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Variability in the analysis of a single 
neuroimaging dataset by many teams

Data analysis workfows in many scientifc domains have become increasingly 

complex and fexible. Here we assess the efect of this fexibility on the results of 

functional magnetic resonance imaging by asking 70 independent teams to analyse 

the same dataset, testing the same 9 ex-ante hypotheses1. The fexibility of analytical 

approaches is exemplifed by the fact that no two teams chose identical workfows to 

analyse the data. This fexibility resulted in sizeable variation in the results of 

hypothesis tests, even for teams whose statistical maps were highly correlated at 

intermediate stages of the analysis pipeline. Variation in reported results was related 

to several aspects of analysis methodology. Notably, a meta-analytical approach that 

aggregated information across teams yielded a signifcant consensus in activated 

regions. Furthermore, prediction markets of researchers in the feld revealed an 

overestimation of the likelihood of signifcant fndings, even by researchers with 

direct knowledge of the dataset235. Our fndings show that analytical fexibility can 

have substantial efects on scientifc conclusions, and identify factors that may be 

related to variability in the analysis of functional magnetic resonance imaging. The 

results emphasize the importance of validating and sharing complex analysis 

workfows, and demonstrate the need for performing and reporting multiple analyses 

of the same data. Potential approaches that could be used to mitigate issues related to 

analytical variability are discussed.

Data analysis workflows in many areas of science have a large number of 

analysis steps that involve many possible choices (that is, <researcher 

degrees of freedom=6,7). Simulation studies show that variability in 

analytical choices can have substantial effects on results8, but its degree 

and effect in practice is unclear. Recent work in psychology addressed 

this through a <many analysts= approach9, in which the same dataset 

was analysed by a large number of groups, uncovering substantial 

variability in behavioural results across analysis teams. In the Neuroim-

aging Analysis Replication and Prediction Study (NARPS), we applied 

a similar approach to the domain of functional magnetic resonance 

imaging (fMRI), the analysis workflows of which are complex and highly 

variable. Our goal was to assess4with the highest possible ecological 

validity4the degree and effect of analytical flexibility on fMRI results 

in practice. In addition, we estimated the beliefs of researchers in the 

field regarding the degree of variability in analysis outcomes using 

prediction markets to test whether peers in the field could predict 

the results235.

Variability of results across teams

The first aim of NARPS was to assess the real-world variability of results 

across independent teams analysing the same dataset. The dataset 

included fMRI data from 108 individuals, each performing one of two 

versions of a task that was previously used to study decision-making 

under risk10. The two versions were designed to address a debate on the 

effect of gain and loss distributions on neural activity in this task10312. 

A full description of the dataset is available in a Data Descriptor1; the 

dataset is openly available at https://doi.org/10.18112/openneuro.

ds001734.v1.0.4.

Seventy teams (69 of whom had previous fMRI publications) were 

provided with the raw data, and an optional preprocessed version of the 

dataset (with fMRIPrep13). They were asked to analyse the data to test 

nine ex-ante hypotheses (Extended Data Table 1), each consisting of a 

description of activity in a specific brain region in relation to a particular 

feature of the task. They were given up to 100 days to report whether 

each hypothesis was supported on the basis of a whole-brain-corrected 

analysis (yes or no). In addition, each team submitted a detailed report 

of the methods of analysis that they had used, together with unthres-

holded and thresholded statistical maps supporting each hypothesis 

test (Extended Data Tables 2, 3a). To perform an ecologically valid 

study testing the sources of variability that contribute to published 

literature 8in the wild9, the instructions to the teams were as minimal 

as possible. The only instructions were to perform the analysis as they 

usually would in their own research laboratory and report the binary 

decision on the basis of their own criteria for a whole-brain-corrected 

result for the specific region described in the hypothesis. The dataset, 

reports and collections were kept private until after the prediction 

markets were closed.

Overall, the rates of reported significant findings varied across 

hypotheses (Fig. 1, Extended Data Table 1). Only one hypothesis 

(hypothesis 5) showed a high rate of significant findings (84.3%), 

whereas three other hypotheses showed consistent non-significant 

findings across teams (5.7% significant findings). For the remaining 

five hypotheses, the results were variable, with 21.4% to 37.1% of teams 

reporting a significant result. The extent of the variation in results 

across teams was quantified by the fraction of teams that reported a 

result different from the majority of teams (that is, the absolute distance 

from consensus). On average across the 9 hypotheses, 20% of teams 
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reported a result that differed from the majority of teams. Given that 

the maximum possible variation is 50%, the observed fraction of 20% 

divergent results thus falls midway between complete consistency 

across teams and completely random results, demonstrating that ana-

lytical choices have a major effect on reported results.

Factors related to analytical variability

To examine the sources of the analytical variability in the reported 

binary results, we analysed the pipelines used by the teams as well as 

the unthresholded and thresholded statistical maps they provided. 

There were no two teams with identical analysis pipelines. After exclu-

sions (Extended Data Table 3b), thresholded maps of 65 teams and 
unthresholded (z- or t-statistic) maps of 64 teams were included in the 
analyses. Fully reproducible code for all analyses of the data reported 
here is available at https://doi.org/10.5281/zenodo.3709273.

Variability of reported results

A set of mixed-effects logistic regression models identified several 
analytical variables and image features that were associated with 
reported outcomes (Extended Data Table 3c). The strongest factor 
was spatial smoothness; higher estimated smoothness of the unthres-
holded statistical maps (estimated using the FMRIB Software Library 
(FSL) smoothest function) was associated with a greater likelihood 
of significant outcomes (P < 0.001, delta pseudo-R2 = 0.04; mean full 
width at half-maximum, 9.69 mm, range 2.50321.28 mm across teams). 
Notably, although the estimated smoothness was related to the width 
of the applied smoothing kernel (r = 0.71; median applied smooth-
ing 5 mm, range 039 mm across teams), the applied smoothing value 
itself was not significantly related to positive outcomes in a separate 
analysis, suggesting that the relevant smoothness arose from analytical 

steps beyond explicit smoothing (such as modelling of head motion; 
P = 0.014). An effect on outcomes was also found for the software pack-
age used (P = 0.004, delta pseudo-R2 = 0.04; n = 23 (SPM), n = 21 (FSL), 
n = 7 (AFNI) and n = 13 (other software package))4with FSL being associ-
ated with a higher likelihood of significant results across all hypotheses 
compared to SPM; odds ratio = 6.69)4and for the effect of different 
methods of multiple test correction (P = 0.024, delta pseudo-R2 = 0.02: 
n = 48 (parametric), n = 14 (nonparametric), n = 2 (other)), with para-
metric correction methods resulting in higher rates of detection than 
nonparametric methods. No significant effect was detected for the 
use of standardized preprocessed data versus custom preprocess-
ing pipelines (48% of included teams used fMRIPrep; P = 0.132) or for 
the modelling of head motion parameters (used by 73% of the teams; 
P = 0.281). Nonparametric bootstrap analyses confirmed the significant 
effect of spatial smoothness, but provided inconsistent support for 
the effects of multiple testing and software package; because of low 
power, these results should be interpreted with caution.

Variability of thresholded statistical maps

The nature of analytical variability was further explored by analysing 
the statistical maps that were submitted by the research teams. The 
thresholded maps were highly sparse. Binary agreement between thres-
holded maps over all voxels was relatively high (median per cent agree-
ment ranged from 93% to 99% across hypotheses), largely reflecting 
agreement on which voxels were not active. However, when restricted 
to voxels showing activation for any team, the overlap was very low 
(median similarity ranging from 0.00 to 0.06 across hypotheses). This 
may reflect variability in the number of activated voxels found by each 
team; for every hypothesis, the number of active voxels ranged across 
teams from zero to tens of thousands (Extended Data Table 4a). Analysis 
of the overlap between activated voxels showed that the proportion 
of teams with activation in the most frequently activated voxel for a 
given hypothesis ranged between 0.23 and 0.77 (Extended Data Fig. 1).

Variability of unthresholded statistical maps

Analysis of the correlation between unthresholded z-statistic maps 
across teams showed that for each hypothesis, a large cluster of teams 
had statistical maps that were strongly positively correlated with one 
another (Fig. 2, Extended Data Fig. 2). The mean Spearman correlation 
between all pairs of unthresholded maps (Extended Data Table 4b) was 
moderate (mean correlation range 0.1830.52 across hypotheses), with 
higher correlations within the main cluster of analysis teams (range 
0.4430.85 across hypotheses). An analysis of voxelwise heterogeneity 
across unthresholded maps (equivalent to tau-squared) demonstrated 
that inter-team variability was large4in many cases several times the 
variability expected across different datasets (Extended Data Fig. 3a).

