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Individuals affected by autism spectrum conditions (ASC) are considerably heterogeneous. Novel
approaches are needed to parse this heterogeneity to enhance precision in clinical and translational
research. Applying a clustering approach taken from genomics and systems biology on two large
independent cognitive datasets of adults with and without ASC (n =694; n =249), we find replicable
evidence for 5 discrete ASC subgroups that are highly differentiated in item-level performance on an
explicit mentalizing task tapping ability to read complex emotion and mental states from the eye region
of the face (Reading the Mind in the Eyes Test; RMET). Three subgroups comprising 45-62% of ASC
adults show evidence for large impairments (Cohen’s d = —1.03 to —11.21), while other subgroups are
effectively unimpaired. These findings delineate robust natural subdivisions within the ASC population
that may allow for more individualized inferences and accelerate research towards precision medicine
goals.

Autism spectrum conditions (ASC) are currently defined by consensus behavioral criteria of difficulties in
social-communication and restricted repetitive behaviors. Although the population is subsumed under a single
unitary diagnostic label, variability between affected individuals is considerable'. This diversity or ‘heteroge-
neity” inherent within ASC can be seen at multiple levels, from a myriad of different etiological mechanisms?,
developmental trajectories®*, sex/gender, clinical comorbidities®, cognitive/behavioral features (e.g., language
development’), and the list could go on®. Accordingly, many in the field now subscribe to the idea that there
is not just one ‘autism, but rather multiple ‘autisms™°. Given these rich theoretical ideas about the complexity
manifesting behind unitary clinical diagnostic labels like ‘autism, it seems like a natural extension of logic that
research would follow along such ideas. However, the opposite occurs a majority of the time, whereby clinical and
translational research is done utilizing case-control comparison methodology that treats autism as one omnibus
group and makes comparison to a matched ‘control’ or ‘comparison’ group. While the standard case-control
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approach appears to be congruent with the categorical divide expressed within psychiatric diagnostic manu-
als like DSM-5 and ICD-10, it is antithetical with the rich ideas suggesting that in order to move forward in
understanding mechanisms affecting individuals with ASC, one cannot effectively utilize a paradigm that lumps
together heterogeneous mixtures of different types of individuals. This problem is not necessarily specific to
autism per se, and is a general issue within psychiatry that has prompted the rise of alternative approaches such as
the NIMH Research Domain Criteria (RDoC)!! as well as ideas related to the concept of ‘stratified psychiatry’!2.
Closely related to these ideas are the more generalized goals of ‘precision medicine’ outlined for all domains of
medicine'>!*. The goals of ‘precision medicine’ applied to ASC would outline an individualized approach to areas
that can have immediate impact on treatment and support; from clinical assessment, diagnosis, personalized
treatment and prognostic approaches, to better specificity in determining etiological mechanisms connected to
specific phenotypes.

One primary challenge for meeting these goals is the basic question of how one should stratify a heterogeneous
label like ‘autism’ into natural subdivisions that meaningfully point towards important underlying mechanisms
and which could have potential for impact on clinical issues. There are multiple dimensions and levels through
which one could start this process, from stratifications at the etiological level all the way up to subgroups distin-
guished by differing neural systems, cognitive, behavioral, and/or developmental patterns’. Analytically, strat-
ification can be based on supervised knowledge driven by experimenter-based preconceptions, theory, and/or
assumptions. In contrast to supervised approaches, data-driven unsupervised approaches can be advantageous in
avariety of cases when there is limited a priori knowledge that can be used to supervise the stratification process.
As for goals of the stratification process, we ultimately need stratification approaches that identify consistently
replicable subgroups nested within the ASC population. Subgroup effect sizes should ideally naturally organize
into much more robust patterns of clear difference or a lack thereof and such effects should also allow for much
more parsimonious distinctions than standard case-control comparisons.

Stratification could be very important at the cognitive level, particularly when applied to cognitive phenome-
non that links back to behavioral difficulties that are cardinal features of ASC'®. Here we focus on the domain of
mentalizing/theory of mind (henceforth ‘mentalizing’), which we have known for the last 30 years is a key cogni-
tive explanation behind social-communicative difficulties in ASC!®18, Despite much progress over the last 3 dec-
ades, it is notable that a majority of the evidence to date rests on statistical evidence about what differs on-average
in a case-control setting. Hidden within these on-average case-control differences is additional complexity at the
individual level. Many individuals will show evidence of some kind of deficit in mentalizing over the lifespan,
while others may not show any difficulty or may simply mask the difficulty via compensatory mechanisms!*%.
This heterogeneity will also likely change throughout development as individuals acquire more competence in
the domain?'. There are also conceptual distinctions within mentalizing, such as the distinction between explicit/
controlled versus implicit/automatic processes, with the latter continuing to be atypical much later in life despite
an individual possessing explicit abilities?’. The concept of mentalizing has also expanded considerably over time
from its more constrained initial usage that was much more closely tied to ‘theory of mind’ as measured by stand-
ard false belief tasks. The term is now notably quite broad with respect to the different kinds of social cognitive
components that can contribute to the overall domain of mentalizing, such as processing eye gaze, recognizing
emotion, intuitive versus effortful tracking of other’s mental status separating belief from fact, comprehending
social scripts, switching between self and other perspectives, etc. Thus, in addition to heterogeneity at the level of
individuals, there is also conceptual heterogeneity what is considered ‘mentalizing. Some have called for decon-
struction of the domain of mentalizing into more basic components®? and we would agree that such steps are
essential to enhancing the precision of our understanding on the topic.

