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Single-cell transcriptomics reveals cell-type-
specific diversification in human heart failure

Andrew L. Koenig®1, Irina Shchukina?, Junedh Amrute ®, Prabhakar S. Andhey?, Konstantin Zaitsev?,
Lulu Lai®?, Geetika Bajpai', Andrea Bredemeyer ©@?, Gabriella Smith®1, Cameran Jones’,
Emily Terrebonne ®', Stacey L. Rentschler'*, Maxim N. Artyomov ®2 and Kory J. Lavine ®"232<

Heart failure represents a major cause of morbidity and mortality worldwide. Single-cell transcriptomics have revolutionized
our understanding of cell composition and associated gene expression. Through integrated analysis of single-cell and single-
nucleus RNA-sequencing data generated from 27 healthy donors and 18 individuals with dilated cardiomyopathy, here we
define the cell composition of the healthy and failing human heart. We identify cell-specific transcriptional signatures asso-
ciated with age and heart failure and reveal the emergence of disease-associated cell states. Notably, cardiomyocytes con-
verge toward common disease-associated cell states, whereas fibroblasts and myeloid cells undergo dramatic diversification.
Endothelial cells and pericytes display global transcriptional shifts without changes in cell complexity. Collectively, our findings
provide a comprehensive analysis of the cellular and transcriptomic landscape of human heart failure, identify cell type-specific
transcriptional programs and disease-associated cell states and establish a valuable resource for the investigation of human

heart failure.

and snRNA-seq, respectively) represent powerful new tools

to identify cell types and their respective transcriptional sig-
natures that reside within healthy and diseased tissues. Before the
development of these technologies, our understanding of the cells
that comprise human tissues and organs was restricted to routine
histology and immunostaining analyses performed many decades
ago. The rapid deployment of single-cell sequencing has revolution-
ized the field and resulted in the identification of previously unrec-
ognized cell populations, including disease-specific cell states across
a wide range of structures, including the brain, lung, liver, kidney
and various malignancies'~.

Heart failure represents a major cause of morbidity and mor-
tality worldwide and imparts large costs on healthcare systems
($30-50 billion year™ in the United States)®’. Despite advance-
ments in patient care, heart failure remains prevalent (lifetime risk
of 20-45%) and portends 5-year morality rates approaching 50%,
highlighting the clinical need to develop new therapies’. While bulk
RNA-seq has yielded important insights into disease mechanisms
that contribute to heart failure pathogenesis’, cell-specific informa-
tion is lost and much remains to be learned regarding the roles of
individual cell types. Identification of cell-specific disease-associ-
ated programs may provide the insights and opportunities neces-
sary to develop new approaches for heart failure.

Recently, scRNA-seq and snRNA-seq was performed on healthy
human heart tissue'®'". These studies yielded new information per-
taining to common and rare cell populations within the healthy
heart. Cardiomyocytes, fibroblasts, endothelial cells, pericytes,
smooth muscles cells, myeloid cells, lymphoid cells, adipocytes
and neural cells were readily identified and analyzed across ana-
tomical sites. Distinct transcriptional states of atrial and ventricular
cardiomyocytes were identified and validated using RNA in situ

Single—cell and single-nucleus RNA sequencing (scRNA-seq

hybridization. Notable diversity was also observed among perivas-
cular and immune cell types, including transcriptional signatures
specific to different regions of heart.

At present, little is understood regarding the functional rele-
vance of cell diversity within major human cardiac cell populations.
Furthermore, the impact of human cardiac disease on cell composi-
tion remains to be rigorously investigated. While extensive work has
been carried out in mouse models of heart failure, current scRNA-
seq datasets exploring human heart failure are small and lack the
sample size necessary to elucidate the impact of disease on common
and rare cardiac cell types'>*".

Herein, we performed snRNA-seq and scRNA-seq on a large
cohort of heart specimens obtained from healthy individuals and
patients with chronic heart failure. We identified 15 major cardiac
cell types from 45 individuals and explored the extent of cell diver-
sity within each of these populations. Unsupervised clustering,
differential gene expression and trajectory analyses revealed cell
type-specific transcriptional programs and emergence of disease-
associated cell states in the context of heart failure. We uncovered
cell-specific influences of age on gene expression that differed
based on disease state. Our data provide a comprehensive analy-
sis of the cellular and transcriptomic landscape of the healthy and
failing human heart and will serve as a valuable resource to the
scientific community.

Results

snRNA-seq and scRNA-seq reveal the cellular landscape of the
human heart. To define the cellular and transcriptional landscape
of the healthy and failing human heart, we obtained left ventricu-
lar (LV) cardiac tissue specimens from 28 non-diseased donors
(donation after brain death) and 17 individuals with dilated (non-
ischemic) cardiomyopathy (DCM). Non-diseased tissues were
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acquired from prospective donor hearts with normal LV function
that were not used for transplantation due to the lack of a suitable
recipient. DCM tissue was obtained from individuals undergoing
implantation of an LV assist device or explanted hearts collected
at the time of transplantation. Transmural myocardial samples
from the apical and anterior segments of the LV were processed
for either snRNA-seq (n=38) or scRNA-seq (n=7) using the 10X
Genomics 5’ Single Cell platform (Fig. 1a, Extended Data Fig. 1
and Supplementary Table 1).

Single-nucleus and single-cell libraries were sequenced, aligned
to the human reference genome, filtered for quality control (QC).
Unsupervised clustering, integration and differential expression
analysis performed using Harmony and Seurat (Fig. 1b, Extended
Data Fig. 1 and Supplementary Tables 2 and 3). Following QC,
nuclei samples had average gene and feature counts per cell of
2,849 and 1,496, respectively, whereas those counts for cells were
4,893 and 1,966, respectively. The final integrated dataset con-
sisted of 220,752 nuclei and 49,723 cells representative of 15 major
cell types (Fig. 1c). Cell identities were validated by expression
of cell-specific marker genes (Fig. 1d) and transcriptional signa-
tures (Extended Data Figs. 2 and 3). Cell types identified in both
snRNA-seq and scRNA-seq datasets included fibroblasts, endo-
thelial cells, myeloid cells, pericytes, smooth muscle cells, T cells
and natural killer (NK) cells, neurons/glia and B cells. A notable
benefit of snRNA-seq is the ability to obtain reads from additional
cell types that are not efficiently recovered from enzymatically
digested tissue including cardiomyocytes, adipocytes, endocar-
dial cells, lymphatics, epicardial cells and mast cells (Fig. le and
Extended Data Figs. 2 and 3).

The analyzed dataset was powered to investigate the influence of
age, sex and disease state and severity on gene expression. Differential
expression analysis using pseudobulk and single-cell approaches
demonstrated substantial overlap (Supplementary Tables 4 and 5).
Disease state had the most powerful influence on differential gene
expression across cell types (Fig. 2a and Supplementary Table 21).
Heart failure severity, as assessed by INTERMACS profile/score
(predictor of outcomes in the advanced heart failure population)
revealed evidence of differential expression in cardiomyocytes,
endothelial, endocardial, fibroblast and myeloid cells (Fig. 2b and
Supplementary Table 22)*>**. We also observed changes in cardiac
cell composition as a function of disease state. Individuals with
DCM had decreased numbers of cardiomyocytes, pericytes and
mast cells; and increased numbers of fibroblasts, myeloid cells, T/
NK cells and lymphatics (Supplementary Table 6). Many of these
changes were observed in both men and women (Supplementary
Tables 7 and 8). Heart failure severity was not associated with
changes in cell composition (Supplementary Table 9).

Substantially fewer differentially expressed genes (DEGs) were
detected comparing sex in either non-diseased donors or individu-
als with DCM. The majority of differentially expressed transcripts
were located on the X and Y chromosomes including XIST, TSIX
and TTTY genes (Fig. 2c and Extended Data Fig. 4). We did not
detect clear differences in cell composition between male and
female donors or individuals with DCM (Supplementary Tables 10,
11, 23 and 24).

To identify changes in cardiac cell composition and gene expres-
sion associated with age, we computed positive and negative rela-
tionships using Pearson correlation. This analysis was separately
performed in donor and DCM cohorts to account for the pos-
sibility that relationship between age, cell composition and gene
expression may differ in the context of health and heart failure.
We observed that myeloid cell number was associated with older
age in donor hearts, a finding that was most evident in females.
We did not observe significant age-associated alterations in major
cell populations in DCM hearts (Supplementary Tables 12, 13, 25
and 26). In contrast, we identified multiple genes that were asso-
ciated with younger and older age across cell types in donor and
DCM hearts (Fig. 2d). We constructed age-associated gene signa-
tures by selecting genes with Pearson correlation coefficients >0.6
or <—0.6. Regression analysis revealed robust age-associated gene
signatures across cell types. Notably, age-associated gene expression
signatures were cell type-specific, differed by disease state and simi-
larly evident in male and female patients (Extended Data Fig. 5 and
Supplementary Tables 14-17). We also detected distinct pathways
associated with age in donor controls and individuals with DCM
(Supplementary Tables 18 and 19).

Given that disease state was associated with the most robust
changes in cell composition and gene expression, we chose to focus
our analysis on how heart failure influences major cardiac cell
populations, including cardiomyocytes, myeloid cells, fibroblasts,
pericytes/smooth muscle cells, endothelial cells and endocardial
cells. These populations displayed the greatest differences in gene
expression (Fig. 2a).

Cardiomyocytes phenotypically converge in dilated cardiomy-
opathy. Principal-component analysis (PCA) of pseudobulk data
indicated that disease state and sex had the greatest influence on
gene expression variance in cardiomyocytes (Fig. 3a). Overlaying
age distribution onto the PCA plot did not suggest a dominant
relationship with age across all cardiomyocytes, although regres-
sion analysis did identify gene expression signatures associated
with age (Fig. 2d and Extended Data Fig. 5). Genes associated
with age differed in donor and DCM specimens and were distinct
from genes that were differentially expressed between donor ver-
sus DCM cardiomyocytes (0.1% and 3.7% overlap, respectively).
Pseudobulk differential expression analysis between men and
women indicated robust differences in a modest number of genes
encoded on the X and Y chromosome, possibly accounting for
separation observed by PCA (Extended Data Fig. 4). Differential
expression analysis by pseudobulk and single-cell approaches
across disease state revealed a large number of genes significantly
upregulated (NPPA, NPPB, ACE2 and KIF13A) and downregulated
(MYH6, ADRB2 and CKM) in DCM samples compared to non-
diseased donors (Fig. 3b). Pathway analysis identified multiple dif-
ferentially regulated pathways upregulated (MAPK, FLT3, HIPPO/
YAP and GCPR signaling) and downregulated (metabolism) in
DCM (Extended Data Fig. 6).