For hypotheses 1 and 3, there was a subset of seven teams whose 
unthresholded maps were anticorrelated with those of the main clus-
ter of teams. A comparison of the average map for the anticorrelated 
cluster for hypotheses 1 and 3 confirmed that this map was highly 
correlated (r = 0.87) with the overall task-activation map, as previously 
reported1. Further analysis showed that four of these teams used mod-
els that did not properly separate the parametric effect of gain from 
overall task activation; because of the anticorrelation of value-system 
activations with task activations14, this model mis-specification led to 
an anticorrelation with the parametric effects of gain. In two cases, 
the model included multiple regressors that were correlated with 
the gain parameter, which modified the interpretation of the primary 
gains regressor, and for one additional team, modelling details were 
not available.

The discrepancy between the overall correlations of unthresholded 
maps and the divergence of reported binary results (even within the 
highly correlated cluster) suggested that the variability in regional 
results might be due to procedures related to statistical correction 
for multiple comparisons and the subjective decision of teams on the 
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Fig. 1 | Fraction of teams reporting a significant result and prediction 
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anatomical specification of regions of interest (ROIs). To test this, we 
applied a consistent thresholding method and ROI specification on 
the unthresholded maps across all teams for each hypothesis. This 
showed that even using a correction method known to be liberal and a 
standard anatomical definition for all regions, the degree of variability 
across results was qualitatively similar to that of the actual reported 
decisions (Extended Data Fig. 4).

We assessed the consistency across teams using an image-based 
meta-analysis (accounting for correlations due to common data), which 
demonstrated significant active voxels for all hypotheses except for 
hypothesis 9 after false discovery rate (FDR) correction (Extended 
Data Fig. 3b) and confirmatory evidence for hypotheses 2, 4, 5 and 6. 
These results show that inconsistent results at the individual team level 
underlie consistent results when the results of teams are combined.
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Fig. 2 | Analytical variability in whole-brain statistical results for 

hypothesis 1 (and hypothesis 3). a, Spearman correlation values between 

whole-brain unthresholded statistical maps for each team (n = 64) were 

computed and clustered according to their similarity (using Ward clustering on 

Euclidean distances). Row colours (left) denote cluster membership (purple, 
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b, Average statistical maps (thresholded at uncorrected z > 2.0) for each of the 

three clusters shown on the left in a. The probability of reporting a positive 
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Prediction markets

The second aim of NARPS was to test whether peers in the field could 
predict the results, using prediction markets in which researchers trade 
on the outcomes of scientific analyses and receive monetary payouts 
based on performance. Prediction markets have been used to assess 
the replicability of scientific hypotheses in the social sciences, and have 
revealed correlations between market prices and actual scientific out-
comes235. We performed two separate prediction markets: one involving 
members from analysis teams (8team members9 market) and another 
independent market for researchers who had not participated in the 
analysis (8non-team members9 market). The markets were open for 10 
consecutive days approximately 1.5 months after all analysis teams 
had submitted their results (which were kept confidential). On each 
market, traders were provided with tokens worth US$50, and traded 
via an online market platform on the fraction of teams that reported a 
significant result for each hypothesis (that is, the fundamental values). 
The market prices serve as measures of the aggregate beliefs of traders 
for the fraction of teams reporting a significant result for each hypoth-
esis. Overall, n = 65 traders actively traded in the non-team members 
market and n = 83 traded in the team members market. After the mar-
kets closed, traders were paid on the basis of their performance in the 
markets. The analysis of the markets was preregistered on the Open 
Science Framework (OSF) (https://osf.io/59ksz/). Note that because 
some analyses were performed on the final market prices (that is, the 
predictions of the markets), for which there is one value per hypothesis 
per market, the number of observations for each of the markets was 
low (n = 9), leading to limited statistical power. Therefore, the results 
should be interpreted with caution.

The predictions of the markets ranged from 0.073 to 0.952 (m = 0.599, 
s.d. = 0.325) in the team members market and from 0.476 to 0.882 
(m = 0.690, s.d. = 0.137) in the non-team members market. Except for 
hypothesis 7 in the team members market, all predictions were outside 
the 95% confidence intervals of the fundamental values (Fig. 1, Extended 
Data Table 5a). The Spearman correlation between the fundamental 
values and the predictions of the markets was significant for the team 
members market (r = 0.962, P < 0.001, n = 9) but not for the non-team 
members market (r = 0.553, P = 0.122, n = 9), nor between the predic-
tions of both markets (r = 0.500, P = 0.170, n = 9).

Wilcoxon signed-rank tests suggested that traders in both markets 
systematically overestimated the fundamental values (team members: 
z = 2.886, P = 0.004, n = 9; non-team members: z = 2.660, P = 0.008, 
n = 9). The result in the team members market was not driven by an 
overrepresentation of teams who reported significant results (Supple-
mentary Methods and Supplementary Results). Predictions in the team 
members market did not significantly differ from those in the non-team 
members market (Wilcoxon signed-rank test, z = 1.035, P = 0.301, n = 9), 
but as mentioned above, statistical power for this test was limited. Team 
members generally traded in the direction consistent with the results 
of their own team (Extended Data Table 5b), which may explain why 
their collective predictions were more accurate than those of non-team 
members (Fig. 1). Additional results are presented in the Supplementary 
Information (see also Extended Data Fig. 5, Extended Data Table 5).

Discussion

The analysis of a single fMRI dataset by 70 independent analysis teams, 
all of whom used different analysis pipelines, revealed substantial vari-
ability in reported binary results, with high levels of disagreement 
across teams for most of the tested hypotheses. For every hypothesis, 
at least four different analysis pipelines could be found that were used 
in practice by research groups in the field and resulted in a significant 
outcome. Our findings highlight the fact that it is hard to estimate 
the reproducibility of single studies that are performed using a sin-
gle analysis pipeline. Notably, analyses of the underlying statistical 

parametric maps on which the hypothesis tests were based revealed 
greater consistency than would be expected from those inferences, and 
significant consensus in activated regions across teams was observed 
using meta-analysis. Teams with highly correlated underlying unthres-
holded statistical maps nonetheless reported different hypothesis 
outcomes (Fig. 2). Detailed analysis of the workflow descriptions and 
statistical results that were submitted by the analysis teams identified 
several common analytical variables that were related to differential 
reporting of significant outcomes, including the spatial smoothness 
of the data (a result of multiple factors beyond the applied smoothing 
kernel), the choice of analysis software and the correction method; 
however, the last two were not consistently supported by nonparamet-
ric bootstrap analyses. In addition, we identified model-specification 
errors for several analysis teams, which led to statistical maps that 
were anticorrelated with the majority for some of the hypotheses. 
Prediction markets that were performed on the outcomes of analyses 
demonstrated a general overestimation by researchers of the likelihood 
of significant results across hypotheses4even by those researchers who 
had analysed the data themselves4reflecting a marked optimism bias 
by researchers in the field.

The substantial amount of analytical variability, and the subsequent 
variability of reported hypothesis results with the same data, demon-
strates that steps need to be taken to improve the reproducibility of 
data analysis outcomes. First, we suggest that unthresholded statistical 
maps should be shared as a standard practice alongside thresholded 
statistical maps using tools such as NeuroVault15. In the long run, the 
shared maps will allow the use of image-based meta-analysis, which 
we found to provide converging results across laboratories. Second, 
public sharing of data and analysis code should become common prac-
tice, to enable others to run their own analysis with the same data or 
to validate the code used. These practices, combined with the use of 
preregistration16 or registered reports17, will reduce researcher degrees 
of freedom but would not prevent analytical variability, as demon-
strated here; however, they would ensure that the effects of variability 
can be assessed. All of the data and code used in the current study are 
publicly available with a fully reproducible execution environment 
for all figures and results. We believe that this can serve as an example 
for future studies.

Foremost, we propose that complex datasets should be analysed 
using several analysis pipelines, and preferably by more than one 
research team. Achieving such 8multiverse analysis9 on a large scale 
will require the development of automated statistical analysis tools (for 
example, FitLins18) that can run a broad range of pipelines and assess 
their convergence. Different versions of such multiverse analysis have 
been suggested in other fields19321, but are not widely used. Analysis 
pipelines should also be validated using simulated data to assess their 
validity with regard to ground truth, and assessed for their effects on 
predictions with new data22.

Our findings emphasize the urgent need to develop new practices 
and tools to overcome the challenge of variability across analysis pipe-
lines and its effect on analytical results. Nonetheless, we maintain that 
fMRI can provide reliable answers to scientific questions, as strongly 
demonstrated in the meta-analytical results across teams along with 
numerous large-scale studies in the literature and replication of many 
findings using fMRI. Moreover, although the present investigation was 
limited to the analysis of a single fMRI dataset, it seems highly likely that 
similar variability will be present for other fields of research in which 
the data are high dimensional and the analysis workflows are complex 
and varied. The multiverse approach combined with meta-analysis 
is suggested as a promising solution. Notably, transparent scientific 
projects that involve community-wide self-assessment4such as this 
one4are definitive evidence of the awareness of researchers of repro-
ducibility concerns, and the desire to assess their effect and improve 
practices accordingly (for additional discussion see Supplementary 
Discussion).

https://osf.io/59ksz/
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Methods

Data reporting

No statistical methods were used to predetermine sample size. The 
experiments were not randomized and the investigators were not 
blinded to allocation during experiments and outcome assessment.

fMRI dataset

To test the variability of neuroimaging results across analysis pipe-
lines used in practice in research laboratories, we distributed a single 
fMRI dataset to independent analysis groups from around the world, 
requesting them to test nine predefined hypotheses. The full dataset 
is publicly available in the Brain Imaging Data Structure (BIDS)23 on 
OpenNeuro (https://doi.org/10.18112/openneuro.ds001734.v1.0.4) 
and is described in detail in a Data Descriptor1.

