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Single-cell and single-nucleus RNA sequencing (scRNA-seq 
and snRNA-seq, respectively) represent powerful new tools 
to identify cell types and their respective transcriptional sig-

natures that reside within healthy and diseased tissues. Before the 
development of these technologies, our understanding of the cells 
that comprise human tissues and organs was restricted to routine 
histology and immunostaining analyses performed many decades 
ago. The rapid deployment of single-cell sequencing has revolution-
ized the field and resulted in the identification of previously unrec-
ognized cell populations, including disease-specific cell states across 
a wide range of structures, including the brain, lung, liver, kidney 
and various malignancies1–5.

Heart failure represents a major cause of morbidity and mor-
tality worldwide and imparts large costs on healthcare systems 
($30–50 billion year−1 in the United States)6,7. Despite advance-
ments in patient care, heart failure remains prevalent (lifetime risk 
of 20–45%) and portends 5-year morality rates approaching 50%, 
highlighting the clinical need to develop new therapies8. While bulk 
RNA-seq has yielded important insights into disease mechanisms 
that contribute to heart failure pathogenesis9, cell-specific informa-
tion is lost and much remains to be learned regarding the roles of 
individual cell types. Identification of cell-specific disease-associ-
ated programs may provide the insights and opportunities neces-
sary to develop new approaches for heart failure.

Recently, scRNA-seq and snRNA-seq was performed on healthy 
human heart tissue10,11. These studies yielded new information per-
taining to common and rare cell populations within the healthy 
heart. Cardiomyocytes, fibroblasts, endothelial cells, pericytes, 
smooth muscles cells, myeloid cells, lymphoid cells, adipocytes 
and neural cells were readily identified and analyzed across ana-
tomical sites. Distinct transcriptional states of atrial and ventricular 
cardiomyocytes were identified and validated using RNA in situ 

hybridization. Notable diversity was also observed among perivas-
cular and immune cell types, including transcriptional signatures 
specific to different regions of heart.

At present, little is understood regarding the functional rele-
vance of cell diversity within major human cardiac cell populations. 
Furthermore, the impact of human cardiac disease on cell composi-
tion remains to be rigorously investigated. While extensive work has 
been carried out in mouse models of heart failure, current scRNA-
seq datasets exploring human heart failure are small and lack the 
sample size necessary to elucidate the impact of disease on common 
and rare cardiac cell types12–21.

Herein, we performed snRNA-seq and scRNA-seq on a large 
cohort of heart specimens obtained from healthy individuals and 
patients with chronic heart failure. We identified 15 major cardiac 
cell types from 45 individuals and explored the extent of cell diver-
sity within each of these populations. Unsupervised clustering, 
differential gene expression and trajectory analyses revealed cell 
type-specific transcriptional programs and emergence of disease-
associated cell states in the context of heart failure. We uncovered 
cell-specific influences of age on gene expression that differed 
based on disease state. Our data provide a comprehensive analy-
sis of the cellular and transcriptomic landscape of the healthy and 
failing human heart and will serve as a valuable resource to the 
scientific community.

Results
snRNA-seq and scRNA-seq reveal the cellular landscape of the 
human heart. To define the cellular and transcriptional landscape 
of the healthy and failing human heart, we obtained left ventricu-
lar (LV) cardiac tissue specimens from 28 non-diseased donors 
(donation after brain death) and 17 individuals with dilated (non-
ischemic) cardiomyopathy (DCM). Non-diseased tissues were 
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acquired from prospective donor hearts with normal LV function 
that were not used for transplantation due to the lack of a suitable 
recipient. DCM tissue was obtained from individuals undergoing 
implantation of an LV assist device or explanted hearts collected 
at the time of transplantation. Transmural myocardial samples 
from the apical and anterior segments of the LV were processed 
for either snRNA-seq (n = 38) or scRNA-seq (n = 7) using the 10X 
Genomics 5ʹ Single Cell platform (Fig. 1a, Extended Data Fig. 1 
and Supplementary Table 1).

Single-nucleus and single-cell libraries were sequenced, aligned 
to the human reference genome, filtered for quality control (QC). 
Unsupervised clustering, integration and differential expression 
analysis performed using Harmony and Seurat (Fig. 1b, Extended 
Data Fig. 1 and Supplementary Tables 2 and 3). Following QC, 
nuclei samples had average gene and feature counts per cell of 
2,849 and 1,496, respectively, whereas those counts for cells were 
4,893 and 1,966, respectively. The final integrated dataset con-
sisted of 220,752 nuclei and 49,723 cells representative of 15 major 
cell types (Fig. 1c). Cell identities were validated by expression 
of cell-specific marker genes (Fig. 1d) and transcriptional signa-
tures (Extended Data Figs. 2 and 3). Cell types identified in both 
snRNA-seq and scRNA-seq datasets included fibroblasts, endo-
thelial cells, myeloid cells, pericytes, smooth muscle cells, T cells 
and natural killer (NK) cells, neurons/glia and B cells. A notable 
benefit of snRNA-seq is the ability to obtain reads from additional 
cell types that are not efficiently recovered from enzymatically 
digested tissue including cardiomyocytes, adipocytes, endocar-
dial cells, lymphatics, epicardial cells and mast cells (Fig. 1e and 
Extended Data Figs. 2 and 3).

The analyzed dataset was powered to investigate the influence of 
age, sex and disease state and severity on gene expression. Differential 
expression analysis using pseudobulk and single-cell approaches 
demonstrated substantial overlap (Supplementary Tables 4 and 5). 
Disease state had the most powerful influence on differential gene 
expression across cell types (Fig. 2a and Supplementary Table 21). 
Heart failure severity, as assessed by INTERMACS profile/score 
(predictor of outcomes in the advanced heart failure population) 
revealed evidence of differential expression in cardiomyocytes, 
endothelial, endocardial, fibroblast and myeloid cells (Fig. 2b and 
Supplementary Table 22)22,23. We also observed changes in cardiac 
cell composition as a function of disease state. Individuals with 
DCM had decreased numbers of cardiomyocytes, pericytes and 
mast cells; and increased numbers of fibroblasts, myeloid cells, T/
NK cells and lymphatics (Supplementary Table 6). Many of these 
changes were observed in both men and women (Supplementary 
Tables 7 and 8). Heart failure severity was not associated with 
changes in cell composition (Supplementary Table 9).

Substantially fewer differentially expressed genes (DEGs) were 
detected comparing sex in either non-diseased donors or individu-
als with DCM. The majority of differentially expressed transcripts 
were located on the X and Y chromosomes including XIST, TSIX 
and TTTY genes (Fig. 2c and Extended Data Fig. 4). We did not 
detect clear differences in cell composition between male and 
female donors or individuals with DCM (Supplementary Tables 10, 
11, 23 and 24).

To identify changes in cardiac cell composition and gene expres-
sion associated with age, we computed positive and negative rela-
tionships using Pearson correlation. This analysis was separately 
performed in donor and DCM cohorts to account for the pos-
sibility that relationship between age, cell composition and gene 
expression may differ in the context of health and heart failure. 
We observed that myeloid cell number was associated with older 
age in donor hearts, a finding that was most evident in females. 
We did not observe significant age-associated alterations in major 
cell populations in DCM hearts (Supplementary Tables 12, 13, 25 
and 26). In contrast, we identified multiple genes that were asso-
ciated with younger and older age across cell types in donor and 
DCM hearts (Fig. 2d). We constructed age-associated gene signa-
tures by selecting genes with Pearson correlation coefficients >0.6 
or <−0.6. Regression analysis revealed robust age-associated gene 
signatures across cell types. Notably, age-associated gene expression 
signatures were cell type-specific, differed by disease state and simi-
larly evident in male and female patients (Extended Data Fig. 5 and 
Supplementary Tables 14–17). We also detected distinct pathways 
associated with age in donor controls and individuals with DCM 
(Supplementary Tables 18 and 19).

Given that disease state was associated with the most robust 
changes in cell composition and gene expression, we chose to focus 
our analysis on how heart failure influences major cardiac cell 
populations, including cardiomyocytes, myeloid cells, fibroblasts, 
pericytes/smooth muscle cells, endothelial cells and endocardial 
cells. These populations displayed the greatest differences in gene 
expression (Fig. 2a).

Cardiomyocytes phenotypically converge in dilated cardiomy-
opathy. Principal-component analysis (PCA) of pseudobulk data 
indicated that disease state and sex had the greatest influence on 
gene expression variance in cardiomyocytes (Fig. 3a). Overlaying 
age distribution onto the PCA plot did not suggest a dominant 
relationship with age across all cardiomyocytes, although regres-
sion analysis did identify gene expression signatures associated 
with age (Fig. 2d and Extended Data Fig. 5). Genes associated 
with age differed in donor and DCM specimens and were distinct 
from genes that were differentially expressed between donor ver-
sus DCM cardiomyocytes (0.1% and 3.7% overlap, respectively). 
Pseudobulk differential expression analysis between men and 
women indicated robust differences in a modest number of genes 
encoded on the X and Y chromosome, possibly accounting for 
separation observed by PCA (Extended Data Fig. 4). Differential 
expression analysis by pseudobulk and single-cell approaches 
across disease state revealed a large number of genes significantly 
upregulated (NPPA, NPPB, ACE2 and KIF13A) and downregulated 
(MYH6, ADRB2 and CKM) in DCM samples compared to non-
diseased donors (Fig. 3b). Pathway analysis identified multiple dif-
ferentially regulated pathways upregulated (MAPK, FLT3, HIPPO/
YAP and GCPR signaling) and downregulated (metabolism) in 
DCM (Extended Data Fig. 6).