In the current work, we focus on components of mentalizing measured via a widely used task that involves
explicit recognition of complex emotional and mental states simply from looking at the eye region of the face-the
Reading the Mind in the Eyes Test (RMET)?*?%. In a recent study comparing a relatively large ASC sample to a
typically-developing (TD) control group, we found on-average reduction in RMET performance. However, ASC
distributions were notably negatively skewed and there was a significant degree of overlap of ASC individuals
within the range of scores occupied by TD individuals®; both suggest that behind case-control comparisons may
be additional heterogeneity nested within the ASC population. However, a problem in determining whether sub-
groups can be delineated on a measure like the RMET is that the canonical output of the test is one-dimensional,
and would require experimenter-derived cut-points that would ultimately be arbitrary and not well informed
about whether such cut-points are natural dividing points for stratification that reflect quantitatively and/or qual-
itatively different subgroups.

Here we overcome this problem by employing a novel data-driven subgrouping approach on item-level per-
formance patterns on the RMET in two relatively large samples. Since we have little prior knowledge regarding
how subgroups might manifest as item-level patterns of performance, we have opted for a data-driven unsuper-
vised approach to stratification to open up new knowledge about how any such subgroups are present within
performance on the RMET. Our stratification approach is an unsupervised hierarchical clustering procedure
traditionally applied to high-throughput data generated in the fields of genomics and systems biology in similar
situations where the experimenter typically has impoverished knowledge or little motivation to exert precon-
ceptions or assumptions about precise distinctions or organization present in the data and whereby the goal is
to have the data itself naturally present its organization. We show the existence of 5 separate ASC subgroups and
4 separate TD subgroups that replicably appear across two large independent datasets. ASC subgroups separate
into divisions that show very large differences compared to TD subgroups, as well as other ASC subgroups that
show little to no difference. Thus, our unbiased data-driven stratification approach enhances the precision with
which we can make more individualized statements about subsets of the ASC population while at the same time
provides a novel methodological approach that is free from arbitrary experimenter-derived criteria and other
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Figure 1. Clustering individuals into subgroups by RMET performance. This figure illustrates the raw
data from both Discovery (A, ASC; C, TD) and Replication (B, ASC; D, TD) datasets in a 2D matrix (i.e. rows
are subjects, columns are RMET items). Red cells indicate correct responses. Black cells indicate incorrect
responses. The rows (subjects) and columns (items) of each matrix are rearranged by hierarchical clustering
on topological overlap similarity in RMET response patterns. Subgroups are denoted by the different colors
underneath the dendrogram.

potential biases that may affect supervised approaches and overall, may uncover new aspects of organization
within the ASC population that have not been previously considered.

Results

Our clustering approach discovered 5 distinct ASC subgroups (Fig. 1A,B) and 4 distinct TD subgroups
(Fig. 1C,D) that replicably appear in both the Discovery and Replication datasets. Upon computing RMET
sum scores for each subgroup, it is clear that clustering identifies natural subgroup divisions in the data that
reflect different patterning of responses that result in quantitative differentiation in overall performance. Rank
ordering the subgroups by RMET total scores results in a near linear trend for increasing RMET performance
(Fig. 2A,B). In characterizing effect sizes for ASC versus TD subgroup comparisons (Fig. 2C,D) it is clear that the
subgrouping procedure achieves the goals of enhancing sensitivity for identifying discrete ASC subgroups with
large deficits, while at the same time enhancing specificity by showing that there are other ASC subgroups that
show no sign of difficulty and are within the range of scores observed in the TD population. For example, the
two poorest-performing ASC subgroups (subgroups 1 and 2) were dramatically lower than the range of scores
observed in any of the TD subgroups with an effect size reduction in performance greater than 1.20 standard
deviations. In the most extreme case when the worst performing ASC subgroup (ASC subgroup 1) was compared
to the best performing TD subgroup (TD subgroup 4), the effect size rose to as high as 11.21 and 8.97 standard
deviations respectively for each dataset. These poorest-performing ASC subgroups composed a relative minor-
ity of the Discovery (19%) and Replication (36%) ASC samples. ASC subgroup 3 is an intermediate subgroup,
whereby inferences depend on which TD subgroup they are compared to. This subgroup is within the lower range
of scores typically seen in the TD samples, and thus would show no deficit compared to the poorest-performing
TD subgroup (Replication Cohen’s d=0.15) or even slightly enhanced performance (Discovery Cohen’s
d=0.79). The poorest-performing TD subgroup was however, a minority of the TD samples comprising only
19-22% of individuals. Thus, in comparison to any of the other TD subgroups representing the majority of TD
individuals (77-80%), the intermediate ASC subgroup 3 still shows pronounced deficits greater than 1 standard
deviation of difference. Combining the clearly impaired (subgroups 1-2) and intermediate (subgroup 3) ASC
subgroups captures 45-62% of the ASC individuals in each dataset respectively. ASC subgroups 4 and 5 com-
prise the remaining ASC individuals, who showed performance well within the range of scores observed in TD
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Figure 2. RMET total scores and effect sizes for comparisons across ASC and TD subgroups in Discovery
and Replication datasets. Panels A,B show RMET total scores for each ASC and TD subgroup as boxplots
along with dots overlaid to represent individual subject’s data points (Panel A depicts the Discovery (CARD)
dataset, panel B depicts the Replication (AIMS) dataset). Panels C,D show standardized effect sizes (Cohen’s d;
mean difference in units of standard deviation) for all pairwise comparisons of ASC versus TD subgroups.
The effect sizes can be seen numerically within each cell and are also depicted by the coloring of the cell. The
directionality of effect sizes can be interpreted as follows: negative values indicate an effect of TD subgroup
>ASC subgroup, positive values indicate an effect of ASC subgroup >TD subgroup. An asterisk represents
comparisons that pass Bonferroni correction for 20 pairwise comparisons.

subgroups. However, even amongst these higher performing ASC subgroups, there was evidence for on-average
differentiation when compared to the highest performing TD subgroups. For example, the effect size for the rela-
tively highest-performing ASC subgroup (subgroup 4) versus the highest-performing TD subgroup (subgroup 4)
was still a reduction around 2.13 and 2.58 standard deviations respectively. In contrast, there was also evidence
that the highest-performing ASC subgroup performed much better than the poorest-performing TD subgroup
(e.g., ASC subgroup 5 vs TD subgroup 1 Cohen’s d=3.72 and 2.33) (Fig. 2C,D). This evidence of complex nested
heterogeneity both within the ASC and TD samples points towards the need to make subgroup distinctions.
Inferences without such important distinctions (i.e. standard case-control comparisons) could be biased in either
direction depending on the mixture of heterogeneous individuals from various ASC and TD subgroups that
would be nested in any one study.