In brief, the fMRI dataset consisted of data from 108 participants 
who performed a mixed gambles task, which is often used to study 
decision-making under risk. In this task, participants are asked on each 
trial to accept or reject a presented prospect. The prospects consist of 
an equal 50% chance of either gaining a given amount of money or los-
ing another, similar or different, amount of money. Participants were 
divided into two groups: in the 8equal indifference9 group (n = 54) the 
potential losses were half the size of the potential gains10 (reflecting the 
8loss aversion9 phenomenon, in which people tend to be more sensitive 
to losses than to equal-sized gains24); and in the 8equal range9 group 
(n = 54) the potential losses and the potential gains were taken from 
the same scale11,12. The two groups were used to resolve inconsistencies 
of previous published results.

The dataset was distributed to the teams via Globus (https://www.
globus.org/). The distributed dataset included raw data of 108 partici-
pants (n = 54 for each experimental group), as well as the same data 
after preprocessing with fMRIPrep v.1.1.4 (RRID: SCR_016216)13. The 
fMRIPrep preprocessing mainly included brain extraction, spatial 
normalization, surface reconstruction, head motion estimation and 
susceptibility distortion correction. Both the raw and the preprocessed 
datasets underwent quality assurance (described in detail in the Data 
Descriptor1).

MRI data collection was approved by the Helsinki committee at 
Sheba Tel Hashomer Medical Center and the ethics committee at Tel 
Aviv University, and all participants gave written informed consent (as 
described in the Data Descriptor of this dataset1). The Board for Ethical 
Questions in Science at the University of Innsbruck approved the data 
collection in the prediction markets, and certified that the project com-
plied with all requirements of the ethical principles and guidelines of 
good scientific practice. The Stanford University Institutional Review 
Board (IRB) determined that the analysis of the submitted team results 
did not meet the definition of human subject research, and thus no 
further IRB review was required. We have complied with all relevant 
ethical regulations.

Predefined hypotheses

Previous studies with the mixed gambles task suggested that activity 
in the ventromedial prefrontal cortex and ventral striatum, among 
other brain regions, is related to the magnitude of the potential gain10. 
A fundamental open question in the field of decision-making under risk 
is whether the magnitude of the potential loss is coded by the same 
brain regions (through negative activation), or by regions related to 
negative emotions, such as the amygdala10312. The specific hypotheses 
included in NARPS were chosen to address this open question, using two 
different designs that were used in those previous studies (that is, equal 
indifference versus equal range). Each analysis team tested the same 
nine predefined hypotheses (Extended Data Table 1). Each hypothesis 
predicted fMRI activations in a specific brain region, in relation to a 
specific aspect of the task (gain or loss amount) and a specific group 
(equal indifference or equal range, or a comparison between the two 

groups). Therefore, for each hypothesis, the maximum sample size was 
54 participants (hypotheses 138) or 54 participants per group in the 
group comparison (hypothesis 9). Although the hypotheses referred 
to specific brain regions, analysis teams were instructed to report their 
results on the basis of a whole-brain analysis (not an ROI-based analysis, 
as is sometimes used in fMRI studies).

Recruitment of and instructions to analysis teams

We recruited analysis teams via social media, mainly Twitter and Face-
book, as well as during the 2018 annual meeting of the Society for Neu-
roeconomics. Ninety-seven teams registered to participate in the study. 
Each team consisted of up to three members. To ensure independent 
analyses across teams, and to prevent influencing the subsequent pre-
diction markets, all team members signed an electronic nondisclosure 
agreement that they would not release, publicize or discuss their results 
with anyone until the end of the study. All team members of 82 teams 
signed the nondisclosure form. They were offered co-authorship on 
the present publication in return for their participation.

Analysis teams were provided with access to the full dataset. They 
were asked to freely analyse the data with their usual analysis pipe-
line to test the nine hypotheses and report a binary decision for each 
hypothesis on whether it was significantly supported on the basis of a 
whole-brain analysis. Although the hypotheses were region-specific, 
we clearly requested a whole-brain analysis result to avoid the need of 
teams to create and share masks of ROIs. Each team also filled in a full 
report of the analysis methods used (following the guidelines of the 
Committee on Best Practices in Data Analysis and Sharing; COBIDAS25) 
and created a collection on NeuroVault15 (RRID: SCR_003806) with one 
unthresholded and one thresholded statistical map for each hypothe-
sis, on which their decisions were based (teams could optionally include 
additional maps in their collection; see Extended Data Table 3a for links 
for collections). For each result (that is, the binary decision on whether 
a given hypothesis was supported by the data or not), teams further 
reported how confident they were in this result and how similar they 
thought their result was to the results of the other teams (each measure 
was an integer between 1 (not at all) to 10 (extremely)). These measures 
are presented in Extended Data Tables 1, 2. To measure the variability 
of results in an ecological manner, instructions to the analysis teams 
were minimized and the teams were asked to perform the analysis as 
they usually would in their own laboratory and to report the binary 
decision on the basis of their own criteria.

Seventy of the 82 teams submitted their results and reports by the 
final deadline (15 March 2019; overall teams were given up to 100 days, 
varying based on the date they joined, to complete and report their 
analysis). The dataset, reports and collections were kept private until 
the end of the study and closure of the prediction markets. To avoid 
identification of the teams, each team was provided with a unique 
random four-character ID.

Overall, 180 participants were part of NARPS analysis teams. Out of 
70 analysis teams, 5 teams consisted of 1 member, 20 teams consisted 
of 2 members and 45 teams consisted of 3 members. Out of the 180 
team members, there were 62 principal investigators, 43 post-doctoral 
researchers, 53 graduate students and 22 members from other positions 
(for example, data scientists or research analysts).

Factors related to analytical variability

To explore the factors related to the variability in results across teams, 
the reports of all teams were manually annotated to create a table 
describing the methods used by each team. Code for all analyses of 
the reports and statistical maps submitted by the analysis teams is 
openly shared in GitHub (https://github.com/poldrack/narps). Analyses 
reported in this manuscript were performed using code release v.2.0.3 
(https://doi.org/10.5281/zenodo.3709273). We performed exploratory 
analyses of the relation between the reported hypothesis outcomes 
and several analytical choices and image features using mixed-effects 
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logistic regression models implemented in R, with the lme4 package26. 
The factors included in the model were: hypothesis number, estimated 
smoothness (based on the smoothest function in FSL), use of stand-
ardized preprocessing, software package, method of correction for 
multiple comparisons and modelling of head movement. The teams 
were modelled as a random effect. One team submitted results that 
were not based on a whole-brain analysis as requested, and therefore 
their data were excluded from all analyses.

Inferences using logistic regression models were confirmed using 
nonparametric bootstrap analysis, resampling data team-wise to main-
tain random effect structure. For the continuous or binary regressors 
(smoothness, movement modelling and use of fMRIPrep data), we 
computed bootstrap confidence intervals and, as an approximate 
hypothesis test, tested whether the confidence interval includes zero. 
For the factorial variables (hypothesis, software package and multiple 
testing method), this was not possible because there is not a single coef-
ficient for the factor; in addition, for software package and multiple 
testing methods, some bootstrap samples did not contain all values of 
the factor. For these variables we instead performed model comparison 
between the full model and a reduced model excluding each factor, and 
computed the proportion of times the full model was selected on the 
basis of the model selection criterion (using both Bayesian information 
criterion and Akaike information criterion) being numerically lower 
in the full model27.

In addition, we performed exploratory analyses to examine the vari-
ability across statistical maps submitted by the teams. The unthresh-
olded and thresholded statistical maps of all teams were resampled 
to common space (FSL MNI space, 91 × 109 × 91, 2 mm isotropic) using 
nilearn28 (RRID: SCR_001362). For unthresholded maps, we used 
third-order spline interpolation; for thresholded maps, we used linear 
interpolation and then thresholded at 0.5, to prevent artefacts that 
appeared when using nearest neighbour interpolation. Of the 69 teams 
included in the analyses, unthresholded maps of 5 teams and thresh-
olded maps of 4 teams were excluded from the image-based analyses 
(see Extended Data Table 3b for details). As some of the hypotheses 
reflected negative activations4which can be represented by either 
positive or negative values in the statistical maps, depending on the 
model used4we asked the teams to report the direction of the values in 
their maps for the relevant hypotheses (5, 6 and 9). Unthresholded maps 
were corrected to address sign flips for reversed contrasts as reported 
by the analysis teams. In addition, t values were converted to z values 
with Hughett9s transform29. All subsequent analyses of the unthresh-
olded maps were performed only on voxels that contained non-zero 
data for all teams (range across hypotheses: 111,0623145,521 voxels).