Unsupervised clustering identified seven cardiomyocyte states
with differing gene expression signatures (Fig. 3¢,d and Extended
Data Fig. 6). Cardiomyocytes from donor samples existed in all
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Fig. 1| Cellular composition of the healthy and failing human heart. a, Schematic depicting design of the snRNA-seq and scRNA-seq experiments.
Transmural sections were obtained from the apical anterior wall of the left ventricle during donor heart procurement, LVAD implantation or heart
transplantation for comparison of disease, sex and age (snRNA-seq, n= 25 donor control, n=13 dilated cardiomyopathy; scRNA-seq, n=2 donor control,
n=5 dilated cardiomyopathy). Dashed box indicates location where sample was collected. LVAD, left ventricular assist device. b, The analysis pipeline
included tissue processing and single-cell barcoded library generation (10X Genomics 5’ v1 kit), sequence alignment (Cell Ranger) and further analysis
using R and Python packages (Seurat, Harmony, DEseq?2, Palantir, ClusterProfiler and Enrichr). ¢, Unsupervised Uniform Manifold Approximation and
Projection (UMAP) clustering of 220,752 nuclei, 49,723 cells and an integrated dataset combining snRNA-seq and scRNA-seq data after QC and data
filtering using Harmony integration. d, Violin plots generated from the integrated dataset displaying characteristic marker genes of each identified cell
population. e, Pie chart showing the proportion of cells within the snRNA-seq, scRNA-seq and integrated datasets.
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Fig. 2 | Differential influence of disease state, sex and age on cell type-specific gene expression. a-c, Dot plots showing pseudobulk (DESeg2) based
differential gene expression across major cell populations. Differential expression was calculated from snRNA-seq data for disease (a, Donor versus
DCM), INTERMACS score (b, 1and 2 versus 3 and 4) and sex (¢, male versus female) are shown. d, Genes correlated with age by Pearson coefficient are
also shown. Genes with adjusted P value <0.05 are colored in red and genes with adjusted P value >0.05 are colored in gray (P value calculated using
Wald test adjusted for multiple test correction). Number of upregulated and downregulated genes with adjusted P value <0.05 per cell type is displayed in
parenthesis. Supplementary Tables 21-26 contain a complete list of genes.

seven states marked by MYH6 (Cml), ACTAI (Cm2), MYL7
(Cm3), ADGRL3 (Cm4), GRIK2 (Cm5), NPPA/NPPB (Cmé6)
and BMPRIB (Cm7) expression. DCM samples displayed a bias
toward ADGRL3-expressing cardiomycytes, trend toward more
NPPA/NPPB-expressing cardiomyocytes and marked reduction
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in MYH6- and GRIK2-expressing cardiomyocytes (Fig. 3e).
Cardiomyocyte clusters marked by MYH6, MYL7 and GRIK2 dis-
played stronger expression of signature genes in donor samples,
whereas cardiomyocyte clusters marked by ACTAI, ADGRL and
NPPA/NPPB displayed stronger expression of signature genes in
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DCM samples (Extended Data Fig. 6). In addition, we observed a
global decrease in MYHG6 expression and increases in ANKRDI,
NPPA and ADGRL3 expression in DCM (Fig. 3f). To validate
shifts in cardiomyocyte state and gene expression in DCM at the
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tissue level, we performed RNA in situ hybridization. Compared
to donor controls, we observed significant increases in NPPA,
NPPB and ANKRD1-expressing cells and significant reduction in
MYHG6-expressing cells in DCM (Fig. 3g,h).
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Fig. 3 | Acquisition of disease-associated cardiomyocyte states in dilated cardiomyopathy. a, PCA, DESeq?2 plots of cardiomyocyte pseudobulk snRNA-
seq data colored by sex and disease state (left) and age (right). Each data point represents an individual. b, Heat map displaying the top 100 upregulated
and downregulated genes ranked by log, fold-change comparing donor control to DCM. DEGs were derived from the intersection of pseudobulk (DESeqg2)

and single-cell (Seurat) analyses. €, Unsupervised re-clustering of donor and DCM cardiomyocytes within the integrated dataset split by disease state.
Major cardiomyocyte states are labeled. Inset (right) colored by disease state demonstrates mixing within cell states. d, Dot plot displaying z scores for
transcriptional signatures that distinguish cardiomyocyte states (genes selected by enrichment in Seurat differential expression analysis, listed in box
below plot). e, Distribution of cardiomyocyte states by cluster (*P<0.05, **P< 0.01, ***P < 0.001, Welch's t-test, two-tailed, data represents mean=+s.d.,
donor; n=25 samples, DCM; n=13 samples). P values for clusters comparing donor to DCM are Cm1: 3.8 X104 Cm2, 1.8 X 107"; Cm3, 3.2x 107", Cm4,
8.1%1073; Cm5, 5.4%107% Cmé6, 1.1x 107", Cm7, 1.1x 107" f, Violin plots of MYH6, ANKRD1, NPPA and ADGRL3 expression in donor control and DCM
cardiomyocytes. g, Quantification of the number of cardiomyocytes expressing ANKRD1, MYH6, NPPA and NPPB mRNA in donor control and DCM samples
(P value from Welch's t-test, two-tailed, data represents mean +s.d. For ANKRD1, donor; n=6 samples, DCM; n=6 samples. For MYH6, NPPA and NPPB,
donor; n=4 samples, DCM; n=4 samples). h, Representative RNA in situ hybridization images (RNAScope) of indicated genes. i, Palantir pseudotime
trajectory analysis of cardiomyocytes showing entropy and pseudotime scores overlaid on the UMAP projection (left). Entropy versus pseudotime plots of
donor and DCM cardiomyocytes identifying differing trajectories of healthy and disease-associated cardiomyocyte states (right).

Pathway and transcription factor enrichment analyses per-
formed on each cardiomyocyte cell state identify pathways that
distinguished cardiomyocytes states including metabolism, muscle
contraction, Semaphorin, NOTCH, MAPK signaling and potas-
sium channels. This analysis also identified transcription factors
that were predicted to regulate gene expression within each of the
cardiomyocyte states (Extended Data Fig. 6).

To explore the temporal relationship between cardiomyocyte
states, we performed pseudotime trajectory analysis using Palantir,
a Python package that employs probabilistic models to discern com-
plex and diverse lineage relationships™. We calculated pseudotime
and entropy values for each cardiomyocyte cluster to predict puta-
tive states of cell differentiation (Fig. 3i and Extended Data Fig. 6).
We plotted entropy versus pseudotime values for each cell and
superimposed cluster designations. Donor cardiomyocytes were
predicted to contain two highly differentiated cell states marked by
MYL7 and ACTA1 expression. In contrast, DCM samples displayed
two distinct highly differentiated cell states marked by ARGRL3 and
NPPA/NPPB expression (Fig. 3i). Collectively, these observations
suggest a convergence toward disease-associated cardiomyocyte
phenotypes in DCM.

Monocyte expansion and inflammatory macrophage diversifica-
tion. Macrophages, monocytes and dendritic cells are increasingly
studied in mouse models of cardiac injury and heart failure*’. We
identified large populations of macrophages, monocytes and den-
dritic cells in donors and individuals with DCM (Fig. 1c,e). PCA of
pseudobulk data indicated that disease state and sex had the great-
est effect on gene variance in this population (Fig. 4a). Differential

expression analysis by pseudobulk and single-cell approaches
across disease state revealed a large number of genes significantly
upregulated (CCL3, NLRP3, NFKB2 and EGRI) and downregulated
(VSIG4, LYVEL, FMNI and CD163) in DCM samples compared to
non-diseased donors (Fig. 4b). Similar to cardiomyocytes, pseu-
dobulk differential expression analysis between males and females
indicated robust differences in a small number of genes encoded
on the X and Y chromosomes, including XIST, JPX and TTTY10
(Extended Data Fig. 4). Pathway analysis identified upregulation
of multiple pathways in DCM samples including T-cell co-stimula-
tion, PD-1 and NGF signaling, whereas metabolism pathways were
downregulated in DCM (Fig. 4c).

Unsupervised clustering of the integrated dataset revealed the
presence of large numbers of macrophages and smaller popula-
tions of monocytes, dendritic and proliferating cells. We identi-
fied two populations of macrophages, including a subset that
expressed tissue-resident markers (Macl: MRCI, SIGLECI,
CD163, LYVEI and F13A1)*°~*? and a subset that expressed che-
mokines and cytokines (Mac2: CCL3, CCL4, CXCL3, CXCL8 and
IL1p). Compared to donor controls, we observed a reduction in
proliferating macrophages and expansion of monocytes and den-
dritic cells in individuals with DCM. We also observed a reduc-
tion in the tissue-resident macrophage signature and increase
in the inflammatory macrophage signature in DCM (Fig. 4d-h
and Extended Data Fig. 7). RNA in situ hybridization confirmed
reduction in CD163%cells in DCM samples compared to donor
controls (Fig. 4i).

Visualization of snRNA-seq and scRNA-seq data within the inte-
grated object indicated a bias in recovered cell populations. While

>
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Fig. 4 | Dilated cardiomyopathy is associated with shifts in macrophage composition and gene expression favoring inflammatory populations.

a, PCA, DESeq?2 plots of monocyte, macrophage and dendritic cell pseudobulk snRNA-seq data colored by sex and disease state (left) and age (right).
Each data point represents an individual. b, Heat map displaying the top 100 upregulated and downregulated genes ranked by log, fold-change comparing
donor control to DCM. DEGs were derived from the intersection of pseudobulk (DESeqg2) and single-cell (Seurat) analyses. €, WikiPathways analysis
comparing top enriched pathways in each condition. Genes were selected from the intersection of pseudobulk (DESeq2) and single-cell (Seurat) analyses
with P<0.05 and log,FC > 0.1. P value calculated using hypergeometric distribution and corrected for multiple comparisons. d, UMAP of unsupervised
re-clustering of monocytes, macrophages and dendritic cells within the Harmony integrated dataset split by disease state. Major cell states are labeled.
Inset (right) colored by disease state demonstrates mixing within cell states. e, Z score feature plot of the two macrophage populations identified split by
disease state (left, MacT; right, Mac2). Genes (in blue) were selected by enrichment in the respective populations. f,g, Dot plots displaying the z scores
for transcriptional signatures that distinguish monocyte, macrophage and dendritic cell populations by cell state (f) and split by disease state (g) (genes
selected by enrichment in Seurat differential expression analysis are listed in box below plot). h, Distribution of myeloid states by cluster (*P<0.05,
***P<0.001, Welch's t-test, two-tailed, data represents mean +s.d., derived from single-nucleus data, donor; n=25 samples, DCM; n=13 samples).