Unsupervised clustering identified seven cardiomyocyte states 
with differing gene expression signatures (Fig. 3c,d and Extended 
Data Fig. 6). Cardiomyocytes from donor samples existed in all 

Fig. 1 | Cellular composition of the healthy and failing human heart. a, Schematic depicting design of the snRNA-seq and scRNA-seq experiments. 
Transmural sections were obtained from the apical anterior wall of the left ventricle during donor heart procurement, LVAD implantation or heart 
transplantation for comparison of disease, sex and age (snRNA-seq, n = 25 donor control, n = 13 dilated cardiomyopathy; scRNA-seq, n = 2 donor control, 
n = 5 dilated cardiomyopathy). Dashed box indicates location where sample was collected. LVAD, left ventricular assist device. b, The analysis pipeline 
included tissue processing and single-cell barcoded library generation (10X Genomics 5ʹ v1 kit), sequence alignment (Cell Ranger) and further analysis 
using R and Python packages (Seurat, Harmony, DEseq2, Palantir, ClusterProfiler and Enrichr). c, Unsupervised Uniform Manifold Approximation and 
Projection (UMAP) clustering of 220,752 nuclei, 49,723 cells and an integrated dataset combining snRNA-seq and scRNA-seq data after QC and data 
filtering using Harmony integration. d, Violin plots generated from the integrated dataset displaying characteristic marker genes of each identified cell 
population. e, Pie chart showing the proportion of cells within the snRNA-seq, scRNA-seq and integrated datasets.
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seven states marked by MYH6 (Cm1), ACTA1 (Cm2), MYL7 
(Cm3), ADGRL3 (Cm4), GRIK2 (Cm5), NPPA/NPPB (Cm6) 
and BMPR1B (Cm7) expression. DCM samples displayed a bias 
toward ADGRL3-expressing cardiomycytes, trend toward more 
NPPA/NPPB-expressing cardiomyocytes and marked reduction  

in MYH6- and GRIK2-expressing cardiomyocytes (Fig. 3e). 
Cardiomyocyte clusters marked by MYH6, MYL7 and GRIK2 dis-
played stronger expression of signature genes in donor samples, 
whereas cardiomyocyte clusters marked by ACTA1, ADGRL and 
NPPA/NPPB displayed stronger expression of signature genes in 
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Fig. 2 | Differential influence of disease state, sex and age on cell type-specific gene expression. a–c, Dot plots showing pseudobulk (DESeq2) based 
differential gene expression across major cell populations. Differential expression was calculated from snRNA-seq data for disease (a, Donor versus 
DCM), INTERMACS score (b, 1 and 2 versus 3 and 4) and sex (c, male versus female) are shown. d, Genes correlated with age by Pearson coefficient are 
also shown. Genes with adjusted P value <0.05 are colored in red and genes with adjusted P value >0.05 are colored in gray (P value calculated using 
Wald test adjusted for multiple test correction). Number of upregulated and downregulated genes with adjusted P value <0.05 per cell type is displayed in 
parenthesis. Supplementary Tables 21–26 contain a complete list of genes.
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DCM samples (Extended Data Fig. 6). In addition, we observed a 
global decrease in MYH6 expression and increases in ANKRD1, 
NPPA and ADGRL3 expression in DCM (Fig. 3f). To validate 
shifts in cardiomyocyte state and gene expression in DCM at the 

tissue level, we performed RNA in situ hybridization. Compared 
to donor controls, we observed significant increases in NPPA, 
NPPB and ANKRD1-expressing cells and significant reduction in 
MYH6-expressing cells in DCM (Fig. 3g,h).
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Pathway and transcription factor enrichment analyses per-
formed on each cardiomyocyte cell state identify pathways that 
distinguished cardiomyocytes states including metabolism, muscle 
contraction, Semaphorin, NOTCH, MAPK signaling and potas-
sium channels. This analysis also identified transcription factors 
that were predicted to regulate gene expression within each of the 
cardiomyocyte states (Extended Data Fig. 6).

To explore the temporal relationship between cardiomyocyte 
states, we performed pseudotime trajectory analysis using Palantir, 
a Python package that employs probabilistic models to discern com-
plex and diverse lineage relationships24. We calculated pseudotime 
and entropy values for each cardiomyocyte cluster to predict puta-
tive states of cell differentiation (Fig. 3i and Extended Data Fig. 6).  
We plotted entropy versus pseudotime values for each cell and 
superimposed cluster designations. Donor cardiomyocytes were 
predicted to contain two highly differentiated cell states marked by 
MYL7 and ACTA1 expression. In contrast, DCM samples displayed 
two distinct highly differentiated cell states marked by ARGRL3 and 
NPPA/NPPB expression (Fig. 3i). Collectively, these observations 
suggest a convergence toward disease-associated cardiomyocyte 
phenotypes in DCM.

Monocyte expansion and inflammatory macrophage diversifica-
tion. Macrophages, monocytes and dendritic cells are increasingly 
studied in mouse models of cardiac injury and heart failure25–29. We 
identified large populations of macrophages, monocytes and den-
dritic cells in donors and individuals with DCM (Fig. 1c,e). PCA of 
pseudobulk data indicated that disease state and sex had the great-
est effect on gene variance in this population (Fig. 4a). Differential 

expression analysis by pseudobulk and single-cell approaches 
across disease state revealed a large number of genes significantly 
upregulated (CCL3, NLRP3, NFKB2 and EGR1) and downregulated 
(VSIG4, LYVE1, FMN1 and CD163) in DCM samples compared to 
non-diseased donors (Fig. 4b). Similar to cardiomyocytes, pseu-
dobulk differential expression analysis between males and females 
indicated robust differences in a small number of genes encoded 
on the X and Y chromosomes, including XIST, JPX and TTTY10 
(Extended Data Fig. 4). Pathway analysis identified upregulation 
of multiple pathways in DCM samples including T-cell co-stimula-
tion, PD-1 and NGF signaling, whereas metabolism pathways were 
downregulated in DCM (Fig. 4c).

Unsupervised clustering of the integrated dataset revealed the 
presence of large numbers of macrophages and smaller popula-
tions of monocytes, dendritic and proliferating cells. We identi-
fied two populations of macrophages, including a subset that 
expressed tissue-resident markers (Mac1: MRC1, SIGLEC1, 
CD163, LYVE1 and F13A1)30–32 and a subset that expressed che-
mokines and cytokines (Mac2: CCL3, CCL4, CXCL3, CXCL8 and 
IL1β). Compared to donor controls, we observed a reduction in 
proliferating macrophages and expansion of monocytes and den-
dritic cells in individuals with DCM. We also observed a reduc-
tion in the tissue-resident macrophage signature and increase 
in the inflammatory macrophage signature in DCM (Fig. 4d–h 
and Extended Data Fig. 7). RNA in situ hybridization confirmed 
reduction in CD163+ cells in DCM samples compared to donor 
controls (Fig. 4i).

Visualization of snRNA-seq and scRNA-seq data within the inte-
grated object indicated a bias in recovered cell populations. While 

Fig. 4 | Dilated cardiomyopathy is associated with shifts in macrophage composition and gene expression favoring inflammatory populations.  
a, PCA, DESeq2 plots of monocyte, macrophage and dendritic cell pseudobulk snRNA-seq data colored by sex and disease state (left) and age (right). 
Each data point represents an individual. b, Heat map displaying the top 100 upregulated and downregulated genes ranked by log2 fold-change comparing 
donor control to DCM. DEGs were derived from the intersection of pseudobulk (DESeq2) and single-cell (Seurat) analyses. c, WikiPathways analysis 
comparing top enriched pathways in each condition. Genes were selected from the intersection of pseudobulk (DESeq2) and single-cell (Seurat) analyses 
with P < 0.05 and log2FC > 0.1. P value calculated using hypergeometric distribution and corrected for multiple comparisons. d, UMAP of unsupervised 
re-clustering of monocytes, macrophages and dendritic cells within the Harmony integrated dataset split by disease state. Major cell states are labeled. 
Inset (right) colored by disease state demonstrates mixing within cell states. e, Z score feature plot of the two macrophage populations identified split by 
disease state (left, Mac1; right, Mac2). Genes (in blue) were selected by enrichment in the respective populations. f,g, Dot plots displaying the z scores 
for transcriptional signatures that distinguish monocyte, macrophage and dendritic cell populations by cell state (f) and split by disease state (g) (genes 
selected by enrichment in Seurat differential expression analysis are listed in box below plot). h, Distribution of myeloid states by cluster (*P < 0.05, 
***P < 0.001, Welch’s t-test, two-tailed, data represents mean ± s.d., derived from single-nucleus data, donor; n = 25 samples, DCM; n = 13 samples).  
P values for clusters comparing donor to DCM are Mac1, 2.7 × 10−1; Mac2, 5.4 × 10−1; DCs, 2.6 × 10−2; Prolif, 9.0 × 10−4; Mono, 3.4 × 10−2. i, Representative 
RNA in situ hybridization images (RNAScope) for CD163 (red and blue, hematoxylin) and quantification of CD163+ cells in donor and DCM samples 
(P value from Welch’s t-test, two-tailed, data represents mean ± s.d., donor; n = 6 samples, DCM; n = 6 samples). CD163 is a marker of tissue-resident 
macrophages. j, UMAP plot of clusters split by sequencing technology. k, Distribution of myeloid states by cluster Welch’s t-test, two-tailed, data 
represents mean ± s.d., derived from only single-cell data, donor; n = 2 samples, DCM; n = 5 samples). P values for clusters comparing donor to DCM are 
Mac1, 2.1 × 10−1; Mac2, 6.6 × 10−2; DCs, 6.6 × 10−2; Prolif, 5.1 × 10−1; Mono, 1.5 × 10−1.