We assessed the agreement between thresholded statistical maps 
using per cent agreement, that is, the per cent of voxels that have the 
same binary value. Because the thresholded maps are very sparse, 
these values are necessarily high when computed across all voxels. 
Therefore, we also computed the agreement between pairs of statisti-
cal maps only for voxels that were non-zero for at least one member of 
each pair. To further test the agreement across teams, we performed 
a coordinate-based meta-analysis with activation likelihood estima-
tion30,31 (see Supplementary Information).

We further computed the correlation between the unthresholded 
images of the 64 teams. The correlation matrices were clustered using 
Ward clustering; the number of clusters was set to three for all hypoth-
eses on the basis of visual examination of the dendrograms. A separate 
mean statistical map was then created for the teams in each cluster (see 
Fig. 2, Extended Data Fig. 2). Drivers of map similarity were further 
assessed by modelling the median correlation distance of each team 
from the average pattern as a function of several analysis decisions 
(for example, smoothing, whether or not the data preprocessed with 
fMRIPrep were used, and so on).

To assess the effect of variability in thresholding methods and ana-
tomical definitions across teams, unthresholded z maps for each team 

were thresholded using a common approach. The z maps for each team 
were translated to P values, which were then thresholded using two 
approaches: a heuristic correction (known to be liberal32), and a vox-
elwise FDR correction. Note that it was not possible to compute the 
commonly used familywise error correction using Gaussian random 
field theory because residual smoothness was not available for each 
team. We then identified whether there were any suprathreshold voxels 
within the appropriate anatomical ROI for each hypothesis. The ROIs 
for the ventral striatum and amygdala were defined anatomically on 
the basis of the Harvard-Oxford anatomical atlas. As there is no ana-
tomical definition for the ventromedial prefrontal cortex, we defined 
the region using a conjunction of anatomical regions (including all 
anatomical regions in the Harvard-Oxford atlas that overlap with the 
ventromedial portion of the prefrontal cortex) and a meta-analytical 
map obtained from https://neurosynth.org/ (ref. 33) for the search term 
<ventromedial prefrontal=.

An image-based meta-analysis was used to quantify the evidence 
for each hypothesis across analysis teams (Extended Data Fig. 3b), 
accounting for the lack of independence due to the use of a common 
dataset across teams. See Supplementary Information for a description 
of the image-based meta-analysis method.

Prediction markets

The second main goal of NARPS was to test the degree to which 
researchers in the field can predict results, using prediction mar-
kets235,34. We invited team members (researchers that were members 
of one of the analysis teams) and non-team members (researchers that 
were neither members of any of the analysis teams nor members of 
the NARPS research group) to participate in a prediction market2,35 to 
measure peer beliefs about the fraction of teams reporting significant 
whole-brain-corrected results for each of the nine hypotheses. The 
prediction markets were conducted 1.5 months after all teams had 
submitted their analysis of the fMRI dataset. Thus, team members had 
information about the results of their specific team, but not about the 
results of any other team.

Similar to previous studies235, participants in the prediction markets 
were provided with monetary endowments (100 tokens, worth US$50) 
and traded on the outcome of the hypotheses through a dedicated 
online market platform. Each hypothesis constitutes one asset in the 
market, with asset prices predicting the fraction of teams reporting 
significant whole-brain-corrected results for the corresponding ex-ante 
hypothesis examined by the analysis teams using the same dataset. 
Trading on the prediction markets was incentivized, that is, traders 
were paid on the basis of their performance in the markets.

Recruitment. For the non-team members prediction market, we in-
vited participants via social media (mainly Facebook and Twitter) and 
emails. The invitation contained a link to an online form on the NARPS 
website (https://www.narps.info/) where participants could sign up 
using their email address.

Participants for the team members prediction market were invited, 
after all teams submitted their results, by an email that directed them 
to an independent registration form (with identical form fields), to 
separate participants for the two prediction markets already at the 
time of registration. Note that team members were not aware to start 
with that they would be invited to participate in a separate prediction 
market after they had analysed the data. The decision to implement a 
second market, consisting of traders with partial information about 
the fundamental values (that is, the team members) was made after the 
teams obtained access to the fMRI dataset. Thus, team members were 
only invited to participate in the market after all teams had submitted 
their analysis results. Once the registration for participating in the pre-
diction markets had been closed, we reconciled the sign-ups with the 
list of team members to ensure that team members did not mistakenly 
end up in the non-team members prediction market and vice versa.

https://neurosynth.org/
https://www.narps.info/


In addition to their email addresses, which were used as the only key 
to match registrations, accounts in the market platform and the teams9 
analysis results, registrants were required to provide the following 
information during sign-up: (i) name, (ii) affiliation, (iii) position (PhD 
candidate, post-doctoral researcher, assistant professor, senior lec-
turer, associate professor, full professor, other), (iv) years since PhD, (v) 
gender, (vi) age, (vii) country of residence, (viii) self-assessed expertise 
in neuroimaging (Likert scale ranging from 1 to 10), (ix) self-assessed 
expertise in decision sciences (Likert scale ranging from 1 to 10), (x) pre-
ferred mode of payment (Amazon.de voucher, Amazon.com voucher, 
PayPal payment), and (xi) whether they are a team member of any analy-
sis team (yes or no). The invitations to participate in the prediction 
markets were first distributed on 9 April 2019; the registration closed 
on 29 April 2019 at 16:00 UTC. Once registration closed, all participants 
received a personalized email containing a link to the web-based market 
software and their login credentials. The prediction markets opened 
on 2 May 2019 at 16:00 UTC and closed on 12 May 2019 at 16:00 UTC.

Information available to participants. All participants had access 
to detailed information about the data collection, the experimental 
protocol, the ex-ante hypotheses, the instructions given to the analysis 
teams, references to related papers and detailed instructions about the 
prediction markets via the NARPS website (https://www.narps.info/).

Implementation of prediction markets. To implement the prediction 
markets, we used a newly developed web-based framework dedicated 
for conducting continuous-time online market experiments, inspired 
by the trading platform in the Experimental Economics Replication 
Project (EERP)3 and the Social Sciences Replication Project (SSRP)4. 
Similar to these previous implementations, there were two main views 
on the platform: (i) the market overview and (ii) the trading interface. 
The market overview showed the nine assets (that is, one correspond-
ing to each hypothesis) in tabular format, including information on 
the (approximate) current price for buying a share and the number of 
shares held (separated for long and short positions) for each of the nine 
hypotheses. Via the trading interface, which was shown after clicking 
on any of the hypotheses, the participant could make investment deci-
sions and view price developments for the particular asset.

Note that initially, there was an error in the labelling of two assets 
(that is, hypotheses) in the trading interface and the overview table of 
the web-based trading platform (the more detailed hypothesis descrip-
tion available via the info symbol on the right-hand side of the overview 
table contained the correct information): hypotheses 7 and 8 mistak-
enly referred to negative rather than positive effects of losses in the 
amygdala. One of the participants informed us about the inconsistency 
between the information on the trading interface and the informa-
tion provided on the website on 6 May 2019. The error was corrected 
immediately on the same day and all participants were informed about 
the mistake on our part through a personal email notification (on 6 
May 2019, 15:28 UTC), pointing out explicitly which information was 
affected and asking them to double-check their holdings in the two 
assets to make sure that they were invested in the intended direction.

Trading and market pricing. In both prediction markets, traders were 
endowed with 100 tokens (the experimental currency unit). Once 
the markets opened, these tokens could be used to trade shares in 
the assets (that is, hypotheses). Unlike prediction markets on binary 
outcomes (for example, the outcomes of replications as in previous 
studies3,4), for which market prices were typically interpreted as the 
predicted probability of the outcome to occur36 (although see two 
previous studies for caveats37,38), the prediction markets accompa-
nying the team analyses in the current study were implemented in 
terms of vote-share-markets. Hence, the prediction market prices 
serve as measures of the aggregate beliefs of traders for the fraction of 
teams reporting that the hypotheses were supported and can fluctuate 

between 0 (no team reported a significant result) and 1 (all teams re-
ported a significant result).

Prices were determined by an automated market maker implement-
ing a logarithmic market scoring rule39. At the beginning of the markets, 
all assets were valued at a price of 0.50 tokens per share. The market 
maker calculated the price of a share for each infinitesimal transaction 
and updated the price on the basis of the scoring rule. This ensured 
both that trades were always possible even when there was no other 
participant with whom to trade and that participants had incentives 
to invest according to their beliefs40. The logarithmic scoring rule uses 
the net sales (shares held 2 shares borrowed) that the market maker has 
done so far in a market to determine the price for an infinitesimal trade 
as p=es/b/(es/b +1). The parameter b determines the liquidity provided 
by the market maker and controls how strongly the market price is 
affected by a trade. We set the liquidity parameter to b = 100, implying 
that by investing 10 tokens, traders could move the price of a single 
asset from 0.50 to about 0.55.