P values for clusters comparing donor to DCM are Macl, 2.7 x107"; Mac2, 5.4 x107"; DCs, 2.6 x 1072, Prolif, 9.0 x 10~ Mono, 3.4 x 10~2. i, Representative
RNA in situ hybridization images (RNAScope) for CD163 (red and blue, hematoxylin) and quantification of CD163* cells in donor and DCM samples

(P value from Welch's t-test, two-tailed, data represents mean +s.d., donor; n=6 samples, DCM; n=6 samples). CD163 is a marker of tissue-resident
macrophages. j, UMAP plot of clusters split by sequencing technology. k, Distribution of myeloid states by cluster Welch's t-test, two-tailed, data
represents mean +s.d., derived from only single-cell data, donor; n=2 samples, DCM; n=5 samples). P values for clusters comparing donor to DCM are
Macl, 21x107"; Mac2, 6.6 x107% DCs, 6.6 x 1072; Prolif, 51x10~": Mono, 1.5x 107",
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each dataset contained all of the identified cell types, the scRNA-
seq dataset displayed a bias toward monocytes, dendritic cells and
non-resident macrophages. The snRNA-seq dataset contained
a substantially larger number of resident macrophages (Fig. 4j).
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Fig. 5 | Dilated cardiomyopathy is associated with the emergence of inflammatory monocyte-derived populations. a, UMAP projection of unsupervised
re-clustering of myeloid cells from the scRNA-seq dataset. Major cell states are labeled. Inset (right) colored by disease state demonstrates mixing within
cell states. b, Dot plot displaying the z scores for transcriptional signatures that distinguish each monocyte, macrophage and dendritic cell state by cell state
(above) and disease state (below) (genes selected by enrichment in Seurat differential expression analysis, listed in box below plot). ¢, Z score feature plot
overlaying an inflammatory gene expression signature (genes in blue) on the scRNA-seq UMAP projection split by disease state. d,e, Palantir pseudotime
trajectory analysis of myeloid scRNA-seq data. Entropy and pseudotime overlayed on UMAP projection split by disease state (d) and entropy versus
pseudotime plots split by disease state identify major cell trajectories (nonclassical monocytes, resident macrophages and dendritic cells). Inflammatory cell
states that emerge in DCM have high entropy and low pseudotime values, suggesting an intermediate state of differentiation. f, Transcription factor analysis
for genes upregulated in inflammatory macrophage states (Mac1, Mac4 and Mac5) using ChEA 2016 database (https://maayanlab.cloud/Enrichr). Genes
used in the analysis selected from Seurat differential expression with P<0.05 and log,FC > 0.1. P value calculated using Fisher's exact test. g, enrichPathway
analysis displaying the top five enriched pathways in each cell state. Genes used in the analysis selected from Seurat differential expression with P<0.05
and log,FC > 0.1. P value calculated using hypergeometric distribution and corrected for multiple comparisons.

dendritic cells and Mac2 (chemokine/cytokine-expressing) and
reduced Macl (tissue-resident signature) in DCM (Fig. 4k).
Unsupervised clustering revealed the presence of discrete mono-
cytes (Monol, nonclassical-FCGR3A; Mono2, classical-CDI14;
Mono3, intermediate-OLRI), macrophages (Macl, TREM2; Mac2,
FOLR2/LYVEI; Mac3, LYVE1I/HSPHI1; Mac4, CCL3; Mac5, KLF2)
and dendritic cells (CDIC) (Fig. 5a,b). We observed shifts in mono-
cyte, macrophage and dendritic cell composition between donor
and DCM groups. Donor samples contained classical and non-
classical monocytes as well as two populations of LYVE1* resident
macrophages (Mac2 and Mac3). DCM samples displayed reduced
numbers of resident macrophages and a greater number of interme-
diate monocytes, dendritic cells and three additional macrophage
populations (Macl, Mac4 and Mac5). Classical and intermediate
monocytes and macrophages marked by CCL3, TREM2 and KLF2
expressed robust levels of inflammatory mediators including IL1A,
IL1B, TNF, AREG and EREG and multiple chemokines (Fig. 5¢).
To infer the differentiation state of monocyte, dendritic cell
and macrophage populations, we utilized Palantir. Calculation of
pseudotime and entropy values demonstrated that CD14" mono-
cytes (Mono2) represented the most progenitor-like state.
CD16" monocytes (Monol), dendritic cells and resident macro-
phages (Mac2 and Mac3) represented the most differentiated cells,
each with distinct trajectories. Compared to donors, we observed
an accumulation of cells with intermediate differentiation states
along the macrophage trajectory in DCM samples. Superimposing
cluster identities revealed that these cells belonged to the inter-
mediate monocyte (Mono3), TREM2 (Macl), CCL3 (Mac4) and
KLF2 (Mac5) clusters, suggesting that they are monocyte-derived
(Fig. 5d,e). Transcription factor analysis identified enrichment for
targets of transcription factors, including CLOCK, RELA, MYB,
RUNX2, SMAD2/3 and IRF8 in the inflammatory macrophage
states (Macl, Mac4 and Mac5; Fig. 5f). Comparison of pathways
across cell states identified enrichment of unique pathways in
individual states included pathways involved in inflammation,

interferon and interleukin signaling (Fig. 5g). These data provide
a link between monocyte-derived macrophages and inflammation
in DCM.

Fibroblasts diversify in dilated cardiomyopathy. We identified a
large population of cardiac fibroblasts in donor controls and DCM
hearts. PCA demonstrated that variability across fibroblast samples
was driven by disease state and sex (Fig. 6a). Differences between
males and females were driven by a small number of genes encoded
on the X and Y chromosomes, including XIST, JPX and ZFYASI
(Extended Data Fig. 4). Pseudobulk and single-cell differential
expression analysis identified a large number of genes that were sig-
nificantly upregulated (POSTN, MEOX1/2, TLL1, EDNRA, SVEPI
and FRZB) and downregulated (APOD, NPPC, ANGPTLI1, FIGF
and ACE2) in DCM samples compared to non-diseased donors.
Pathway analysis identified upregulated (extracellular matrix syn-
thesis and organization, MAPK and nephrin signaling) and down-
regulated (metabolism, biosynthesis, complement and muscle
contraction) pathways in DCM (Extended Data Fig. 8).
Unsupervised clustering of the integrated dataset revealed mul-
tiple distinct populations of fibroblasts (Fig. 6¢c). The majority of
fibroblasts in both donor and DCM hearts displayed a conserved
gene expression signature characteristic of fibroblasts (Fbl, Fb2).
We identified two fibroblast subpopulations primarily present in
donor controls that expressed GPX3 (Fb3) and PLA2G2A (Fb4),
respectively. We observed additional minor fibroblast subpopula-
tions characterized by the expression of ELN (Fb5), TNC (Fb6),
CCL2 (Fb7), THBS4 (Fb8) and SERPINEI (Fb9). Epicardial cells
were also represented (Epi). POSTN, a marker of disease-associ-
ated fibroblasts was expressed in Fb8 **. Fb5 and Fb8 were found at
increased abundance in DCM (Fig. 6c—e and Extended Data Fig. 8).
Fibroblasts in DCM hearts displayed a robust activation signature
that included FAP, CTGF, LUM, ACTB, COL1A1, BGN and MGP
expression. Donor fibroblasts selectively expressed a signature rep-
resented by GPX3, PIDI, TGFBR3, ACSM3 and APOD (Fig. 6f).

>
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Fig. 6 | Phenotypic shifts and emergence of disease-associated fibroblasts in dilated cardiomyopathy. a, PCA, DESeq?2 plots of fibroblast pseudobulk
snRNA-seq data colored by sex and disease state (left) and age (right). Each data point represents an individual. b, Heat map displaying the top 100
upregulated and downregulated genes ranked by log, fold-change comparing donor control to DCM. DEGs were derived from the intersection of pseudobulk
(DESeqg2) and single-cell (Seurat) analyses. ¢, Unsupervised re-clustering of donor and DCM fibroblasts and epicardium within the integrated dataset

split by disease state. Major fibroblast states are labeled. Inset (right) colored by disease state demonstrates mixing within cell states. d, Distribution of
fibroblast states by cluster (*P<0.05, **P<0.01, ***P< 0.01, Welch's t-test, two-tailed, data represents mean=+s.d., donor; n=25 samples, DCM; n=13
samples). P values for clusters comparing donor to DCM are Fb1, 8.3x107"; Fb2, 3.0x 107", Fb3, 4.2 %104 Fb4, 51%x 1073, Fb5; 5.9 x 1072 Fb6, 2.6 X 10,
Fb7,5.3%107"; Fb8, 7.5x1073; Fb9, 4.0 x 107"; Epi, 9.1x 10", e, Dot plot displaying the z scores for transcriptional signatures that distinguish fibroblast
states (genes selected by enrichment in Seurat differential expression analysis, listed in box below plot). f, Z score feature plot of transcriptional signatures
associated with DCM (top) and with donor (bottom) fibroblast states. Plot is split by disease state. DCM fibroblasts are enriched in genes associated with
activation. Enriched genes (blue) were defined using Seurat differential gene expression analysis. g, Palantir pseudotime trajectory analysis of integrated
fibroblast RNA-seq data. Entropy and pseudotime overlayed on UMAP projection split by disease state. h, Representative RNA in situ hybridization images
(RNAScope) of indicated genes (red) counterstained with hematoxylin (blue). i, Quantification of the number of cells expressing DCN, POSTN, PLA2G2A,
CCL2 and PCOLCE2 mRNA in donor control and DCM samples (P value from Welch's t-test, two-tailed, data represent mean =+ s.d., donor; n=6 samples,

DCM; n=6 samples).
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Palantir identified fibroblasts marked by ELN, TNC and SERPINE1
expression as the most differentiated cell states based on low entropy
and high pseudotime values. All other fibroblasts seemed to exist
in a state of high entropy, suggesting substantial plasticity within
these populations (Fig. 6g). Pathway analysis comparing fibroblast
states identified distinct pathway enrichment, including pathways
involved in extracellular matrix synthesis and assembly, protein
translation, messenger RNA processing, cell death, type I interferon
signaling, TLR4 signaling, metabolism and the ubiquitin—proteome
system. Transcription factor analysis identified enrichment of
targets of specific transcription factors in the majority of fibroblast
cell states (Extended Data Fig. 8).