Fig. 3 | Acquisition of disease-associated cardiomyocyte states in dilated cardiomyopathy. a, PCA, DESeq2 plots of cardiomyocyte pseudobulk snRNA-
seq data colored by sex and disease state (left) and age (right). Each data point represents an individual. b, Heat map displaying the top 100 upregulated 
and downregulated genes ranked by log2 fold-change comparing donor control to DCM. DEGs were derived from the intersection of pseudobulk (DESeq2) 
and single-cell (Seurat) analyses. c, Unsupervised re-clustering of donor and DCM cardiomyocytes within the integrated dataset split by disease state. 
Major cardiomyocyte states are labeled. Inset (right) colored by disease state demonstrates mixing within cell states. d, Dot plot displaying z scores for 
transcriptional signatures that distinguish cardiomyocyte states (genes selected by enrichment in Seurat differential expression analysis, listed in box 
below plot). e, Distribution of cardiomyocyte states by cluster (*P < 0.05, **P < 0.01, ***P < 0.001, Welch’s t-test, two-tailed, data represents mean ± s.d., 
donor; n = 25 samples, DCM; n = 13 samples). P values for clusters comparing donor to DCM are Cm1: 3.8 × 10−4; Cm2, 1.8 × 10−1; Cm3, 3.2 × 10−1; Cm4, 
8.1 × 10−3; Cm5, 5.4 × 10−2; Cm6, 1.1 × 10−1; Cm7, 1.1 × 10−1. f, Violin plots of MYH6, ANKRD1, NPPA and ADGRL3 expression in donor control and DCM 
cardiomyocytes. g, Quantification of the number of cardiomyocytes expressing ANKRD1, MYH6, NPPA and NPPB mRNA in donor control and DCM samples 
(P value from Welch’s t-test, two-tailed, data represents mean ± s.d. For ANKRD1, donor; n = 6 samples, DCM; n = 6 samples. For MYH6, NPPA and NPPB, 
donor; n = 4 samples, DCM; n = 4 samples). h, Representative RNA in situ hybridization images (RNAScope) of indicated genes. i, Palantir pseudotime 
trajectory analysis of cardiomyocytes showing entropy and pseudotime scores overlaid on the UMAP projection (left). Entropy versus pseudotime plots of 
donor and DCM cardiomyocytes identifying differing trajectories of healthy and disease-associated cardiomyocyte states (right).
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each dataset contained all of the identified cell types, the scRNA-
seq dataset displayed a bias toward monocytes, dendritic cells and 
non-resident macrophages. The snRNA-seq dataset contained  
a substantially larger number of resident macrophages (Fig. 4j). 

To further evaluate the diversity of monocytes, dendritic cells 
and non-resident macrophages, we chose to focus on the scRNA-
seq data. Analysis of cell composition using cluster annotations  
defined within the integrated dataset demonstrated increased  
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dendritic cells and Mac2 (chemokine/cytokine-expressing) and 
reduced Mac1 (tissue-resident signature) in DCM (Fig. 4k).

Unsupervised clustering revealed the presence of discrete mono-
cytes (Mono1, nonclassical-FCGR3A; Mono2, classical-CD14; 
Mono3, intermediate-OLR1), macrophages (Mac1, TREM2; Mac2, 
FOLR2/LYVE1; Mac3, LYVE1/HSPH1; Mac4, CCL3; Mac5, KLF2) 
and dendritic cells (CD1C) (Fig. 5a,b). We observed shifts in mono-
cyte, macrophage and dendritic cell composition between donor 
and DCM groups. Donor samples contained classical and non-
classical monocytes as well as two populations of LYVE1+ resident 
macrophages (Mac2 and Mac3). DCM samples displayed reduced 
numbers of resident macrophages and a greater number of interme-
diate monocytes, dendritic cells and three additional macrophage 
populations (Mac1, Mac4 and Mac5). Classical and intermediate 
monocytes and macrophages marked by CCL3, TREM2 and KLF2 
expressed robust levels of inflammatory mediators including IL1A, 
IL1B, TNF, AREG and EREG and multiple chemokines (Fig. 5c).

To infer the differentiation state of monocyte, dendritic cell 
and macrophage populations, we utilized Palantir. Calculation of 
pseudotime and entropy values demonstrated that CD14+ mono-
cytes (Mono2) represented the most progenitor-like state. 
CD16+ monocytes (Mono1), dendritic cells and resident macro-
phages (Mac2 and Mac3) represented the most differentiated cells, 
each with distinct trajectories. Compared to donors, we observed 
an accumulation of cells with intermediate differentiation states 
along the macrophage trajectory in DCM samples. Superimposing 
cluster identities revealed that these cells belonged to the inter-
mediate monocyte (Mono3), TREM2 (Mac1), CCL3 (Mac4) and 
KLF2 (Mac5) clusters, suggesting that they are monocyte-derived 
(Fig. 5d,e). Transcription factor analysis identified enrichment for 
targets of transcription factors, including CLOCK, RELA, MYB, 
RUNX2, SMAD2/3 and IRF8 in the inflammatory macrophage 
states (Mac1, Mac4 and Mac5; Fig. 5f). Comparison of pathways 
across cell states identified enrichment of unique pathways in 
individual states included pathways involved in inflammation, 

interferon and interleukin signaling (Fig. 5g). These data provide 
a link between monocyte-derived macrophages and inflammation 
in DCM.

Fibroblasts diversify in dilated cardiomyopathy. We identified a 
large population of cardiac fibroblasts in donor controls and DCM 
hearts. PCA demonstrated that variability across fibroblast samples 
was driven by disease state and sex (Fig. 6a). Differences between 
males and females were driven by a small number of genes encoded 
on the X and Y chromosomes, including XIST, JPX and ZFYAS1 
(Extended Data Fig. 4). Pseudobulk and single-cell differential 
expression analysis identified a large number of genes that were sig-
nificantly upregulated (POSTN, MEOX1/2, TLL1, EDNRA, SVEP1 
and FRZB) and downregulated (APOD, NPPC, ANGPTL1, FIGF 
and ACE2) in DCM samples compared to non-diseased donors. 
Pathway analysis identified upregulated (extracellular matrix syn-
thesis and organization, MAPK and nephrin signaling) and down-
regulated (metabolism, biosynthesis, complement and muscle 
contraction) pathways in DCM (Extended Data Fig. 8).

Unsupervised clustering of the integrated dataset revealed mul-
tiple distinct populations of fibroblasts (Fig. 6c). The majority of 
fibroblasts in both donor and DCM hearts displayed a conserved 
gene expression signature characteristic of fibroblasts (Fb1, Fb2). 
We identified two fibroblast subpopulations primarily present in 
donor controls that expressed GPX3 (Fb3) and PLA2G2A (Fb4), 
respectively. We observed additional minor fibroblast subpopula-
tions characterized by the expression of ELN (Fb5), TNC (Fb6), 
CCL2 (Fb7), THBS4 (Fb8) and SERPINE1 (Fb9). Epicardial cells 
were also represented (Epi). POSTN, a marker of disease-associ-
ated fibroblasts was expressed in Fb8 33. Fb5 and Fb8 were found at 
increased abundance in DCM (Fig. 6c–e and Extended Data Fig. 8). 
Fibroblasts in DCM hearts displayed a robust activation signature 
that included FAP, CTGF, LUM, ACTB, COL1A1, BGN and MGP 
expression. Donor fibroblasts selectively expressed a signature rep-
resented by GPX3, PID1, TGFBR3, ACSM3 and APOD (Fig. 6f). 

Fig. 5 | Dilated cardiomyopathy is associated with the emergence of inflammatory monocyte-derived populations. a, UMAP projection of unsupervised 
re-clustering of myeloid cells from the scRNA-seq dataset. Major cell states are labeled. Inset (right) colored by disease state demonstrates mixing within 
cell states. b, Dot plot displaying the z scores for transcriptional signatures that distinguish each monocyte, macrophage and dendritic cell state by cell state 
(above) and disease state (below) (genes selected by enrichment in Seurat differential expression analysis, listed in box below plot). c, Z score feature plot 
overlaying an inflammatory gene expression signature (genes in blue) on the scRNA-seq UMAP projection split by disease state. d,e, Palantir pseudotime 
trajectory analysis of myeloid scRNA-seq data. Entropy and pseudotime overlayed on UMAP projection split by disease state (d) and entropy versus 
pseudotime plots split by disease state identify major cell trajectories (nonclassical monocytes, resident macrophages and dendritic cells). Inflammatory cell 
states that emerge in DCM have high entropy and low pseudotime values, suggesting an intermediate state of differentiation. f, Transcription factor analysis 
for genes upregulated in inflammatory macrophage states (Mac1, Mac4 and Mac5) using ChEA 2016 database (https://maayanlab.cloud/Enrichr). Genes 
used in the analysis selected from Seurat differential expression with P < 0.05 and log2FC > 0.1. P value calculated using Fisher’s exact test. g, enrichPathway 
analysis displaying the top five enriched pathways in each cell state. Genes used in the analysis selected from Seurat differential expression with P < 0.05 
and log2FC > 0.1. P value calculated using hypergeometric distribution and corrected for multiple comparisons.

Fig. 6 | Phenotypic shifts and emergence of disease-associated fibroblasts in dilated cardiomyopathy. a, PCA, DESeq2 plots of fibroblast pseudobulk 
snRNA-seq data colored by sex and disease state (left) and age (right). Each data point represents an individual. b, Heat map displaying the top 100 
upregulated and downregulated genes ranked by log2 fold-change comparing donor control to DCM. DEGs were derived from the intersection of pseudobulk 
(DESeq2) and single-cell (Seurat) analyses. c, Unsupervised re-clustering of donor and DCM fibroblasts and epicardium within the integrated dataset 
split by disease state. Major fibroblast states are labeled. Inset (right) colored by disease state demonstrates mixing within cell states. d, Distribution of 
fibroblast states by cluster (*P < 0.05, **P < 0.01, ***P < 0.01, Welch’s t-test, two-tailed, data represents mean ± s.d., donor; n = 25 samples, DCM; n = 13 
samples). P values for clusters comparing donor to DCM are Fb1, 8.3 × 10−1; Fb2, 3.0 × 10−1; Fb3, 4.2 × 10−4; Fb4, 5.1 × 10−3, Fb5; 5.9 × 10−2; Fb6, 2.6 × 10−1; 
Fb7, 5.3 × 10−1; Fb8, 7.5 × 10−3; Fb9, 4.0 × 10−1; Epi, 9.1 × 10−1. e, Dot plot displaying the z scores for transcriptional signatures that distinguish fibroblast 
states (genes selected by enrichment in Seurat differential expression analysis, listed in box below plot). f, Z score feature plot of transcriptional signatures 
associated with DCM (top) and with donor (bottom) fibroblast states. Plot is split by disease state. DCM fibroblasts are enriched in genes associated with 
activation. Enriched genes (blue) were defined using Seurat differential gene expression analysis. g, Palantir pseudotime trajectory analysis of integrated 
fibroblast RNA-seq data. Entropy and pseudotime overlayed on UMAP projection split by disease state. h, Representative RNA in situ hybridization images 
(RNAScope) of indicated genes (red) counterstained with hematoxylin (blue). i, Quantification of the number of cells expressing DCN, POSTN, PLA2G2A, 
CCL2 and PCOLCE2 mRNA in donor control and DCM samples (P value from Welch’s t-test, two-tailed, data represent mean ± s.d., donor; n = 6 samples, 
DCM; n = 6 samples).
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Palantir identified fibroblasts marked by ELN, TNC and SERPINE1 
expression as the most differentiated cell states based on low entropy 
and high pseudotime values. All other fibroblasts seemed to exist 
in a state of high entropy, suggesting substantial plasticity within 
these populations (Fig. 6g). Pathway analysis comparing fibroblast 
states identified distinct pathway enrichment, including pathways 
involved in extracellular matrix synthesis and assembly, protein 
translation, messenger RNA processing, cell death, type I interferon 
signaling, TLR4 signaling, metabolism and the ubiquitin–proteome 
system. Transcription factor analysis identified enrichment of  
targets of specific transcription factors in the majority of fibroblast 
cell states (Extended Data Fig. 8).

We validated shifts in fibroblast composition between donor 
controls and DCM hearts using RNA in situ hybridization for select 
fibroblast populations. The overall numbers of fibroblasts (marked 
by DCN expression) remained similar between donor control and 
DCM hearts. Notably, we observed that fibroblast subpopulations 
were located either within the interstitial space between cardiomyo-
cytes (PCOLCE2-Fb2, CCL2-Fb7 and POSTN-Fb8), adjacent to dis-
tal vasculature (PLA2G2A-Fb4) or surrounding epicardial coronary 
arteries (ELN-Fb5). The number of POSTN CCL2, and PCOLCE2-
expressing fibroblasts was increased in DCM samples. PLA2G2A-
expressing fibroblasts were increased in donor hearts (Fig. 6h,i and 
Extended Data Fig. 8).

Pericytes and smooth muscle cells. Unsupervised clustering of 
pericytes and smooth muscle cells revealed minimal heterogeneity 
within each of these populations. PCA demonstrated that variabil-
ity across samples was driven by disease state and sex. Differences 
between males and females were driven by a small number of genes 
encoded on the X and Y chromosomes (Extended Data Fig. 4).  
Pseudobulk and single-cell differential expression and pathway 
analyses identified genes and pathways enriched in DCM peri-
cytes and smooth muscle cells compared to non-diseased donors. 
Within pericytes, TRPC6, ITGA1, XAF1, CYR61 and CTGF were 
upregulated in DCM and TIMP1, CCL2, AGT, ACE2, IFITM2/3 
and TGFB3 were downregulated in DCM. Among smooth muscle 
cells, RORA, PLXNDC2, LTBP3/4 and SEMA5A were upregulated 
in DCM and ACTG1/2, ACTB, LGALS3, LDHA, IFITM2/3 and NGF 
were downregulated in DCM (Extended Data Fig. 9).

Endothelial cells display shifts in global gene expression. 
Endothelial cells within the heart include arterial, venous, capillary, 
lymphatic and endocardial cells. PCA of artery, vein and capillary 
pseudobulk data identified disease state and sex as the most distin-
guishing features (Fig. 7a). Differences between males and females 
were driven by a small number of genes encoded on the X and Y 
chromosomes (Extended Data Fig. 4). Pseudobulk and single-cell 

differential expression analysis in vascular endothelial cells (arter-
ies, veins, capillaries) identified a large number of genes significantly 
upregulated (DUSP5/6, PDE4B/D, EGR1, FGFR1, SMAD3/6, VEGF-
A/C and APLNR) and downregulated (LDHB, ALDOA, IFITM3, 
TBX3 and AQP3) in DCM samples compared to donors (Fig. 7b).

Vascular endothelial cells and endocardial cells displayed dis-
tinct transcriptional signatures and clustered separately (Fig. 7c,d 
and Extended Data Fig. 10). Within the integrated object, the 
snRNA-seq dataset contained all major endothelial cell popula-
tions, whereas the scRNA-seq dataset displayed a bias toward arte-
rial (Ec3), venous (Ec2) and capillary (Ec1) endothelial cells. Few 
endocardial (Ecd1 and Ecd2) or lymphatic (Ec4) cells were recov-
ered from scRNA-seq data (Extended Data Fig. 10). Quantification 
of endothelial cell populations revealed an increase in arterial 
endothelial cells (Ec3) and a shift in endocardial cell state in DCM 
(Extended Data Fig. 10). We did not observe further diversifica-
tion of arterial, venous, capillary, lymphatic or endocardial cells. 
Instead, we observed global shifts in gene expression between 
control and DCM samples (Fig. 7c,d and Extended Data Fig. 10). 
Utilizing RNA in situ hybridization, we visualized expression of 
recognized venous (ACKR1), capillary (BTNL9) and lymphatic 
(CCL21) markers identified from Seurat differential expression 
analysis (Extended Data Fig. 10)34,35.

Pseudobulk and single-cell differential gene expression analysis 
of snRNA-seq data revealed that endocardial cells and capillaries 
displayed the greatest number of DEGs between donor control and 
DCM conditions. Arterial and venous endothelial cells displayed 
a modest number of DEGs and lymphatics had few differentially 
expressed genes (Fig. 7e). Among vascular endothelial cells, cap-
illaries displayed enrichment for pathways associated with NGF 
signaling in DCM and metabolism, ER-phagosomes and hedge-
hog signaling in donor controls. Venous endothelial cells displayed 
enrichment for pathways involved in TGF-β, NGF, NTRK1 and 
MAPK signaling in DCM and mitosis, ER-phagosome, planar cell 
polarity and ROBO signaling in donor controls. Arterial endo-
thelial cells displayed enrichment for pathways involved in NGF, 
NTRK1, type I interferon and MAPK signaling in DCM and glu-
coneogenesis and muscle contraction in donor controls (Fig. 7f–h). 
We also identified cell-specific signatures associated with disease 
state. FABP5, A2M, IFITM3 and F8 expression was enriched in 
donor capillaries, whereas CREB5, SLC9C1 and SASH1 expression 
was enriched in DCM capillaries. Donor venous cells selectively 
expressed a signature represented by CALCRL, IGFBP5 and ABCB1 
expression (Fig. 7i).

Similar to other populations, PCA of endocardial pseudobulk 
data identified disease state and sex as the most distinguishing 
features (Fig. 8a). Within endocardial cells, we observed a large 
number of genes to be significantly upregulated (BMP4/6, GDF6, 

Fig. 7 | Endothelial cells exhibit global gene expression shifts in dilated cardiomyopathy. a, PCA, DESeq2 plots of vascular endothelial cell pseudobulk 
snRNA-seq data colored by sex and disease state (left) and age (right). Each data point represents an individual. b, Heat map displaying the top 100 
upregulated and downregulated genes ranked by log2 fold-change comparing donor control to DCM. DEGs were derived from the intersection of 
pseudobulk (DESeq2) and single-cell (Seurat) analyses. c, Unsupervised re-clustering of donor and DCM endothelial and endocardial cells within the 
integrated dataset split by disease state. Major endothelial states are labeled. Inset (right) colored by disease state demonstrates mixing within cell states. 
d, Dot plot displaying z scores for transcriptional signatures that distinguish endothelial cell populations (genes selected by enrichment in Seurat differential 
expression analysis, genes listed in the box to right of plot). e, Bar graph of the number of DEGs per endothelial population (intersection of DESeq2 and 
Seurat differential expression analyses with adjusted P < 0.05 (Wilcoxon rank-sum), log2FC > 0.1). f, WikiPathways analysis identifying top differentially 
enriched pathways in donor and DCM capillary endothelial cells. Genes used in the analysis selected from intersection of pseudobulk and Seurat differential 
expression with P < 0.05 and log2FC > 0.1. P value calculated using hypergeometric distribution and corrected for multiple comparisons. g, WikiPathways 
analysis identifying top differentially enriched pathways in donor and DCM venous endothelial cells. Genes used in the analysis selected from intersection 
of pseudobulk and Seurat differential expression with P < 0.05 and log2FC > 0.1. P value calculated using hypergeometric distribution and corrected for 
multiple comparisons. h, WikiPathways analysis identifying top differentially enriched pathways in donor and DCM arterial endothelial cells. Genes 
used in the analysis selected from intersection of pseudobulk and Seurat differential expression with P < 0.05 and log2FC > 0.1. P value calculated using 
hypergeometric distribution and corrected for multiple comparisons. i, Z score feature plots of transcriptional signatures associated with donor and DCM 
groups in capillary and venous endothelial cells split by disease state. Genes (blue) were selected by enrichment in the differential expression analyses.
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NRG1, SVEP1, ELN, CTGF, EDN1 and CYR61) and downregulated 
(SEMA3A, NPPC, EDNRB, VEGF-C, WNT9B, IGFBP4/6, CD55  
and ITGA6/9) in DCM samples compared to non-diseased donors 
(Fig. 8b). Endocardial cells were independently clustered across  
disease state (Fig. 8c). Donor endocardial cells (Edc1) expressed 
NRG3. Endocardial cells from DCM samples (Edc2) displayed 
strong upregulation of NRG1 and reduced NRG3 expression  
(Fig. 8d,e). Pathway analysis identified enrichment of pathways 
associated with extracellular matrix components and organization 
in DCM (Ecd2) and platelet activation, ERBB2 signaling, FGFR1 
signaling, metabolism and muscle contraction in donor controls 
(Ecd1; Fig. 8f,g). We also identified enrichment for targets of tran-
scription factors, including FOXA2, AR, SMAD4 and CEBPD in 
Ecd2 (NRG1 endocardial cells) and ZNF217, WT1, TBX20 and 
RELA in Ecd1 (NRG3 endocardial cells; Fig. 8h).

Discussion
Single-cell technologies offer powerful new tools to dissect cell 
types that reside within healthy and diseased tissues. Recently, these 
approaches were leveraged to provide a deeper understanding of the 
cellular composition of the healthy human heart10,11. While consid-
erable interest exists, only limited data are available to decipher how 
the cellular and transcriptional landscape of the heart is impacted 
by disease12,13. Using an approach that integrated snRNA-seq and 
scRNA-seq data from 45 individuals encompassing 220,752 nuclei 
and 49,723 cells, we identified 15 major cardiac cell types, uncov-
ered cell type-specific transcriptional programs, revealed age and 
disease-associated gene expression signatures and observed the 
emergence of cell states associated with heart failure.

Aging is associated with a decline in cardiac function and subse-
quent adverse clinical outcomes, including heart failure. Very little 
is known regarding how individual cardiac cell types transcrip-
tionally change as an individual ages. We leveraged pseudobulk 
methods to dissect age-associated cell type-specific gene signatures 
in donor and DCM hearts. The pseudobulk approach allowed us 
to focus on patient-level data and minimize noise inherent at the  
single-cell scale.

We did not observe profound associations between cellular com-
position and age. Only myeloid cells were found to be increased 
with age in donor hearts; however, we did uncover specific tran-
scriptional signatures across most cell types that were associated 
with age and differed between donor and DCM hearts. For exam-
ple, TOLLIP expression correlated with increasing age in donor 
cardiomyocytes, consistent with mouse data that Tollip expres-
sion correlates with aging and structural cardiac changes in older 
mice36. TGFBI and NFIL3 positively correlated with aging in DCM 
cardiomyocytes. Previous studies have implicated Nfil3 in the gene 
regulatory network involved in cardiac senescence and aging and 
Tgfbi as an upstream regulator of mTOR activation in Drosophila 
models of aging and cardiac disease37,38. Notably, TGFBI and NFIL3 
expression positively correlated with age only in DCM and not 
donor cardiomyocytes. We also identified age-related changes in 

genes associated with mechanical sensing in pericytes and myeloid 
cells. PIEZO1 expression positively correlated with age in donors 
but not those with DCM. Previous reports have implicated PIEZO1 
activation as an upstream signal to trigger TRPV4 channel open-
ing, which we recently showed regulates activation of resident car-
diac macrophages and cardiac adaptive remodeling39–41. Together, 
these findings highlight the presence of cell type- and disease state- 
specific transcriptional networks modulating aging.

We did not detect marked differences in cellular composition 
related to sex. However, we did detect genes that were robustly 
increased in men and women across cell types. Many of the identi-
fied genes (XIST, JPX, ZFYAS1, TTTY10 and TSIX) are encoded on 
the X and Y chromosomes. This observation is consistent with a 
recent publication indicating that sex chromosomes control tran-
scriptional and proteomic differences between male and female 
hearts that arise before gonad formation in mice42. While we did not 
identify sex-dependent effects on cell-type-specific gene expression 
in the contexts of aging and disease state, we cannot exclude the 
possibility that sex may have effects that were not readily identified 
in our analysis.

With respect to disease state, we observed robust changes in 
gene expression across nearly all myocardial cell types and consid-
erable variation in how different cardiac cell populations responded 
to heart failure. Cardiomyocytes converged toward common dis-
ease-associated cell states, whereas fibroblasts and myeloid cells 
underwent dramatic diversification including the acquisition of dis-
ease-specific phenotypes. In contrast, endothelial cells, endocardial 
cells and pericytes displayed global transcriptional shifts without 
changes in cell complexity.

Previous studies examining differences across cardiac cham-
bers have identified evidence of cardiomyocyte heterogeneity in 
the healthy human heart10,11. We identified multiple transcription-
ally distinct cardiomyocyte states within the LV of non-diseased 
donors and individuals with DCM. Donor hearts contained seven 
cardiomyocyte states marked by MYH6, MYL7, GRIK2, NPPA/
NPPB, ADGRL3, ACTA1 and BMPR1B expression. DCM cardio-
myocytes uniformly expressed high levels of ANKRD1, contained 
fewer MYH6 or GRIK2-expressing cardiomyocytes and instead, 
were enriched for states identified by ADGRL3 and NPPA/NPPB 
expression. NPPA and NPPB expression are known to identify dis-
eased cardiomyocytes in humans13. Notably, ANKRD1 expression 
was recently found to be enriched in cardiomyocytes from patients 
with adolescent versus pediatric DCM and increased in cardiomyo-
cytes from mouse hearts that fail to regenerate12,14. Pseudotime tra-
jectory analysis identified three highly differentiated cardiomyocyte 
states (MYL7, ACTA1 and NPPA/NPPB) in donor hearts. In con-
trast, we observed two highly differentiated cardiomyocyte states 
in DCM marked by ADGRL3 and NPPA/NPPB expression. These 
observations suggest that cardiomyocytes converge toward a com-
mon disease-associated state in DCM. Further understanding of the 
instructive cues and parental cardiomyocyte populations that give 
rise to ADGRL3 and NPPA/NPPB-expressing cardiomyocytes may 

Fig. 8 | Endocardial cells exhibit distinct gene signatures in dilated cardiomyopathy. a, PCA, DESeq2 plots of endocardial cell pseudobulk snRNA-
seq data colored by sex and disease state and age. Each data point represents an individual. b, Heat map displaying the top 100 upregulated and 
downregulated genes ranked by log2FC comparing donor control to DCM. DEGs were derived from the intersection of pseudobulk (DESeq2) and single-
cell (Seurat) analyses. c, Unsupervised re-clustering of donor and DCM endocardial cells split by disease state. d, UMAP feature plots of NRG1 and NRG3 
split by disease state. e, Violin plots displaying NRG1 and NRG3 expression in endocardial cells from donor and DCM samples. f, WikiPathways analysis 
identifying top differentially enriched pathways in donor and DCM endocardial cells. Genes used in the analysis selected from intersection of pseudobulk 
and Seurat differential expression with P < 0.05 and log2FC > 0.1. P value was calculated using hypergeometric distribution and corrected for multiple 
comparisons. g, WikiPathways analysis identifying top differentially enriched pathways in endocardial cell states. Genes used in the analysis selected from 
Seurat differential expression with P < 0.05 and log2FC > 0.1. P value calculated using hypergeometric distribution and corrected for multiple comparisons. 
h, Transcription factor analysis displaying top enriched transcription factors in each cell state using the ChEA 2016 database (https://maayanlab.cloud/
Enrichr). Genes used in the analysis selected from Seurat differential expression with P < 0.05 and log2FC > 0.1. P value calculated using Fisher’s exact test. 
TBX20a and TBX20b represent enrichment identified from two independent CHIP-seq experiments (ChEA_term 22080862, 22328084).
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provide new insights and opportunities to intervene in the patho-
genesis of human heart failure.

We observed notable transcriptional changes in non-cardio-
myocyte populations (fibroblasts, macrophages, endothelial cells 
and endocardial cells) between healthy controls and DCM samples. 
Previous snRNA-seq studies have reported astounding diversity 

among fibroblasts in the healthy human heart10,11,43,44. Fibroblasts 
are known to expand in heart failure and acquire an activated 
phenotype characterized by the expression of fibroblast activated 
protein (FAP) and periostin (POSTN)33,45–50. While previous single-
cell studies have identified cardiac fibroblast subsets in the healthy 
human heart, little is known regarding how these populations are 
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influenced by disease. We identify multiple distinct fibroblast popu-
lations in both healthy and diseased samples with differing tran-
scriptional signatures and spatial distribution, including elastin 
(ELN)-expressing macrophages located within the medium of coro-
nary arteries. Fibroblasts marked by POSTN, CCL2 and PCOLCE2 
were enriched in DCM, whereas GPX3- and PLA2G2A-expressing 
fibroblasts were enriched in donor controls. In addition, we identi-
fied an activation signature that included FAP, CTGF, LUM, ACTB, 
COL1A1, BGN and MGP that was selectively expressed in fibro-
blasts from DCM hearts. Differential expression analysis compar-
ing donor and DCM fibroblasts identified upregulation of POSTN, 
MEOX1/2, TLL1, EDNRA and FRZB in DCM. Meox1 is a home-
odomain-containing transcription factor that regulates fibroblast 
activation in the mouse heart following stress. Meox1 directly binds 
to and activates the Postn promotor in mice51. Elimination of FAP-
expressing fibroblasts is sufficient to ameliorate myocardial fibrosis 
in mice52. TLL1 regulates mature collagen formation and is linked to 
coronary artery disease53. Endothelin and Wnt signaling are known 
regulators of fibrosis54,55. These findings provide further evidence 
that phenotypic shifts in fibroblasts are a hallmark of heart failure.

Heterogeneity of myeloid populations, including macrophages, 
is increasingly appreciated to contribute to the variety of cardiac 
pathologies including heart failure19,56–60. The majority of these stud-
ies have focused on mouse models with only targeted validation in 
human specimens20,27,28,61. Consistent with small animal models, we 
observe a variety of monocyte, macrophage and dendritic cell pop-
ulations within the human heart. The abundance of macrophages 
expressing a tissue-resident signature is reduced in DCM, a find-
ing evident in mouse models of cardiac injury19,59. The number of 
proliferating macrophages was reduced in DCM, consistent with 
the concept that self-replication may be a trait of tissue-resident 
macrophages. We also observed an emergence of monocyte and 
macrophage populations expressing inflammatory mediators in the 
failing heart. Cell trajectory analysis predicted that many of these 
inflammatory populations represented intermediate states derived 
from CD14+ monocytes. Indeed, inhibition of monocyte recruit-
ment or administration of anti-inflammatory agents is sufficient to 
reduce cardiac inflammation and myocardial fibrosis18,59,62,63. Future 
studies are needed to draw causal links and define signaling mecha-
nisms by which inflammatory populations of macrophages regulate 
fibroblast activation.

While scRNA-seq and snRNA-seq provided sufficient resolu-
tion to identify major perivascular populations (arteries, veins, 
capillaries, pericytes, smooth muscle cells, lymphatics and endo-
cardial cells), we did not observe additional diversity within these 
populations; however, we did uncover global shifts in gene expres-
sion within each of these populations between control and DCM 
specimens. Previous studies have identified similar shifts in global 
endothelial cell expression but were unable to parse contributions 
from each major endothelial cell type13. Endocardial cells displayed 
robust numbers of DEGs between control and DCM specimens. 
NRG1 and NRG3 were exclusively expressed in DCM and control 
endocardial cells, respectively. Notably, mouse studies identified 
that cardiomyocyte specific loss of NRG3 receptors (ErbB2 and 
ErbB4) results in spontaneous heart failure suggesting a potential 
role for NRG3 in regulating cardiac homeostasis64–67.

snRNA-seq captured cell types that are difficult to recover from 
enzymatically digested tissue, including cardiomyocytes, adipo-
cytes, mast cells, epicardium, endocardium and lymphatics. Using 
data integration and reference mapping, we were able to effectively 
combine snRNA-seq and scRNA-seq data and identify at least 15 
major cardiac cell populations. Current scRNA-seq datasets explor-
ing human heart failure are small and lack the sample size necessary 
to elucidate the impact of disease on common and rare cardiac cell 
types12,13. scRNA-seq data provided greater depth at the expense of 
biased cell recovery. For example, within myeloid cells, scRNA-seq 

data was biased toward monocytes and intermediate macrophage 
populations with fewer resident macrophages recovered. These 
datasets were leveraged to provide additional granularity into 
monocytes and inflammatory macrophage populations.

This study is not without limitations. We categorized patients 
with DCM into a single cohort based on the lack of underlying 
coronary artery disease. It is likely that the exact etiology of DCM 
contributes to shifts in cell diversity and transcriptional state. Our 
dataset includes only transcriptomic information. Addition of cell-
surface protein expression and chromatin accessibility information 
may offer additional resolution. In conclusion, this study represents 
a large analysis of the cellular and transcriptomic landscape of the 
healthy and failing human heart. We provide valuable insights into 
how cardiac cell populations change during heart failure including 
the emergence of disease-specific cell states. These data provide a 
valuable resource that will open up new areas of investigation and 
opportunities for therapeutic development and innovation.

Methods
Statement on human specimens. This study complies with all relevant ethical 
regulations and was approved by the Washington University Institutional Review 
Board (study no. 201104172). All samples were procured and informed consent 
obtained by Washington University School of Medicine. No compensation was 
provided for participation. Biospecimen Reporting for Improved Study Quality 
data including distribution of sex, age and race can be found in Supplementary 
Tables 1 and 20.

Sample preparation for scRNA-seq. Fresh cardiac tissues from LVAD cores 
or identical regions from the apex of explanted donors were minced with a 
razor blade and transferred into a 15-ml conical tube containing DMEM with 
Collagenase I (450 U ml−1), DNase I (60 U ml−1) and hyaluronidase (60 U ml−1) and 
incubated at 37 °C for 1 h with agitation. Digestion was then stopped by addition 
of HBB buffer (2% FBS and 0.2% BSA in HBSS) and filtered through a 40-μm filter 
into a 50-ml conical tube, transferred to a clean 15-ml conical tube and centrifuged 
at 350g for 5 min at 4 °C. Supernatant was then removed and pellet resuspended in 
1 ml ACK lysing buffer (Gibco, A10492) and incubated at room temperature for 
5 min followed by the addition of 9 ml DMEM. Suspension was then centrifuged 
under the above conditions, followed by removal of supernatant and resuspension 
in 5 ml FACS buffer (2% FBS and 2 mM EDTA in calcium/magnesium-free PBS). 
Centrifugation was repeated under the above conditions, the supernatant was 
removed and the pellet was resuspended in 300 μl cell resuspension buffer (0.04% 
BSA in 1× PBS) and 1 μl each of DRAQ5 (Thermo Fisher Scientific, 62251) and 
4,6-diamidino-2-phenylindole (DAPI; BD Biosciences, 564907) and allowed 
to incubate for 5 min before sorting. DRAQ5+/DAPI− cells were collected in 
cell resuspension buffer. Collected cells were then re-centrifuged according to 
the above parameters and resuspended in cell resuspension buffer to a target 
concentration of 1,000 cells μl−1. Cells were counted on a hemocytometer and the 
concentration was adjusted as necessary.

Sample preparation for snRNA-seq. Frozen cardiac tissues from LVAD cores or 
identical region from the apex of explanted donors were minced with a razor blade 
and transferred into a small (5 ml) Dounce homogenizer containing 1–2 ml of 
chilled lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2 and 0.1% 
NP-40 in nuclease-free water). Samples were homogenized gently using five passes 
without rotation, then incubated on ice for 15 min. Lysate was then gently filtered 
through a 40-μm filter into 50-ml conical tube, followed by rinsing the filter once 
with 1 ml lysis buffer and transfer of lysate to a new 15-ml conical tube. Nuclei 
were then centrifuged at 500g for 5 min at 4 °C, followed by resuspension in 1 ml 
Nuclei Wash Buffer (2% BSA and 0.2 U μl−1 RNase inhibitor in 1× PBS) and filtered 
through a 20-μm pluristrainer into a fresh 15-ml conical tube. Centrifugation was 
repeated according to the above parameters. Supernatant was then removed and 
nuclei were resuspended in 300 μl Nuclei Wash Buffer and transferred to a 5-ml 
tube for flow sorting. Then, 1 μl DRAQ5 (5 mM solution; Thermo Fisher, cat. no. 
62251) was added, mixed gently and allowed to incubate for 5 min before sorting. 
DRAQ5+ nuclei were sorted into Nuclei Wash Buffer on a BD FACS Melody 
(BD Biosciences) using a 100-µM nozzle. Recovered nuclei were centrifuged 
again under the above parameters and were gently resuspended in Nuclei Wash 
Buffer to a target concentration of 1,000 nuclei μl−1. Nuclei were counted on a 
hemocytometer and concentration was adjusted as necessary.

sc/snRNA-seq analysis. Cells and nuclei were processed using the Chromium 
Single Cell 5ʹ Reagent V1.1 kit from 10X Genomics. A total of 10,000 cells or 
nuclei per sample were loaded into a Chip G for GEM generation. Reverse 
transcription, barcoding, complementary DNA amplification and purification for 
library preparation were performed according to the Chromium 5ʹ V1.1 protocol. 
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Sequencing was performed on a NovaSeq 6000 platform (Illumina) targeting 
100,000 reads per cell or nucleus. Cells were aligned to the human GRCh38 
transcriptome and nuclei were aligned to the whole genome pre-MRNA reference 
generated from the GRCh38 transcriptome using the CellRanger V3 software (10X 
Genomics) according to the 10X Genomics’ instructions. Filtering, unsupervised 
clustering, differential expression and additional analysis were completed using  
R and Python, including Seurat V3 and V4 and ClusterProfiler packages for R and 
the Palantir Python package.24,68–70

QC, filtering and clustering. For independent cell and nuclei analyses, individual 
sample matrices were imported into the Seurat v.3.2.3 R package and combined 
into a Seurat object. Cells were filtered for mitochondrial reads <10% and 
2,000 < nCount_RNA < 10,000. Nuclei were filtered for mitochondrial reads 
<5% and 1,000 < nCount_RNA < 10,000. No filtering was applied based on 
nFeature_RNA. The objects were then saved for easy import after manual doublet 
removal. For each object, transformation and normalization was performed using 
SCTransform to fit a negative binomial distribution and regress out mitochondrial 
read percentage. Principle components (PCs) were then calculated (60 PCs for 
cells and 80 PCs for nuclei) and an elbow plot generated to select the cutoff for 
significant PCs to use for downstream analysis. UMAP dimensional reduction 
was then computed using the selected significant PCs (40 for cells and 80 for 
nuclei). Unsupervised clustering was then performed using the FindNeighbors 
and FindClusters function, again using the selected significant PC level as above, 
calculating clustering at a range of resolutions between 0.01–1. Differential gene 
expression was performed using the FindAllMarkers command using default 
parameters at high clustering resolution to aid in manual doublet discovery.

We utilized a supervised doublet removal method. Criteria to annotate cells 
as doublets included (1) high unique molecular identifier (UMI) counts and (2) 
gene expression signatures of two or more cell populations. Doublets often appear 
as clusters expressing markers of multiple cell populations within the dataset 
that overlapped with expression of nearby clusters71–74. Identification of doublet 
clusters was performed by generating z score expression profiles of each major cell 
population and plotting these signatures as well as UMI counts using UMAP/t-
distributed stochastic neighbor embedding projections and heat maps. Cells 
annotated as doublets were removed and the list of remaining cells was saved. Raw 
objects from above were then loaded, subset to include cells that remained after 
doublet removal and clustering was repeated, starting with transformation and 
normalization. The supervised doublet removal process was repeated twice  
for the cell object and three times for the nuclei object until no doublet clusters 
were apparent.

To substantiate our supervised doublet removal method and compare our 
strategy to other doublet removal techniques, we ran Scrublet on our raw dataset. 
Using a Scrublet score of >0.2 (default setting) to identify doublets, we directly 
compared methodologies. We found a high concordance between cells annotated 
as doublets (86.7%) and cells retained in the final dataset (98.4%). Cell clusters 
identified as doublets using our supervised method corresponded to cells with a 
Scrublet score of >0.2. Furthermore, within the final integrated dataset analyzed 
in the manuscript, we did not identify any specific clusters that were composed of 
cells with high Scrublet scores (Supplementary Figs. 1 and 2).

Final resolutions used for analysis were selected following detection of DEGs 
at multiple resolutions and identifying the highest resolution at which significantly 
enriched genes were still present in each cluster (final resolution used was 0.6 for 
cell object and 0.5 for nuclei object). Metadata for condition, age, sex and cell type 
name were also added to the final objects.

Integration of single-cell and single-nuclei datasets. Integration of single-cell 
and single-nuclei datasets was performed using the R package, Harmony75. Filtered 
and SCTransformed objects from the single-cell and nucleus datasets were merged 
using the Seurat merge command and the RunHarmony command was then 
used to generate harmonized dimension reduction components using sequencing 
technology as the grouping variable. As recommended, we utilized 80 Harmony 
dimensions equal to the 80 PCA dimensions utilized in the single-nuclei dataset 
for performing re-clustering using the FindNeighbors and FindClusters Seurat 
commands at multiple resolutions between 0.1–1. No doublet exclusion or filtering 
was necessary as mapping and integration was performed on already filtered 
objects. The final resolution was selected to be 0.3 as this resolution captured the 
distinct cell types identified in the single-cell and nucleus datasets to be used for 
further analysis. Metadata for condition, age, sex and cell type name were also 
added to the final object.

Effectiveness of integration was evaluated by calculation of iLISI (integration 
local inverse Simpson’s index) scores using the R package, lisi75,76. The Harmony 
integration method was also compared to Seurat integration and reference 
mapping software. iLISI scores range from 1 (poor integration) to 2 (perfect 
integration). The iLISI scores for the three methods tested were, Harmony: 1.60, 
Seurat integration: 1.23 and Seurat reference mapping: 1.07, indicating high levels 
of integration using Harmony compared to other methods.

Detection of differentially expressed genes. Detection of DEGs between clusters 
was performed using the FindAllMarkers command, specifying return of only 

upregulated genes with a log2FC cutoff of 0.1. For downstream analysis, DEGs were 
further filtered by log2FC and P value as described for that analysis. For individual 
cell types, differential expression comparing only two groups by condition, sex 
or age was performed using the FindMarkers function specifying no minimum 
percentage of cells expressing an individual gene, return of both positively and 
negatively changed genes and no cutoffs for log2FC or P value to obtain even 
nonsignificant changes in expression for every gene present in the analysis. Filtering 
of this DEG table was performed by log2FC and P value for further analysis as 
described in the manuscript. For all DEG calculations the default ‘SCT’ assay and 
‘data’ slot were used and performed using the default Wilcoxon rank-sum method. 
Results are presented for all major cell types observed (Supplementary Table 27).

Calculation of population z scores. Z score values were calculated using R 
v.3.6.2 and v.4.0.1. For each population where z scores were calculated, gene sets 
used were selected based on high enrichment in a population based on the DEG 
analysis described above. The expression matrix used to calculate z scores was 
extracted from a Seurat object using the GetAssayData function from the Seurat 
package from the default ‘SCT’ assay and ‘data’ slot. Z scores were then calculated 
for each gene set for each individual cell or nuclei in the dataset by scaling gene 
expression within the matrix, setting NA values introduced by conversion from a 
sparse matrix to 0 and using the following formula (no. of cells in dataset + sum of 
expression of genes in gene set) / no. of genes in gene set.

These calculated z scores were appended to a table to be saved as well as each  
z score added as metadata to the Seurat object for use in making feature plots.

Pseudobulk RNA-seq. Pseduobulk RNA-seq analysis was performed using the 
DESeq2 package for R. A gene expression matrix was extracted from the Seurat 
object using the GetAssayData Seurat function specifying the ‘RNA’ assay and 
‘counts’ slot to extract raw sequencing counts for each gene and cell. Counts in 
this matrix were then summed per gene for each sample into a new matrix. The 
resulting matrix was normalized using DESeq2 by estimating size factors and 
performing normalization with the counts function, resulting in a new matrix with 
normalized counts for each gene and sample similar to the output of a traditional 
bulk sequencing experiment. The DESeq function was then utilized to calculate 
differential gene expression based on negative binomial distribution. Pairwise 
comparisons were completed by condition of interest (disease state, sex and age 
group) using the Wald test and an α value of 0.5 for independent filtering and 
adding log2FC using the lfcShrink function with ‘ashr’ adaptive shrinking. We 
specified no cutoffs for log2FC or P value to obtain even nonsignificant changes 
in expression. Filtering of this DEG table was performed by logFC and P value for 
further analysis as described in the manuscript.

Analysis of associations with age. Using cell type identities from the single-
nuclei dataset, we aggregated counts and metadata to the sample level (split into 
donor and DCM separately) for each subject within each cell population and 
utilized DESeq2 to normalize the data using median of ratios to normalize counts 
and a regularized log transform of the normalized counts. We then used the 
normalized counts matrix to calculate Pearson correlation coefficients using the 
scipy stats function pearsonr to measure the linear relationship between each gene 
and age. Using genes with a Pearson correlation coefficient > |0.6| and P value 
<0.05, we constructed positive (Pearson coefficient >0.6) and negative (Pearson 
coefficient <−0.6) age-associated gene set z scores. We used the scipy stats 
linregress package in Python to perform linear regression analysis on the positive 
and negative aging signature as a function of age.

Pathway analysis. Pathway analysis was completed using the ClusterProfiler  
R package. A list of genes present in both the Seurat and Pseudobulk differential 
expression analyses by disease state with log2FC > 0.1 and adjusted P value <0.05 
was utilized in the pathway analysis (Supplementary Fig. 3). Genes with negative 
and positive log2FC values were separated to identify enrichment in either the non-
diseased or diseased condition, respectively. The enrichWP function was used to 
return a table with pathway enrichments from the WikiPathways database.

For comparison of enriched pathways between multiple populations/states, 
the compareCluster function was utilized on a matrix from the output Seurat 
differential expression analysis filtered for log2FC > 0.1 and adjusted P value <0.05 
that contained the column specifying in which population/state the gene was 
upregulated. This analysis utilized the enrichPathway database from ClusterProfiler 
to return a table of enriched pathways in each population/state.

Transcription factor analysis. Transcription factor analysis was performed 
using the Enrichr web utility (https://maayanlab.cloud/Enrichr/enrich). Genes 
upregulated in a population/state based on Seurat differential expression analysis 
filtered for log2FC > 0.1 and adjusted P value <0.05 (Supplementary Fig. 3) were 
entered into the Enrichr and results from enrichment in the ChEA 2016 ChIP-seq 
database were downloaded and loaded as a matrix in R v.4.0.3 for the generation  
of dot plots.

Trajectory analysis. Trajectory analysis was performed using the Palantir package 
for Python. Using the normalized and scaled gene counts for the 3,000 highly 
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variable genes, a matrix was exported as the input. Using the matrix, PCs were 
calculated and then diffusion maps were calculated as an estimate of the low 
dimensional phenotypic manifold of the data. Then, the actual Palantir was run 
by specifying a start cell state (the progenitor cell type from the dataset). Palantir 
then returned the terminal cell states, entropy values, pseudotime values and the 
probability of ending up in each of the terminal states for all cells.

RNAScope in situ hybridization. RNA was visualized using RNAScope Multiplex 
Fluorescent Reagent kit v2 Assay, RNAScope 2.5 HD Detection Reagent – RED 
and RNAScope 2.5 HD Duplex Assay kits (Advanced Cell Diagnostics, ACDBio) 
using probes designed by Advanced Cell Diagnostics for ANKRD1, MYH6, NPPA, 
NPPB, CD163, DCN, POSTN, PLA2G2A, CCL2, PCOLCE2, ELN and RGS5 
(ref. 77). Samples were fixed for 24 h at 4 °C in 10% neutral buffered formalin. 
Samples were washed in 1× PBS, equilibrated in 30% sucrose, embedded in OCT 
medium (Sakura Finetek) and stored at −80 °C (fluorescence) or washed in 1× 
PBS, dehydrated in ethanol and embedded in paraffin (red and duplex). OCT-
embedded sections were cut at 12 μm and paraffin-embedded sections were cut 
at 8 μm. Fluorescent images were collected using a Zeiss LSM 700 laser scanning 
confocal microscope. Chromogenic/brightfield images were acquired using a Zeiss 
Axioscan Z1 automated slide scanner. Image processing was performed using Zen 
Blue and Zen Black (Zeiss), FIJI/ImageJ78,79 and Photoshop (Adobe). The following 
RNAScope probes produced by ACDBio were utilized: ANKRD1 (524241), MYH6 
(555381), NPPA (531281), NPPB (448511), CD163 (417061), DCN (589521), 
POSTN (409181), PLA2G2A (581101), CCL2 (423811), PCOLCE2 (566861), RGS5 
(533421), ELN (408261), ACKR1 (525131), BTNL9 (430351) and CCL21 (474371).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The processed single-cell objects, raw expression matrices and raw sequence 
files that support the findings of this study are available on the Gene Expression 
Omnibus (GSE183852). Alignment was performed to the publicly available 
transcriptome GRCh38-1.2.0.

Code availability
Scripts and methods used in processing can be found at https://github.com/
alkoenig/Atlas_of_Human_Heart_Failure_Lavine.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Sample processing and QC Plots. A, Diagram of tissue processing and flow cytometry cell sorting strategies for single cell RNA 
sequencing (top) and single-nucleus RNA sequencing (bottom). Plots are representative density plots (blue indicates low density while yellow indicates 
higher density. B, Violin plots of the number of genes per cell/nuclei split by sequencing technology for the integrated Seurat object before and after 
QC filtering (left) and after QC filtering split by cell type (right). C, Violin plots of the percent mitochondrial reads per cell/nuclei split by sequencing 
technology for the integrated Seurat object before and after QC filtering (left) and after QC filtering split by cell type (right).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Integration of single cell RNA sequencing and single-nucleus RNA sequencing data allows for combined analysis of samples from 
different technologies. A, UMAP projection showing unsupervised clustering of the integrated dataset. B, UMAP projection split by technology. C, UMAP 
projection colored by disease state. D, Heat map of the top 10 genes by log2FC enriched in each cluster. E, Z-score feature plots for transcriptional signatures 
enriched in each cell type. Genes used for cell type identification (blue) were selected based on enrichment from Seurat differential expression analysis.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Single-cell and nucleus RNA sequencing identifies major cell populations within the LV myocardium. A, UMAP projection 
showing unsupervised clustering of single-nucleus RNA sequencing data. B, Heatmap of the top 10 genes by log2FC enriched in each cluster within 
single-nucleus RNA sequencing dataset. C, UMAP projection showing unsupervised clustering of single cell RNA sequencing data. D, Heatmap of the 
top 10 genes by log2FC enriched in each cluster within single cell RNA sequencing dataset. E-F, Violin plots split by cluster displaying the expression of 
characteristic cell marker genes in the single-nucleus RNA sequencing (E) and single cell RNA sequencing (F) datasets.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Pseudobulk differential expression reveals the contribution of disease state, sex and disease severity across major cell types. A, 
Volcano plots of pseudobulk differential expression analysis of single-nucleus RNA sequencing data performed on each cell type comparing donor control 
vs. dilated cardiomyopathy (DCM). B, Volcano plots of pseudobulk differential expression analysis of single nucleus RNA sequencing data performed on 
each cell type comparing disease severity (INTERMACS score 3+4 vs 1+2, lower score indicates more advance disease). C-D, Volcano plots of pseudobulk 
differential expression analysis of single nucleus RNA sequencing data performed on each cell type comparing sex separated by donor (C) and DCM (D). 
Insets represent values outside of the plotted area. See Supplementary Tables 21–26 for complete list of genes.
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Extended Data Fig. 5 | Pseudobulk differential expression reveals gene expression correlation with age in donor and diseased hearts. A-B, Plot of 
genes versus Pearson correlation coefficient (left) and linear regression using the top 10 genes correlated with age ranked by Pearson coefficient. Line of 
best fit is displayed (red-positively correlated, blue-negatively correlated, genes listed in respective colors, points represent individual samples, p-values 
calculated using 2-tailed linear regression Wald test with t-distribution, shaded areas represent 95% confidence interval, Donor; n=25, DCM; n=13) 
for donor (A) and DCM (B). Pearson Coefficients were calculated for all expressed genes from single nucleus dataset in relation to age as a continuous 
variable. See Supplementary Tables 25-26 for complete list of genes.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Supplement to Fig. 3 – Cardiomyocytes. A, Z-score feature plots for transcriptional signatures enriched in each cardiomyocyte 
state. Genes used for cell type identification (blue) were selected based on enrichment from Seurat differential expression analysis. Dot plot displays 
relative expression values for each Z-score split by disease state. B, Heatmap displaying top 5 enriched genes in each cell state from Seurat differential 
expression analysis on integrated dataset. C, enrichPathways analysis identifies pathways top differentially enriched pathways by cell state. Genes used 
in the analysis were selected from Seurat differential expression analyses with adjusted p<0.05. p-value calculated using hypergeometric distribution 
and corrected for multiple comparisons. D, enrichPathway analysis comparing enrichment of top pathways between disease states. Genes used in the 
analysis selected from intersection of pseudobulk and Seurat differential expression with p<0.05 and log2FC>0.1. p-value calculated using hypergeometric 
distribution and corrected for multiple comparisons. E, Transcription factor analysis displaying top enriched transcription factors in each cell state using 
ChEA 2016 database (https://maayanlab.cloud/Enrichr). Genes used in the analysis selected from Seurat differential expression with p<0.05 and 
log2FC>0.1. p-value calculated using Fisher exact test. F, Palantir pseudotime and entropy values overlaid on UMAP projection split by disease state.
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Extended Data Fig. 7 | Supplement to Figs. 4 and 5 – Monocytes, macrophages and dendritic cells. A, Z-score feature plots for transcriptional signatures 
enriched in each monocytes, macrophages, and dendritic cells state. Genes used for cell type identification (blue) were selected based on enrichment from 
Seurat differential expression analysis from single cell dataset (from Fig. 5). Z-scores are overlaid on the single cell RNA sequencing (left) and integrated 
UMAP (right) projections. B, Heatmap displaying top 5 enriched genes in each cell state from Seurat differential expression analysis on integrated dataset. 
C, Heatmap displaying top 5 enriched genes in each cell state from Seurat differential expression analysis on single cell dataset.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Supplement to Fig. 6 – Fibroblasts. A, Z-score feature plots for transcriptional signatures enriched in each fibroblast state. Genes 
used for cell type identification (blue) were selected based on enrichment from Seurat differential expression analysis. Z-scores are overlaid on the 
integrated UMAP projections. Dot plot displays relative expression values for each Z-score split by disease state. B, Heatmap displaying top 5 enriched 
genes in each cell state from Seurat differential expression analysis on integrated dataset. C, WikiPathways analysis identifies pathways differentially 
enriched by disease state. Genes used in the analysis included the intersection of pseudobulk and Seurat differential expression analyses with adjusted 
p<0.05. p-value calculated using hypergeometric distribution and corrected for multiple comparisons. D, Transcription factor analysis displaying top 
enriched transcription factors in each cell state using ChEA 2016 database (https://maayanlab.cloud/Enrichr). Genes used in the analysis selected from 
Seurat differential expression with p<0.05 and log2FC>0.1. p-value calculated using Fisher exact test. E, enrichPathway analysis comparing enrichment 
of pathways between cell states. Genes used in the analysis selected from Seurat differential expression with p<0.05 and log2FC>0.1. p-value calculated 
using hypergeometric distribution and corrected for multiple comparisons. F, RNA in situ hybridization for PLA2G2A and ELN (red). Representative images 
showing perivascular staining of PLA2G2A in the myocardium of donor samples. Minimal staining was observed in DCM samples. ELN staining was 
observed in the media of epicardial coronary arteries in both donor and DCM samples.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Pericytes and smooth muscle cells exhibit global changes in gene expression in dilated cardiomyopathy. A, Unsupervised 
clustering of pericytes and fibroblasts within the integrated dataset split by disease state. Inset panel (right) colored by disease state demonstrates 
mixing within cell states. B, Heatmap displaying top 5 enriched genes in each cell population from Seurat differential expression analysis on integrated 
dataset. C-D, Principal-component analysis (PCA, DESeq2) plots of pericyte (C) and smooth muscle cell (D) pseudobulk single nucleus RNA sequencing 
data colored by sex and disease state and age. Each data point represents an individual subject. Heatmaps displaying the top 100 upregulated and 
downregulated genes ranked by log2 fold-change comparing donor control to dilated cardiomyopathy (DCM). Differentially expressed genes were derived 
from the intersection of pseudobulk (DESeq2) and single cell (Seurat) analyses. E, WikiPathways analysis identifies top differentially enriched pathways in 
pericytes (top) and smooth muscle cells (bottom) by disease state. No pathway enrichment was detected in DCM pericytes. Genes used in the analysis 
included the intersection of pseudobulk and Seurat differential expression analyses with adjusted p<0.05 and log2FC>0.1. p-value calculated using 
hypergeometric distribution and corrected for multiple comparisons. F, Representative images of RGS5 staining for pericytes by RNA in situ hybridization.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Supplement to Fig. 7 – Endothelial cells. A, UMAP projection of the integrated dataset split by technology (single cell vs. single 
nucleus RNA sequencing) and colored by subpopulation. B, Distribution of nuclei in the integrated object divided by major cell type (*<0.05, **<0.01, 
***<0.001 by Welch’s T-test, two-tailed, data represents mean ± standard deviation, Donor; n=25 samples, DCM; n=13 samples). p-values for clusters 
comparing Donor to DCM are; Ec1: 1.9e-1, Ec2: 3.0e-1, Ec3: 1.5e-3, Ec4: 1.1e-1, Ecd1: 3.3e-5, Ecd2: 6.7e-3. C, Z-score feature plots for transcriptional 
signatures enriched in endothelial and endocardial cell populations. Genes used for cell type identification (blue) were selected based on enrichment 
from Seurat differential expression analysis. Z-scores are overlaid on the integrated dataset. D, Dot plot of relative expression values for each Z-score 
split by disease state. E, Heatmap displaying top 5 enriched genes in each cell state from Seurat differential expression analysis on integrated dataset. F, 
Transcription factor analysis displaying top enriched transcription factors in each cell state using ChEA 2016 database (https://maayanlab.cloud/Enrichr). 
p-value calculated using Fisher exact test. Genes used in the analysis selected from Seurat differential expression with p<0.05 and log2FC>0.1. G, 
Representative RNAScope images of vascular (top) and lymphatic (bottom) endothelial cells. ACKR1 – venous, BTNL9 – capillary, CCL21 – lymphatic.
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