Investment decisions for a particular hypothesis were made from 
the market9s trading interface. In the trading overview, participants 
could see the (approximate) price of a new share, the number of shares 
they currently held (separated for long and short positions) and the 
number of tokens their current position was worth if they liquidated 
their shares. The trading page also contained a graph depicting pre-
vious price developments. To make an adjustment to their current 
position, participants could choose either to increase or decrease their 
position by a number of tokens of their choice. The trading procedures 
and market pricing are described in more detail in a previous study3.

Incentivization. Once the markets had been closed, the true 8funda-
mental value9 for each asset (that is, the fraction of teams that reported 
a significant result for the particular hypothesis) was determined and 
gains and losses were calculated as follows: if holdings in a particular 
asset were positive (that is, the trader acted as a net buyer), the payout 
was calculated as the fraction of analysis teams reporting a significant 
result for the associated hypothesis multiplied by the number of shares 
held in the particular asset; if a trader9s holdings were negative (that is, 
the trader acted as a net seller), the (absolute) amount of shares held 
was valued at the price differential between 1 and the fraction of teams 
reporting a significant result for the associated hypothesis.

Any tokens that had not been invested into shares when the market 
closed were voided. Any tokens awarded as a result of holding shares 
were converted to US dollars at a rate of 1 token = US$0.5. The final 
payments were transferred to participants during the months May to 
September 2019 in form of Amazon.com gift cards, Amazon.de gift 
cards or PayPal payments, depending on the preferred mode of pay-
ment indicated by the participants after registration for the prediction 
markets.

Participants. In total, 96 team members and 91 non-team members 
signed up to participate in the prediction markets. n = 83 team members 
and n = 65 non-team members actively participated in the markets. 
The number of traders active in each of the assets (that is, hypotheses) 
ranged from 46 to 76 (m = 56.4, s.d. = 8.9) in the team members set of 
markets and from 35 to 58 (m = 47.1, s.d. = 7.9) in the non-team mem-
bers set of markets. See Extended Data Table 5c for data about trading 
volume on the prediction markets.

Of the participants, 10.2% did not work in academia (but hold a PhD), 
34.2% were PhD students, 43.3% were post-doctoral researchers or assis-
tant professors, 7.5% were lecturers or associate professors and 4.8% 
were full professors. 27.8% of the participants were female. The average 
time spent in academia after obtaining the PhD was 4.1 years. Most of 
the participants lived in Europe (46.3%) and North America (46.3%).

Preregistration. All analyses of the prediction markets data reported 
were preregistered at https://osf.io/pqeb6/. The preregistration was 
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completed after the markets opened, but before the markets closed. 
Only one member of the NARPS research group, F. Holzmeister, had 
any information about the prediction market prices before the markets 
closed (as he monitored the prediction markets). He was not involved in 
writing the preregistration. Only two members of the NARPS research 
group, R.B.-N. and T. Schonberg, had any information about the results 
reported by the 70 analysis teams before the prediction markets closed. 
Neither of them were involved in writing the preregistration. For addi-
tional details on the prediction markets, see Supplementary Information.

Reporting summary

Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability

The full fMRI dataset is publicly available on OpenNeuro (https://doi.
org/10.18112/openneuro.ds001734.v1.0.4) and is described in detail in 
a Data Descriptor1. The results reported by all teams are presented in 
Extended Data Table 2. A table describing the methods used by the anal-
ysis teams is available with the analysis code. NeuroVault collections 
containing the submitted statistical maps are available via the links pro-
vided in Extended Data Table 3a. Source data for Figs. 1, 2 are provided 
with the paper. Readers may obtain access to the data and run the full 
analysis stream on the team submissions by following the directions 
at https://github.com/poldrack/narps/tree/master/ImageAnalyses. 
Access to the raw data requires specifying a URL for the dataset, which 
is: https://zenodo.org/record/3528329/files/narps_origdata_1.0.tgz. 
Results (automatically generated figures, results and output logs) for 
image analyses are available for anonymous download at https://doi.
org/10.5281/zenodo.3709275.

Code availability

Code for all analyses of the reports and statistical maps submitted by 
the analysis teams is openly shared in GitHub (https://github.com/
poldrack/narps). Image-analysis code was implemented within a Docker 
container, with software versions pinned for reproducible execution 
(https://hub.docker.com/r/poldrack/narps-analysis/tags). Python code 
was automatically tested for quality using the flake8 static analysis tool 
and the codacy.com code quality assessment tool, and the results of 
the image-analysis workflow were validated using simulated data. The 
image-analysis code was independently reviewed by an expert who was 
not involved in writing the original code. Prediction market analyses 
were performed using R v.3.6.1; packages were installed using the check-
point package, which reproducibly installs all package versions as of a 
specified date (13 August 2019). Analyses reported in this manuscript 
were performed using code release v.2.0.3 (https://doi.org/10.5281/
zenodo.3709273). Although not required to, several analysis teams 
publicly shared their analysis code. Extended Data Table 3d includes 
these teams along with the link to their code.
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H1 + H3: +gain, equal indifference

H2 + H4: +gain, equal range

H5: -loss, equal indifference

H6: -loss, equal range

H7: +loss, equal indifference

H8: +loss, equal range

H9: +loss, ER > EI

Extended Data Fig. 1 | Voxels overlap. Maps showing at each voxel the 

proportion of teams (out of n = 65 teams) that reported significant activations 

in their thresholded statistical map, for each hypothesis (labelled H13H9), 

thresholded at 10% (that is, voxels with no colour were significant in fewer than 

10% of teams). + or 2 refers to the direction of effect; gain or loss refers to the 

effect being tested; and equal indifference (EI) or equal range (ER) refers to the 

group being examined or compared. Hypotheses 1 and 3, as well as hypotheses 

2 and 4, share the same statistical maps as they relate to the same contrast and 

experimental group but different regions (see Extended Data Table 1). Images 

can be viewed at https://identifiers.org/neurovault.collection:6047.

https://identifiers.org/neurovault.collection:6047
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Extended Data Fig. 2 | Variability of whole-brain unthresholded maps for 

hypotheses 2 and 4–9. For each hypothesis, we present a heat map based on 

Spearman correlations between unthresholded statistical maps (n = 64), 

clustered according to their similarity, and the average of unthresholded 

images for each cluster (cluster colours in titles refer to colours in left margin of 

heat map). Column colours represent hypothesis decisions (green, yes; red, no) 

reported by the analysis teams; row colours denote cluster membership.  

Maps are thresholded at an uncorrected value of z > 2 for visualization. 

Unthresholded maps for hypotheses 2 and 4 are identical (as they both relate to 

the same contrast and group but different regions), and the colours represent 

reported results for hypothesis 2. For hypotheses 1 and 3, see Fig. 2.
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H1 + H3: +gain, equal indifference

H5: -loss, equal indifference

H6: -loss, equal range

H7: +loss, equal indifference

H8: +loss, equal range

H9: +loss, ER > EI

H2 + H4: +gain, equal range

H1 + H3: +gain, equal indifference

H2 + H4: +gain, equal range

H5: -loss, equal indifference

H6: -loss, equal range

H7: +loss, equal indifference

H8: +loss, equal range

H9: +loss, ER > EI

a Estimated between-team variability (tau)

Image-based meta-analysis (IBMA) resultsb

Extended Data Fig. 3 | Variability and consensus of unthresholded 

statistical maps. n = 64. a, Maps of estimated between-team variability (tau) at 

each voxel for each hypothesis. b, Results of the image-based meta-analysis.  

A consensus analysis was performed on the unthresholded statistical maps to 

obtain a group statistical map for each hypothesis, accounting for the 

correlation between teams owing to the same underlying data (see Methods). 