Although ASC subgroups show item-level patterning that is reflective of quantitative differentiation in overall
performance, it is not the case that signal reflected in quantitative differences in overall performance drives all
of the differentiation between subgroups. Rather, subgroups also show dissimilar patterning of item-difficulty
across items. To better understand variability at the level of items, we ran identical clustering procedures (i.e.
Ward hierarchical clustering on topological overlap) along the item dimension. The top two cluster branches can
be described as differentiation between easy versus difficult items (Figs 1 and 3). To test for similar or different
patterns of item-difficulty across the subgroups, we first computed a measure of item-difficulty, defined as the
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Figure 3. Item-difficulty patterning across ASC subgroups. Panels A (ASC Discovery) and B (ASC
Replication) show item-difficulty profiles (i.e., percentage of subjects within a subgroup that answer the item
correctly) for each ASC subgroup denoted by the different colored lines. Panels C,D show correlation matrices
from item-difficulty between subgroups. Asterisks indicate specific comparisons that pass FDR q < 0.05
correction for multiple comparisons.

percentage of individuals in a particular subgroup who answered a specific item correctly. Item-difficulty plots
for each ASC subgroups can be seen in Fig. 3A,B (for similar plots on the TD subgroups see Supplementary
Figure 1). Next, we assessed similarity in item-difficulty by computing correlations across all pairwise subgroup
comparisons, separately for subsets of easy or difficult items. Higher correlations indicate that item-difficulty
patterns are similar between subgroups, whereas lower correlations indicate more dissimilarity of item-difficulty
across subgroups. Here we find some evidence for similar patterning of item-difficulty between ASC subgroups,
restricted primarily to comparisons of certain adjacent rank-ordered subgroups, particularly subgroups 3-5.
However, these correlations did not easily translate to replicable effects across both the Discovery and Replication
datasets, and in the case of difficult items in the Replication dataset, no significant item-difficulty correlations
emerged. The general lack of replicable significant correlations between subgroups in item-difficulty indicates that
most pairwise subgroup comparisons are not highly similar in item-difficulty patterns. This result suggests that
in addition to picking up subgroups that can be characterized by quantitative differences in overall performance,
the clustering approach also leverages useful information in the patterning of performance at the item-level to
identify discrete subgroups.

Next, we asked the question of whether individuals within subgroups are highly homogeneous in item-level
patterning and whether similarity extends across the independent datasets. To begin exploring this issue, the
Discovery and Replication subgroups were concatenated in rank-order along the subject dimension into one large
two-dimensional matrix (subjects x items) and we then computed the full distance matrix across all subjects. This
procedure was done for subsets of easy and difficult items separately. These subject-wise distance matrices allow
for visualization of the full spectrum of between-subject dissimilarities within and across subgroups and across
different datasets (Fig. 4A,B; for TD matrices see Supplementary Figure 2). One overall gradient pattern emerges
immediately in visual comparison across both easy and difficult item subsets. There is a general trend for marked
between-subject similarity within subgroups at the poles of our rank-ordered subgroup hierarchy. That is, the
worst and best performing subgroups tend to show high degrees of similarity within the subgroup boundaries
(denoted by dark blue coloring in Fig. 4) and this effect generalizes to the homologous rank-ordered subgroup in
the other independent dataset. While this effect tends to be most pronounced for the easy item subset, it can also
be seen in the difficult item subset. Between-subject similarity decreases in a gradient fashion as one descends
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Figure 4. ASC Between-subject dissimilarity of RMET response patterns. This figure depicts between-
subject dissimilarity matrices in ASC for the easy item (A) or difficult item (B) subsets. Cooler colors indicate
more between-subject similarity, whereas hotter colors indicate more between-subject dissimilarity. Each cell
of the matrices represents the dissimilarity between a pair of subjects. The rows and columns are arranged by
subgroup rank order and Discovery and Replication datasets are adjacent to each other and denoted above the
rows and columns by D and R. The black outlines delineate between-subject dissimilarities within a particular
subgroup.

down the rank-ordered subgroup hierarchy from ASC subgroup 5. ASC subgroup 2 shows the highest levels of
between-subject dissimilarity that hover around mid-range Hamming distance values of 0.5 to 0.6 that denote
50-60% of items are dissimilar responses. This indicates that item-level patterning for individuals within ASC
subgroup 2 are slightly dissimilar, relative to the much higher degree of similarity observed in other subgroups.
This effect may be reflective of more random patterns of correct and incorrect responses, rather than consistent
patterns of responses that are more homogeneous across all individuals within that subgroup.

To go further in specifically testing whether subgroup divisions in one dataset generalize to independent
data, we used multi-class classification analyses. This analysis allows for an explicit test of the hypothesis that the
subgroups identified in one particular dataset are not simply reflecting idiosyncratic variability for that specific
dataset but rather indicate generalizable subdivisions within the population structure of ASC. A 5-way classifier
on ASC subgroups achieves 65% accuracy, which is never otherwise observed within 10,000 permutations of
subgroup labels (p < 9.99e-5; range of classification accuracy in the null distribution: 12.69% to 33.70%) (for TD
classification see Supplementary Figure 3; for classification null distributions see Supplementary Figure 4).

