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ABSTRACT In the absence of effective vaccines and with limited therapeutic op-

tions, convalescent plasma is being collected across the globe for potential transfu-

sion to coronavirus disease 2019 (COVID-19) patients. The therapy has been deemed

safe, and several clinical trials assessing its efficacy are ongoing. While it remains to

be formally proven, the presence of neutralizing antibodies is thought to play a

positive role in the efficacy of this treatment. Indeed, neutralizing titers of �1:

160 have been recommended in some convalescent plasma trials for inclusion.

Here, we performed repeated analyses at 1-month intervals on 31 convalescent

individuals to evaluate how the humoral responses against the severe acute re-

spiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein, including

neutralization, evolve over time. We observed that the levels of receptor-

binding-domain (RBD)-specific IgG and IgA slightly decreased between 6 and 10

weeks after the onset of symptoms but that RBD-specific IgM levels decreased

much more abruptly. Similarly, we observed a significant decrease in the capac-

ity of convalescent plasma to neutralize pseudoparticles bearing wild-type SARS-

CoV-2 S or its D614G variant. If neutralization activity proves to be an important

factor in the clinical efficacy of convalescent plasma transfer, our results suggest

that plasma from convalescent donors should be recovered rapidly after resolu-

tion of symptoms.

IMPORTANCE While waiting for an efficient vaccine to protect against SARS-CoV-2

infection, alternative approaches to treat or prevent acute COVID-19 are urgently

needed. Transfusion of convalescent plasma to treat COVID-19 patients is currently

being explored; neutralizing activity in convalescent plasma is thought to play a

central role in the efficacy of this treatment. Here, we observed that plasma neutral-

ization activity decreased a few weeks after the onset of the symptoms. If neutraliz-

ing activity is required for the efficacy of convalescent plasma transfer, our results

suggest that convalescent plasma should be recovered rapidly after the donor re-

covers from active infection.
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U
ntil an efficient vaccine to protect against severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) infection becomes available, alternative approaches to

treat or prevent acute coronavirus disease 2019 (COVID-19) are urgently needed. A

promising approach is the use of convalescent plasma containing anti-SARS-CoV-2

antibodies (Abs) collected from donors who have recovered from COVID-19 (1). Con-

valescent plasma therapy has been successfully used in the treatment of SARS, Middle

East respiratory syndrome (MERS), and influenza virus H1N1 pandemics and was

previously shown to be associated with improvement of clinical outcomes (2–4).

Experience to date has shown that the passive transfer of convalescent plasma to acute

COVID-19 patients is well tolerated and presented some hopeful signs (5–9). In one

study, the convalescent plasma used had high titers of IgG to SARS-CoV-2 (at least

�1:640), which correlated positively with neutralizing activity (10). While it remains to

be formally demonstrated, neutralizing activity is considered an important determinant

of convalescent plasma efficacy (11) and regulatory agencies have been recommending

specific thresholds for qualifying convalescent plasma prior to its release. While neu-

tralizing function has been associated with protection against reinfection in rhesus

macaques (12), other antibody functions may be relevant for controlling an acute

infection and should be examined to better understand the correlates of convalescent

plasma-mediated efficacy (7).

It was recently reported that the humoral responses against SARS-CoV-2 are built

rapidly, peaking at week 2 or week 3 after the onset of symptoms but steadily

decreasing thereafter (13–15). Moreover, in a previous cross-sectional study, we re-

ported that the neutralization capacity decreased between the third and the sixth week

after the onset of symptoms (14). Since convalescent patients are generally required to

wait for 14 days after recovery to start plasma donations and since they may donate

plasma multiple times in the ensuing weeks, most donations are likely to occur even

later than this. Whether the neutralization capacity of convalescent plasma is stabilized

after 6 weeks or decreases further remains unknown. To address this issue, which might

have practical implications for the selection of plasma from convalescent donors, we

analyzed serological samples from 31 convalescent donors that were collected at 6 and

10 weeks after the onset of symptoms.

All of the convalescent donors initially tested positive for SARS-CoV-2 by reverse

transcriptase PCR (RT-PCR) on nasopharyngeal specimens, with complete resolution of

symptoms for at least 14 days before blood sampling. The average age of the donors

(22 males and 9 females) was 46 years. We collected plasma samples from each

individual at two time points: 6 weeks after the onset of symptoms (baseline;

median, 43 days) and 4 weeks after (1 month; median, 74 days after the onset of

symptoms) (Table 1).