Maps are presented for each hypothesis, showing voxels (in colour) in which 

the group statistic was significantly greater than zero after voxelwise 

correction for FDR (P < 0.05). Colour bar reflects statistical value (z) for the 

meta-analysis. Hypotheses 1 and 3, as well as hypotheses 2 and 4, share the same 

unthresholded maps, as they relate to the same contrast and group but 

different regions (see Extended Data Table 1). Images can be viewed at  

https://identifiers.org/neurovault.collection:6051.

https://identifiers.org/neurovault.collection:6051
https://identifiers.org/neurovault.collection:6051


a

b

Hypothesis N voxels in ROI
Proportion of teams 

reporting activation

Proportion of teams

with activation
(p < 0:001, k > 10)

Proportion of teams

with activation
(FDR)

IBMA

(n voxels in ROI)

1 3402 0.371 0.734 0.594 0

2 3402 0.214 0.391 0.766

3 173 0.229 0.156 0.34

4 173 0.329 0.234 0.60

5 3402 0.843 0.906 0.859

6 3402 0.329 0.562  0.35 9

7 672 0.057 0.062 0.17

8 672 0.057 0.016 0.12

9 672 0.057 0.047 0.09

7

04

79

2101

39

02

05

04

Extended Data Fig. 4 | Results of the consistent thresholding and ROI 

selection analysis. n =64. a, Activation for each hypothesis as determined 

using consistent thresholding (black, P < 0.001 and cluster size (k) > 10 voxels; 

blue, FDR correction with P < 0.05) and ROI selection across teams (y axis), 

versus the actual proportion of teams reporting activation (x axis). Numbers 

next to each symbol represent the hypothesis number for each point. b, Results 

from re-thresholding of unthresholded maps, using either uncorrected values 

with the threshold (P < 0.001, k > 10) or FDR correction (PFDR < 5%) and common 

anatomical ROIs for each hypothesis. A team is recorded as having an 

activation if one or more significant voxels are found in the ROI. Results for 

image-based meta-analysis (IBMA) for each hypothesis are presented, also 

thresholded at PFDR < 5%.
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Effect
Beta (full

model)

t (full

model)

p (full

model)

Beta (no

interaction)

t (no

interaction)

p (no

interaction)

Intercept 0.44 64.12 0.00 0.41 74.61 0.00

Time 0.00 3.38 0.00 0.00 12.48 0.00

Teams -0.29 -29.50 0.00 -0.22 -45.35 0.00

Time X Teams 0.00 7.78 0.00

-------

Adjusted R-squared 0.35 0.34
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Extended Data Fig. 5 | Prediction markets over time. n = 240 observations 

(10 days × 24 h). a, Panel regressions. The table summarizes the results of 

preregistered fixed-effects panel regressions of the absolute errors of the 

predictions (that is, the absolute deviation of the market price from the 

fundamental value) on an hourly basis (average price of all transactions within 

an hour) on time and prediction market indicators. Standard errors were 

computed using a robust estimator. b, Market prices for each of the nine 

hypotheses separated for the team members (green) and non-team members 

(blue) prediction markets. The figure shows the average prices of the 

prediction market per hour, separated for the two prediction markets, for the 

time the markets were open (10 days, that is, 240 h). The grey line indicates the 

actual share of the analysis teams that reported a significant result for the 

hypothesis (that is, the fundamental value).



Extended Data Table 1 | Hypotheses and results

Hypothesis description
Fraction of teams

reporting a significant result

Median 

confidence level

Median similarity 

estimation

#1
Positive parametric effect of gains in the vmPFC

(equal indifference group)
0.371

7

(2)

7

(1.5)

#2
Positive parametric effect of gains in the vmPFC

(equal range group)
0.214

7

(1.5)

7

(1)

#3
Positive parametric effect of gains in the ventral striatum

(equal indifference group)
0.229

6

(1)

7

(1)

#4
Positive parametric effect of gains in the ventral striatum

(equal range group)
0.329

6

(1)

7

(1)

#5
Negative parametric effect of losses in the vmPFC

(equal indifference group)
0.843

8

(1)

8

(1)

#6
Negative parametric effect of losses in the vmPFC

(equal range group)
0.329

7

(1)

7

(1)

#7
Positive parametric effect of losses in the amygdala

(equal indifference group)
0.057

7

(1)

8

(1)

#8
Positive parametric effect of losses in the amygdala

(equal range group)
0.057

7

(1)

8

(1)

#9
Greater positive response to losses in amygdala

(equal range group vs. equal indifference group)
0.057

6

(1)

7

(1)

Each hypothesis is described along with the fraction of teams that reported a whole-brain-corrected significant result (out of n = 70 teams) and two measures reported by the analysis teams for 

the specific hypothesis: (1) How confident are you about this result? (2) How similar do you think your result is to the other analysis teams? Both of these ordinal measures are rated on a scale of 

1–10, and the median values are presented together with the median absolute deviation in brackets. vmPFC, ventromedial prefrontal cortex. See Supplementary Information for analysis of the 

confidence level and similarity estimation.
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Extended Data Table 2 | Results submitted by analysis teams

Team ID H1 H2 H3 H4 H5 H6 H7 H8 H9 Est. smoothing Package fMRIPrep Testing Movement 
08MQ 8 6 8 6 7 7 7 7 6 13.14 FSL No Non-parametric Yes
0C7Q 7 7 8 8 8 7 10 10 9 8.68 Other Yes Non-parametric Yes
0ED6 7 9 8 7 8 8 9 9 6 7.86 SPM No Parametric Yes
0H5E 4 7 7 6 8 5 8 7 1 14.17 SPM No Parametric No
0I4U 4 7 6 8 9 9 9 9 9 8.69 SPM No Parametric Yes
0JO0 7 5 5 5 5 5 5 5 5 8.12 Other Yes Parametric Yes
16IN 8 7 6 6 8 7 8 6 6 Other Yes Other No
1K0E 7 9 6 6 8 7 7 6 9 Other No Non-parametric Yes
1KB2 6 6 8 8 5 5 8 8 7 13.06 FSL No Parametric Yes
1P0Y 8 8 1 1 8 8 5 5 5 9.13 SPM No Parametric No
27SS 4 6 7 7 7 7 6 8 4 11.37 AFNI No Parametric Yes
2T6S 8 9 6 6 10 9 7 8 10 14.93 SPM Yes Parametric Yes
2T7P 8 8 8 8 8 8 8 8 8 7.66 Other No Other Yes
3C6G 6 7 7 5 8 8 8 8 8 14.26 SPM No Parametric Yes
3PQ2 9 8 7 7 7 8 8 8 7 5.79 FSL No Parametric Yes
3TR7 2 2 3 4 8 5 8 6 5 17.4 SPM Yes Parametric Yes
43FJ 3 3 5 5 10 10 10 10 10 10.66 FSL No Parametric Yes
46CD 9 8 5 8 9 8 9 9 5 10.92 Other No Parametric Yes
4SZ2 7 5 6 6 9 9 7 8 7 6.65 FSL Yes Parametric No
4TQ6 7 9 10 9 7 8 10 10 9 14.88 FSL Yes Non-parametric No
50GV 10 10 10 10 10 10 10 10 10 10.26 FSL Yes Parametric No
51PW 8 8 8 8 8 8 6 6 7 11.15 FSL Yes Parametric Yes
5G9K 7 7 7 7 7 7 7 7 7 SPM Yes Parametric Yes
6FH5 9 2 8 8 10 8 8 9 9 12.22 SPM No Parametric Yes
6VV2 8 8 8 6 9 7 8 7 6 7.2 AFNI No Parametric Yes
80GC 9 9 8 4 3 9 6 5 4 4.02 AFNI Yes Parametric Yes
94GU 8 8 8 8 8 8 8 8 8 11.19 SPM No Parametric Yes
98BT 9 7 7 8 9 7 8 8 8 11.48 SPM No Parametric Yes
9Q6R 10 10 10 10 10 10 8 8 8 10.28 FSL No Parametric Yes
9T8E 5 5 5 5 5 5 5 5 4 9.85 SPM Yes Non-parametric Yes
9U7M 7 9 9 9 9 7 9 7 7 14.78 Other No Parametric Yes
AO86 7 7 7 7 7 7 7 7 7 7.49 Other Yes Non-parametric Yes
B23O 6 6 7 7 8 7 6 6 8 3.32 FSL Yes Non-parametric No
B5I6 10 10 5 5 10 6 8 7 6 9.84 FSL Yes Non-parametric Yes
C22U 8 7 5 8 9 8 8 8 8 11.16 FSL No Parametric No
C88N 7 8 7 4 9 7 8 8 6 11.62 SPM Yes Parametric No
DC61 5 1 5 2 9 5 5 5 5 9.58 SPM Yes Parametric Yes
E3B6 3 7 6 6 8 8 7 7 7 12.8 SPM Yes Parametric Yes
E6R3 5 5 7 3 4 4 7 7 7 9.28 Other Yes Other Yes
I07H 3 3 3 3 9 9 9 9 9 5.59 Other Yes Non-parametric No
I52Y 8 8 8 8 8 8 8 8 8 11.42 FSL No Non-parametric Yes
I9D6 7 7 7 7 1 7 7 6 7 6.21 AFNI No Parametric Yes
IZ20 7 7 7 7 7 7 7 6 6 21.28 Other No Parametric No
J7F9 9 8 9 7 9 7 9 9 9 14.88 SPM Yes Parametric Yes
K9P0 10 10 10 5 10 8 9 9 10 8.05 AFNI Yes Parametric Yes
L1A8 8 5 7 7 8 8 3 8 3 SPM No Parametric Yes
L3V8 9 9 9 9 9 9 9 9 9 14.74 SPM No Parametric No
L7J7 10 9 9 5 8 8 8 9 8 11.76 SPM Yes Parametric Yes
L9G5 5 4 4 6 10 10 9 9 7 7.22 FSL No Parametric No
O03M 3 8 8 2 8 7 7 7 7 3.47 AFNI Yes Non-parametric Yes
O21U 8 8 8 8 8 8 8 8 8 8.26 FSL Yes Parametric Yes
O6R6 8 8 8 8 8 8 8 8 8 3.06 FSL Yes Non-parametric No
P5F3 3 5 7 7 4 4 6 6 7 12.94 FSL No Parametric Yes
Q58J 9 9 9 9 9 9 9 9 9 16.24 FSL No Parametric No
Q6O0 7 8 8 9 9 8 8 6 7 14.58 SPM Yes Parametric Yes
R42Q 5 5 6 6 6 6 7 8 8 12.73 Other No Parametric Yes
R5K7 6 8 8 7 9 7 8 8 7 12.06 SPM No Parametric Yes
R7D1 4 7 5 5 9 5 8 9 8 8.93 Other Yes Non-parametric Yes
R9K3 5 3 2 5 8 5 3 4 5 11.77 SPM Yes Parametric Yes
SM54 5 9 5 8 8 6 8 8 8 7.05 Other Yes Parametric Yes
T54A 5 9 2 6 9 9 5 5 5 12.28 FSL Yes Non-parametric No
U26C 8 8 8 8 10 8 8 8 9 10.38 SPM Yes Parametric Yes
UI76 10 6 10 10 10 6 10 10 5 6.6 AFNI Yes Parametric Yes
UK24 4 4 4 4 4 4 4 4 4 10.76 SPM No Parametric No
V55J 4 5 7 7 4 7 5 7 7 12.85 SPM No Parametric No
VG39 6 7 8 8 10 7 9 6 5 SPM Yes Parametric No
X19V 6 7 8 5 9 6 9 9 9 8.48 FSL Yes Parametric Yes
X1Y5 6 6 7 7 8 6 8 8 8 8.69 Other Yes Non-parametric Yes
X1Z4 8 6 4 4 9 5 4 4 4 Other No Non-parametric Yes
XU70 4 5 8 9 9 9 6 8 8 7.17 FSL No Parametric Yes