We then inspected the confusion matrices for such multi-class predictions and this illuminated further key
considerations. The misclassifications were nearly always for proximal (i.e. adjacent in rank-order) subgroups. An
important distinction could be made between subgroups 1 and 2 versus subgroups 3-5. Nearly all the predictions
for individuals within subgroups 1-2 or 3-5 stay within such superordinate groupings. Given that there was an
important distinction between subgroups 1-2 being the most profoundly affected or ‘impaired’ ASC subgroups,
whereas subgroups 3-5 showed performance within the TD range, it is interesting to consider that the accuracy
recalculated for a distinction between subgroups 1-2 versus subgroups 3-5 is 92% and 93% respectively (Fig. 5).
Expanding the set of ‘impaired’ subgroups to also include the intermediate subgroup 3 and comparing them to
subgroups 4-5 results in 88% and 84% accuracy respectively. This indicates that while the much harder task of
multi-class prediction is not perfect, a coarser stratification into what could be considered roughly as ‘impaired’
versus ‘intact’ subgroups is much more robust.

Finally, we examined whether ASC subgroups differed on other variables such as sex/gender, age, AQ,
EQ, BDI, BAIL, ADOS and ADI-R scores. ASC subgroups did not systematically differ across both Discovery
and Replication datasets by sex/gender or EQ (see Supplementary Table and Supplementary Figures 5-9).
Although there were significant age effects in both datasets (Discovery: F(4,373) =2.55, p = 0.03; Replication:
F(4,118) =3.48, p=0.009), these effects were driven by different pairwise subgroup comparisons and were thus
not systematic across the datasets. Within the AIMS dataset, where depression (BDI), anxiety (BAI), and autism
symptom severity data (ADOS, ADI-R) were also available, no differences emerged between the subgroups (see
Supplementary Table and Figures). Subgroups did show some important differences on the AQ and VIQ. For
AQ, ASC subgroup differences manifested in both Discovery (x*(4,373) = 13.69, p =0.008) and Replication
(x*(4,104) =9.89, p=10.04) cohorts with the most RMET-impaired ASC subgroup (i.e., subgroup 1) showing
markedly higher AQ scores than other better performing ASC subgroups (Fig. 6A-D). For VIQ there was a clear
effect of lower VIQ in poor RMET performing ASC subgroups (F(4,118) = 3.76, p=0.006; Fig. 6E,F). Given the
presence of such an effect, we re-ran all hypothesis tests on RMET between-group differences while controlling
for variability in VIQ and came to identical conclusions regarding robust differences. Therefore, although VIQ
was lower in poor performing ASC subgroups, this could not be considered the primary explanation behind the
subgroups’ poor RMET performance.
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Figure 5. Confusion matrices for multi-class classifier predictions of ASC subgroup membership. This
figure presents confusion matrices showing actual subgroup membership along the rows and predicted
subgroup membership by the classifier along the columns. In each cell the numbers refer to counts of the
number of individuals in each cell. We also used color in each cell to depict the percentage of actual subgroup
individuals predicted within each subgroup category (0% indicated by dark blue, and then color continuously
changing to dark red indicating 100%). Above the matrices are descriptions of which dataset was used for
training and testing.

Discussion
In this study we examined heterogeneity in mentalizing ability as measured by the RMET in adults with and with-
out ASC. We discovered 5 ASC subgroups and 4 TD subgroups that consistently emerged across two relatively
large independent datasets. Variability in ASC ranged from subgroups that were very impaired to those within the
TD range of scores, and in some cases, high-performing ASC subgroups were better than poor-performing TD
subgroups. The spectrum of effect size differences between ASC and TD subgroups was highly consistent across
independent datasets. The fact that replicable patterns of heterogeneity were found across datasets and across
both TD and ASC underscores the idea that parsing heterogeneity amongst both ASC and TD populations is of
considerable importance. The enhancement of sensitivity and specificity over and above a standard case-control
comparison is self-evident when comparing the effect sizes in Fig. 2C,D to the case-control effect sizes of Cohen’s
d=—0.36 and —1.15 across Discovery and Replication datasets respectively. Such case-control comparison effect
sizes mask a large degree of complexity hidden within both ASC and TD populations. Therefore, the precision at
which we can understand mentalizing in ASC may be limited until we gain a better grasp on the nested heteroge-
neity present in such a domain both within the ASC and TD populations.

It is particularly noteworthy that the two poorest performing ASC subgroups (i.e. subgroups 1 and 2) were
a relative minority of the sample in both datasets (i.e. 19% of the Discovery (CARD) dataset and 36% of the
Replication (AIMS) dataset). When these ASC subgroups are considered relative to the other subgroups within
the TD-range of scores (i.e. ASC subgroups 3-5), ability to accurately make a binary ‘impaired’ versus ‘intact’
prediction from a multi-class classifier is very high (92-93%). ASC subgroup 3 also represents an intermediate
degree of impairment, as this subgroup shows decreased scores compared to all but the poorest-performing TD
subgroup comprising the bottom 19-22% of TD individuals. Including ASC subgroups 1-3, the estimates of ASC
individuals showing subtle-to-large impairment on the RMET ranges from 45-62%. Therefore, unlike the case
of earlier points in development where a large percentage of individuals show difficulty in the domain of mental-
izing?, in adulthood many individuals do not fall into subgroups 1-3 that would be considered impaired. One
important caveat in interpretation is that these numbers are based on one test of mentalizing (i.e., the RMET).
Clearly, there are other ways to measure different components of mentalizing ability and the RMET likely only
taps specific components within the larger umbrella of mentalizing®. Examination of mentalizing subgroups
using other tests will be particularly helpful for better understanding how heterogeneity manifests in similar
or different ways across different aspects of mentalizing. Another caveat is that the RMET may not be sensitive
enough to detect more subtle difficulties that translate better into understanding of real-world naturalistic social
interactions, or which may be better measured with tasks/tests that tap an individual’s ability to automatically or
implicitly mentalize, or which employ utilization of mentalizing to make more complex judgments (e.g., moral
judgments)'®2%23-30_ Nevertheless, our findings of discrete, replicable, and robust ASC subgroups with differing
explicit mentalizing ability as measured by the RMET in adulthood represents an important stride forward in
terms of the precision of our understanding of mentalizing difficulties in adults with ASC. This work is highly
compatible with the goals of ‘precision medicine’ or ‘stratified psychiatry’ and is what is needed to move forward
with research that has clinical impact for patients and which can also further translational research progress
focused on honing in on treatment-relevant mechanisms'>!4.

The subgroup distinctions outlined here are also particularly important because of how they apply specifically
to the RMET. The RMET is a long-standing instrument that is widely used within the fields of autism research and
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Figure 6. Characterization of subgroup differences on autistic traits (AQ) and verbal IQ (VIQ). Panels
A,C,E are boxplots with dots overlaid to show individual subject’s data points. Panels B,D,F are heatmaps
depicting the effect size for ASC subgroup comparisons. AQ data within the Discovery (CARD) dataset are
shown in panels A,B, whereas AQ data within the Replication (AIMS) dataset are shown in panels C,D. Panels
E,F show VIQ data from the Replication (AIMS) dataset. Effect sizes are standardized effect sizes (Cohen’s d)
and interpreted as the mean difference in units of standard deviation. Asterisks indicate specific comparisons
that pass FDR q < 0.05 correction for multiple comparisons.

social neuroscience. The NIMH RDoC lists the RMET as one of several important tests for characterizing varia-
tion in social processes, particularly under the category of Perception and Understanding of Others (http://1.usa.
gov/1Qs6MdI). In addition to its wide usage in autism research, the RMET has also been used to characterize and
compare social-cognitive abilities across different categorical psychiatric diagnoses®~**. With regards to treat-
ment research, the RMET is widely used as treatment outcome measure, particularly for drug manipulations (e.g.,
oxytocin) or behavioral interventions targeting social skills and social cognition®-%¢. All of this prior clinically
important research utilizes an analytic strategy of computing RMET summary scores across all items and then
onto potentially sub-optimal omnibus case-control comparisons that may mask the presence of nested subgroups
within ASC. The current work should signal a change in this practice for how the RMET is utilized in important
clinical settings (e.g., evaluating treatment outcome). Rather than using summary scores in an omnibus ASC
group, a more fruitful approach would be to use the RMET to distinguish subgroups and to then specifically
evaluate whether such ASC subgroups respond differently to treatment. In other words, the added knowledge we
provide here is that these subgroups could signal a meaningful distinction that helps in the design of intervention
studies and the subsequent interpretation of such findings. Given the current state of largely mixed results for
many interventions for ASC®, it may become clearer after subgrouping that some treatments do systematically
work for particular subgroups but not others.

In addition to impact in clinical research areas, the current study could potentially have large impact on basic
research targeting mechanisms and the phenotypic diversity of ASC. For example, inconsistency within the litera-
ture on the cognitive phenotype of ASC*, particularly as it pertains directly to mentalizing and/or more generally
the domains of emotion and social cognition, may be better understood with an approach that focuses more on
parsing heterogeneity into subgroups as we have shown here. Additionally, inconsistency in the functional and
structural neuroimaging literature on ASC*'-** could be mitigated by a better understanding of mentalizing heter-
ogeneity nested within relatively small ASC samples typically utilized in such work. This point is underscored by
recent work by Byrge and colleagues, whereby it was suggested that some group-level differences in case-control
designs could be driven by the effects nested within a small subgroup of patients®. A better a priori understand-
ing of the heterogeneity present within the ASC population could be of large impact for study design and could
also implicate different underlying etiological, neurobiological, and developmental mechanisms that explain such
heterogeneity”46-4,

A major innovation in this work is the approach to subgrouping. Rather than utilizing the RMET in a stand-
ard approach by summarizing all items into one total score, we have instead retained the full set of informa-
tion encoded across the 36 items as input into an unsupervised hierarchical clustering approach that came to
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data-driven conclusions about the presence of discrete ASC subgroups. This unsupervised approach avoids
using potentially arbitrary experimenter-derived cutoffs and instead utilizes natural data-driven distinctions that
are robust enough to emerge in a consistent fashion across independent datasets. Importantly, this clustering
approach leverages distinctions in the patterning of item-level performance that can relate to quantitative distinc-
tions in overall performance but also subtle dissimilarity in item-difficulty across the subgroups. Recent work has
applied similar logic and approaches to clustering the phenotype based on gold-standard diagnostic instruments*
and for clustering 26 different mouse models of genetic mechanisms related to ASC*. However, these other types
of clustering approaches do not benefit from some of the specific innovations inherent in the technique we have
used. Specifically, we utilized important computational steps taken directly from weighted gene co-expression
network analysis (WGCNA)>**!, which is a widely used approach in genomics and systems biology and has been
highly utilized specifically in autism genomics research®*~>’. In particular, the computational steps of converting a
distance matrix into a topological overlap matrix and then running hierarchical clustering on this similarity met-
ric rather than other metrics is important since topological overlap is less susceptible to noise influences because
it leverages information about similarity of neighbors. Additionally, the dynamic hybrid tree-cutting algorithm
that cuts the cluster tree into discrete subgroups is also highly innovative compared to most other tree-cutting
methods which rely on using a single cut height across the dendrogram, and which generally cannot make fine
distinctions that the dynamic algorithm can make within local neighborhoods of the dendrogram. Thus, our
analytic approach is applicable across translational research contexts and could be utilized more widely across a
whole range of new applications focused on data-driven stratification in ASC.