We validated shifts in fibroblast composition between donor
controls and DCM hearts using RNA in situ hybridization for select
fibroblast populations. The overall numbers of fibroblasts (marked
by DCN expression) remained similar between donor control and
DCM hearts. Notably, we observed that fibroblast subpopulations
were located either within the interstitial space between cardiomyo-
cytes (PCOLCE2-Fb2, CCL2-Fb7 and POSTN-Fb8), adjacent to dis-
tal vasculature (PLA2G2A-Fb4) or surrounding epicardial coronary
arteries (ELN-Fb5). The number of POSTN CCL2, and PCOLCE2-
expressing fibroblasts was increased in DCM samples. PLA2G2A-
expressing fibroblasts were increased in donor hearts (Fig. 6h,i and
Extended Data Fig. 8).

Pericytes and smooth muscle cells. Unsupervised clustering of
pericytes and smooth muscle cells revealed minimal heterogeneity
within each of these populations. PCA demonstrated that variabil-
ity across samples was driven by disease state and sex. Differences
between males and females were driven by a small number of genes
encoded on the X and Y chromosomes (Extended Data Fig. 4).
Pseudobulk and single-cell differential expression and pathway
analyses identified genes and pathways enriched in DCM peri-
cytes and smooth muscle cells compared to non-diseased donors.
Within pericytes, TRPC6, ITGAI, XAF1, CYR61 and CTGF were
upregulated in DCM and TIMPI1, CCL2, AGT, ACE2, IFITM2/3
and TGFB3 were downregulated in DCM. Among smooth muscle
cells, RORA, PLXNDC2, LTBP3/4 and SEMA5A were upregulated
in DCM and ACTG1/2, ACTB, LGALS3, LDHA, IFITM2/3 and NGF
were downregulated in DCM (Extended Data Fig. 9).

Endothelial cells display shifts in global gene expression.
Endothelial cells within the heart include arterial, venous, capillary,
lymphatic and endocardial cells. PCA of artery, vein and capillary
pseudobulk data identified disease state and sex as the most distin-
guishing features (Fig. 7a). Differences between males and females
were driven by a small number of genes encoded on the X and Y
chromosomes (Extended Data Fig. 4). Pseudobulk and single-cell

RESOURCE

differential expression analysis in vascular endothelial cells (arter-
ies, veins, capillaries) identified a large number of genes significantly
upregulated (DUSP5/6, PDE4B/D, EGRI1, FGFR1, SMAD3/6, VEGF-
A/C and APLNR) and downregulated (LDHB, ALDOA, IFITM3,
TBX3 and AQP3) in DCM samples compared to donors (Fig. 7b).

Vascular endothelial cells and endocardial cells displayed dis-
tinct transcriptional signatures and clustered separately (Fig. 7c,d
and Extended Data Fig. 10). Within the integrated object, the
snRNA-seq dataset contained all major endothelial cell popula-
tions, whereas the scRNA-seq dataset displayed a bias toward arte-
rial (Ec3), venous (Ec2) and capillary (Ecl) endothelial cells. Few
endocardial (Ecdl and Ecd2) or lymphatic (Ec4) cells were recov-
ered from scRNA-seq data (Extended Data Fig. 10). Quantification
of endothelial cell populations revealed an increase in arterial
endothelial cells (Ec3) and a shift in endocardial cell state in DCM
(Extended Data Fig. 10). We did not observe further diversifica-
tion of arterial, venous, capillary, lymphatic or endocardial cells.
Instead, we observed global shifts in gene expression between
control and DCM samples (Fig. 7c,d and Extended Data Fig. 10).
Utilizing RNA in situ hybridization, we visualized expression of
recognized venous (ACKRI), capillary (BTNL9) and lymphatic
(CCL21) markers identified from Seurat differential expression
analysis (Extended Data Fig. 10)**%.

Pseudobulk and single-cell differential gene expression analysis
of snRNA-seq data revealed that endocardial cells and capillaries
displayed the greatest number of DEGs between donor control and
DCM conditions. Arterial and venous endothelial cells displayed
a modest number of DEGs and lymphatics had few differentially
expressed genes (Fig. 7e). Among vascular endothelial cells, cap-
illaries displayed enrichment for pathways associated with NGF
signaling in DCM and metabolism, ER-phagosomes and hedge-
hog signaling in donor controls. Venous endothelial cells displayed
enrichment for pathways involved in TGF-f, NGE, NTRKI1 and
MAPK signaling in DCM and mitosis, ER-phagosome, planar cell
polarity and ROBO signaling in donor controls. Arterial endo-
thelial cells displayed enrichment for pathways involved in NGE,
NTRKI, type I interferon and MAPK signaling in DCM and glu-
coneogenesis and muscle contraction in donor controls (Fig. 7f-h).
We also identified cell-specific signatures associated with disease
state. FABP5, A2M, IFITM3 and F8 expression was enriched in
donor capillaries, whereas CREB5, SLC9CI and SASH]I expression
was enriched in DCM capillaries. Donor venous cells selectively
expressed a signature represented by CALCRL, IGFBP5 and ABCBI
expression (Fig. 71).

Similar to other populations, PCA of endocardial pseudobulk
data identified disease state and sex as the most distinguishing
features (Fig. 8a). Within endocardial cells, we observed a large
number of genes to be significantly upregulated (BMP4/6, GDFG6,

>
>

Fig. 7 | Endothelial cells exhibit global gene expression shifts in dilated cardiomyopathy. a, PCA, DESeq?2 plots of vascular endothelial cell pseudobulk
snRNA-seq data colored by sex and disease state (left) and age (right). Each data point represents an individual. b, Heat map displaying the top 100
upregulated and downregulated genes ranked by log, fold-change comparing donor control to DCM. DEGs were derived from the intersection of
pseudobulk (DESeq2) and single-cell (Seurat) analyses. €, Unsupervised re-clustering of donor and DCM endothelial and endocardial cells within the
integrated dataset split by disease state. Major endothelial states are labeled. Inset (right) colored by disease state demonstrates mixing within cell states.
d, Dot plot displaying z scores for transcriptional signatures that distinguish endothelial cell populations (genes selected by enrichment in Seurat differential
expression analysis, genes listed in the box to right of plot). e, Bar graph of the number of DEGs per endothelial population (intersection of DESeq2 and
Seurat differential expression analyses with adjusted P < 0.05 (Wilcoxon rank-sum), log,FC > 0.1). f, WikiPathways analysis identifying top differentially
enriched pathways in donor and DCM capillary endothelial cells. Genes used in the analysis selected from intersection of pseudobulk and Seurat differential
expression with P< 0.05 and log,FC > 0.1. P value calculated using hypergeometric distribution and corrected for multiple comparisons. g, WikiPathways
analysis identifying top differentially enriched pathways in donor and DCM venous endothelial cells. Genes used in the analysis selected from intersection
of pseudobulk and Seurat differential expression with P < 0.05 and log,FC > 0.1. P value calculated using hypergeometric distribution and corrected for
multiple comparisons. h, WikiPathways analysis identifying top differentially enriched pathways in donor and DCM arterial endothelial cells. Genes

used in the analysis selected from intersection of pseudobulk and Seurat differential expression with P<0.05 and log,FC > 0.1. P value calculated using
hypergeometric distribution and corrected for multiple comparisons. i, Z score feature plots of transcriptional signatures associated with donor and DCM
groups in capillary and venous endothelial cells split by disease state. Genes (blue) were selected by enrichment in the differential expression analyses.
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NRGI, SVEPI, ELN, CTGF, EDNI and CYR61) and downregulated
(SEMA3A, NPPC, EDNRB, VEGF-C, WNT9B, IGFBP4/6, CD55
and ITGA6/9) in DCM samples compared to non-diseased donors
(Fig. 8b). Endocardial cells were independently clustered across
disease state (Fig. 8c). Donor endocardial cells (Edcl) expressed
NRG3. Endocardial cells from DCM samples (Edc2) displayed
strong upregulation of NRG1 and reduced NRG3 expression
(Fig. 8d,e). Pathway analysis identified enrichment of pathways
associated with extracellular matrix components and organization
in DCM (Ecd2) and platelet activation, ERBB2 signaling, FGFR1
signaling, metabolism and muscle contraction in donor controls
(Ecdl; Fig. 8f,g). We also identified enrichment for targets of tran-
scription factors, including FOXA2, AR, SMAD4 and CEBPD in
Ecd2 (NRGI endocardial cells) and ZNF217, WT1, TBX20 and
RELA in Ecdl (NRG3 endocardial cells; Fig. 8h).

Discussion

Single-cell technologies offer powerful new tools to dissect cell
types that reside within healthy and diseased tissues. Recently, these
approaches were leveraged to provide a deeper understanding of the
cellular composition of the healthy human heart'®". While consid-
erable interest exists, only limited data are available to decipher how
the cellular and transcriptional landscape of the heart is impacted
by disease'>"”. Using an approach that integrated snRNA-seq and
scRNA-seq data from 45 individuals encompassing 220,752 nuclei
and 49,723 cells, we identified 15 major cardiac cell types, uncov-
ered cell type-specific transcriptional programs, revealed age and
disease-associated gene expression signatures and observed the
emergence of cell states associated with heart failure.

Aging is associated with a decline in cardiac function and subse-
quent adverse clinical outcomes, including heart failure. Very little
is known regarding how individual cardiac cell types transcrip-
tionally change as an individual ages. We leveraged pseudobulk
methods to dissect age-associated cell type-specific gene signatures
in donor and DCM hearts. The pseudobulk approach allowed us
to focus on patient-level data and minimize noise inherent at the
single-cell scale.

We did not observe profound associations between cellular com-
position and age. Only myeloid cells were found to be increased
with age in donor hearts; however, we did uncover specific tran-
scriptional signatures across most cell types that were associated
with age and differed between donor and DCM hearts. For exam-
ple, TOLLIP expression correlated with increasing age in donor
cardiomyocytes, consistent with mouse data that Tollip expres-
sion correlates with aging and structural cardiac changes in older
mice®. TGFBI and NFIL3 positively correlated with aging in DCM
cardiomyocytes. Previous studies have implicated Nfil3 in the gene
regulatory network involved in cardiac senescence and aging and
Tgfbi as an upstream regulator of mTOR activation in Drosophila
models of aging and cardiac disease’**. Notably, TGFBI and NFIL3
expression positively correlated with age only in DCM and not
donor cardiomyocytes. We also identified age-related changes in
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genes associated with mechanical sensing in pericytes and myeloid
cells. PIEZO1 expression positively correlated with age in donors
but not those with DCM. Previous reports have implicated PIEZO1
activation as an upstream signal to trigger TRPV4 channel open-
ing, which we recently showed regulates activation of resident car-
diac macrophages and cardiac adaptive remodeling®-*". Together,
these findings highlight the presence of cell type- and disease state-
specific transcriptional networks modulating aging.

We did not detect marked differences in cellular composition
related to sex. However, we did detect genes that were robustly
increased in men and women across cell types. Many of the identi-
fied genes (XIST, JPX, ZFYAS1, TTTY10 and TSIX) are encoded on
the X and Y chromosomes. This observation is consistent with a
recent publication indicating that sex chromosomes control tran-
scriptional and proteomic differences between male and female
hearts that arise before gonad formation in mice*’. While we did not
identify sex-dependent effects on cell-type-specific gene expression
in the contexts of aging and disease state, we cannot exclude the
possibility that sex may have effects that were not readily identified
in our analysis.

With respect to disease state, we observed robust changes in
gene expression across nearly all myocardial cell types and consid-
erable variation in how different cardiac cell populations responded
to heart failure. Cardiomyocytes converged toward common dis-
ease-associated cell states, whereas fibroblasts and myeloid cells
underwent dramatic diversification including the acquisition of dis-
ease-specific phenotypes. In contrast, endothelial cells, endocardial
cells and pericytes displayed global transcriptional shifts without
changes in cell complexity.

Previous studies examining differences across cardiac cham-
bers have identified evidence of cardiomyocyte heterogeneity in
the healthy human heart'®"". We identified multiple transcription-
ally distinct cardiomyocyte states within the LV of non-diseased
donors and individuals with DCM. Donor hearts contained seven
cardiomyocyte states marked by MYH6, MYL7, GRIK2, NPPA/
NPPB, ADGRL3, ACTA1 and BMPRIB expression. DCM cardio-
myocytes uniformly expressed high levels of ANKRDI, contained
fewer MYH6 or GRIK2-expressing cardiomyocytes and instead,
were enriched for states identified by ADGRL3 and NPPA/NPPB
expression. NPPA and NPPB expression are known to identify dis-
eased cardiomyocytes in humans". Notably, ANKRDI expression
was recently found to be enriched in cardiomyocytes from patients
with adolescent versus pediatric DCM and increased in cardiomyo-
cytes from mouse hearts that fail to regenerate'>'*. Pseudotime tra-
jectory analysis identified three highly differentiated cardiomyocyte
states (MYL7, ACTA1 and NPPA/NPPB) in donor hearts. In con-
trast, we observed two highly differentiated cardiomyocyte states
in DCM marked by ADGRL3 and NPPA/NPPB expression. These
observations suggest that cardiomyocytes converge toward a com-
mon disease-associated state in DCM. Further understanding of the
instructive cues and parental cardiomyocyte populations that give
rise to ADGRL3 and NPPA/NPPB-expressing cardiomyocytes may

>
>

Fig. 8 | Endocardial cells exhibit distinct gene signatures in dilated cardiomyopathy. a, PCA, DESeq?2 plots of endocardial cell pseudobulk snRNA-

seq data colored by sex and disease state and age. Each data point represents an individual. b, Heat map displaying the top 100 upregulated and
downregulated genes ranked by log,FC comparing donor control to DCM. DEGs were derived from the intersection of pseudobulk (DESeq2) and single-
cell (Seurat) analyses. ¢, Unsupervised re-clustering of donor and DCM endocardial cells split by disease state. d, UMAP feature plots of NRG1 and NRG3
split by disease state. e, Violin plots displaying NRGT and NRG3 expression in endocardial cells from donor and DCM samples. f, WikiPathways analysis
identifying top differentially enriched pathways in donor and DCM endocardial cells. Genes used in the analysis selected from intersection of pseudobulk
and Seurat differential expression with P<0.05 and log,FC > 0.1. P value was calculated using hypergeometric distribution and corrected for multiple
comparisons. g, WikiPathways analysis identifying top differentially enriched pathways in endocardial cell states. Genes used in the analysis selected from
Seurat differential expression with P<0.05 and log,FC > 0.1. P value calculated using hypergeometric distribution and corrected for multiple comparisons.
h, Transcription factor analysis displaying top enriched transcription factors in each cell state using the ChEA 2016 database (https://maayanlab.cloud/
Enrichr). Genes used in the analysis selected from Seurat differential expression with P< 0.05 and log,FC > 0.1. P value calculated using Fisher's exact test.
TBX202 and TBX20P represent enrichment identified from two independent CHIP-seq experiments (ChEA_term 22080862, 22328084).
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provide new insights and opportunities to intervene in the patho-
genesis of human heart failure.

We observed notable transcriptional changes in non-cardio-
myocyte populations (fibroblasts, macrophages, endothelial cells
and endocardial cells) between healthy controls and DCM samples.
Previous snRNA-seq studies have reported astounding diversity

among fibroblasts in the healthy human heart'®'>***. Fibroblasts
are known to expand in heart failure and acquire an activated
phenotype characterized by the expression of fibroblast activated
protein (FAP) and periostin (POSTN)****-". While previous single-
cell studies have identified cardiac fibroblast subsets in the healthy
human heart, little is known regarding how these populations are
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influenced by disease. We identify multiple distinct fibroblast popu-
lations in both healthy and diseased samples with differing tran-
scriptional signatures and spatial distribution, including elastin
(ELN)-expressing macrophages located within the medium of coro-
nary arteries. Fibroblasts marked by POSTN, CCL2 and PCOLCE2
were enriched in DCM, whereas GPX3- and PLA2G2A-expressing
fibroblasts were enriched in donor controls. In addition, we identi-
fied an activation signature that included FAP, CTGF, LUM, ACTB,
COLIA1, BGN and MGP that was selectively expressed in fibro-
blasts from DCM hearts. Differential expression analysis compar-
ing donor and DCM fibroblasts identified upregulation of POSTN,
MEQOX1/2, TLL1, EDNRA and FRZB in DCM. MeoxI is a home-
odomain-containing transcription factor that regulates fibroblast
activation in the mouse heart following stress. Meox1 directly binds
to and activates the Postn promotor in mice®'. Elimination of FAP-
expressing fibroblasts is sufficient to ameliorate myocardial fibrosis
in mice*’. TLLI regulates mature collagen formation and is linked to
coronary artery disease®. Endothelin and Wnt signaling are known
regulators of fibrosis™. These findings provide further evidence
that phenotypic shifts in fibroblasts are a hallmark of heart failure.

Heterogeneity of myeloid populations, including macrophages,
is increasingly appreciated to contribute to the variety of cardiac
pathologies including heart failure'>*". The majority of these stud-
ies have focused on mouse models with only targeted validation in
human specimens®*****!. Consistent with small animal models, we
observe a variety of monocyte, macrophage and dendritic cell pop-
ulations within the human heart. The abundance of macrophages
expressing a tissue-resident signature is reduced in DCM, a find-
ing evident in mouse models of cardiac injury’”*. The number of
proliferating macrophages was reduced in DCM, consistent with
the concept that self-replication may be a trait of tissue-resident
macrophages. We also observed an emergence of monocyte and
macrophage populations expressing inflammatory mediators in the
failing heart. Cell trajectory analysis predicted that many of these
inflammatory populations represented intermediate states derived
from CD14*monocytes. Indeed, inhibition of monocyte recruit-
ment or administration of anti-inflammatory agents is sufficient to
reduce cardiac inflammation and myocardial fibrosis'®***>*. Future
studies are needed to draw causal links and define signaling mecha-
nisms by which inflammatory populations of macrophages regulate
fibroblast activation.

While scRNA-seq and snRNA-seq provided sufficient resolu-
tion to identify major perivascular populations (arteries, veins,
capillaries, pericytes, smooth muscle cells, lymphatics and endo-
cardial cells), we did not observe additional diversity within these
populations; however, we did uncover global shifts in gene expres-
sion within each of these populations between control and DCM
specimens. Previous studies have identified similar shifts in global
endothelial cell expression but were unable to parse contributions
from each major endothelial cell type'’. Endocardial cells displayed
robust numbers of DEGs between control and DCM specimens.
NRG1 and NRG3 were exclusively expressed in DCM and control
endocardial cells, respectively. Notably, mouse studies identified
that cardiomyocyte specific loss of NRG3 receptors (ErbB2 and
ErbB4) results in spontaneous heart failure suggesting a potential
role for NRG3 in regulating cardiac homeostasis®~".

snRNA-seq captured cell types that are difficult to recover from
enzymatically digested tissue, including cardiomyocytes, adipo-
cytes, mast cells, epicardium, endocardium and lymphatics. Using
data integration and reference mapping, we were able to effectively
combine snRNA-seq and scRNA-seq data and identify at least 15
major cardiac cell populations. Current scRNA-seq datasets explor-
ing human heart failure are small and lack the sample size necessary
to elucidate the impact of disease on common and rare cardiac cell
types'>*. scRNA-seq data provided greater depth at the expense of
biased cell recovery. For example, within myeloid cells, scRNA-seq
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data was biased toward monocytes and intermediate macrophage
populations with fewer resident macrophages recovered. These
datasets were leveraged to provide additional granularity into
monocytes and inflammatory macrophage populations.

This study is not without limitations. We categorized patients
with DCM into a single cohort based on the lack of underlying
coronary artery disease. It is likely that the exact etiology of DCM
contributes to shifts in cell diversity and transcriptional state. Our
dataset includes only transcriptomic information. Addition of cell-
surface protein expression and chromatin accessibility information
may offer additional resolution. In conclusion, this study represents
a large analysis of the cellular and transcriptomic landscape of the
healthy and failing human heart. We provide valuable insights into
how cardiac cell populations change during heart failure including
the emergence of disease-specific cell states. These data provide a
valuable resource that will open up new areas of investigation and
opportunities for therapeutic development and innovation.

Methods

Statement on human specimens. This study complies with all relevant ethical
regulations and was approved by the Washington University Institutional Review
Board (study no. 201104172). All samples were procured and informed consent
obtained by Washington University School of Medicine. No compensation was
provided for participation. Biospecimen Reporting for Improved Study Quality
data including distribution of sex, age and race can be found in Supplementary
Tables 1 and 20.

Sample preparation for scRNA-seq. Fresh cardiac tissues from LVAD cores

or identical regions from the apex of explanted donors were minced with a

razor blade and transferred into a 15-ml conical tube containing DMEM with
Collagenase I (450 Uml™"), DNase I (60 Uml™) and hyaluronidase (60 Uml™) and
incubated at 37 °C for 1 h with agitation. Digestion was then stopped by addition
of HBB buffer (2% FBS and 0.2% BSA in HBSS) and filtered through a 40-pm filter
into a 50-ml conical tube, transferred to a clean 15-ml conical tube and centrifuged
at 350g for 5min at 4°C. Supernatant was then removed and pellet resuspended in
1 ml ACK lysing buffer (Gibco, A10492) and incubated at room temperature for
5min followed by the addition of 9ml DMEM. Suspension was then centrifuged
under the above conditions, followed by removal of supernatant and resuspension
in 5ml FACS buffer (2% FBS and 2mM EDTA in calcium/magnesium-free PBS).
Centrifugation was repeated under the above conditions, the supernatant was
removed and the pellet was resuspended in 300 pl cell resuspension buffer (0.04%
BSA in 1x PBS) and 1 pl each of DRAQ5 (Thermo Fisher Scientific, 62251) and
4,6-diamidino-2-phenylindole (DAPL BD Biosciences, 564907) and allowed

to incubate for 5 min before sorting. DRAQ5*/DAPI- cells were collected in

cell resuspension buffer. Collected cells were then re-centrifuged according to

the above parameters and resuspended in cell resuspension buffer to a target
concentration of 1,000 cells pl~". Cells were counted on a hemocytometer and the
concentration was adjusted as necessary.

Sample preparation for snRNA-seq. Frozen cardiac tissues from LVAD cores or
identical region from the apex of explanted donors were minced with a razor blade
and transferred into a small (5ml) Dounce homogenizer containing 1-2 ml of
chilled lysis buffer (10 mM Tris-HCI, pH 7.4, 10 mM NaCl, 3mM MgCl, and 0.1%
NP-40 in nuclease-free water). Samples were homogenized gently using five passes
without rotation, then incubated on ice for 15min. Lysate was then gently filtered
through a 40-pm filter into 50-ml conical tube, followed by rinsing the filter once
with 1 ml lysis buffer and transfer of lysate to a new 15-ml conical tube. Nuclei
were then centrifuged at 500g for 5min at 4 °C, followed by resuspension in 1 ml
Nuclei Wash Buffer (2% BSA and 0.2 U pl~! RNase inhibitor in 1x PBS) and filtered
through a 20-pm pluristrainer into a fresh 15-ml conical tube. Centrifugation was
repeated according to the above parameters. Supernatant was then removed and
nuclei were resuspended in 300 pl Nuclei Wash Buffer and transferred to a 5-ml
tube for flow sorting. Then, 1 ul DRAQ5 (5 mM solution; Thermo Fisher, cat. no.
62251) was added, mixed gently and allowed to incubate for 5 min before sorting.
DRAQS5* nuclei were sorted into Nuclei Wash Buffer on a BD FACS Melody

(BD Biosciences) using a 100-uM nozzle. Recovered nuclei were centrifuged

again under the above parameters and were gently resuspended in Nuclei Wash
Buffer to a target concentration of 1,000 nuclei pl~". Nuclei were counted on a
hemocytometer and concentration was adjusted as necessary.

sc/snRNA-seq analysis. Cells and nuclei were processed using the Chromium
Single Cell 5" Reagent V1.1 kit from 10X Genomics. A total of 10,000 cells or
nuclei per sample were loaded into a Chip G for GEM generation. Reverse
transcription, barcoding, complementary DNA amplification and purification for
library preparation were performed according to the Chromium 5’ V1.1 protocol.
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Sequencing was performed on a NovaSeq 6000 platform (Illumina) targeting
100,000 reads per cell or nucleus. Cells were aligned to the human GRCh38
transcriptome and nuclei were aligned to the whole genome pre-MRNA reference
generated from the GRCh38 transcriptome using the CellRanger V3 software (10X
Genomics) according to the 10X Genomics’ instructions. Filtering, unsupervised
clustering, differential expression and additional analysis were completed using

R and Python, including Seurat V3 and V4 and ClusterProfiler packages for R and
the Palantir Python package.”>**-"

QC, filtering and clustering. For independent cell and nuclei analyses, individual
sample matrices were imported into the Seurat v.3.2.3 R package and combined
into a Seurat object. Cells were filtered for mitochondrial reads <10% and

2,000 < nCount_RNA < 10,000. Nuclei were filtered for mitochondrial reads

<5% and 1,000 < nCount_RNA < 10,000. No filtering was applied based on
nFeature_RNA. The objects were then saved for easy import after manual doublet
removal. For each object, transformation and normalization was performed using
SCTransform to fit a negative binomial distribution and regress out mitochondrial
read percentage. Principle components (PCs) were then calculated (60 PCs for
cells and 80 PCs for nuclei) and an elbow plot generated to select the cutoff for
significant PCs to use for downstream analysis. UMAP dimensional reduction
was then computed using the selected significant PCs (40 for cells and 80 for
nuclei). Unsupervised clustering was then performed using the FindNeighbors
and FindClusters function, again using the selected significant PC level as above,
calculating clustering at a range of resolutions between 0.01-1. Differential gene
expression was performed using the FindAllMarkers command using default
parameters at high clustering resolution to aid in manual doublet discovery.

We utilized a supervised doublet removal method. Criteria to annotate cells
as doublets included (1) high unique molecular identifier (UMI) counts and (2)
gene expression signatures of two or more cell populations. Doublets often appear
as clusters expressing markers of multiple cell populations within the dataset
that overlapped with expression of nearby clusters’'-"". Identification of doublet
clusters was performed by generating z score expression profiles of each major cell
population and plotting these signatures as well as UMI counts using UMAP/t-
distributed stochastic neighbor embedding projections and heat maps. Cells
annotated as doublets were removed and the list of remaining cells was saved. Raw
objects from above were then loaded, subset to include cells that remained after
doublet removal and clustering was repeated, starting with transformation and
normalization. The supervised doublet removal process was repeated twice
for the cell object and three times for the nuclei object until no doublet clusters
were apparent.

To substantiate our supervised doublet removal method and compare our
strategy to other doublet removal techniques, we ran Scrublet on our raw dataset.
Using a Scrublet score of >0.2 (default setting) to identify doublets, we directly
compared methodologies. We found a high concordance between cells annotated
as doublets (86.7%) and cells retained in the final dataset (98.4%). Cell clusters
identified as doublets using our supervised method corresponded to cells with a
Scrublet score of >0.2. Furthermore, within the final integrated dataset analyzed
in the manuscript, we did not identify any specific clusters that were composed of
cells with high Scrublet scores (Supplementary Figs. 1 and 2).

Final resolutions used for analysis were selected following detection of DEGs
at multiple resolutions and identifying the highest resolution at which significantly
enriched genes were still present in each cluster (final resolution used was 0.6 for
cell object and 0.5 for nuclei object). Metadata for condition, age, sex and cell type
name were also added to the final objects.

Integration of single-cell and single-nuclei datasets. Integration of single-cell
and single-nuclei datasets was performed using the R package, Harmony”. Filtered
and SCTransformed objects from the single-cell and nucleus datasets were merged
using the Seurat merge command and the RunHarmony command was then

used to generate harmonized dimension reduction components using sequencing
technology as the grouping variable. As recommended, we utilized 80 Harmony
dimensions equal to the 80 PCA dimensions utilized in the single-nuclei dataset
for performing re-clustering using the FindNeighbors and FindClusters Seurat
commands at multiple resolutions between 0.1-1. No doublet exclusion or filtering
was necessary as mapping and integration was performed on already filtered
objects. The final resolution was selected to be 0.3 as this resolution captured the
distinct cell types identified in the single-cell and nucleus datasets to be used for
further analysis. Metadata for condition, age, sex and cell type name were also
added to the final object.

Effectiveness of integration was evaluated by calculation of iLISI (integration
local inverse Simpson’s index) scores using the R package, lisi”*’*. The Harmony
integration method was also compared to Seurat integration and reference
mapping software. iLISI scores range from 1 (poor integration) to 2 (perfect
integration). The iLISI scores for the three methods tested were, Harmony: 1.60,
Seurat integration: 1.23 and Seurat reference mapping: 1.07, indicating high levels
of integration using Harmony compared to other methods.

Detection of differentially expressed genes. Detection of DEGs between clusters
was performed using the FindAllMarkers command, specifying return of only

upregulated genes with a log,FC cutoff of 0.1. For downstream analysis, DEGs were
further filtered by log,FC and P value as described for that analysis. For individual
cell types, differential expression comparing only two groups by condition, sex

or age was performed using the FindMarkers function specifying no minimum
percentage of cells expressing an individual gene, return of both positively and
negatively changed genes and no cutoffs for log,FC or P value to obtain even
nonsignificant changes in expression for every gene present in the analysis. Filtering
of this DEG table was performed by log,FC and P value for further analysis as
described in the manuscript. For all DEG calculations the default ‘SCT’ assay and
‘data’ slot were used and performed using the default Wilcoxon rank-sum method.
Results are presented for all major cell types observed (Supplementary Table 27).

Calculation of population z scores. Z score values were calculated using R
v.3.6.2 and v.4.0.1. For each population where z scores were calculated, gene sets
used were selected based on high enrichment in a population based on the DEG
analysis described above. The expression matrix used to calculate z scores was
extracted from a Seurat object using the GetAssayData function from the Seurat
package from the default ‘SCT’ assay and ‘data’ slot. Z scores were then calculated
for each gene set for each individual cell or nuclei in the dataset by scaling gene
expression within the matrix, setting NA values introduced by conversion from a
sparse matrix to 0 and using the following formula (no. of cells in dataset + sum of
expression of genes in gene set) / no. of genes in gene set.

These calculated z scores were appended to a table to be saved as well as each
z score added as metadata to the Seurat object for use in making feature plots.