We first evaluated the presence of receptor-binding-domain (RBD)-specific IgG, IgM,

and IgA antibodies by enzyme-linked immunosorbent assay (ELISA) as we had recently

described (14). In agreement with a recent report (16, 23), we observed that all

RBD-specific IgG, IgM, and IgA titers significantly decreased between 6 and 10 weeks

after the onset of symptoms. We noted that IgM and IgA titers diminished significantly

more abruptly than IgG titers (Fig. 1). Accordingly, the proportions of convalescent

individuals presenting detectable titers of IgM and IgA decreased by �13% and �25%,

respectively, at 10 weeks after the onset of symptoms (Fig. 1B and C) whereas the

percentage of infected individuals presenting detectable titers of IgG remained stable

(Fig. 1A).

TABLE 1 Cohort characteristics

Median no. of days (range)

after onset of symptoms and

first sample collection: baseline

Median no. of days (range)

after onset of symptoms and

second sample collection (1 mo)

Avg age of individuals

in yrs (range)

No. of

individuals

Male (n) Female (n)

43 (16–60) 74 (44–87) 46 (20–67) 22 9
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We next used flow cytometry to examine the ability of convalescent plasma to

recognize the full-length SARS-CoV-2 Spike protein expressed at the cell surface. Briefly,

293T cells expressing SARS-CoV-2 S glycoproteins were stained with plasma samples,

followed by incubation with secondary antibodies recognizing all antibody isotypes.

Since the SARS-CoV-2 strain circulating in Europe and North America has the D614G

mutation (17), we also evaluated recognition of this variant by flow cytometry. As

presented in Fig. 1D, convalescent plasma from 96.8% of donors (all but one) recog-

nized both SARS-CoV-2 S variants (wild type [WT] and D614G) at baseline. While this

percentage was found to have remained stable 4 weeks later, the level of recognition

(mean fluorescence intensity [MFI]) was significantly diminished for both WT and

D614G S-expressing cells, indicating that Spike-reactive antibodies were less abundant

in convalescent plasma collected at this later time point. Interestingly, the MFI values

FIG 1 SARS-CoV-2 S-specific and RBD-specific antibody levels decrease over time. (A to C) Indirect ELISA was performed using recombinant
SARS-CoV-2 RBD and incubation with plasma samples recovered at baseline (6 weeks after the onset of symptoms; red circle) and 1 month later
(black circle). Anti-RBD antibody binding was detected using (A) anti-IgG-HRP (anti-IgG horseradish peroxidase), (B) anti-IgM-HRP, or (C)
anti-IgA-HRP. Relative light unit (RLU) values obtained with bovine serum albumin (BSA) (negative control) were subtracted and further normalized
to the signal obtained with the anti-RBD CR3022 monoclonal antibodies (MAb) present in each plate. The graphs shown in panels A to C represent
(A and B) the areas under the curve (AUC) calculated from RLU obtained with serial plasma dilutions or (C) the normalized RLU for one plasma
dilution (1:500). (D to F) Cell surface staining of 293T cells expressing full-length Spike (S) from different HCoVs, including (D) SARS-CoV-2 or its
D614G counterpart; (E) SARS-CoV; and (F) OC43, NL63, and 229E with plasma samples recovered at baseline (6 weeks after the onset of symptoms)
and 1 month later. The graphs shown in panels D to F represent median fluorescence intensities (MFI). In panels A to F, undetectable levels are
represented as white symbols, and limits of detection are plotted. The average numbers and percentages of positive samples are indicated at the
top of each panel. Statistical significance was tested using Wilcoxon matched-pair signed-rank tests (ns, not significant; **, P � 0.01; ****,
P � 0.0001).
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were almost identical for the cells expressing the WT S and those expressing the D614G

variant S (7,206 and 7,024, respectively; Fig. 1D), suggesting that the mutation did not

significantly affect the S conformation. In agreement with recent work, we observed

that SARS-CoV-2-elicited antibodies cross-reacted with human sarbecoviruses (14)

(SARS-CoV; Fig. 1E) and with another betacoronavirus (OC43) whereas no cross-reactive

antibodies to alphacoronavirus (NL63 and 229E) S glycoproteins (Fig. 1F) were de-

tected. Levels of cross-reactive antibodies recognizing SARS-CoV and OC43 S glycopro-

teins decreased between the two time points, following a trend similar to that shown

by the SARS-CoV-2 S-reactive antibodies (Fig. S1).

We next measured the capacity of plasma samples to neutralize pseudoparticles

bearing WT SARS-CoV-2 S, its D614G variant, or vesicular stomatitis virus G (VSV-G)

glycoproteins using 293T cells stably expressing ACE2 as target cells (Fig. 2). Previous

studies demonstrated that the neutralizing activity of convalescent plasma measured

with this method correlates quantitatively with neutralizing activity measured using an

authentic SARS-CoV-2 neutralization assay (18, 19). Neutralizing activity against SARS-

CoV-2 WT or D614G S glycoprotein, as measured by the neutralization half-maximum

inhibitory dilution (ID50), was detected in 71% of patients 6 weeks after the onset of

symptoms. While we acknowledge that the sensitivity of any given neutralization assay

FIG 2 Neutralizing activity of convalescent plasma decreases over time. (A) Pseudoviral particles coding for the luciferase reporter gene and bearing
SARS-CoV-2 S glycoprotein or its D614G counterpart, SARS-CoV S glycoprotein, or VSV-G glycoprotein were used to infect 293T-ACE2 cells. Pseudoviruses were
incubated (37°C, 1 h) with serial dilutions of plasma samples recovered at baseline (6 weeks after the onset of symptoms) or collected 1 month later prior to
infection of 293T-ACE2 cells. Infectivity at each dilution was assessed in duplicate, and data are shown as the percentage of infection without plasma for each
pseudovirus. (B) The median of neutralization for baseline (red) or 1-month (black) plasma samples is shown. (C) Neutralization half-maximal inhibitory plasma
dilution (ID50) values were determined using a normalized nonlinear regression with GraphPad Prism software. Undetectable levels (ID50 � 50) are represented
as white symbols. The mean neutralizing titers and the proportions (%) of neutralizers (patients with an ID50 value over 50) are shown above the graphs.
Statistical significance was tested using Wilcoxon matched-pair signed-rank tests (ns, not significant; ****, P � 0.0001).
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could affect calculations of the percentage of donors with neutralization activity, we

note that the percentage of convalescent plasma with undetectable neutralization

titers reported here is similar to what was reported in recent studies (11, 20, 21).

SARS-CoV-2 neutralization was specific since no neutralization was observed against

pseudoparticles expressing VSV-G (Fig. 2). Neutralizing activity against pseudoparticles

bearing the SARS-CoV S glycoprotein was detected in only 25% of convalescent plasma

and exhibited low potency, as previously reported (Fig. 2) (14). As recently shown,

plasma samples from prepandemic SARS-CoV-2-negative and SARS-CoV-negative indi-

viduals showed no neutralization activity against pseudoparticles bearing the SARS-

CoV-2 or SARS-CoV Spike protein (not shown). Of note, while we observed enhanced

infectivity for the D614G variant compared to its WT SARS-CoV-2 S counterpart (see

Fig. S2A in the supplemental material), no major differences in neutralization with

convalescent plasma were detected at either time point (Fig. S2B), thus suggesting that

the D614G change does not affect the overall conformation of the Spike, in agreement

with recent findings (17, 22).

The capacity to neutralize SARS-CoV-2 S WT- or D614G-pseudotyped particles

significantly correlated with the presence of RBD-specific IgG, IgM, IgA, and anti-S

antibodies (Fig. S3). Interestingly, we observed a pronounced (20% to 30%) decrease in

the proportion of convalescent individuals able to neutralize pseudoparticles bearing

SARS-CoV-2 S glycoprotein between 6 and 10 weeks after the onset of symptoms.

Moreover, with plasma that still neutralized, the neutralization activity significantly

decreased between these two time points (Fig. 2C). Interestingly, RBD-specific IgM and

neutralizing activity declined more significantly in convalescent plasma over time than

RBD-specific IgG, IgA, and anti-S Ab activity (Fig. S4A and B). Moreover, while the loss

of neutralizing activity on the WT and D614G pseudoparticles over time correlated with

the loss of anti-RBD IgM, IgA, and IgG antibodies, the correlation was higher for IgM

than for IgG and IgA (Fig. S4C and D), suggesting that at least part of the neutralizing

activity could be mediated by IgM, as recently proposed (13, 14). Therefore, if plasma

neutralization activity is shown to be required for protection from SARS-CoV-2 infec-

tion, then our results suggest that this protection could be limited in time and that, in

the context of vaccination, multiple boosts might be necessary to mount a durable and

effective anti-SARS-CoV-2 humoral response.

In summary, our results indicate that plasma neutralization activity continues de-

creasing past the sixth week of symptom onset (14). It is currently unknown whether

neutralizing activity truly drives the efficacy of convalescent plasma in acute COVID-19.

If this were to be found to be the case, our results suggest that efforts should be made

to ensure that convalescent plasma is collected as soon as possible after recovery of the

donor from active infection.
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