A further advantage to our approach of finding data-driven distinctions is that such distinctions are generaliz-
able across datasets. As we have shown with the classification analyses, the stratifications made in one dataset gen-
eralize to multi-class predictions in independent data. Such high levels of multi-class predictions are extremely
difficult to obtain and such results attest to the power of such multiple class divisions in the data. In the context
of a more simplistic 2-class distinction of ‘impaired’ versus ‘intact, the multi-class predictions were even more
accurate, as the multi-class prediction errors were mainly localized to adjacent subgroups and such a 2-class dis-
tinction yielded very high accuracy. In future work, such information about replicable subgroups could be turned
into valuable assessment or research tools that could aid in study design and participant screening. For instance,
randomized control trials may use the RMET to screen patients along such distinctions or as an outcome measure
and use such distinctions to analyze individualized treatment response patterns. Such stratifications could also be
useful in clinical assessments and facilitate personalized treatment planning and outcome prediction.

In addition to highlighting the promise of such stratifications for autism research, there are additional char-
acteristics of ASC subgroups that are important to stress. First, variables such as sex/gender, age, trait empathy,
depression and anxiety symptoms, and clinical measures of autistic symptom severity were not systematically dif-
ferent across ASC subgroups. However, poor performing ASC subgroups tended to be lower in VIQ and higher in
self-reported autistic traits measured by the AQ. This effect of higher self-reported autistic traits in more affected
subgroups is interesting from the standpoint that similar effects do not emerge on clinical measures of autistic
symptom severity (e.g., ADOS and ADI-R). It may be that this effect emerges due to differences in what is meas-
ured in an instrument like the AQ versus the ADOS and ADI-R. This effect may be of clinical importance as those
individuals with high levels of autistic traits and poor performance on the RMET may potentially need different
approaches of intervention and support than other individuals within other subgroups (e.g., they may particularly
benefit from adjustments in the occupational or educational environments to reduce social load). The VIQ effect
on the RMET and more generally on mentalizing ability has been noted before?*8 and may be easily understood
in the context of the RMET since this test may tax vocabulary for some individuals and on certain items. Despite
this effect of VIQ, we found that the main comparisons of ASC versus TD subgroups were unchanged after
accounting for VIQ variability. This evidence suggests that while some variability in RMET performance is linked
to variability in VIQ, the subgroup distinctions and patterns of RMET performance are not fully explained by
VIQ variation.

There are some important caveats and limitations to keep in mind regarding the current work. First, the full
spectrum of heterogeneity in autism likely will not be captured with just one test such as the RMET. Parsing the
wide spectrum of heterogeneity in autism at the cognitive level will likely require many tests spanning a much
wider range of cognitive domains. However, the methods described here, applied specifically to the RMET, are
directly translatable to future work that must look into a wider range of variables. Furthermore, while the RMET
alone might not capture all of the heterogeneity in autism, it may be that it could reveal important distinctions
that might be masked in more wide-sweeping looks that span across several cognitive domains. Conversely, it
could be that sensitivity and specificity in parsing mentalizing heterogeneity could be maximized by targeted
studies that employ several tasks that tap different components within mentalizing. Future work along these lines
would be very important in furthering our understanding of heterogeneity in mentalizing in autism.

Second, although we have analyzed the data for dissimilarity in item-difficulty patterns across subgroups,
another approach would have been to implement multi-group item response theory (IRT) analysis. By fitting an
IRT model for each subgroup, parameters could be tested for a between-subgroup differences in measurement
invariance. The current work is limited in ability to use such an approach effectively because the sample sizes of
each subgroup are too small®®. Future work that can achieve larger sample sizes across subgroups could utilize
this approach.

Third, subsets of RMET items could be further investigated for potential subtle differences that could explain
some of the heterogeneity described here. In the current work, we have only made a broad distinction between
item subsets that could be characterized as relatively easy or difficult. Currently, much finer distinctions within
smaller item subsets are not directly apparent in a manner that generalizes across the two datasets. However,
much more work could be done in this respect, particularly in relation to decomposing aspects through which
RMET item subsets might differ on a variety of other levels not currently measured.
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ASC Sample Size | TD Sample Size | ASC Age Mean TD Age Mean
Dataset (Males, Females) | (Males, Females) (SD) (SD)
Discovery (CARD) 378 (169, 209) 316 (148, 168) 37.36 (11.72) 35.07 (12.06)
Replication (AIMS) 123 (85, 38) 126 (85,41) 26.79 (7.70) 27.84 (6.76)

Table 1. Dataset characteristics. This table indicates the sample sizes and age in each group and dataset used
in final analyses. For sample size, the total sample size is noted alongside the number of males and females noted
in parentheses. For age, we report the mean and the standard deviation (in parentheses).

Fourth, another interesting finding from the current work is the presence of 4 discrete TD subgroups that
emerge across both independent datasets. This result may seem surprising under the prior belief that the TD
population is relatively homogeneous. However, such a prior may not be warranted given that there are other
ways in which we know the TD population is stratified (i.e. genetic stratification, cultural differences, individual
differences in personality, etc.). This finding will likely require further work to parse apart what creates such
distinctions within the TD population and whether such distinctions can be characterized in meaningful ways
by leveraging associations with other variables. Such stratification may further help enable more precise studies
utilizing the TD population as well as open up new questions regarding the mechanisms that may underlie such
distinct subgroups.