For each team, the left section of the table represents the reported binary decision (green, yes; red, no) and how confident they were in their result (from 1 (not at all confident) to 10 (extremely 

confident)) for each hypothesis (H1–H9). The right section displays the information included for each team in the statistical model for hypothesis decisions. Estimated (est.) smoothing values 

represent full width at half-maximum (FWHM); teams with a blank value were excluded from further analysis. Note that three teams changed their decisions after the end of the project: team 

L3V8 changed its decision for hypothesis 6 from yes to no; team VG39 changed its decisions for hypotheses 3, 4 and 5 from yes to no; and team U26C changed its decision for hypothesis 5 from 

yes to no. Results throughout the paper and in this table reflect the final results as they were reported at the end of the project (that is, before this change), as prediction markets were based on 

those results.



Extended Data Table 3 | Data links and analysis-related tables

Team ID Collection Team ID Collection

08MQ 4953 C88N 4812

0C7Q 5652 DC61 4963

0ED6 4994 E3B6 4782

0H5E 4936 E6R3 4959

0I4U 4938 I07H 5001

0JO0 4807 I52Y 4933

16IN 4927 I9D6 4978

1K0E 4974 IZ20 4979

1KB2 4945 J7F9 4949

1P0Y 5649 K9P0 4961

27SS 4975 L1A8 5680

2T6S 4881 L3V8 4888

2T7P 4917 L7J7 4866

3C6G 4772 L9G5 5173

3PQ2 4904 O03M 4972

3TR7 4966 O21U 4779

43FJ 4824 O6R6 4907

46CD 5637 P5F3 4967

4SZ2 5665 Q58J 5164

4TQ6 4869 Q6O0 4968

50GV 4735 R42Q 5619

51PW 5167 R5K7 4950

5G9K 4920 R7D1 4954

6FH5 5663 R9K3 4802

6VV2 4883 SM54 5675

80GC 4891 T54A 4876

94GU 5626 U26C 4820

98BT 4988 UI76 4821

9Q6R 4765 UK24 4908

9T8E 4870 V55J 4919

9U7M 4965 VG39 5496

AO86 4932 X19V 4947

B23O 4984 X1Y5 4898

B5I6 4941 X1Z4 4951

C22U 5653 XU70 4990

a

Team ID Exclusion reason
Unthresholded

maps excluded

Thresholded

maps excluded

1K0E
Used surface-based analysis

(only provided data for cortical ribbon)
X X

L1A8 Not in MNI standard space X X

VG39
Performed small volume corrected 

instead of whole-brain analysis
X X

X1Z4
Used surface-based analysis

(only provided data for cortical ribbon)
X X

16IN
Values in the unthresholded images

are not z / t stats
X

5G9K
Values in the unthresholded images

are not z / t stats
X

2T7P

Used a method which does not create

thresholded images (and are therefore
not included in the analyses of the
thresholded images)

X

b

Effects Chi-squared P value Delta R2

Hypothesis 185.390 0.000 0.350

Estimated smoothness 13.210 0.000 0.040

Used fMRIPprep data 2.270 0.132 0.010

Software package 13.450 0.004 0.040

Multiple correction method 7.500 0.024 0.020

Movement modeling 1.160 0.281 0.000

c

Team ID Link to shared analysis codes

16IN https://github.com/jennyrieck/NARPS

2T7P https://osf.io/3b57r

E3B6 doi.org/10.5281/zenodo.3518407

Q58J https://github.com/amrka/NARPS_Q58J

d

a, Numbers of public NeuroVault collections of all analysis teams https://neurovault.org/collections/. b, Descriptions of teams that were excluded from the analyses of statistical maps. c, Sum-

mary of mixed-effects logistic regression modelling of decision outcomes (n = 64 per hypothesis) as a function of different factors including the hypothesis (1–9) and various aspects of statisti-

cal modelling (for modelling details see https://github.com/poldrack/narps/blob/master/ImageAnalyses/DecisionAnalysis.Rmd). d, Links to shared analysis code of some of the analysis teams.

https://neurovault.org/collections/
https://github.com/poldrack/narps/blob/master/ImageAnalyses/DecisionAnalysis.Rmd
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Extended Data Table 4 | Variability of statistical maps across teams

a

Hypothesis Minimum sig. voxels Maximum sig. voxels Median sig. voxels N empty images

1 0 118181 1940 8

2 0 135583 8120 2

3 0 118181 1940 8

4 0 135583 8120 3

5 0 76569 6527 11

6 0 72732 167 25

7 0 147087 9383 8

8 0 129979 475 16

9 0 49062 266 29

Hypothesis
Correlation

(mean)

Cluster1 Cluster2 Cluster3

Correlation Cluster size Correlation Cluster size Correlation Cluster size

1+3 0.394 0.670 50 0.680 7 0.095 7

2+4 0.521 0.736 43 0.253 14 0.659 7

5 0.485 0.777 41 0.329 20 0.342 3

6 0.259 0.442 47 0.442 12 0.156 5

7 0.487 0.851 31 0.466 25 0.049 8

8 0.302 0.593 36 0.256 23 -0.044 5

9 0.205 0.561 47 0.568 8 0.106 9

b

a, Variability in the number of significantly (sig.) activated voxels reported across teams (n = 65 teams). b, Mean Spearman correlation between the unthresholded statistical maps for all pairs of 

teams and separately for pairs of teams within each cluster, for each hypothesis (n = 64 teams).



Extended Data Table 5 | Results of prediction markets and additional data

a

Hypothesis FV CI Non-teams market prediction Teams market prediction

1 0.37 [0.26-0.48] 0.727 * 0.814 *

2 0.21 [0.12-0.31] 0.73 * 0.753 *

3 0.23 [0.13-0.33] 0.881 * 0.743 *

4 0.33 [0.22-0.44] 0.882 * 0.789 *

5 0.84 [0.76-0.93] 0.686 * 0.952 *

6 0.33 [0.22-0.44] 0.685 * 0.805 *

7 0.06 [0.00-0.11] 0.563 * 0.073 

8 0.06 [0.00-0.11] 0.584 * 0.274 *

9 0.06 [0.00-0.11] 0.476 * 0.188 *

Hypothesis 1 2 3 4 5 6 7 8 9

Spearman rho 0.58 0.56 0.58 0.64 0.47 0.74 0.23 0.37 0.31

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.01 0.02

Share of consistent holdings 0.71 0.68 0.70 0.80 0.89 0.74 0.80 0.80 0.75

Z (signed rank test) 3.40 2.78 2.82 4.24 6.81 3.24 4.34 4.34 3.64

p-value (signed rank test) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average holdings if consistent 5.61 21.14 25.80 13.11 -115.50 7.31 34.61 24.23 23.54

Average holdings if inconsistent 1.04 -6.90 -8.03 0.03 18.26 1.58 -14.63 -8.29 -11.61

b

Hypothesis
Tokens invested

(Non-teams)

Volume

(Non-teams)

# Traders

(Non-teams)

# Transactions 

(Non-teams)

Tokens invested 

(Teams)

Volume 

(Teams)

# Traders 

(Teams)

# Transactions 

(Teams)

1 8.568 20.175 55 139 12.643 25.671 64 213

2 10.51 22.544 53 98 11.632 22.908 58 171

3 12.818 24.709 58 132 7.773 15.837 52 141

4 11.134 20.397 49 112 8.126 15.479 52 127

5 6.873 14.636 38 71 14.48 30.76 76 244

6 6.806 12.663 35 72 8.097 16.676 46 134

7 7.99 15.209 41 98 7.131 15.864 52 160

8 8.791 19.072 45 91 7.085 14.598 52 141

9 10.427 21.118 50 131 9.506 18.812 56 178

c

a, Summary of the prediction market results. FV refers to the fundamental value, that is, the actual fraction of teams (out of n = 70 teams) that reported significant results for the hypothesis. 