Pseudobulk RNA-seq. Pseduobulk RNA-seq analysis was performed using the
DESeq2 package for R. A gene expression matrix was extracted from the Seurat
object using the GetAssayData Seurat function specifying the ‘RNA’ assay and
‘counts’ slot to extract raw sequencing counts for each gene and cell. Counts in
this matrix were then summed per gene for each sample into a new matrix. The
resulting matrix was normalized using DESeq2 by estimating size factors and
performing normalization with the counts function, resulting in a new matrix with
normalized counts for each gene and sample similar to the output of a traditional
bulk sequencing experiment. The DESeq function was then utilized to calculate
differential gene expression based on negative binomial distribution. Pairwise
comparisons were completed by condition of interest (disease state, sex and age
group) using the Wald test and an « value of 0.5 for independent filtering and
adding log,FC using the IfcShrink function with ‘ashr’ adaptive shrinking. We
specified no cutoffs for log,FC or P value to obtain even nonsignificant changes
in expression. Filtering of this DEG table was performed by logFC and P value for
further analysis as described in the manuscript.

Analysis of associations with age. Using cell type identities from the single-
nuclei dataset, we aggregated counts and metadata to the sample level (split into
donor and DCM separately) for each subject within each cell population and
utilized DESeq2 to normalize the data using median of ratios to normalize counts
and a regularized log transform of the normalized counts. We then used the
normalized counts matrix to calculate Pearson correlation coefficients using the
scipy stats function pearsonr to measure the linear relationship between each gene
and age. Using genes with a Pearson correlation coefficient > |0.6| and P value
<0.05, we constructed positive (Pearson coefficient >0.6) and negative (Pearson
coefficient <—0.6) age-associated gene set z scores. We used the scipy stats
linregress package in Python to perform linear regression analysis on the positive
and negative aging signature as a function of age.

Pathway analysis. Pathway analysis was completed using the ClusterProfiler
R package. A list of genes present in both the Seurat and Pseudobulk differential
expression analyses by disease state with log,FC> 0.1 and adjusted P value <0.05
was utilized in the pathway analysis (Supplementary Fig. 3). Genes with negative
and positive log,FC values were separated to identify enrichment in either the non-
diseased or diseased condition, respectively. The enrichWP function was used to
return a table with pathway enrichments from the WikiPathways database.

For comparison of enriched pathways between multiple populations/states,
the compareCluster function was utilized on a matrix from the output Seurat
differential expression analysis filtered for log,FC > 0.1 and adjusted P value <0.05
that contained the column specifying in which population/state the gene was
upregulated. This analysis utilized the enrichPathway database from ClusterProfiler
to return a table of enriched pathways in each population/state.

Transcription factor analysis. Transcription factor analysis was performed

using the Enrichr web utility (https://maayanlab.cloud/Enrichr/enrich). Genes
upregulated in a population/state based on Seurat differential expression analysis
filtered for log,FC> 0.1 and adjusted P value <0.05 (Supplementary Fig. 3) were
entered into the Enrichr and results from enrichment in the ChEA 2016 ChIP-seq
database were downloaded and loaded as a matrix in R v.4.0.3 for the generation
of dot plots.

Trajectory analysis. Trajectory analysis was performed using the Palantir package
for Python. Using the normalized and scaled gene counts for the 3,000 highly
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variable genes, a matrix was exported as the input. Using the matrix, PCs were
calculated and then diffusion maps were calculated as an estimate of the low
dimensional phenotypic manifold of the data. Then, the actual Palantir was run
by specifying a start cell state (the progenitor cell type from the dataset). Palantir
then returned the terminal cell states, entropy values, pseudotime values and the
probability of ending up in each of the terminal states for all cells.

RNAScope in situ hybridization. RNA was visualized using RNAScope Multiplex
Fluorescent Reagent kit v2 Assay, RNAScope 2.5 HD Detection Reagent - RED
and RNAScope 2.5 HD Duplex Assay kits (Advanced Cell Diagnostics, ACDBio)
using probes designed by Advanced Cell Diagnostics for ANKRD1, MYH6, NPPA,
NPPB, CD163, DCN, POSTN, PLA2G2A, CCL2, PCOLCE2, ELN and RGS5

(ref. 77). Samples were fixed for 24 h at 4°C in 10% neutral buffered formalin.
Samples were washed in 1x PBS, equilibrated in 30% sucrose, embedded in OCT
medium (Sakura Finetek) and stored at —80 °C (fluorescence) or washed in 1x
PBS, dehydrated in ethanol and embedded in paraffin (red and duplex). OCT-
embedded sections were cut at 12 pm and paraffin-embedded sections were cut

at 8 pm. Fluorescent images were collected using a Zeiss LSM 700 laser scanning
confocal microscope. Chromogenic/brightfield images were acquired using a Zeiss
Axioscan Z1 automated slide scanner. Image processing was performed using Zen
Blue and Zen Black (Zeiss), FIJI/Image]”*”* and Photoshop (Adobe). The following
RNAScope probes produced by ACDBio were utilized: ANKRD1 (524241), MYH6
(555381), NPPA (531281), NPPB (448511), CD163 (417061), DCN (589521),
POSTN (409181), PLA2G2A (581101), CCL2 (423811), PCOLCE2 (566861), RGS5
(533421), ELN (408261), ACKR1 (525131), BTNL9 (430351) and CCL21 (474371).

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

The processed single-cell objects, raw expression matrices and raw sequence
files that support the findings of this study are available on the Gene Expression
Omnibus (GSE183852). Alignment was performed to the publicly available
transcriptome GRCh38-1.2.0.

Code availability
Scripts and methods used in processing can be found at https://github.com/
alkoenig/Atlas_of_Human_Heart_Failure_Lavine.
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Extended Data Fig. 1| Sample processing and QC Plots. A, Diagram of tissue processing and flow cytometry cell sorting strategies for single cell RNA
sequencing (top) and single-nucleus RNA sequencing (bottom). Plots are representative density plots (blue indicates low density while yellow indicates
higher density. B, Violin plots of the number of genes per cell/nuclei split by sequencing technology for the integrated Seurat object before and after

QC filtering (left) and after QC filtering split by cell type (right). C, Violin plots of the percent mitochondrial reads per cell/nuclei split by sequencing
technology for the integrated Seurat object before and after QC filtering (left) and after QC filtering split by cell type (right).
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Extended Data Fig. 2 | Integration of single cell RNA sequencing and single-nucleus RNA sequencing data allows for combined analysis of samples from
different technologies. A, UMAP projection showing unsupervised clustering of the integrated dataset. B, UMAP projection split by technology. C, UMAP
projection colored by disease state. D, Heat map of the top 10 genes by log2FC enriched in each cluster. E, Z-score feature plots for transcriptional signatures
enriched in each cell type. Genes used for cell type identification (blue) were selected based on enrichment from Seurat differential expression analysis.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Single-cell and nucleus RNA sequencing identifies major cell populations within the LV myocardium. A, UMAP projection
showing unsupervised clustering of single-nucleus RNA sequencing data. B, Heatmap of the top 10 genes by log2FC enriched in each cluster within
single-nucleus RNA sequencing dataset. C, UMAP projection showing unsupervised clustering of single cell RNA sequencing data. D, Heatmap of the
top 10 genes by log2FC enriched in each cluster within single cell RNA sequencing dataset. E-F, Violin plots split by cluster displaying the expression of
characteristic cell marker genes in the single-nucleus RNA sequencing (E) and single cell RNA sequencing (F) datasets.
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Extended Data Fig. 4 | Pseudobulk differential expression reveals the contribution of disease state, sex and disease severity across major cell types. A,
Volcano plots of pseudobulk differential expression analysis of single-nucleus RNA sequencing data performed on each cell type comparing donor control
vs. dilated cardiomyopathy (DCM). B, Volcano plots of pseudobulk differential expression analysis of single nucleus RNA sequencing data performed on
each cell type comparing disease severity (INTERMACS score 3+4 vs 142, lower score indicates more advance disease). C-D, Volcano plots of pseudobulk
differential expression analysis of single nucleus RNA sequencing data performed on each cell type comparing sex separated by donor (C) and DCM (D).
Insets represent values outside of the plotted area. See Supplementary Tables 21-26 for complete list of genes.
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Extended Data Fig. 5 | Pseudobulk differential expression reveals gene expression correlation with age in donor and diseased hearts. A-B, Plot of
genes versus Pearson correlation coefficient (left) and linear regression using the top 10 genes correlated with age ranked by Pearson coefficient. Line of
best fit is displayed (red-positively correlated, blue-negatively correlated, genes listed in respective colors, points represent individual samples, p-values
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for donor (A) and DCM (B). Pearson Coefficients were calculated for all expressed genes from single nucleus dataset in relation to age as a continuous
variable. See Supplementary Tables 25-26 for complete list of genes.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Supplement to Fig. 3 - Cardiomyocytes. A, Z-score feature plots for transcriptional signatures enriched in each cardiomyocyte
state. Genes used for cell type identification (blue) were selected based on enrichment from Seurat differential expression analysis. Dot plot displays
relative expression values for each Z-score split by disease state. B, Heatmap displaying top 5 enriched genes in each cell state from Seurat differential
expression analysis on integrated dataset. C, enrichPathways analysis identifies pathways top differentially enriched pathways by cell state. Genes used

in the analysis were selected from Seurat differential expression analyses with adjusted p<0.05. p-value calculated using hypergeometric distribution

and corrected for multiple comparisons. D, enrichPathway analysis comparing enrichment of top pathways between disease states. Genes used in the
analysis selected from intersection of pseudobulk and Seurat differential expression with p<0.05 and log2FC>0.1. p-value calculated using hypergeometric
distribution and corrected for multiple comparisons. E, Transcription factor analysis displaying top enriched transcription factors in each cell state using
ChEA 2016 database (https://maayanlab.cloud/Enrichr). Genes used in the analysis selected from Seurat differential expression with p<0.05 and
log2FC>0.1. p-value calculated using Fisher exact test. F, Palantir pseudotime and entropy values overlaid on UMAP projection split by disease state.
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Extended Data Fig. 7 | Supplement to Figs. 4 and 5 - Monocytes, macrophages and dendritic cells. A, Z-score feature plots for transcriptional signatures
enriched in each monocytes, macrophages, and dendritic cells state. Genes used for cell type identification (blue) were selected based on enrichment from
Seurat differential expression analysis from single cell dataset (from Fig. 5). Z-scores are overlaid on the single cell RNA sequencing (left) and integrated
UMAP (right) projections. B, Heatmap displaying top 5 enriched genes in each cell state from Seurat differential expression analysis on integrated dataset.
C, Heatmap displaying top 5 enriched genes in each cell state from Seurat differential expression analysis on single cell dataset.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Supplement to Fig. 6 - Fibroblasts. A, Z-score feature plots for transcriptional signatures enriched in each fibroblast state. Genes
used for cell type identification (blue) were selected based on enrichment from Seurat differential expression analysis. Z-scores are overlaid on the
integrated UMAP projections. Dot plot displays relative expression values for each Z-score split by disease state. B, Heatmap displaying top 5 enriched
genes in each cell state from Seurat differential expression analysis on integrated dataset. C, WikiPathways analysis identifies pathways differentially
enriched by disease state. Genes used in the analysis included the intersection of pseudobulk and Seurat differential expression analyses with adjusted
p<0.05. p-value calculated using hypergeometric distribution and corrected for multiple comparisons. D, Transcription factor analysis displaying top
enriched transcription factors in each cell state using ChEA 2016 database (https://maayanlab.cloud/Enrichr). Genes used in the analysis selected from
Seurat differential expression with p<0.05 and log2FC>0.1. p-value calculated using Fisher exact test. E, enrichPathway analysis comparing enrichment
of pathways between cell states. Genes used in the analysis selected from Seurat differential expression with p<0.05 and log2FC>0.1. p-value calculated
using hypergeometric distribution and corrected for multiple comparisons. F, RNA in situ hybridization for PLA2G2A and ELN (red). Representative images
showing perivascular staining of PLA2G2A in the myocardium of donor samples. Minimal staining was observed in DCM samples. ELN staining was
observed in the media of epicardial coronary arteries in both donor and DCM samples.
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Extended Data Fig. 9 | Pericytes and smooth muscle cells exhibit global changes in gene expression in dilated cardiomyopathy. A, Unsupervised
clustering of pericytes and fibroblasts within the integrated dataset split by disease state. Inset panel (right) colored by disease state demonstrates
mixing within cell states. B, Heatmap displaying top 5 enriched genes in each cell population from Seurat differential expression analysis on integrated
dataset. C-D, Principal-component analysis (PCA, DESeq?2) plots of pericyte (C) and smooth muscle cell (D) pseudobulk single nucleus RNA sequencing
data colored by sex and disease state and age. Each data point represents an individual subject. Heatmaps displaying the top 100 upregulated and
downregulated genes ranked by log2 fold-change comparing donor control to dilated cardiomyopathy (DCM). Differentially expressed genes were derived
from the intersection of pseudobulk (DESeq2) and single cell (Seurat) analyses. E, WikiPathways analysis identifies top differentially enriched pathways in
pericytes (top) and smooth muscle cells (bottom) by disease state. No pathway enrichment was detected in DCM pericytes. Genes used in the analysis
included the intersection of pseudobulk and Seurat differential expression analyses with adjusted p<0.05 and log2FC>0.1. p-value calculated using
hypergeometric distribution and corrected for multiple comparisons. F, Representative images of RGS5 staining for pericytes by RNA in situ hybridization.
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Extended Data Fig. 10 | Supplement to Fig. 7 - Endothelial cells. A, UMAP projection of the integrated dataset split by technology (single cell vs. single
nucleus RNA sequencing) and colored by subpopulation. B, Distribution of nuclei in the integrated object divided by major cell type (*<0.05, **<0.01,
***<0.001 by Welch's T-test, two-tailed, data represents mean =+ standard deviation, Donor; n=25 samples, DCM; n=13 samples). p-values for clusters
comparing Donor to DCM are; Ec1: 1.9e-1, Ec2: 3.0e-1, Ec3: 1.5e-3, Ec4: 1.]e-1, Ecd1: 3.3e-5, Ecd2: 6.7e-3. C, Z-score feature plots for transcriptional
signatures enriched in endothelial and endocardial cell populations. Genes used for cell type identification (blue) were selected based on enrichment
from Seurat differential expression analysis. Z-scores are overlaid on the integrated dataset. D, Dot plot of relative expression values for each Z-score
split by disease state. E, Heatmap displaying top 5 enriched genes in each cell state from Seurat differential expression analysis on integrated dataset. F,
Transcription factor analysis displaying top enriched transcription factors in each cell state using ChEA 2016 database (https://maayanlab.cloud/Enrichr).
p-value calculated using Fisher exact test. Genes used in the analysis selected from Seurat differential expression with p<0.05 and log2FC>0.1. G,
Representative RNAScope images of vascular (top) and lymphatic (bottom) endothelial cells. ACKRT - venous, BTNL9 - capillary, CCL217 - lymphatic.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  BD FACSChorus version 1.1, BD FACSDiva version 8, 10X Genomics CellRanger V3, Zeiss Zen Blue version 3.2, Zeiss Zen Black version 2.0

Data analysis Data analyzed using R v3.6.2 and v4.0.3, Seurat V3.2.3 and V4.0.1, and Python v3.9.2 with Palantir v1.0.0. Scripts and methods used in
processing can be found at https://github.com/alkoenig/Atlas_of Human_Heart_Failure_Lavine
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- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The processed single cell objects, count matrices, and sequence files that support the findings of this study are available on the Gene Expression Omnibus
(GSE183852). Alignment was performed to publicly available transcriptome, GRCh38-1.2.0
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed. Sample size was determined based on tissue availability and ability to recover sufficient numbers
of cells/nuclei to allow for group comparisons. The total sample size of 45 far exceeds any currently published single cell or single nuclei
dataset examining cardiac cellular heterogeneity.

Data exclusions 2 sequenced samples were excluded from analysis based on low sequence quality including low read counts and high percentages of
mitochondrial reads.

Replication Each sample is a biological replicate. Single cell and single nuclei analysis identified similar populations and individual populations/states are
present in the large majority of samples in each experimental group. For single nuclei data 40 replicates/samples were processed with 2 failed
samples excluded due to poor sequencing. For single cell data 8 replicates/samples were processed with 1 failed sample excluded due to poor
sequencing.

Randomization Experiment was not randomized as samples were selected from human patients with and without DCM induced heart failure. Participants
were selected to have limited confounding variables and covariates similar between experimental groups. Details on covariates are available
in Tables 1-3,20 of the supplementary material.

Blinding Investigators were partially blinded to the sample groups. Analysis of single cell/nuclei RNA sequencing data is not biased to experimental
groups and clustering is performed unsupervised. Investigators were blinded to groups and covariates during initial clustering prior to
performing differential analysis due to lack of this information in sample names. This type of metadata was added when necessary for
differential analysis. Blinding during data collection was not necessary as samples were processed by FACS to simply collect intact cells/nuclei
with no exclusions of cell types. This type of sorting does not allow for bias in including/excluding data that may influence results.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
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Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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Dual use research of concern

Human research participants

Policy information about studies involving human research participants

Population characteristics Details on population and covariates are available in Tables 1-3, 20 of the supplementary material.

Recruitment Inquiries are made to all patients scheduled for LVAD implantation or heart transplant and informed consent obtained for
those that volunteered to participate. No compensation is provided.

Ethics oversight Washington University Institutional Review Board

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Flow Cytometry

Plots
Confirm that:

|X| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|X| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument
Software

Cell population abundance

Gating strategy

Sample Preparation for Single Cell RNA Sequencing

Fresh cardiac tissues from LVAD cores or identical regions from the apex of explanted donors were minced with a razor blade
and transferred into a 15ml conical tube containing DMEM with Collagenase | (450U/ml), DNAse | (60U/ml), and
Hyaluronidase (60U/ml) and incubated at 37°C for 1 hour with agitation. Digestion was then stopped by addition of HBB
buffer (2% FBS, 0.2% BSA in HBSS) and filtered through a 40um filter into 50 mL conical, transferred to a clean 15ml conical
and centrifuged at 350 x G for 5 minutes at 4°C. Supernatant was then removed and pellet resuspended in ImL ACK lysing
buffer (Gibco A10492) and incubated at room temperature for 5 minutes followed by the addition of 9mL DMEM. Suspension
was then centrifuged at above conditions, followed by removal of supernatant, and resuspension in 5mL FACS buffer (2%
FBS, 2mM EDTA in calcium/magnesium free PBS). Centrifugation was repeated at above conditions, supernatant removed,
and pellet resuspended in 300uL cell resuspension buffer (0.04% BSA in 1X PBS) and 1ul each of DRAQS (Thermo Scientific
62251) and DAPI (BD Biosciences 564907) and allowed to incubate 5 minutes before sorting. DRAQS+/DAPI- cells were
collected in cell resuspension buffer. Collected cells were then recentrifuged according to above parameters and
resuspended in cell resuspension buffer to a target concentration of 1000 cells/uL. Nuclei were counted on a hemocytometer
and concentration adjusted as necessary.

Sample Preparation for Single Nuclei RNA Sequencing

Frozen cardiac tissues from LVAD cores or identical region from the apex of explanted donors were minced with a razor blade
and transferred into a small (5 mL) Dounce homogenizer containing 1-2mL of chilled lysis buffer (10mM Tris-HCl pH 7.4,
10mM NaCl, 3mM MgCl2, 0.1% NP-40 in nuclease free water). Homogenized gently using 5 passes without rotation, then
incubated on ice for 15 minutes. Lysate was then gently filtered through a 40um filter into 50mL conical, followed by rinsing
the filter once with 1 mL lysis buffer, and transfer of lysate to a new 15ml conical tube. Nuclei were then centrifuged at 500 x
g for 5 min at 4°C Followed by resuspension in ImL Nuclei Wash Buffer (2% BSA, 0.2U/uL RNAse inhibitor in 1x PBS) and
filtered through a 20 um pluristrainer into a fresh 15mL conical. Centrifugation was repeated according to above parameters,
Supernatant was then removed and nuclei resuspended in 300ul Nuclei Wash Buffer and transferred to 5 mL tube for flow
sorting. 1uL DRAQS (5 mM solution, Thermo Cat #62251) was added, mixed gently, and allowed to incubate 5 minutes before
sorting. DRAQS+ nuclei were sorted into Nuclei Wash Buffer on BD FACS Melody (BD Biosciences, San Jose, CA) using a 100
uM nozzle. Recovered nuclei were centrifuged again at the above parameters and were gently resuspended in Nuclei Wash
Buffer to a target concentration of 1000 nuclei/ulL. Nuclei were counted on a hemocytometer and concentration adjusted as
necessary.

Axis Scales/tick marks are provided. The only FACS plots in this manuscript are representative plots to visualize the sort gating
strategy.
BD FACSAria Il and FACSMelody

BD FACSDiva and FACSChorus

Sorting was only for live cells/nuclei. All live cells/nuclei based on below gating strategy were collected and a portion used for
10X Genomics processing as detailed in the manuscript.

Cells: live cells selected by FSC-A/SSC-A followed by DRAQS+ and finally DAPI-
Nuclei: nuclei selected by DRAQS+

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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