Finally, it is noteworthy that in the case of simpler 2-class distinction of ‘impaired’ versus ‘unimpaired’ that
a similar kind of discovery could have been made without the use of an unsupervised data-driven clustering
approach on item-level performance patterns. Rather, a simple cut-off score derived from RMET total scores
could potentially have been made and verified in independent data as maximizing sensitivity or specificity. For
example, visually assessing Fig. 2, optimal cut-points for determining an ‘impaired’ subgroup could be made
around total scores of 15-19, as these points tend to be those where very few TD individuals fall below. This
issue brings up the larger discussion point in relation to contrasting two different approaches to stratification-
supervised versus unsupervised approaches. On the one hand, supervised experimenter-driven approaches like
deriving cut-off scores after seeing and interpreting the data can ultimately be useful, particularly when they are
validated with independent datasets. Such approaches utilize intelligence injected by the experimenter via prior
knowledge and/or interpretation of the data to help guide the stratification process. However, such an approach
can be limiting if the supervised knowledge is uninformed, impoverished, inaccurate, or incomplete in some
way, as can be the case in many situations where advanced and precise knowledge on the topic is elusive. In these
circumstances, unsupervised approaches can be advantageous as they may yield discoveries that would otherwise
remain hidden without knowledge to help supervised approaches come to similar distinctions. At the moment, it
is difficult to say which approach would yield potentially the most useful results in a clinically-significant sense.
Such a question should be answered with more work that ultimately determines which kinds of stratifications
yield subgroups that can be meaningfully interpreted or can get us closer to very important mechanisms or
which could yield significant uses in clinical settings. Future work assessing other associated data from sub-
groups such as these would be helpful in determining which approach to subgrouping is most useful in terms of
clinically-significant real-world utility.

In conclusion, the discoveries in this study allow for a more precise understanding of mentalizing in adults
with ASC. Our insights have the potential to further personalized medicine aims in ways that accelerate progress
towards clinical impact for patients. By understanding how the autism spectrum can be stratified in clinically
meaningful ways, translational opportunities may open up that could test whether such distinctions are rooted in
separate underlying mechanisms.

Materials and Methods

Discovery Dataset. In this study we analyzed two large datasets that served as discovery and replication
sets. The discovery dataset came from the Cambridge Autism Research Database (CARD)* and consisted of 395
adults with ASC (178 males, 217 females) and 320 typically-developing controls (TD; 152 males, 168 females)
within the age range of 18-74 years. Sample sizes used in final analyses are presented in Table 1. The CARD
data were collected online from two websites (www.autismresearchcentre.com, www.cambridgepsychology.com)
during the period of 2007-2014. Once participants had logged onto either site, they consented for their data to
be held in the Cambridge Autism Research Database (CARD) for research use, with ethical approval from the
University of Cambridge Psychology Research Ethics Committee (reference No. Pre.2013.06).

CARD participants who self-reported a clinical autism diagnosis were asked specific information about the
date of their diagnosis, where they were diagnosed, and the profession of the person who diagnosed them. The
inclusion criterion for participants in the ASC group was a clinical diagnosis of an autism spectrum condition
(ASC) according to DSM-IV (any pervasive developmental disorder), DSM-5 (autism spectrum disorder), or
ICD-10 (any pervasive developmental disorder) from a recognized specialist clinic by a psychiatrist or clini-
cal psychologist. Such online self or parent-reported diagnoses agree well with clinical diagnoses in medical
records®. Control group participants were included if they had no diagnoses of ASC and no first-degree relatives
with ASC. For both groups, participants were excluded if they reported a diagnosis of bipolar disorder, schizo-
phrenia, eating disorder, obsessive-compulsive disorder, personality disorder, epilepsy, or an intersex/transsexual
condition. Participants with a diagnosis of depressive or anxiety disorder were not excluded as these conditions
are common in the general population and occur at high rates in adults with autism®.
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Replication Dataset. The replication dataset consisted of participants from the MRC AIMS Consortium
dataset (n =123 ASC; 85 male, 38 female; n =128 TD; 87 male, 41 female) within the age range of 18-5261-54,
Sample sizes used in final analyses are presented in Table 1. The study was given ethical approval by the National
Research Ethics Committee, Suffolk, UK. All volunteers gave written informed consent. Participants were
recruited and assessed at one of the three MRC AIMS centers: the Institute of Psychiatry, London; the Autism
Research Centre, University of Cambridge; the Autism Research Group, University of Oxford. All participants
were right-handed. Exclusion criteria for all participants included a history of major psychiatric disorder (with
the exception of depressive or anxiety disorders), head injury, genetic disorder associated with autism (e.g., frag-
ile X syndrome, tuberous sclerosis), or any other medical condition affecting brain function (e.g., epilepsy). All
ASC participants were diagnosed according to ICD-10 research criteria for pervasive developmental disorder.
ASC diagnoses were confirmed using the Autism Diagnostic Interview-Revised (ADI-R)% and it was allowed
for participants to be 1 point below cutoff for one of the three ADI-R domains in the diagnostic algorithm. The
Autism Diagnostic Observation Schedule (ADOS)® was used to assess current symptoms for all participants with
ASC. The Wechsler Abbreviated Scale of Intelligence (WASI)®” was used to assess Verbal IQ (VIQ), Performance
IQ (PIQ) and Full Scale IQ (FSIQ). Depressive and anxiety symptoms were measured with the Beck Depression
Inventory (BDI) and Beck Anxiety Inventory (BAI).

Reading the Mind in the Eyes Test (RMET).  All participants in both discovery and replication datasets
completed the ‘Reading the Mind in the Eyes’ Test (RMET), adult version®*. The RMET consists of 36 items of
grey-scale photos cropped and rescaled so that only the area around the eyes can be seen. Each photo is sur-
rounded by four mental state terms and the participant is instructed to choose the word that best describes what
the person in the photo is thinking or feeling. Participants in both discovery and replication datasets completed
a computerized online version of the RMET at home. Participants were instructed to select the most appropri-
ate item within 20 seconds for each stimulus (presented in random order). Responses were coded as correct or
incorrect (wrong items selected, or no response after 20 seconds), giving a maximum total correct score of 36. To
guard against the possibility that many items timed-out, we used a rule that if an individual had time-outs on 9 or
more items (>25% of all items), then such individuals were excluded from analysis. The final sample sizes after
filtering by this criterion is shown in Table 1 for both datasets. All participants in both discovery and replication
datasets also completed the Autism Spectrum Quotient (AQ)® and the Empathy Quotient (EQ)® on the same
online platform and before taking the RMET.