CI refers to the 95% confidence interval corresponding to the fundamental value (estimated with a normal approximation to the binomial distribution). Values marked with an asterisk are not 

within the corresponding 95% CI. b, Consistency of traders9 holdings and team results. The top two rows show two-sided Spearman rank correlations between traders9 final holdings and the 

binary result reported by their team, and the corresponding P value for each hypothesis. The bottom five rows show the share of traders9 holdings that are consistent with the results reported by 

their team. Consistent refers to positive (negative) holdings if the team reported a significant (non-significant) result; z and P values refer to Wilcoxon signed-rank tests for the share of consistent 

holdings being equal to 0.5; and average holdings if (in)consistent refer to the mean final holdings, separated for consistent and inconsistent traders. c, Additional data for each of the nine 

hypotheses. Tokens invested indicates the average number of tokens invested per transaction; volume refers to the mean number of shares bought or sold per transaction; # traders refers to the 

number of traders who bought or sold shares of the particular asset at least once; and # transactions describes the overall number of transactions recorded.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection A full description of the experimental procedures, validations and the fMRI dataset is available in a Data Descriptor (https://

doi.org/10.1038/s41597-019-0113-7). Code used for fMRI data collection are available at https://github.com/rotemb9/

NARPS_scientific_data.

Data analysis Fully reproducible code for the analyses of the analysis teams' submitted results and statistical maps, as well as the prediction markets, 

are available at DOI: 10.5281/zenodo.3709273. The full list of software and versions used within the code are available in the dockerfile: 

https://github.com/poldrack/narps/blob/master/Dockerfile

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 

We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

The fMRI dataset is openly available via OpenNeuro at DOI:10.18112/openneuro.ds001734.v1.0.4. Additional data are included with the analyses code at 

DOI:10.5281/zenodo.3709273
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Quantitative

Research sample The fMRI dataset included nueroimaging and behavioral data of 108 participants. Demographic information of the participants can be 

found at DOI:10.18112/openneuro.ds001734.v1.0.4. 

70 analysis teams analyzed the dataset. 96 “team members” and 91 “non-team members” signed up to participate in the prediction 

markets. N = 83 “team members” and N = 65 “non-team members” actively participated in the markets. Members of the analysis teams 

and traders in the predictions market were researchers in the field from around the world.

Sampling strategy Relevant information for the fMRI dataset is available at the Data Descriptor (https://doi.org/10.1038/s41597-019-0113-7). With regard 

to the number of analysis teams and traders in the prediction markets, we aimed to recruit as many as possible within the time frame.

Data collection Relevant information for the fMRI dataset is available at the Data Descriptor (https://doi.org/10.1038/s41597-019-0113-7). Shortly, data 

was collected using MRI scanner and computers.

Timing The fMRI dataset was collected between November 2017 and May 2018. Analysis teams were recruited and analyzed the data between 

November 2018 and March 2019. The prediction markets were open between May 2nd to May 12th 2019.

Data exclusions One team was excluded from all analyses since their reported results were not based on a whole-brain analysis as instructed. Of the 

remaining 69 teams, thresholded maps of 65 teams and unthresholded (z / t) maps of 64 teams were included in the analyses (see 

Extended Data Table 3b for detailed reasons for exclusion of the other teams).

Non-participation 12 out of the 82 analysis teams that signed the non-disclosure form and were provided with access to the data did not submit their 

results by the deadline. 13 traders in the "team members" and 26 traders in the "non-team members" prediction markets registered but 

did not actively participate in the prediction markets.

Randomization fMRI dataset- participants were pseudo-randomly (alternately) assigned  to one of two experimental conditions (Equal Indifference or 

Equal Range). Analysis teams were not allocated into experimental groups.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics fMRI dataset- demographic information of the participants can be found at DOI:10.18112/openneuro.ds001734.v1.0.4. 

108 participants where included in the dataset: 

54 in the Equal Indifference group (30 females, mean age = 26.06 years, SD age = 3.02 years) 

and 54 in the Equal Range group (30 females, mean age = 25.04 years, SD age = 3.99 years). 

All participants were right-handed, had normal or corrected-to-normal vision and reported no history of 

psychiatric or neurologic diagnoses, or use any medications that would interfere with the experiment.
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Recruitment Analysis teams were recruited via social media, mainly Twitter and Facebook, as well as during the 2018 annual meeting of The 

Society for Neuroeconomics. Prediction market traders were recruited via social media (mainly Facebook and Twitter) and e-

mails. This recruitment method may increase the chances of specific researchers to participate in an analysis team or in the 

prediction markets, for example researchers that are more active in social media or attended the 2018 meeting of The Society 

for Neuroeconomics. Researchers who advocate for replication attempts and "open science" practices may also be more inclined 

to join such study. However, our results strongly suggest that they were not biased. For example, the fact that several 

hypotheses were only affirmed by roughly 5% of teams, while Hypothesis #5 was affirmed by 84% of teams, suggests that there 

was no overall bias towards either affirmation or rejection of hypotheses. In addition, each of the 70 analysis teams chose to use 

a different analysis pipeline, which suggests evidence against a potential bias in methods used by the specific analysis teams that 

joined the study. With regard to the prediction markets, traders that were exposed to the recruitment ads on social media may 

be biased with regard to their predictions, but as there is a debate in the published literature regarding most of the hypotheses 

included in our study, we do not have a specific reason to assume such bias.

Ethics oversight MRI data collection was approved by the Helsinki committee at Sheba Tel Hashomer Medical Center and the ethics committee at 

Tel Aviv University, and all participants gave written informed consent (as described in the Scientific Data Descriptor of this 

dataset). The Board for Ethical Questions in Science at the University of Innsbruck approved the data collection in regards of the 

prediction markets, and certified that the project is in correspondence with all requirements of the ethical principles and the 

guidelines of good scientific practice.  The Stanford University IRB determined that the analysis of the submitted team results did 

not meet the definition of human subject research, and thus no further IRB review was required.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design

Design type Task

Design specifications The fMRI dataset was published in a Data Descriptor (https://doi.org/10.1038/s41597-019-0113-7)

Behavioral performance measures The fMRI dataset was published in a Data Descriptor (https://doi.org/10.1038/s41597-019-0113-7)

Acquisition

Imaging type(s) functional and structural

Field strength 3T

Sequence & imaging parameters Imaging data were acquired using a 3 T Siemens Prisma MRI scanner with a 64-channel head coil, at the Strauss Imaging 

Center on the campus of Tel Aviv University. Functional data during the mixed gambles task were acquired using T2*-

weighted echo-planar imaging sequence with multi-band acceleration factor of 4 and parallel imaging factor (iPAT) of 2, 

TR = 1000 ms, TE = 30 ms, flip angle = 68 degrees, field of view (FOV) = 212 × 212 mm, in plane resolution of 2 × 2 mm 30 

degrees off the anterior commissure-posterior commissure line to reduce the frontal signal dropout27, slice thickness 

of 2 mm, 64 slices and a gap of 0.4 mm between slices to cover the entire brain. For each functional run, we acquired 

453 volumes.

Area of acquisition Whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Each team performed their own preprocessing. Raw data and data preprocessed with fMRIprep v. 1.1.4 were shared 

with the teams. 

Normalization Each team performed their own preprocessing. Raw data and data preprocessed with fMRIprep v. 1.1.4 were shared 

with the teams. 

Normalization template Each team performed their own preprocessing. Raw data and data preprocessed with fMRIprep v. 1.1.4 were shared 

with the teams. 

Noise and artifact removal Each team performed their own preprocessing. Raw data and data preprocessed with fMRIprep v. 1.1.4 were shared 

with the teams.

Volume censoring Each team performed their own preprocessing. Raw data and data preprocessed with fMRIprep v. 1.1.4 were shared 

with the teams. 

Statistical modeling & inference

Model type and settings Each team performed their own analysis.

Effect(s) tested Each team performed their own analysis.
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Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Each team performed their own analysis.

Correction Each team performed their own analysis.

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis


