anticorrelated with the majority for some of the hypotheses.
Prediction markets that were performed on the outcomes of analyses
demonstrated ageneral overestimation by researchers of the likelihood
of significant results across hypotheses—even by those researchers who
had analysed the datathemselves—reflecting amarked optimismbias
by researchersin the field.

The substantialamount of analytical variability, and the subsequent
variability of reported hypothesis results with the same data, demon-
strates that steps need to be taken to improve the reproducibility of
dataanalysis outcomes. First, we suggest that unthresholded statistical
maps should be shared as a standard practice alongside thresholded
statistical maps using tools such as NeuroVault®. In the long run, the
shared maps will allow the use of image-based meta-analysis, which
we found to provide converging results across laboratories. Second,
publicsharing of data and analysis code should become common prac-
tice, to enable others to run their own analysis with the same data or
to validate the code used. These practices, combined with the use of
preregistration® or registered reports”, will reduce researcher degrees
of freedom but would not prevent analytical variability, as demon-
strated here; however, they would ensure that the effects of variability
canbe assessed. All of the data and code used in the current study are
publicly available with a fully reproducible execution environment
for all figures and results. We believe that this can serve as an example
for future studies.

Foremost, we propose that complex datasets should be analysed
using several analysis pipelines, and preferably by more than one
research team. Achieving such ‘multiverse analysis’ on a large scale
willrequire the development of automated statistical analysis tools (for
example, FitLins'®) that can run a broad range of pipelines and assess
their convergence. Different versions of such multiverse analysis have
been suggested in other fields'*, but are not widely used. Analysis
pipelines should also be validated using simulated data to assess their
validity with regard to ground truth, and assessed for their effects on
predictions with new data.

Our findings emphasize the urgent need to develop new practices
and tools to overcome the challenge of variability across analysis pipe-
lines and its effect on analytical results. Nonetheless, we maintain that
fMRI can provide reliable answers to scientific questions, as strongly
demonstrated in the meta-analytical results across teams along with
numerous large-scale studies in the literature and replication of many
findings using fMRI. Moreover, although the present investigation was
limited to the analysis of asingle fMRI dataset, it seems highly likely that
similar variability will be present for other fields of research in which
the dataare high dimensional and the analysis workflows are complex
and varied. The multiverse approach combined with meta-analysis
is suggested as a promising solution. Notably, transparent scientific
projects that involve community-wide self-assessment—such as this
one—aredefinitive evidence of the awareness of researchers of repro-
ducibility concerns, and the desire to assess their effect and improve
practices accordingly (for additional discussion see Supplementary
Discussion).
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Methods

Datareporting

No statistical methods were used to predetermine sample size. The
experiments were not randomized and the investigators were not
blinded to allocation during experiments and outcome assessment.

fMRI dataset

To test the variability of neuroimaging results across analysis pipe-
lines used in practice in research laboratories, we distributed a single
fMRI dataset to independent analysis groups from around the world,
requesting them to test nine predefined hypotheses. The full dataset
is publicly available in the Brain Imaging Data Structure (BIDS)* on
OpenNeuro (https://doi.org/10.18112/openneuro.ds001734.v1.0.4)
and is described in detail in a Data Descriptor”.

In brief, the fMRI dataset consisted of data from 108 participants
who performed a mixed gambles task, which is often used to study
decision-making under risk. In this task, participants are asked oneach
trialtoacceptorrejectapresented prospect. The prospects consist of
anequal 50% chance of either gaining a given amount of money or los-
ing another, similar or different, amount of money. Participants were
divided into two groups: in the ‘equal indifference’ group (n =54) the
potential losses were half the size of the potential gains' (reflecting the
‘loss aversion’ phenomenon, in which people tend to be more sensitive
to losses than to equal-sized gains®*); and in the ‘equal range’ group
(n=54) the potential losses and the potential gains were taken from
the same scale™?, The two groups were used to resolve inconsistencies
of previous published results.

The dataset was distributed to the teams via Globus (https://www.
globus.org/). The distributed datasetincluded raw data of 108 partici-
pants (n =54 for each experimental group), as well as the same data
after preprocessing with fMRIPrep v.1.1.4 (RRID: SCR_016216). The
fMRIPrep preprocessing mainly included brain extraction, spatial
normalization, surface reconstruction, head motion estimation and
susceptibility distortion correction. Both the raw and the preprocessed
datasets underwent quality assurance (described in detail in the Data
Descriptor?).

MRI data collection was approved by the Helsinki committee at
Sheba Tel Hashomer Medical Center and the ethics committee at Tel
Aviv University, and all participants gave written informed consent (as
described in the Data Descriptor of this dataset?). The Board for Ethical
QuestionsinScience at the University of Innsbruck approved the data
collectioninthe prediction markets, and certified that the project com-
plied with all requirements of the ethical principles and guidelines of
good scientific practice. The Stanford University Institutional Review
Board (IRB) determined that the analysis of the submitted team results
did not meet the definition of human subject research, and thus no
further IRB review was required. We have complied with all relevant
ethical regulations.

Predefined hypotheses

Previous studies with the mixed gambles task suggested that activity
in the ventromedial prefrontal cortex and ventral striatum, among
other brainregions, is related to the magnitude of the potential gain.
Afundamental open questionin the field of decision-making under risk
is whether the magnitude of the potential loss is coded by the same
brain regions (through negative activation), or by regions related to
negative emotions, such as the amygdala'® 2. The specific hypotheses
includedin NARPS were chosen to address this open question, using two
different designs that were used in those previous studies (that s, equal
indifference versus equal range). Each analysis team tested the same
nine predefined hypotheses (Extended Data Table 1). Each hypothesis
predicted fMRI activations in a specific brain region, in relation to a
specific aspect of the task (gain or loss amount) and a specific group
(equal indifference or equal range, or a comparison between the two

groups). Therefore, for each hypothesis, the maximum sample size was
54 participants (hypotheses 1-8) or 54 participants per group in the
group comparison (hypothesis 9). Although the hypotheses referred
to specificbrain regions, analysis teams were instructed to report their
results on the basis of awhole-brain analysis (not an ROI-based analysis,
asis sometimes used in fMRI studies).

Recruitment of and instructions to analysis teams

Werecruited analysis teams viasocial media, mainly Twitter and Face-
book, as well as during the 2018 annual meeting of the Society for Neu-
roeconomics. Ninety-seven teams registered to participate in the study.
Each team consisted of up to three members. To ensure independent
analyses across teams, and to prevent influencing the subsequent pre-
diction markets, all team members signed an electronic nondisclosure
agreementthat they would notrelease, publicize or discuss their results
with anyone until the end of the study. All team members of 82 teams
signed the nondisclosure form. They were offered co-authorship on
the present publication in return for their participation.

Analysis teams were provided with access to the full dataset. They
were asked to freely analyse the data with their usual analysis pipe-
line to test the nine hypotheses and report a binary decision for each
hypothesis on whether it was significantly supported on the basis ofa
whole-brain analysis. Although the hypotheses were region-specific,
we clearly requested awhole-brain analysis result to avoid the need of
teams to create and share masks of ROls. Each team also filled in a full
report of the analysis methods used (following the guidelines of the
Committee on Best Practices in Data Analysis and Sharing; COBIDAS?)
and created a collection on NeuroVault® (RRID: SCR_003806) with one
unthresholded and one thresholded statistical map for each hypothe-
sis,onwhich their decisions were based (teams could optionally include
additional mapsintheir collection; see Extended Data Table 3afor links
for collections). For eachresult (thatis, the binary decision onwhether
agiven hypothesis was supported by the data or not), teams further
reported how confident they were in this result and how similar they
thought their result was to the results of the other teams (each measure
was aninteger between1(notatall) to10 (extremely)). These measures
are presented in Extended Data Tables 1, 2. To measure the variability
of results in an ecological manner, instructions to the analysis teams
were minimized and the teams were asked to perform the analysis as
they usually would in their own laboratory and to report the binary
decision on the basis of their own criteria.

Seventy of the 82 teams submitted their results and reports by the
final deadline (15March 2019; overall teams were given up to 100 days,
varying based on the date they joined, to complete and report their
analysis). The dataset, reports and collections were kept private until
the end of the study and closure of the prediction markets. To avoid
identification of the teams, each team was provided with a unique
random four-character ID.

Overall, 180 participants were part of NARPS analysis teams. Out of
70 analysis teams, 5teams consisted of 1 member, 20 teams consisted
of 2 members and 45 teams consisted of 3 members. Out of the 180
team members, there were 62 principal investigators, 43 post-doctoral
researchers, 53 graduate studentsand 22 members from other positions
(for example, data scientists or research analysts).

Factorsrelated to analytical variability

To explorethe factorsrelated to the variability in results across teams,
the reports of all teams were manually annotated to create a table
describing the methods used by each team. Code for all analyses of
the reports and statistical maps submitted by the analysis teams is
openlysharedin GitHub (https://github.com/poldrack/narps). Analyses
reported inthis manuscript were performed using code release v.2.0.3
(https://doi.org/10.5281/zenod0.3709273). We performed exploratory
analyses of the relation between the reported hypothesis outcomes
and several analytical choices and image features using mixed-effects
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logistic regression models implemented in R, with the Ime4 package®.
Thefactorsincludedinthe model were: hypothesis number, estimated
smoothness (based on the smoothest function in FSL), use of stand-
ardized preprocessing, software package, method of correction for
multiple comparisons and modelling of head movement. The teams
were modelled as a random effect. One team submitted results that
were not based on a whole-brain analysis as requested, and therefore
their data were excluded from all analyses.

Inferences using logistic regression models were confirmed using
nonparametric bootstrap analysis, resampling data team-wise to main-
tainrandom effect structure. For the continuous or binary regressors
(smoothness, movement modelling and use of fMRIPrep data), we
computed bootstrap confidence intervals and, as an approximate
hypothesis test, tested whether the confidenceintervalincludes zero.
For the factorial variables (hypothesis, software package and multiple
testing method), this was not possible because there is not asingle coef-
ficient for the factor; in addition, for software package and multiple
testing methods, some bootstrap samples did not contain all values of
thefactor. For these variables we instead performed model comparison
between the fullmodel and areduced model excluding each factor, and
computed the proportion of times the full model was selected on the
basis of the model selection criterion (using both Bayesianinformation
criterion and Akaike information criterion) being numerically lower
in the full model”.

Inaddition, we performed exploratory analyses to examine the vari-
ability across statistical maps submitted by the teams. The unthresh-
olded and thresholded statistical maps of all teams were resampled
to common space (FSL MNIspace, 91x109 x 91,2 mmisotropic) using
nilearn®® (RRID: SCR_001362). For unthresholded maps, we used
third-order spline interpolation; for thresholded maps, we used linear
interpolation and then thresholded at 0.5, to prevent artefacts that
appeared when using nearest neighbour interpolation. Of the 69 teams
included in the analyses, unthresholded maps of 5 teams and thresh-
olded maps of 4 teams were excluded from the image-based analyses
(see Extended Data Table 3b for details). As some of the hypotheses
reflected negative activations—which can be represented by either
positive or negative values in the statistical maps, depending on the
model used—we asked the teams toreport the direction of the valuesin
theirmapsfor the relevant hypotheses (5, 6 and 9). Unthresholded maps
were corrected to address sign flips for reversed contrasts as reported
by the analysis teams. In addition, ¢ values were converted to z values
with Hughett’s transform?. All subsequent analyses of the unthresh-
olded maps were performed only on voxels that contained non-zero
data for all teams (range across hypotheses: 111,062-145,521 voxels).

We assessed the agreement between thresholded statistical maps
using per cent agreement, that is, the per cent of voxels that have the
same binary value. Because the thresholded maps are very sparse,
these values are necessarily high when computed across all voxels.
Therefore, we also computed the agreement between pairs of statisti-
calmaps only for voxels that were non-zero for at least one member of
each pair. To further test the agreement across teams, we performed
a coordinate-based meta-analysis with activation likelihood estima-
tion*** (see Supplementary Information).

We further computed the correlation between the unthresholded
images of the 64 teams. The correlation matrices were clustered using
Ward clustering; the number of clusters was set to three for all hypoth-
eses on the basis of visual examination of the dendrograms. A separate
mean statistical map was then created for the teamsin each cluster (see
Fig.2, Extended Data Fig. 2). Drivers of map similarity were further
assessed by modelling the median correlation distance of each team
from the average pattern as a function of several analysis decisions
(for example, smoothing, whether or not the data preprocessed with
fMRIPrep were used, and so on).

To assess the effect of variability in thresholding methods and ana-
tomical definitions across teams, unthresholded zmaps for each team

were thresholded usinga common approach. The zmaps for each team
were translated to P values, which were then thresholded using two
approaches: a heuristic correction (known to be liberal®?), and a vox-
elwise FDR correction. Note that it was not possible to compute the
commonly used familywise error correction using Gaussian random
field theory because residual smoothness was not available for each
team. We thenidentified whether there were any suprathreshold voxels
within the appropriate anatomical ROl for each hypothesis. The ROIs
for the ventral striatum and amygdala were defined anatomically on
the basis of the Harvard-Oxford anatomical atlas. As there is no ana-
tomical definition for the ventromedial prefrontal cortex, we defined
the region using a conjunction of anatomical regions (including all
anatomical regions in the Harvard-Oxford atlas that overlap with the
ventromedial portion of the prefrontal cortex) and a meta-analytical
map obtained from https://neurosynth.org/ (ref.*) for the search term
“ventromedial prefrontal”.

An image-based meta-analysis was used to quantify the evidence
for each hypothesis across analysis teams (Extended Data Fig. 3b),
accounting for the lack of independence due to the use of acommon
datasetacross teams. See Supplementary Information for adescription
of the image-based meta-analysis method.

Prediction markets

The second main goal of NARPS was to test the degree to which
researchers in the field can predict results, using prediction mar-
kets*>**, We invited team members (researchers that were members
of one of the analysis teams) and non-team members (researchers that
were neither members of any of the analysis teams nor members of
the NARPS research group) to participate in a prediction market>* to
measure peer beliefs about the fraction of teams reporting significant
whole-brain-corrected results for each of the nine hypotheses. The
prediction markets were conducted 1.5 months after all teams had
submitted their analysis of the fMRI dataset. Thus, team members had
information about the results of their specific team, but not about the
results of any other team.

Similar to previous studies®, participants in the prediction markets
were provided with monetary endowments (100 tokens, worth US$50)
and traded on the outcome of the hypotheses through a dedicated
online market platform. Each hypothesis constitutes one asset in the
market, with asset prices predicting the fraction of teams reporting
significant whole-brain-corrected results for the corresponding ex-ante
hypothesis examined by the analysis teams using the same dataset.
Trading on the prediction markets was incentivized, that is, traders
were paid on the basis of their performance in the markets.

Recruitment. For the non-team members prediction market, we in-
vited participants viasocial media (mainly Facebook and Twitter) and
emails. Theinvitation contained alink to an online formon the NARPS
website (https://www.narps.info/) where participants could sign up
using their email address.

Participants for theteam members prediction market were invited,
after all teams submitted their results, by an email that directed them
to anindependent registration form (with identical form fields), to
separate participants for the two prediction markets already at the
time of registration. Note that team members were not aware to start
with that they would be invited to participate in a separate prediction
market after they had analysed the data. The decision toimplement a
second market, consisting of traders with partial information about
the fundamental values (thatis, the team members) was made after the
teams obtained access to the fMRI dataset. Thus, team members were
onlyinvited to participate inthe market after all teams had submitted
their analysis results. Once the registration for participatingin the pre-
diction markets had been closed, we reconciled the sign-ups with the
list of team members to ensure that team members did not mistakenly
end up in the non-team members prediction market and vice versa.
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Inaddition to their email addresses, which were used as the only key
tomatchregistrations, accounts in the market platformand the teams’
analysis results, registrants were required to provide the following
information during sign-up: (i) name, (ii) affiliation, (iii) position (PhD
candidate, post-doctoral researcher, assistant professor, senior lec-
turer, associate professor, full professor, other), (iv) years since PhD, (v)
gender, (vi) age, (vii) country of residence, (viii) self-assessed expertise
inneuroimaging (Likert scale ranging from1to 10), (ix) self-assessed
expertiseindecisionsciences (Likert scale ranging from1to10), (x) pre-
ferred mode of payment (Amazon.de voucher, Amazon.comvoucher,
PayPal payment), and (xi) whether they are ateam member of any analy-
sis team (yes or no). The invitations to participate in the prediction
markets were first distributed on 9 April 2019; the registration closed
on29 April2019 at16:00 UTC. Onceregistration closed, all participants
received a personalized email containing alink to the web-based market
software and their login credentials. The prediction markets opened
on2May 2019 at16:00 UTC and closed on 12 May 2019 at 16:00 UTC.

Information available to participants. All participants had access
to detailed information about the data collection, the experimental
protocol, the ex-ante hypotheses, theinstructions givento the analysis
teams, referencestorelated papers and detailed instructions about the
prediction markets viathe NARPS website (https://www.narps.info/).

Implementation of prediction markets. Toimplement the prediction
markets, we used anewly developed web-based framework dedicated
for conducting continuous-time online market experiments, inspired
by the trading platform in the Experimental Economics Replication
Project (EERP)* and the Social Sciences Replication Project (SSRP)*.
Similar to these previous implementations, there were two main views
onthe platform: (i) the market overview and (ii) the trading interface.
The market overview showed the nine assets (that is, one correspond-
ing to each hypothesis) in tabular format, including information on
the (approximate) current price for buying ashare and the number of
shares held (separated for long and short positions) for each of the nine
hypotheses. Via the trading interface, which was shown after clicking
onany of the hypotheses, the participant could make investment deci-
sions and view price developments for the particular asset.

Note thatinitially, there was an error in the labelling of two assets
(thatis, hypotheses) inthe trading interface and the overview table of
the web-based trading platform (the more detailed hypothesis descrip-
tionavailable viatheinfo symbol onthe right-hand side of the overview
table contained the correctinformation): hypotheses 7 and 8 mistak-
enly referred to negative rather than positive effects of losses in the
amygdala. One of the participants informed us about the inconsistency
between the information on the trading interface and the informa-
tion provided on the website on 6 May 2019. The error was corrected
immediately onthe same day and all participants wereinformed about
the mistake on our part through a personal email notification (on 6
May 2019, 15:28 UTC), pointing out explicitly which information was
affected and asking them to double-check their holdings in the two
assets to make sure that they were invested in the intended direction.

Trading and market pricing. Inboth prediction markets, traders were
endowed with 100 tokens (the experimental currency unit). Once
the markets opened, these tokens could be used to trade shares in
the assets (that is, hypotheses). Unlike prediction markets on binary
outcomes (for example, the outcomes of replications as in previous
studies®*), for which market prices were typically interpreted as the
predicted probability of the outcome to occur® (although see two
previous studies for caveats®”*®), the prediction markets accompa-
nying the team analyses in the current study were implemented in
terms of vote-share-markets. Hence, the prediction market prices
serve as measures of the aggregate beliefs of traders for the fraction of
teamsreporting that the hypotheses were supported and can fluctuate

between O (no team reported a significant result) and 1 (all teams re-
ported asignificant result).

Prices were determined by an automated market maker implement-
ingalogarithmic market scoring rule®. At the beginning of the markets,
all assets were valued at a price of 0.50 tokens per share. The market
maker calculated the price of ashare for eachinfinitesimal transaction
and updated the price on the basis of the scoring rule. This ensured
both that trades were always possible even when there was no other
participant with whom to trade and that participants had incentives
toinvestaccording to their beliefs*. The logarithmic scoring rule uses
thenetsales (shares held - shares borrowed) that the market maker has
donesofarinamarketto determinethe price for aninfinitesimal trade
as p=e%?/(e¥*+1). The parameter b determines the liquidity provided
by the market maker and controls how strongly the market price is
affected by atrade. We set the liquidity parameter to b=100, implying
that by investing 10 tokens, traders could move the price of a single
asset from 0.50 to about 0.55.

Investment decisions for a particular hypothesis were made from
the market’s trading interface. In the trading overview, participants
could see the (approximate) price of anew share, the number of shares
they currently held (separated for long and short positions) and the
number of tokens their current position was worth if they liquidated
their shares. The trading page also contained a graph depicting pre-
vious price developments. To make an adjustment to their current
position, participants could choose either to increase or decrease their
position by anumber of tokens of their choice. The trading procedures
and market pricing are described in more detail in a previous study’.

Incentivization. Once the markets had been closed, the true ‘funda-
mental value’ for each asset (thatis, the fraction of teams that reported
asignificantresult for the particular hypothesis) was determined and
gains and losses were calculated as follows: if holdings in a particular
asset were positive (thatis, thetrader acted as anet buyer), the payout
was calculated as the fraction of analysis teams reporting a significant
result for the associated hypothesis multiplied by the number of shares
heldinthe particular asset; ifatrader’s holdings were negative (that s,
the trader acted as a net seller), the (absolute) amount of shares held
wasvalued at the price differential between 1and the fraction of teams
reporting a significant result for the associated hypothesis.

Any tokens that had not been invested into shares when the market
closed were voided. Any tokens awarded as a result of holding shares
were converted to US dollars at a rate of 1 token = US$0.5. The final
payments were transferred to participants during the months May to
September 2019 in form of Amazon.com gift cards, Amazon.de gift
cards or PayPal payments, depending on the preferred mode of pay-
mentindicated by the participants after registration for the prediction
markets.

Participants. In total, 96 team members and 91 non-team members
signed up to participateinthe prediction markets. n=83 team members
and n = 65 non-team members actively participated in the markets.
The number of traders active ineach of the assets (that is, hypotheses)
ranged from 46 to 76 (m = 56.4, s.d. = 8.9) in the team members set of
markets and from 35to 58 (m =47.1,s.d. = 7.9) in the non-team mem-
bersset of markets. See Extended Data Table 5¢ for dataabout trading
volume on the prediction markets.

Ofthe participants,10.2% did not work in academia (but hold a PhD),
34.2% were PhD students, 43.3% were post-doctoral researchers or assis-
tant professors, 7.5% were lecturers or associate professors and 4.8%
were full professors. 27.8% of the participants were female. The average
time spent in academia after obtaining the PhD was 4.1 years. Most of
the participants lived in Europe (46.3%) and North America (46.3%).

Preregistration. All analyses of the prediction markets data reported
were preregistered at https://osf.io/pqeb6/. The preregistration was
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completed after the markets opened, but before the markets closed.
Only one member of the NARPS research group, F. Holzmeister, had
any information about the prediction market prices before the markets
closed (as he monitored the prediction markets). He was not involvedin
writing the preregistration. Only two members of the NARPS research
group, R.B.-N.and T. Schonberg, had any information about the results
reported by the 70 analysis teams before the prediction markets closed.
Neither of them were involved in writing the preregistration. For addi-
tional details on the prediction markets, see Supplementary Information.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The full fMRI dataset is publicly available on OpenNeuro (https://doi.
org/10.18112/openneuro.ds001734.v1.0.4) and is described in detail in
aData Descriptor’. The results reported by all teams are presented in
Extended Data Table 2. A table describing the methods used by the anal-
ysis teams is available with the analysis code. NeuroVault collections
containing the submitted statistical maps are available via the links pro-
videdin Extended Data Table 3a. Source datafor Figs. 1,2 are provided
with the paper. Readers may obtain access to the data and run the full
analysis stream on the team submissions by following the directions
at https://github.com/poldrack/narps/tree/master/ImageAnalyses.
Accesstotheraw datarequires specifyinga URL for the dataset, which
is: https://zenodo.org/record/3528329/files/narps_origdata_1.0.tgz.
Results (automatically generated figures, results and output logs) for
image analyses are available for anonymous download at https://doi.
org/10.5281/zenod0.3709275.

Code availability

Code for all analyses of the reports and statistical maps submitted by
the analysis teams is openly shared in GitHub (https://github.com/
poldrack/narps).Image-analysis code wasimplemented within aDocker
container, with software versions pinned for reproducible execution
(https://hub.docker.com/r/poldrack/narps-analysis/tags). Python code
was automatically tested for quality using the flake8 static analysis tool
and the codacy.com code quality assessment tool, and the results of
theimage-analysis workflow were validated using simulated data. The
image-analysis code wasindependently reviewed by an expert who was
notinvolved in writing the original code. Prediction market analyses
were performed using Rv.3.6.1; packages were installed using the check-
point package, whichreproducibly installs all package versions as of a
specified date (13 August 2019). Analyses reported in this manuscript
were performed using code release v.2.0.3 (https://doi.org/10.5281/
zenodo.3709273). Although not required to, several analysis teams
publicly shared their analysis code. Extended Data Table 3d includes
these teams along with the link to their code.
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Extended DataFig.1|Voxels overlap. Maps showing ateach voxel the
proportion ofteams (out of n= 65 teams) that reported significant activations
intheir thresholded statistical map, for each hypothesis (labelled H1-H9),
thresholded at10% (thatis, voxels with no colour were significant in fewer than
10% of teams). + or —refers to the direction of effect; gain or loss refers to the
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effect being tested; and equalindifference (EI) or equal range (ER) refers to the
group being examined or compared. Hypotheses1and 3, as well as hypotheses
2and 4, share the same statistical maps as they relate to the same contrastand
experimental group but different regions (see Extended Data Table 1). Images
canbeviewed at https://identifiers.org/neurovault.collection:6047.
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Extended DataFig.2|Variability of whole-brain unthresholded maps for reported by the analysis teams; row colours denote cluster membership.
hypotheses2and4-9.Foreach hypothesis, we presentaheat map based on Maps are thresholded at anuncorrected value of z>2 for visualization.
Spearman correlations between unthresholded statistical maps (n=64), Unthresholded maps for hypotheses 2 and 4 areidentical (as they both relate to
clustered according to their similarity, and the average of unthresholded thesame contrast and group but differentregions), and the colours represent

images for each cluster (cluster coloursintitles referto coloursinleft marginof ~ reportedresults for hypothesis 2. For hypotheses1and 3, see Fig.2.
heat map). Column colours represent hypothesis decisions (green, yes; red, no)
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a Estimated between-team variability (tau)
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correction for FDR (P<0.05). Colour bar reflects statistical value (z) for the
meta-analysis. Hypotheses1and 3, as well as hypotheses 2 and 4, share the same
unthresholded maps, asthey relate to the same contrast and group but
differentregions (see Extended Data Table 1). Images can be viewed at
https://identifiers.org/neurovault.collection:6051.

statistical maps. n=64.a, Maps of estimated between-team variability (tau) at
eachvoxel for each hypothesis. b, Results of theimage-based meta-analysis.

A consensus analysis was performed on the unthresholded statistical maps to
obtainagroup statistical map for each hypothesis, accounting for the
correlationbetween teams owing to the same underlying data (see Methods).
Maps are presented for each hypothesis, showing voxels (in colour) inwhich
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Hypothesis N voxels in ROI reporting activation (pvlitg: gg':i?/iti:qo) with(igg?tion (n voxels in ROI)
1 3402 0.371 0.734 0.594 0
2 3402 0.214 0.391 0.766 7
3 173 0.229 0.156 0.344 0
4 173 0.329 0.234 0.609 7
5 3402 0.843 0.906 0.859 2101
6 3402 0.329 0.562 0.359 39
7 672 0.057 0.062 0.172 0
8 672 0.057 0.016 0.125 0
9 672 0.057 0.047 0.094 0

Extended DataFig. 4 |Results of the consistent thresholding and ROI
selectionanalysis.n=64.a, Activation for each hypothesis as determined
using consistent thresholding (black, P<0.001and cluster size (k) >10 voxels;
blue, FDR correction with P<0.05) and ROl selection across teams (y axis),
versus theactual proportion of teams reportingactivation (xaxis). Numbers
nextto eachsymbolrepresent the hypothesis number for each point. b, Results

fromre-thresholding of unthresholded maps, using either uncorrected values
withthethreshold (P<0.001, k>10) or FDR correction (Prpr <5%) and common
anatomical ROIs for each hypothesis. Ateamis recorded as having an
activationif one or more significant voxels are found in the ROI. Results for
image-based meta-analysis (IBMA) for each hypothesis are presented, also
thresholded at Py < 5%.
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a
Effect Beta (full t (full p (full Beta (no t (no p (no
ec model) model) model) interaction) interaction) interaction)
Intercept 0.44 64.12 0.00 0.41 74.61 0.00
Time 0.00 3.38 0.00 0.00 12.48 0.00
Teams -0.29 -29.50 0.00 -0.22 -45.35 0.00
Time X Teams 0.00 7.78 0.00
Adjusted R-squared 0.35 0.34
b
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Extended DataFig. 5| Prediction markets over time. n=240 observations
(10 days x24 h).a, Panel regressions. The table summarizes the results of
preregistered fixed-effects panel regressions of the absolute errors of the
predictions (thatis, the absolute deviation of the market price from the
fundamental value) on an hourly basis (average price of all transactions within
anhour) ontime and prediction marketindicators. Standard errors were
computed using arobust estimator. b, Market prices for each of the nine

hypotheses separated for the team members (green) and non-team members
(blue) prediction markets. The figure shows the average prices of the
prediction market per hour, separated for the two prediction markets, for the
time the markets were open (10 days, thatis, 240 h). The grey lineindicates the
actualshare of the analysis teams that reported a significant result for the
hypothesis (thatis, the fundamental value).



Extended Data Table 1| Hypotheses and results

) . Fraction of teams Median Median similarity
Hypothesis description . - ) -
reporting a significant result  confidence level estimation
# Positive parametric effect of gains in the vmPFC 0.371 7 7
(equal indifference group) ' (2 (1.5)
# Positive parametric effect of gains in the vmPFC 0.214 7 7
(equal range group) (1.5) (1)
# Positive parametric effect of gains in the ventral striatum 0229 6 7
(equal indifference group) ’ (1) (1)
44 Positive parametric effect of gains in the ventral striatum 0.329 6 7
(equal range group) (1) (1)
#5 Negative parametric effect of losses in the vmPFC 0.843 8 8
(equal indifference group) ' (1) (1)
Negati ic eff fl in th PF 7 7
#6 egative parametric effect of losses in the vmPFC 0.329
(equal range group) (1) (1)
#7 Positive parametric effect of losses in the amygdala 0.057 7
(equal indifference group) (1) (1)
#8 Positive parametric effect of losses in the amygdala 0.057 7 8
(equal range group) (1) (1)
#9 Greater positive response to losses in amygdala 0.057 6 7
(equal range group vs. equal indifference group) ' (1) (1)

Each hypothesis is described along with the fraction of teams that reported a whole-brain-corrected significant result (out of n = 70 teams) and two measures reported by the analysis teams for
the specific hypothesis: (1) How confident are you about this result? (2) How similar do you think your result is to the other analysis teams? Both of these ordinal measures are rated on a scale of
1-10, and the median values are presented together with the median absolute deviation in brackets. vmPFC, ventromedial prefrontal cortex. See Supplementary Information for analysis of the
confidence level and similarity estimation.
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Extended Data Table 2 | Results submitted by analysis teams

Team ID Hi H2 H3 H4 H5 H6 H7 H8 H9 Est. smoothing Package fMRIPrep Testing Movement
osMQ 8 6 8 6 7 7 7 7 6 13.14 FSL No Non-parametric Yes
0Cc7Q 7 7 8 8 8 7 10 10 9 8.68 Other Yes Non-parametric Yes
OED6 7 9 8 7 8 8 9 9 6 7.86 SPM No Parametric Yes
OH5E 4 7 7 6 8 5 8 7 1 1417 SPM No Parametric No
014U 4 7 6 8 9 9 9 9 9 8.69 SPM No Parametric Yes
0JO0 7 5 5 5 5 5 5 5 5 8.12 Other Yes Parametric Yes

16IN 8 7 6 6 8 7 8 6 6 Other Yes Other No
1KOE 7 9 6 6 8 7 7 6 9 Other No Non-parametric Yes
1KB2 6 6 8 8 5 5 8 8 7 13.06 FSL No Parametric Yes
1POY 8 8 1 1 8 8 5 5 5 9.13 SPM No Parametric No
2788 4 6 7 7 7 7 6 8 4 11.37 AFNI No Parametric Yes
2T6S 8 9 6 6 10 9 7 8 10 14.93 SPM Yes Parametric Yes
2T7P 8 8 8 8 8 8 8 8 8 7.66 Other No Other Yes
3C6G 6 7 7 5 8 8 8 8 8 14.26 SPM No Parametric Yes
3PQ2 9 8 7 7 7 8 8 8 7 5.79 FSL No Parametric Yes
3TR7 2 2 3 4 8 5 8 6 5 17.4 SPM Yes Parametric Yes
43FJ 3 83 5 5 10 10 10 10 10 10.66 FSL No Parametric Yes
46CD 9 8 5 8 9 8 9 9 5 10.92 Other No Parametric Yes
4872 7 5 6 6 9 9 7 8 7 6.65 FSL Yes Parametric No
4TQ6 7 9 10 9 7 8 10 10 9 14.88 FSL Yes Non-parametric No
50GV i0 10 10 10 10 10 10 10 10 10.26 FSL Yes Parametric No
51PW 8 8 8 8 8 8 6 6 7 11.15 FSL Yes Parametric Yes
5G9K 7 7 7 7 7 7 7 7 7 SPM Yes Parametric Yes
6FH5 9 2 8 8 10 8 8 9 9 12.22 SPM No Parametric Yes
6VV2 8 8 8 6 9 7 8 7 6 7.2 AFNI No Parametric Yes
80GC 9 9 8 4 3 9 6 5 4 4.02 AFNI Yes Parametric Yes
94GU 8 8 8 8 8 8 8 8 8 11.19 SPM No Parametric Yes
98BT 9 7 7 8 9 7 8 8 8 11.48 SPM No Parametric Yes
9Q6R 10 10 10 10 10 10 8 8 8 10.28 FSL No Parametric Yes
9T8E 5 5 5 5 5 5 5 5 4 9.85 SPM Yes Non-parametric Yes
9U7M 7 9 9 9 9 7 9 7 7 14.78 Other No Parametric Yes
AO86 7 7 7 7 7 7 7 7 7 7.49 Other Yes Non-parametric Yes
B230 6 6 7 7 8 7 6 6 8 3.32 FSL Yes Non-parametric No
B516 10 10 5 5 10 6 8 7 6 9.84 FSL Yes Non-parametric Yes
Cc22u 8 7 5 8 9 8 8 8 8 11.16 FSL No Parametric No
C88N 7 8 7 4 9 7 8 8 6 11.62 SPM Yes Parametric No
DC61 5 1 5 2 9 5 5 5 5 9.58 SPM Yes Parametric Yes
E3B6 3 7 6 6 8 8 7 7 7 12.8 SPM Yes Parametric Yes
E6R3 5 5 7 & 4 4 7 7 7 9.28 Other Yes Other Yes
107H 3] 3 3 3 9 9 9 9 9 5.59 Other Yes Non-parametric No
152Y 8 8 8 8 8 8 8 8 8 11.42 FSL No Non-parametric Yes
19D6 7 7 7 7 1 7 7 6 7 6.21 AFNI No Parametric Yes

1220 7 7 7 7 7 7 7 6 6 21.28 Other No Parametric No
J7F9 9 8 9 7 9 7 9 9 9 14.88 SPM Yes Parametric Yes
K9P0 i0 10 10 5 10 8 9 9 10 8.05 AFNI Yes Parametric Yes
L1A8 8 5 7 7 8 8 3 8 3 SPM No Parametric Yes
L3Vv8 9 9 9 9 9 9 9 9 9 14.74 SPM No Parametric No
L7J7 10 9 9 5 8 8 8 9 8 11.76 SPM Yes Parametric Yes
L9G5 5 4 4 6 10 10 9 9 7 7.22 FSL No Parametric No
O03M 3 8 8 2 8 7 7 7 7 3.47 AFNI Yes Non-parametric Yes
021U 8 8 8 8 8 8 8 8 8 8.26 FSL Yes Parametric Yes
O6R6 8 8 8 8 8 8 8 8 8 3.06 FSL Yes Non-parametric No
P5F3 3 5 7 7 4 4 6 6 7 12.94 FSL No Parametric Yes
Q584 9 9 9 9 9 9 9 9 9 16.24 FSL No Parametric No
Q600 7 8 8 9 9 8 8 6 7 14.58 SPM Yes Parametric Yes
R42Q 5 5 6 6 6 6 7 8 8 12.73 Other No Parametric Yes
R5K7 6 8 8 7 9 7 8 8 7 12.06 SPM No Parametric Yes
R7D1 4 7 5) 5] 9 5 8 9 8 8.93 Other Yes Non-parametric Yes
R9K3 5 3 2 5 8 5 3 4 5 11.77 SPM Yes Parametric Yes
SM54 5 9 5 8 8 6 8 8 8 7.05 Other Yes Parametric Yes
T54A 5 9 2 6 9 9 5 5 5 12.28 FSL Yes Non-parametric No
u26C 8 8 8 8 10 8 8 8 9 10.38 SPM Yes Parametric Yes
ul76 i0 6 10 10 10 6 10 10 5 6.6 AFNI Yes Parametric Yes
UK24 4 4 4 4 4 4 4 4 4 10.76 SPM No Parametric No
V55J 4 5 7 7 4 7 5 7 7 12.85 SPM No Parametric No
VG39 6 7 8 8 10 7 9 6 5 SPM Yes Parametric No
X19V 6 7 8 5 9 6 9 9 9 8.48 FSL Yes Parametric Yes
X1Y5 6 6 7 7 8 6 8 8 8 8.69 Other Yes Non-parametric Yes
X124 8 6 4 4 9 5 4 4 4 Other No Non-parametric Yes
XU70 4 5 8 9 9 9 6 8 8 717 FSL No Parametric Yes

For each team, the left section of the table represents the reported binary decision (green, yes; red, no) and how confident they were in their result (from 1 (not at all confident) to 10 (extremely
confident)) for each hypothesis (H1-H9). The right section displays the information included for each team in the statistical model for hypothesis decisions. Estimated (est.) smoothing values
represent full width at half-maximum (FWHM); teams with a blank value were excluded from further analysis. Note that three teams changed their decisions after the end of the project: team
L3V8 changed its decision for hypothesis 6 from yes to no; team VG39 changed its decisions for hypotheses 3, 4 and 5 from yes to no; and team U26C changed its decision for hypothesis 5 from
yes to no. Results throughout the paper and in this table reflect the final results as they were reported at the end of the project (that is, before this change), as prediction markets were based on
those results.



Extended Data Table 3 | Data links and analysis-related tables

a b
Team ID  Collection | Team ID  Collection Team ID Exclusion reason Unthresholded Thresholded
maps excluded maps excluded
08M 4953 C88N 4812
Q 1KOE Used surface-based analysis X X
0Cc7Q 5652 DCé61 4963 (only provided data for cortical ribbon)
OED6 4994 E3B6 4782
L1A8 Not in MNI standard space X X
OH5E 4936 E6R3 4959
014U 4938 107H 5001 VG39 Performed small volgme corrgcted X X
instead of whole-brain analysis
0JO0 4807 152Y 4933
Used surface-based analysis
X1z4 X X
16IN 4927 1906 4978 (only provided data for cortical ribbon)
1KOE 4974 1220 4979
16IN Values in the unthresholded images X
1KB2 4945 J7F9 4949 are not z / t stats
1POY 5649 K9P0 4961
5GOK Values in the unthresholded images X
27SS 4975 L1A8 5680 are not z / t stats
2T6S 4881 L3v8 4888
2T7P 4917 L7J7 4866 Used a method which does not create
>T7P thresholded images (and are therefore X
3C6G 4772 L9G5 5173 not included in the analyses of the
thresholded images)
3PQ2 4904 O03M 4972
3TR7 4966 021U 4779
43FJ 4824 O6R6 4907
46CD 5637 P5F3 4967 ¢
4822 5665 Q58J 5164 Effects Chi-squared P value Delta R2
4TQ6 4869 Q600 4968 ]
Hypothesis 185.390 0.000 0.350
50GV 4735 R42Q 5619
51PW 5167 REK7 4950 Estimated smoothness 13.210 0.000 0.040
5G9K 4920 R7D1 4954 Used fMRIPprep data 2.270 0.132 0.010
BFH5 5663 R9K3 4802 Software package 13.450 0.004 0.040
6VV2 4883 SM54 5675
Multiple correction method 7.500 0.024 0.020
80GC 4891 T54A 4876
94GU 5626 U26C 4820 Movement modeling 1.160 0.281 0.000
98BT 4988 ui76 4821
9Q6R 4765 UK24 4908 d
9T8E 4870 V55J 4919
Team ID Link to shared analysis codes
9U7M 4965 VG39 5496
16IN https://github.com/jennyrieck/NARPS
AO86 4932 X19v 4947
B230 4984 X1Y5 4898 2T7P https://osf.io/3b57r
B516 4941 X124 4951 E3B6 doi.org/10.5281/zenodo.3518407
Cc22u 5653 XU70 4990 Q58J https://github.com/amrka/NARPS_Q58J

a, Numbers of public NeuroVault collections of all analysis teams https://neurovault.org/collections/. b, Descriptions of teams that were excluded from the analyses of statistical maps. €, Sum-
mary of mixed-effects logistic regression modelling of decision outcomes (n = 64 per hypothesis) as a function of different factors including the hypothesis (1-9) and various aspects of statisti-
cal modelling (for modelling details see https://github.com/poldrack/narps/blob/master/ImageAnalyses/DecisionAnalysis.Rmd). d, Links to shared analysis code of some of the analysis teams.


https://neurovault.org/collections/
https://github.com/poldrack/narps/blob/master/ImageAnalyses/DecisionAnalysis.Rmd
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Extended Data Table 4 | Variability of statistical maps across teams

a
Hypothesis Minimum sig. voxels Maximum sig. voxels Median sig. voxels N empty images
1 0 118181 1940 8
2 0 135583 8120 2
3 0 118181 1940 8
4 0 135583 8120 3
5 0 76569 6527 11
6 0 72732 167 25
7 0 147087 9383 8
8 0 129979 475 16
9 0 49062 266 29
b
Cluster1 Cluster2 Cluster3
Hypothesis C(():](:::)O n
Correlation Cluster size Correlation Cluster size Correlation Cluster size

143 0.394 0.670 50 0.680 7 0.095 7

2+4 0.521 0.736 43 0.253 14 0.659 7
5 0.485 0.777 41 0.329 20 0.342 3
6 0.259 0.442 47 0.442 12 0.156 5
7 0.487 0.851 31 0.466 25 0.049 8
8 0.302 0.593 36 0.256 23 -0.044 5
9 0.205 0.561 47 0.568 8 0.106 9

a, Variability in the number of significantly (sig.) activated voxels reported across teams (n = 65 teams). b, Mean Spearman correlation between the unthresholded statistical maps for all pairs of
teams and separately for pairs of teams within each cluster, for each hypothesis (n = 64 teams).



Extended Data Table 5 | Results of prediction markets and additional data

a
Hypothesis Fv (¢]] Non-teams market prediction = Teams market prediction
1 0.37 [0.26-0.48] 0.727 * 0.814 *
2 0.21 [0.12-0.31] 0.73* 0.753 *
3 0.23 [0.13-0.33] 0.881 * 0.743 *
4 0.33 [0.22-0.44] 0.882 * 0.789 *
5 0.84 [0.76-0.93] 0.686 * 0.952 *
6 0.33 [0.22-0.44] 0.685 * 0.805 *
7 0.06 [0.00-0.11] 0.563 * 0.073
8 0.06 [0.00-0.11] 0.584 * 0.274 *
9 0.06 [0.00-0.11] 0.476 * 0.188 *
b
Hypothesis 1 2 3 4 5 6 7 8 9
Spearman rho 0.58 0.56 0.58 0.64 0.47 0.74 0.23 0.37 0.31
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.01 0.02
Share of consistent holdings 0.71 0.68 0.70 0.80 0.89 0.74 0.80 0.80 0.75
Z (signed rank test) 3.40 2.78 2.82 4.24 6.81 3.24 4.34 4.34 3.64
p-value (signed rank test) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average holdings if consistent 5.61 21.14 25.80 13.11 -115.50 7.31 34.61 24.23 23.54
Average holdings if inconsistent 1.04 -6.90 -8.03 0.03 18.26 1.58 -14.63 -8.29 -11.61
[+
Hypothesis Tokens invested Volume # Traders # Transactions  Tokens invested Volume # Traders  # Transactions
(Non-teams) (Non-teams) (Non-teams) (Non-teams) (Teams) (Teams) (Teams) (Teams)
1 8.568 20.175 55 139 12.643 25.671 64 213
2 10.51 22.544 53 98 11.632 22.908 58 171
3 12.818 24.709 58 132 7.773 15.837 52 141
4 11.134 20.397 49 112 8.126 15.479 52 127
5 6.873 14.636 38 71 14.48 30.76 76 244
6 6.806 12.663 35 72 8.097 16.676 46 134
7 7.99 15.209 41 98 7.131 15.864 52 160
8 8.791 19.072 45 91 7.085 14.598 52 141
9 10.427 21.118 50 131 9.506 18.812 56 178

a, Summary of the prediction market results. FV refers to the fundamental value, that is, the actual fraction of teams (out of n = 70 teams) that reported significant results for the hypothesis.

Cl refers to the 95% confidence interval corresponding to the fundamental value (estimated with a normal approximation to the binomial distribution). Values marked with an asterisk are not
within the corresponding 95% Cl. b, Consistency of traders’ holdings and team results. The top two rows show two-sided Spearman rank correlations between traders’ final holdings and the
binary result reported by their team, and the corresponding P value for each hypothesis. The bottom five rows show the share of traders’ holdings that are consistent with the results reported by
their team. Consistent refers to positive (negative) holdings if the team reported a significant (non-significant) result; zand P values refer to Wilcoxon signed-rank tests for the share of consistent
holdings being equal to 0.5; and average holdings if (in)consistent refer to the mean final holdings, separated for consistent and inconsistent traders. ¢, Additional data for each of the nine
hypotheses. Tokens invested indicates the average number of tokens invested per transaction; volume refers to the mean number of shares bought or sold per transaction; # traders refers to the
number of traders who bought or sold shares of the particular asset at least once; and # transactions describes the overall number of transactions recorded.
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Data collection A full description of the experimental procedures, validations and the fMRI dataset is available in a Data Descriptor (https://
doi.org/10.1038/s41597-019-0113-7). Code used for fMRI data collection are available at https://github.com/rotemb9/
NARPS_scientific_data.

Data analysis Fully reproducible code for the analyses of the analysis teams' submitted results and statistical maps, as well as the prediction markets,
are available at DOI: 10.5281/zenodo.3709273. The full list of software and versions used within the code are available in the dockerfile:
https://github.com/poldrack/narps/blob/master/Dockerfile
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Research sample The fMRI dataset included nueroimaging and behavioral data of 108 participants. Demographic information of the participants can be
found at DOI:10.18112/openneuro.ds001734.v1.0.4.
70 analysis teams analyzed the dataset. 96 “team members” and 91 “non-team members” signed up to participate in the prediction
markets. N = 83 “team members” and N = 65 “non-team members” actively participated in the markets. Members of the analysis teams
and traders in the predictions market were researchers in the field from around the world.

Sampling strategy Relevant information for the fMRI dataset is available at the Data Descriptor (https://doi.org/10.1038/s41597-019-0113-7). With regard
to the number of analysis teams and traders in the prediction markets, we aimed to recruit as many as possible within the time frame.

Data collection Relevant information for the fMRI dataset is available at the Data Descriptor (https://doi.org/10.1038/s41597-019-0113-7). Shortly, data
was collected using MRI scanner and computers.

Timing The fMRI dataset was collected between November 2017 and May 2018. Analysis teams were recruited and analyzed the data between
November 2018 and March 2019. The prediction markets were open between May 2nd to May 12th 2019.

Data exclusions One team was excluded from all analyses since their reported results were not based on a whole-brain analysis as instructed. Of the
remaining 69 teams, thresholded maps of 65 teams and unthresholded (z / t) maps of 64 teams were included in the analyses (see
Extended Data Table 3b for detailed reasons for exclusion of the other teams).

Non-participation 12 out of the 82 analysis teams that signed the non-disclosure form and were provided with access to the data did not submit their
results by the deadline. 13 traders in the "team members" and 26 traders in the "non-team members" prediction markets registered but
did not actively participate in the prediction markets.

Randomization fMRI dataset- participants were pseudo-randomly (alternately) assigned to one of two experimental conditions (Equal Indifference or
Equal Range). Analysis teams were not allocated into experimental groups.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
[] Antibodies X[ ] chip-seq
[] Eukaryotic cell lines XI|[ ] Flow cytometry
|:| Palaeontology |:| MRI-based neuroimaging

[] Animals and other organisms
[X] Human research participants

[] clinical data

XOXXKXX &

Human research participants

Policy information about studies involving human research participants

Population characteristics fMRI dataset- demographic information of the participants can be found at DOI:10.18112/openneuro.ds001734.v1.0.4.
108 participants where included in the dataset:
54 in the Equal Indifference group (30 females, mean age = 26.06 years, SD age = 3.02 years)
and 54 in the Equal Range group (30 females, mean age = 25.04 years, SD age = 3.99 years).
All participants were right-handed, had normal or corrected-to-normal vision and reported no history of
psychiatric or neurologic diagnoses, or use any medications that would interfere with the experiment.

8107 120120




Recruitment

Ethics oversight

Note that full information on the ap

Analysis teams were recruited via social media, mainly Twitter and Facebook, as well as during the 2018 annual meeting of The
Society for Neuroeconomics. Prediction market traders were recruited via social media (mainly Facebook and Twitter) and e-
mails. This recruitment method may increase the chances of specific researchers to participate in an analysis team or in the
prediction markets, for example researchers that are more active in social media or attended the 2018 meeting of The Society
for Neuroeconomics. Researchers who advocate for replication attempts and "open science" practices may also be more inclined
to join such study. However, our results strongly suggest that they were not biased. For example, the fact that several
hypotheses were only affirmed by roughly 5% of teams, while Hypothesis #5 was affirmed by 84% of teams, suggests that there
was no overall bias towards either affirmation or rejection of hypotheses. In addition, each of the 70 analysis teams chose to use
a different analysis pipeline, which suggests evidence against a potential bias in methods used by the specific analysis teams that
joined the study. With regard to the prediction markets, traders that were exposed to the recruitment ads on social media may
be biased with regard to their predictions, but as there is a debate in the published literature regarding most of the hypotheses
included in our study, we do not have a specific reason to assume such bias.

MRI data collection was approved by the Helsinki committee at Sheba Tel Hashomer Medical Center and the ethics committee at
Tel Aviv University, and all participants gave written informed consent (as described in the Scientific Data Descriptor of this
dataset). The Board for Ethical Questions in Science at the University of Innsbruck approved the data collection in regards of the
prediction markets, and certified that the project is in correspondence with all requirements of the ethical principles and the
guidelines of good scientific practice. The Stanford University IRB determined that the analysis of the submitted team results did
not meet the definition of human subject research, and thus no further IRB review was required.

proval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging
Experimental design
Design type Task

Design specifications

Behavioral performance meas
Acquisition

Imaging type(s)

Field strength

The fMRI dataset was published in a Data Descriptor (https://doi.org/10.1038/s41597-019-0113-7)

ures  The fMRI dataset was published in a Data Descriptor (https://doi.org/10.1038/s41597-019-0113-7)

functional and structural

3T

Sequence & imaging parameters Imaging data were acquired using a 3T Siemens Prisma MRI scanner with a 64-channel head coil, at the Strauss Imaging

Area of acquisition

Diffusion MRI [ ] Used

Preprocessing

Preprocessing software
Normalization
Normalization template
Noise and artifact removal

Volume censoring

Center on the campus of Tel Aviv University. Functional data during the mixed gambles task were acquired using T2*-
weighted echo-planar imaging sequence with multi-band acceleration factor of 4 and parallel imaging factor (iPAT) of 2,
TR=1000ms, TE=30ms, flip angle=68 degrees, field of view (FOV)=212x212mm, in plane resolution of 2x2mm 30
degrees off the anterior commissure-posterior commissure line to reduce the frontal signal dropout27, slice thickness
of 2mm, 64 slices and a gap of 0.4mm between slices to cover the entire brain. For each functional run, we acquired
453 volumes.

Whole brain

X] Not used

Each team performed their own preprocessing. Raw data and data preprocessed with fMRIprep v. 1.1.4 were shared
with the teams.

Each team performed their own preprocessing. Raw data and data preprocessed with fMRIprep v. 1.1.4 were shared
with the teams.

Each team performed their own preprocessing. Raw data and data preprocessed with fMRIprep v. 1.1.4 were shared
with the teams.

Each team performed their own preprocessing. Raw data and data preprocessed with fMRIprep v. 1.1.4 were shared
with the teams.

Each team performed their own preprocessing. Raw data and data preprocessed with fMRIprep v. 1.1.4 were shared
with the teams.

Statistical modeling & inference

Model type and settings

Effect(s) tested

Each team performed their own analysis.

Each team performed their own analysis.
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Specify type of analysis:  [X] Whole brain [ | ROI-based [ ] Both

Statistic type for inference Each team performed their own analysis.
(See Eklund et al. 2016)

Correction Each team performed their own analysis.

Models & analysis

n/a | Involved in the study

|X| |:| Functional and/or effective connectivity

|X| |:| Graph analysis

Xl |:| Multivariate modeling or predictive analysis
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