Statistical Analysis. RMET item-level data for all subjects was concatenated into a two-dimensional matrix
with subjects along the rows and RMET items along the columns. This data matrix was then converted into a
distance matrix across subjects. The value within each cell of this distance matrix indicates how similar each
individual is to another individual in RMET item-level patterns of response. The distance metric computed was
Hamming distance, which is a measure of the percentage of dissimilar item responses between two subjects and is
appropriate in this context where RMET item-level responses are binary. For the purpose of clustering into sub-
groups, the distance matrices for each dataset were converted into a topological overlap matrix (TO). Topological
overlap is an advantageous metric of similarity over and above other distance metrics that only take into account
similarity between the two individuals of interest because topological overlap will also take into account similarity
between the neighbors of the target individuals. When two individuals are highly similar between themselves
and also in their neighbors, they have high topological overlap. Topological overlap matrices are highly effective
in other applications’®”! including the systems biology method of WGCNA”2 The topological overlap matrices
were then input into agglomerative hierarchical clustering using Ward’s method as the linkage method. The den-
drograms created from clustering were then cut into subgroups using a dynamic hybrid tree cutting algorithm
(deepSplit=1) also commonly used in systems biology applications such as weighted gene co-expression network
analysis”>. This tree-cutting algorithm is optimal for finding subgroups as it finds a dynamic cut height for each
branch of the dendrogram rather than using a single cut height for all branches. This entire subgrouping proce-
dure was implemented on both the ASC and TD groups independently.

Once subgroups were defined, we computed total RMET scores (i.e. sum across all items) for each individual
and ran independent samples t-tests to specifically compare the total score across all pairwise comparisons of ASC
subgroups versus TD subgroups. Only comparisons that passed Bonferroni correction for 20 comparisons were
considered significant. Standardized effect size for each comparison was also computed as Cohen’s d. All pair-
wise comparisons between ASC and TD are visualized as heatmaps showing standardized effect size (Cohen’s d)
for each comparison. Note that we did not compute within-group comparisons because such comparisons would
be circular given that the subgrouping (selection) and testing would be done on the same data.

In addition to stratifying the subject dimension we also applied clustering to the item dimension of the dataset.
This clustering was done to primarily find the two major subdivisions of items that could be characterized as easy
versus difficult items. These subsets of items were then used in further analyses that examined different patterning
of item-difficulty across the subgroups. To measure item-difficulty we calculated the percentage of individuals
within a particular subgroup that answered a specific item correctly. To examine the hypothesis that subgroups
show similar or different item-difficulty profiles we computed correlations between the item-difficulty measures
for each pairwise subgroup comparison. Correlations were deemed significant if they passed an FDR q < 0.05
threshold that corrects for multiple comparisons. These significant correlations indicate subgroup comparisons
whereby item-difficulty was significantly similar across the subgroups. The non-significant correlations are taken
to be subgroup comparisons whereby there was no sufficient evidence to state that item-difficulty profiles were
similar across the subgroups.

To examine between-subject dissimilarity of item-level performance patterns between subgroups and across
datasets, we computed subject-wise distance matrices. These matrices show the similarity metric of Hamming
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distance for each pairwise subject combination across both datasets. These matrices were computed separately
for the easy and difficult item subsets. These matrices primarily serve a descriptive purpose to explicate all
between-subject dissimilarities and to show how similar individuals from a particular rank-ordered subgroup
are to the homologous subgroup identified in the other dataset. If homologous subgroups identified in different
datasets are indeed highly similar, we expect to see high degree of between-subject similarity across datasets.

To quantitatively evaluate the degree to which subgroups identified within one dataset could be accurately pre-
dicted within a second independent dataset we ran multi-class classification analyses using the ensemble learning
algorithm AdaBoostM27* implemented within the fitensemble.m function in MATLAB R2015b (learner type
set to ‘Discriminant’ and with 20 weak learners). Homologous subgroup labels were based on rank ordering
of the subgroups by total RMET scores. These homologous subgroup labels allowed us to then evaluate how
well multi-class classification performance was in identifying the same rank ordered subgroups across datasets.
Classification accuracy was then compared to simulations where subgroup labels were randomly permuted
10,000 times, and p-values were computed as the percentage of times under randomly permuted labels that clas-
sification accuracy was as high or higher than accuracy obtained under the true subgroup labels. To visualize
multi-class classification performance, we present confusion matrices illustrating the percentage of individuals
within each subgroup that are predicted in each subgroup category. We also computed classification accuracy for
specific subsets of subgroups combined that could generally be called ‘impaired’ versus ‘intact’; that is, subgroups
1-2 versus subgroups 3-5 and subgroups 1-3 versus subgroups 4-5.

Finally, we examined other variables such as sex/gender, VIQ, age, AQ, EQ, BDI, BAI, and ADOS and ADI-R
subscales to test hypotheses about whether the ASC subgroups would differ on these variables. To test for the pos-
sibility of imbalances across the subgroups as a function of sex/gender, we counted up the number of males and
females across all subgroups and compared them to expected counts derived from a chi-square test. To test VIQ,
age, AQ, EQ, BDI, BAI, ADOS, and ADI-R score differences we used one-way ANOVAs to test for differences
between ASC subgroups. Because AQ and EQ showed markedly skewed distributions, we ran a Kruskal-Wallis
one-way nonparametric ANOVA instead of a parametric ANOVA. ANOVA results were followed up with
post-hoc pair-wise comparisons that were Bonferroni corrected for multiple comparisons.
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