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Deep learning-based k_,, prediction enables
improved enzyme-constrained model
reconstruction
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1254 and Jens Nielsen®1'3
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Enzyme turnover numbers (k_,) are key to understanding cellular metabolism, proteome allocation and physiological diver-
sity, but experimentally measured k_, data are sparse and noisy. Here we provide a deep learning approach (DLKcat) for
high-throughput k_,, prediction for metabolic enzymes from any organism merely from substrate structures and protein
sequences. DLKcat can capture k_, changes for mutated enzymes and identify amino acid residues with a strong impact on
k.. values. We applied this approach to predict genome-scale k_, values for more than 300 yeast species. Additionally, we
designed a Bayesian pipeline to parameterize enzyme-constrained genome-scale metabolic models from predicted k_,, values.
The resulting models outperformed the corresponding original enzyme-constrained genome-scale metabolic models from
previous pipelines in predicting phenotypes and proteomes, and enabled us to explain phenotypic differences. DLKcat and
the enzyme-constrained genome-scale metabolic model construction pipeline are valuable tools to uncover global trends of

enzyme kinetics and physiological diversity, and to further elucidate cellular metabolism on a large scale.

he enzyme turnover number (k,), which defines the maxi-
mum chemical conversion rate of a reaction, is a critical
parameter for understanding the metabolism, proteome
allocation, growth and physiology of a certain organism'~*. There
are large collections of k, values available in the enzyme databases
BRENDA* and SABIO-RK’, which are, however, still sparse com-
pared to the variety of existing organisms and metabolic enzymes,
largely due to the lack of high-throughput methods for k., mea-
surement. Additionally, experimentally measured k_, values have
considerable variability due to varying assay conditions such as pH,
cofactor availability and experimental methods®. Altogether, the
sparse collection and considerable noise limit the use of k_,, data for
global analysis and may mask enzyme evolution trends.

In particular, enzyme-constrained genome-scale metabolic
models (ecGEMs), where the whole-cell metabolic network is con-
strained by enzyme catalytic capacities and thereby able to accu-
rately simulate the maximum growth abilities, metabolic shifts and
proteome allocations, rely heavily on genome-scale k_, values™’.
Over the past decade, ecGEMs (or models following the concept
of enzyme constraints) have been separately developed for several
well-studied organisms’ including Escherichia coli*’, Saccharomyces
cerevisiae®'’, Chinese hamster ovary cells'' and Homo sapiens'>. Due
to the limitations of k., measurements’’ and the reliance on enzyme
commission (EC) number annotations to search for k_, values in
those developed pipelines>*'°, the reconstruction of ecGEMs for
lesser-studied organisms or large-scale reconstruction for multiple
organisms has remained a challenge”'*. Moreover, even for those
well-studied organisms, the k_, coverage is far from complete'*'>'¢.
In a S. cerevisiae ecGEM, only 5% of all enzymatic reactions have
fully matched k, values in BRENDA®”. When data are missing, pre-
vious ecGEM reconstruction pipelines typically assume k., values
from similar substrates, reactions or other organisms, which can

result in model predictions deviating from experimental observa-
tions’. There is a clear requirement for obtaining large-scale k,, val-
ues to improve model accuracy and yield more reliable phenotype
simulations'”.

Deep learning has been applied and shown great performance
in modelling chemical spaces', gene expression”, enzyme-related
parameters such as enzyme affinity” and EC numbers?'. Previously,
Heckmann and colleagues employed machine learning approaches
to predict E. coli k,, values based on features such as average meta-
bolic fluxes and catalytic sites obtained from protein structures's.
However, such features are typically hard to obtain, which allows the
application of this approach only to the most well-studied organ-
isms such as E. coli.

To this end, we developed a deep learning approach (DLKcat)
that uses substrate structures and protein sequences as inputs, and
demonstrated its capability for the large-scale prediction of k., val-
ues for various organisms, as well as for identifying key amino acid
residues that affect these predictions. We showcased the predic-
tive power of the deep learning model by predicting genome-scale
k., profiles for 343 yeast/fungi species, accounting for more than
300,000 enzymes and 3,000 substrates. The predicted k., profiles
enabled reconstruction of 343 ecGEMs for the yeast/fungi species
through an automatic Bayesian-based pipeline, which can accu-
rately simulate growth phenotypes among yeast species and identify
the phenotype-related key enzymes.

Results

Construction of a deep learning approach for k_, prediction.
The deep learning approach DLKcat was developed by combin-
ing a graph neural network (GNN) for substrates and a convolu-
tional neural network (CNN) for proteins (Fig. 1). Substrates were
represented as molecular graphs converted from the simplified
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Fig. 1| Deep learning of k_,, for ecGEM parameterization. a, DLKcat, the
approach developed for k., prediction by combining a GNN for substrates
and a CNN for proteins. b, Information extraction from GEMs as the input
for the deep learning model to predict k., values. ¢, The developed Bayesian
facilitated pipeline to reconstruct ecGEMs using the predicted k., profiles
from the deep learning model.
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molecular-input line-entry system (SMILES), and protein sequences
were split into overlapping n-gram amino acids (the string of con-
tiguous sequences consisting of n items). We generated a compre-
hensive dataset from the BRENDA* and SABIO-RK"® databases to
train the neural network. Incomplete database entries with miss-
ing information and redundant entries were filtered out to ensure
a dataset of unique entries with substrate name, substrate SMILES
information, EC number, protein sequence, organism name and
k., value. The final dataset contained 16,838 unique entries cata-
lysed by 7,822 unique protein sequences from 851 organisms and
converting 2,672 unique substrates (Supplementary Figs. 1 and 2).
This dataset was randomly split into training, validation and test
datasets by 80%, 10% and 10%, respectively, while five times of ran-
dom splitting indicated the robustness of the deep learning model
(Supplementary Fig. 3).

Deep learning model performance for k, prediction. The effects
of hyperparameters on deep learning performance were evaluated
by learning curves (Supplementary Fig. 4). With the selected optimal
parameters (r-radius substrate subgraphs, in which r is the number
of hops from a vertex of substrate structure, 2; n-gram amino acids,
3; vector dimensionality, 20; time steps in GNN, 3; number of layers
in CNN, 3), the deep learning model was trained. The root mean
square error (rm.s.e.) of k., predictions gradually decreased with
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increasing epoch (Fig. 2a), where one epoch is one iteration of the
dataset passing through the neural network. A final deep learning
model trained and stored for further use had a rm.s.e. of 1.06 for
the test dataset, signifying that predicted and measured k., values
were overall within one order of magnitude (Fig. 2a). A high predic-
tive accuracy could be observed on both the whole dataset (training,
validation and test datasets) (Fig. 2b; Pearson’s r=0.88) and the test
dataset (Supplementary Fig. 5a; Pearson’s r=0.71; Supplementary
Fig. 5b for test dataset where at least either the substrate or enzyme
was not present in the training dataset; Pearson’s r=0.70). The pre-
dicted k., values were categorized according to the metabolic con-
text of the enzymes (Supplementary Table 1), and enzymes involved
in primary central and energy metabolism yielded significantly
higher k_, values than enzymes involved in intermediary and sec-
ondary metabolism (Supplementary Fig. 5c), in agreement with
previous observations®.

The deep learning model was able to show enzyme promiscu-
ity. Understanding enzyme promiscuity and the related under-
ground metabolism is a key topic in evolutionary biology***.
DLKcat-predicted k., values (Fig. 2c) were higher for preferred
substrates (median k., =11.07s") compared to alternative sub-
strates (median k_,=6.01s"'; P=1.3 X 107'?) and random substrates
(median k,,=3.51s"; P=9.3x10"°) for promiscuous enzymes in
the whole dataset, while the same trend was identified in the test
dataset (Supplementary Fig. 5d; P<0.05). The concept of native
and underground metabolism* could be exemplified with the rich
experimental k_, data that are available for human aldo-keto reduc-
tase and 61 substrates, where DLKcat could differentiate (Fig. 2d;
P=0.0039) between native (top 10% experimental k. values,
median=2.22s") and underground (last 10%, median=0.04s")
substrates.

Prediction and interpretation of k_,, of mutated enzymes. Beyond
good overall performance (Fig. 2b), DLKcat was able to capture
the effects of amino acid substitutions on the k., values of indi-
vidual enzymes. The annotated dataset was divided into wild-type
enzymes and mutated enzymes with amino acid substitutions. As
the median k., of mutant enzymes was lower than that of wild-type
enzymes (Supplementary Fig. 6a), the deep learning model was a
good k., predictor for both wild-type enzymes (Fig. 3a for the whole
dataset; Pearson’s r=0.87; Supplementary Fig. 6b for the test data-
set; Pearson’s r=0.65) and mutated enzymes (Fig. 3b for the whole
dataset; Pearson’s r=0.90; Supplementary Fig. 6¢ for the test data-
set; Pearson’s r=0.78). Several well-studied enzyme-substrate pairs
were collected from the literature, where each pair had k_, values
reported for at least 25 unique single or multiple amino acid substi-
tutions (Supplementary Table 2). The predicted and experimentally
measured k., values correlated very well (Pearson’s r=0.94; Fig. 3c).
The experimentally measured k_, values were further grouped as
within a 0.5-fold to 2.0-fold change of wild-type k., (‘wild-type-like
k) or less than a 0.5-fold change of wild-type k., (‘decreased k).
The scarcity of mutated enzymes with k, values over twofold of the
wild-type k,,, values precluded defining the ‘increased k., group*.
DLKcat was able to capture the effects of small changes in protein
sequences on the activities of individual enzymes, as the decreased
k., group contained significantly lower predicted k., values com-
pared to the wild-type-like k., group, for all enzyme-substrate pairs
(Fig. 3d).

To investigate which amino acid residues dominate enzyme activ-
ity, we applied a neural attention mechanism to back-trace impor-
tant signals from the neural network output towards its input”.
This approach assigns attention weights to each amino acid residue,
quantitatively describing its importance for the predicted enzyme
activity. Attention weights were calculated for the wild-type H. sapi-
ens purine nucleoside phosphorylase (PNP) with inosine as sub-
strate, as rich mutation data are available for this enzyme-substrate
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Fig. 2 | Deep learning model performance for k,, prediction. a, The rm.s.e. of k_, prediction during the training process. b, Performance of the final

deep learning model. The correlation between predicted k., values and those present in the whole dataset (training, validation and test datasets) was
evaluated. The brightness of colour represents the density of data points. Student's t-test was used to calculate the P value for Pearson’s correlation.

¢, Enzyme promiscuity analysis on the whole dataset. For enzymes with multiple substrates, we divided the substrates into preferred and alternative

by their experimentally measured k., value, and then used the predicted k., values for this box plot. Random substrates were randomly chosen from

the compound dataset in our training data, except for the documented substrates and products for the tested enzyme. We evaluated 945 promiscuous
enzymes in the whole dataset (n=945 for preferred substrates, n=4,238 for alternative substrates, n=945 for random substrates). d, Comparison of

the predicted k_, values for the native substrates and the underground substrates with the human aldo-keto reductase enzyme as a case study. Here, we
defined those substrates with the top 10% catalytic ability (experimental k_,, value) as the native substrates (n=6), while those with the last 10% catalytic
ability (experimental k_, value) were considered as the underground substrates as defined in the reference (n=6)%. In each box plot (¢ and d), the central
band represents the median value, the box represents the upper and lower quartiles and the whiskers extend up to 1.5 times the interquartile range beyond
the box range. A two-sided Wilcoxon rank sum test was used to calculate the P values in ¢ and d.

pair®® (Fig. 3e and Supplementary Table 3). Situating the mutations
from the wild-type-like k., and decreased k., groups (Fig. 3e) to the
wild-type PNP sequence exhibited that residues that were mutated
in the decreased k., group had significantly higher attention weights
(Fig. 3f; P=0.0014; Supplementary Table 4). The calculation of
attention weights from the deep learning model can thereby iden-
tify amino acid residues whose mutation would likely have a more
substantial effect on enzyme activity.

The k., prediction for 343 yeast/fungi species. We previously
reconstructed GEMs for 332 yeast species plus 11 out-group fungi,
but only expanded 14 of them to ecGEMs using the original pipe-
line'® due to the limited available k_, data'*. As DLKcat allows pre-
diction of almost all k_, values for metabolic enzymes against any
substrates for any species, this enabled the generation of ecGEMs
for all 343 yeast/fungi species, predicting k., values for around
three million enzyme-substrate pairs (Supplementary Fig. 7). Yeast
and fungal specialist enzymes (with narrow substrate specific-
ity) had higher k_ values compared with generalist (that is, pro-
miscuous) enzymes that catalyse more than one reaction in the
model (Supplementary Fig. 8a). This is aligned with the hypoth-
esis that ancestral enzymes with broad substrate specificity and low
catalytic efficiency improve their k., value when they evolve into
specialists through mutation, gene duplication or horizontal gene
transfer”. Sequence conservation also trended with predicted k.,
values, where the ratio of non-synonymous over synonymous sub-
stitutions (dN/dS) is commonly used to detect proteins undergoing
adaptation™. Conserved enzymes with lower dN/dS have signifi-
cantly higher k_, values compared with relatively lesser conserved
enzymes (with high dN/dS), implying that conserved yeast/fungi
enzymes under evolutionary pressure are adapted to have higher k
values (Supplementary Fig. 8b).

cat

Bayesian approach for 343 ecGEM reconstructions. Using the
predicted k., values for 343 yeast/fungi species, we generated
343 ‘DL-ecGEMs (ecGEMs parameterized with k_, values from

DLKcat). The training data for the deep learning model were pri-
marily measured in vitro, which implies that DLKcat also predicts

664

in vitro k_, values, which is undesired as in vitro k_, values can be
considerably different from in vivo’. To resolve these uncertain-
ties, we adopted a Bayesian genome-scale modelling approach®.
Here, we used predicted k, values as mean values for prior distri-
butions and experimentally measured phenotypes to update these
to obtain posterior k, distributions. For this, experimental growth
data on yeast/fungi species were collected, collating 371 entries
for 53 species with 16 carbon sources (Supplementary Table 5 and
Supplementary Fig. 9). A sequential Monte-Carlo-based approxi-
mate Bayesian computation (SMC-ABC) approach® was imple-
mented to sample the k_, values, after validating its generality with
the ecGEM of S. cerevisiae, which had the most abundant experi-
mental data (Supplementary Fig. 10). The ecGEMs parameterized
with the mean values of sampled posterior k., values are hereafter
represented as posterior-mean-DL-ecGEMs.

The Bayesian learning processes for S. cerevisiae and non-
conventional yeast Yarrowia lipolytica are shown as examples (Fig. 4
and Supplementary Fig. 11). We calculated r.m.s.e. values between
measurements and predictions for batch and chemostat growth of
S. cerevisiae and Y. lipolytica under different carbon sources. After
several generations, the ecGEMs parameterized with sampled pos-
terior k_, values achieved a rm.s.e. lower than one (Fig. 4a and
Supplementary Fig. 1la), which showed they could accurately
describe the experimental observations. For instance, the S. cerevisiae
ecGEM captured the metabolic shift at increasing growth rate
(Fig. 4b)—known as the Crabtree effect”—while Y. lipolytica
respired at its maximum growth rate (Supplementary Fig. 11b).
Principal component analysis for all generated k., sets (9,800 sets
for S. cerevisiae and 4,900 sets for Y. lipolytica) showed a gradual
move from the prior distribution to the distinct posterior distri-
bution (Fig. 4c and Supplementary Fig. 11c). The Bayesian learn-
ing process affected more variance than mean predicted k_,, values
(Fig. 4d.e). For S. cerevisiae, 1,057 enzyme-substrate pairs reduced
their k,, variance (Siddk-adjusted one-tailed F-test, P<0.01), while
only 532 pairs changed their mean predicted k., (Sidék-adjusted
Welch’s t-test, P<0.01), which were randomly distributed across
metabolic subsystems (Supplementary Table 6; two-sided Fisher’s
exact test, P>0.25). For Y. lipolytica, the values were 1,224 and 646
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Fig. 3 | Deep learning model for the prediction and interpretation of k,, of
mutated enzymes. a,b, Prediction performance of k_,, values for all wild-type
(a) and mutated (b) enzymes. Colour brightness represents data density.

¢, Comparison between predicted and measured k., values for several
well-studied enzyme-substrate pairs with rich experimental mutagenesis
data. Enzyme abbreviations: DHFR, dihydrofolate reductase; PGDH,
p-3-phosphoglycerate dehydrogenase; AKIIl, aspartokinase Ill; DAOCS,
deacetoxycephalosporin C synthase; PNP, purine nucleoside phosphorylase;
GGPPs, geranylgeranyl pyrophosphate synthase. Substrate abbreviations:
G3P, glycerate 3-phosphate; L-Asp, L-aspartate; IPP, isopentenyl
diphosphate. In a-¢, the student'’s t-test was used to calculate the P value for
the Pearson’s correlation. d, Comparison of predicted k., values on several
mutated enzyme-substrate pairs between enzymes with wild-type-like k.,
and decreased k... P<0.05 (*), P<0.01 (**) and P<0.001 (***), two-sided
Wilcoxon rank sum test. Detailed information and sample numbers can be
found in Supplementary Table 2. e, Attention weight of residue position in
the wild-type PNP enzyme, using inosine as substrate. The mutated residues
in each of the mutated enzymes (with both wild-type-like k ,, and decreased
k) were marked on the curve according to their mutated residue. Dot size
indicates the number of mutated enzymes with mutations of that residue.

f, Overall attention weights for the PNP-inosine pair, comparing enzymes
with wild-type-like k., and decreased k., by two-sided Wilcoxon rank sum
test. n=15 for wild-type-like k,; n="72 for decreased k. In each box plot

(d and f), the central band represents the median value, the box represents
the upper and lower quartiles and the whiskers extend up to 1.5 times the
interquartile range beyond the box range.
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(Supplementary Fig. 11d,e). Consequentially, the sampled posterior
k., values had a strong correlation with the deep learning-predicted
k., values (Pearson’s r=0.86 for S. cerevisiae; Fig. 4f; Pearson’s
r=0.83 for Y. lipolytica; Supplementary Fig. 11f).

Deep learning and Bayesian approaches improve ecGEM quality.
We subsequently generated posterior-mean-ecGEMs from corre-
sponding DL-ecGEMs for all the 343 yeast/fungi species. For com-
parison, we also built ‘original-ecGEMs’ for the same species with a
k., parameterization strategy that assigns measured k_, values from
BRENDA" and SABIO-RK® to enzyme/reaction pairs as was done in
previous pipelines>®. We were able to reconstruct original-ecGEMs
for all 343 yeast/fungi species only after assuming that orthologs
across yeast species had the same EC number annotation as in S.
cerevisiae. In case of missing data, certain flexibility was introduced
by matching the k_, value to other substrates or organisms, or even
introducing wild cards in the EC number. The original-ecGEMs
yielded k. values for ~40% of enzymes and generated enzy-
matic constraints for ~60% of enzyme-annotated reactions, while
DL-ecGEMs and their derived posterior-mean-ecGEMs covered k.,
values for ~80% of enzymes and defined enzymatic constraints for
~90% of enzymatic reactions (Fig. 5a,b for 343 yeast/fungi species;
Supplementary Fig. 12a,b for S. cerevisiae). While original-ecGEMs
had fewer assigned k., values, their reconstruction pipeline also
relied heavily on correct enzyme EC number annotations and avail-
able measured k, values in the databases, contrasting with the
DL-ecGEM reconstruction, which relied only on protein sequences
and substrate SMILES information while resulting in a higher cov-
erage. In DL-ecGEMs and posterior-mean-ecGEMs the only miss-
ing k., values were for generic substrates without defined SMILES
information (such as generic compounds phosphatidate and
thioredoxin).

Besides the improved k,,, coverage, the posterior-mean-ecGEMs
and DL-ecGEMs also outperformed original-ecGEMs in the pre-
diction of exchange rates (Fig. 5¢ for 53 species with reported phe-
notype; Supplementary Fig. 12c for S. cerevisiae) and maximum
growth rates under various carbon sources and oxygen availabilities
(Fig. 5d and Supplementary Fig. 13 for 53 species with reported
growth phenotype; Supplementary Fig. 12d for S. cerevisiae).
Moreover, we used these three types of ecGEMs to predict required
protein abundances and compared this with published quantitative
proteomics data from four species with different carbon sources, cul-
ture modes and medium set-ups (Supplementary Table 7). Proteome
predictions from DL-ecGEMs and posterior-mean-ecGEMs had
the lowest r.m.s.e. values, while DL-ecGEMs had already reduced
the r.m.s.e. by 30% when compared to original-ecGEMs (Fig. 5e¢
for four species with absolute proteome data). Combined, the cur-
rent pipeline not only increases k., coverage but also contributes to

cat

ecGEMs better representing the 343 fungi/yeast species.
The k., comparison identifies phenotype-related enzymes. The
predicted k., values were furthermore able to distinguish between
Crabtree positive and negative yeast species. There is much interest
in understanding the presence of the Crabtree phenotype among
yeast species™”, and a model of S. cerevisiage energy metabolism
has previously been used to interpret this phenotype by compar-
ing protein efficiency (that is, ATP produced per protein mass per
time) in its two energy-producing pathways'. It was postulated
that the Crabtree effect is related to the high-yield (HY) pathway
(containing the Embden-Meyerhof-Parnas pathway, the tricarbox-
ylic acid (TCA) cycle and the electron transport chain), having a
lower protein efficiency than the low-yield (LY) pathway (contain-
ing Embden-Meyerhof-Parnas plus ethanol formation; Fig. 6a)'.
We here used the posterior-mean-ecGEMs of 102 yeast species with
experimental reported Crabtree phenotype (25 positive; 77 nega-
tive) to similarly calculate the protein efficiencies of the HY and LY
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the posterior-mean-ecGEMs are mean values from 100 sampled posterior datasets obtained from the Bayesian training process. ¢, Principal component
analysis for k., datasets sampled during the Bayesian training approach, showing the progression from prior to posterior dataset. Each parameter in the set
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distribution comparison for prior and posterior distribution. f, Correlation between deep learning-predicted k., and posterior mean k. Student's t-test was

used to calculate P value for Pearson'’s correlation.

pathways. Of the 102 species, 89% followed the trend that Crabtree
positive species have a higher LY efficiency, suggesting that Crabtree
positive yeasts’ LY pathways are more protein efficient than their HY
pathways for producing the same amount of ATP (Supplementary
Table 8). For five commonly studied species, the results are shown
in Fig. 6b, and even though ATP yields in their HY pathways may
vary across species, primarily due to the presence of respiratory
complex I, they still followed the same trend (Supplementary Table
8). Inconsistencies in strains where the HY/LY protein efficiency
ratio did not trend with the Crabtree effect might be due to addi-
tional regulation not considered in ecGEMs™.

With the predicted k,,, profiles for yeast species, we could inves-
tigate whether key enzymes show different k., values among 25
Crabtree positive and 77 negative species. Of the enzymes in the
energy-producing pathways, only pyruvate kinase, citrate synthase,
fumarase and phosphoglucose isomerase had significantly differ-
ent k, values (Fig. 6¢). Since fumarase and phosphoglucose isom-
erase can operate in reversible directions, it is unclear how the k.,
difference relates to the Crabtree effect. The k., values of pyruvate
kinase were higher in Crabtree positive species (P=0.006; Fig. 6¢).
This aligns with the fact that increasing pyruvate kinase activity in
the Crabtree positive Schizosaccharomyces pombe increases its fer-
mentation ratio, decreases the growth dependence on respiration
and provides resistance to growth-inhibiting effects of antimycin
A, which inhibits respiratory complex III (ref. *’). Citrate synthase
catalyses the first and rate-limiting step of the TCA cycle*, condens-
ing acetyl-coenzyme A and oxaloacetate to citrate. The k., values of
citrate synthase of Crabtree negative species are higher (P=0.008),
which would benefit metabolic flux from entering the TCA cycle
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(Fig. 6a,c). This is consistent with C-metabolic flux analysis that
showed that Crabtree negative species have higher TCA flux**.

Discussion
The diversity of biochemical reactions and organisms makes it dif-
ficult to generate genome-scale k,,, profiles. Here we presented the
deep learning approach DLKcat to predict k, values of all meta-
bolic enzymes against their substrates, requiring only the substrate
SMILES information and protein sequences of the enzymes as
input, yielding a versatile k_, prediction tool for any species.

DLKcat can capture k., changes towards precise single amino
acid substitutions, enabling attention weight calculations that
identify the amino acid residues majorly impacting enzyme activ-
ity. Amino acid substitution is a powerful technique in the enzyme
evolution field and routinely used to probe enzyme catalytic mech-
anisms*"**. Particularly, most substitution experiments perform
mutagenesis in the substrate binding site region, since it is hypoth-
esized that the binding region would have a high impact towards
catalytic activity. However, it has been reported that remote regions
can have a profound impact on catalytic activity*>**. Here, we identi-
fied not only high attention weights for amino acid residues in the
inosine binding region of human PNP enzyme, but also various
non-binding residue sites with high attention weights, suggesting
that those residues may also majorly impact catalytic activity and
deserve further validation. DLKcat can thereby serve as a valuable
part of the protein engineering toolbox**°.

Predicted genome-scale k_, profiles can facilitate the recon-
struction of enzyme-constrained models of metabolism, from both
curated and automatically generated basic (non-ec) GEMs. The

NATURE CATALYSIS | VOL 5 | AUGUST 2022 | 662-672 | www.nature.com/natcatal


http://www.nature.com/natcatal

NATURE CATALYSIS
a b 1.0
Y 1.0 7 .
Q
g 09r ® Species = 343 0
E 08| Species = 343 S -§ 08
o 38
S &9
° 07F 5006
& 3g
o 06 ag
>
3 <N 04} ¢
. 05 F o
N:
04t . 0.2 .

Original DL and posterior Original DL and posterior

(2]
(-9
—_
o

_5 80 P Species = 53 °
5 g N=256 & ’
S . = (.8 | Mean error=0.01
9] Species = 53 ) 08 o cg /
5 60 ] %
2 <
2 40| o
S =)
& 3
5 ©
L 20t S
@ £
4 177}
E 0’ :
Original DL Posterior 0 02 04 06 O 1.0
Experimental growth rate (h™)
e
S =
% sce [ Kla_ [kmx]yli
B 20| == Original == DL === Posterior mean
o
(0]
€ 15
(=}
L
<] L
210
8
. 05
Q
a9
E 0
= TN O Qo 0 © N © 0O o o
T cccco00o00Q00Qo o | 5 5
SSSES5EEEEEE8EE g 22
LS 66 65D DHDDODDIHDDIDO - -
= D DD )

Fig. 5 | Evaluation of three ecGEM modelling pipelines including
original-ecGEM, DL-ecGEM and posterior-mean-ecGEM reconstruction.
a,b, Enzymatic constraint coverage comparison for enzymes (a) and
enzymatic reactions (b) of 343 yeast/fungi species. ¢, The rm.s.e. for

the phenotype prediction for 53 species with phenotype data. d, Growth
prediction of posterior-mean-ecGEMSs for 53 species with phenotype

data. e, Performance of three types of ecGEMs in predicting quantitative
proteome data: the original-ecGEM, DL-ecGEM and posterior-mean-ecGEM
are shown. Four species with absolute proteome data were evaluated.
Original-ecGEMs were constructed following the pipeline to extract k,
profiles from BRENDA and SABIO-RK; DL-ecGEMs were constructed
from DLKcat-predicted k., profiles; and posterior-mean-ecGEMs were
parameterized with mean k., values from 100 posterior datasets after the
Bayesian training process. Culture conditions for the labels on the x axis of
those proteome datasets can be found in Supplementary Table 7, and the
collected proteome datasets are available in the GitHub repository. sce,

S. cerevisiae; kla, Kluyveromyces lactis; kmx, Kluyveromyces marxianus; yli,

Y. lipolytica. DL, deep learning-predicted. In the violin plot (a, b and ¢),
white shaded box limits stands for the upper and lower quartiles; the
central line limits stands for the 1.5x interquartile range.

cat

deep learning-predicted k,, process proved to be a more compre-
hensive but still practical alternative to matching in vitro k., values
from the BRENDA* and SABIO-RK® databases, as is common in
original-ecGEM reconstruction pipelines such as the GECKO and
MOMENT?>**. By not depending on EC number annotation, DLKcat
is furthermore able to predict isozyme-specific k., values, while the
use of SMILES (matching via the PubChem* or MetaNetX*’ data-
bases) avoids the issues of ununified substrate naming between the
GEM and BRENDA that original-ecGEM reconstruction pipelines
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can experience. The DL-ecGEMs can subsequently be adjusted to
existing experimental growth data through a Bayesian approach
that yields posterior-mean-ecGEMs with physiologically relevant
solution spaces. Combined, the current DLKcat-based pipeline
is therefore applicable to ecGEM reconstruction for virtually any
organism for which a protein sequence FASTA file and a basic GEM
is available. Our pipeline hereby improves applicability, and it even
improves the number of reactions with enzymatic constraints in
comparison with original-ecGEMs that have previously been constr
uctedl,Sle,i().

Even though the DLKcat-based pipeline yields ecGEMs with
superior performance over original-ecGEMs, various challenges
remain. For example, while our deep learning model can distin-
guish alternative from randomly chosen substrates for promiscuous
enzymes (Fig. 2¢), it still predicts a level of kinetic activity towards
random substrates that is likely too high. This behaviour can be
explained by the limited availability of negative data: cases where an
enzyme-substrate pair did not result in catalysis. Increased report-
ing of negative datasets, where non-detected activity for enzyme-
substrate pairs are reported and collected by enzyme databases,
could enhance future deep learning models in terms of defining
true negatives®. In addition, DLKcat did not consider the effect of
environmental factors such as pH and temperature, but combining
DLKcat with other emerging machine learning tools, such as for
enzyme optimal temperature prediction, would enable future inves-
tigation on the impact of environmental parameters on enzyme
activities™.

Another challenge relates to reactions involving multiple sub-
strates and those catalysed by heteromeric enzyme complexes.
The multiple substrate SMILES and protein sequences that can be
defined for such reactions can all function with DLKcat, thereby
yielding multiple predicted k., values for one reaction. We cur-
rently select the maximum k_,, values in those cases, but it would be
favourable to devise an approach that can predict one k., value for
each multi-substrate and/or heteromeric enzyme.

In addition, DLKcat-derived DL-ecGEMs and posterior-mean-
ecGEMs inherit limitations from basic (non-ec) GEMs, where
the steady-state assumption that is central to constraint-based
modelling allows one to determine metabolic fluxes but does not
readily consider regulatory behaviours. While ecGEMs drasti-
cally reduce the solution space of constraint-based models to
cellular feasible capacities, k_, is not the only kinetic parameter
that determines reaction rate, as for example, affinity constants
play influential roles. However, as constraint-based models can-
not predict internal metabolite concentrations, it is currently not
feasible to readily consider the influence of those parameters.
Nonetheless, k., values are also important parameters in other
resource allocation models such as proteome-constrained GEMs™' -
and metabolism/macromolecular-expression models”***. Despite
improved predictions and more applications, how to define k, val-
ues has also remained a challenge in the reconstruction of those
models. Such resource allocation models and ecGEMs share the
assertion that cells need to allocate their limited proteome to dif-
ferent pathways to achieve faster growth or better fitness, while the
proteome cost for each reaction is similarly defined by the flux and
the kinetic rate of the enzyme. Deep learning-predicted k, val-
ues for the metabolic parts of those models can therefore improve
their quality and performance, although other challenging kinetic
parameters, for example, ribosomal catalytic rates, to be determined
in those model formulations cannot be obtained from DLKcat. In
addition, model formulations that particularly focus on describing
enzyme kinetics® could benefit from deep learning-predicted k.,
values, so that our DLKcat approach can find a broad application in
the modelling field.

In conclusion, we showed that DLKcat yields realistic k, values
that can be used to direct future genetic engineering, understand
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HY LY Species  S. cerevisiae L. kluyveri S. pombe K. marxianus Y.lipolytica
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Fig. 6 | Explanation of the Crabtree effect by energy metabolism. a, HY and LY pathway definitions. PEP, phosphoenolpyruvate; PYR, pyruvate; OAA,
oxaloacetate; CIT, citrate; ETC, electron transport chain. b, Model-inferred protein efficiency of energy metabolism in several common yeast species.
Protein efficiency is the ATP produced per protein mass per unit time, in units of millimoles ATP per grams protein per hour. L. kluyveri, Lachancea kluyveri.
¢, Enzymes with significantly different k_,, values between Crabtree positive and negative species. A two-sided Wilcoxon rank sum test was used to
calculate P values. Crabtree positive species (n=25) and Crabtree negative species (n=77) were examined in this analysis. In the box plot, the central
band represents the median value, the box represents the upper and lower quartiles and the whiskers extend up to 1.5 times the interquartile range beyond

the box range.

enzyme evolution and reconstruct ecGEMs to predict metabolic
fluxes and phenotypes. Besides that, we envision many other pos-
sible uses of this deep learning-based k., prediction tool, such as
a tool in genome mining and Genome-Wide Association Studies
analysis. The developed automatic Bayesian ecGEM reconstruction
pipeline will be instrumental for further use in ecGEM reconstruc-
tion, for omics data incorporation and analysis.

Methods

Dataset preparation for deep learning model development. The dataset used
for deep learning model construction was extracted from the BRENDA* and
SABIO-RK databases’ on 10 July 2020 by customized scripts via application
programming interface. We generated a comprehensive dataset including the
substrate name, organism information, EC number, protein identifier (UniProt
ID), enzyme type and k., values. As the overall majority of k,,, values reported
in BRENDA and SABIO-RK do not specify their assay conditions, such as pH
and temperature, we decided not to include the features in order to maintain the
training dataset size and variety. In addition, substrate SMILES, a string notation
to represent the substrate structure, was extracted using substrate name to query
the PubChem compound database’, which is the largest database of chemical
compound information and is easy to access”. As different substrates usually
have various synonyms in different databases and GEMs, we used a customized
Python-based script to ensure that the same canonical SMILES information could
be output for the same substrates with various synonyms, which is essential to
help filter redundant entries obtained from different databases. Several rounds
of data cleaning were performed to ensure quality (Supplementary Fig. 2).
Protein sequences were queried with two methods: for entries with UniProt ID
information, the amino acid sequences could be obtained via the application
programming interface of the UniProt* with the help of Biopython v.1.78 (https://
biopython.org/); and for entries without UniProt ID, the amino acid sequences
were acquired from the UniProt™ and the BRENDA* databases based on their
EC number and organism information. After that, the sequences of those entries
with wild-type enzymes were mapped directly, and the sequences of those
entries with mutated enzymes were changed according to the mutated sites.
Finally, the remaining entries formed the high-quality dataset for deep learning
model construction. Detailed numbers for the data cleaning can be found in
Supplementary Fig. 2.

Construction of the deep learning pipeline. In this work, we developed an
end-to-end learning approach for in vitro k., value prediction by combining a GNN
for substrates and a CNN for proteins. The integration of GNN and CNN can be
naturally used to handle pairs of data with different structures, that is, molecular
graphs and protein sequences. In this approach, substrates are represented as
molecular graphs where the vertices are atoms and the edges are chemical bonds,
while proteins are represented as sequences in which the characters are amino acids.
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For substrates, there are just a few types of chemical atoms (for example, carbon
and hydrogen) and chemical bonds (for example, single bond and double bond).
To obtain more learning parameters, we employed r-radius subgraphs to get the
vector representations, which are induced by the neighbouring vertices and edges
within radius r from a vertex”. First, substrate SMILES information was converted
to a molecular graph using RDKit v.2020.09.1 (https://www.rdkit.org). Given a
substrate graph, the GNN can update each atom vector and its neighbouring atom
vectors transformed by the neural network via a nonlinear function, for example,
ReLU (ref. ©). In addition, two transitions were developed in the GNN, including
vertex transitions and edge transitions. The aim of transitions is to ensure that the
local information of vertices and edges is propagated in the graph by iterating the
process and summing neighbouring embeddings. The final output of the GNN is a
set of real-valued molecular vector representations for substrates.

Similarly, by using the CNN to scan protein sequences, we can obtain
low-dimensional vector representations for protein sequences transformed by the
neural network via a nonlinear function, for example, ReLU. To apply the CNN
to proteins, we defined ‘words’ in protein sequence and split a protein sequence
into an overlapping n-gram (n=1, 2, 3) of amino acids'. In this work, to avoid
low-frequency words in the learning representations, a relatively smaller n-gram
number of 1, 2 or 3 was set. Then, we translated protein sequences into various
word embeddings. Following this, the CNN used a filter function, shown in
equation (1), to compute the hidden vectors from the input word embeddings
and weight matrix. After that, we obtained a set of hidden vectors for these split
subsequences based on #n-gram amino acid splitting.

& = fWeome™ 4 beom) M
where fis a nonlinear activation function (for example, ReLU); W,,,, is the weight
matrix and by, is the bias vector; i and t are the serial numbers of a set of hidden
vectors; and ¢, and ¢! are the hidden vectors for the protein sequence.

Also, other important parameters of the neural networks (CNN and GNN)
were set as follows: number of convolutional layers in CNN, 2, 3 or 4; number of
time steps in GNN, 2, 3 or 4; window size, 11 (fixed); r-radius, 0, 1 or 2; and vector
dimensionality, 5, 10 or 20. These different settings were explored based on the
coefficient of determination (R?) in equation (2) during the hyperparameter tuning
to find which hyperparameter is better for improving the deep learning performance.
The R* was calculated by scikit-learn v.0.23.2 (https://scikit-learn.org/stable/). And
finally, we used the optimal hyperparameters to train our deep learning model.

S e — yip)’
Zx"’:l(}/ie - 7)?

where y,, is the predicted k., value, y, is the experimental k_, value, j is the average
of the experimental k, values and # is the total number of items in the dataset
(validation dataset or test dataset).

After the acquisition of the substrate molecular vector representations and the
protein sequence vector representations, we concatenated them together along

RP=1- (2)
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with an output vector (k. value) to train the deep learning model using the neural
attention mechanism™. During the training process, all the datasets were shuffled
at the first step, and then were randomly split into a training dataset, validation
dataset and test dataset at the ratio of 80%:10%:10%. Given a set of substrate—
protein pairs and the k_, values in the training dataset, the aim of the training
process is to minimize its loss function. The best model was chosen according

to the minimal r.m.s.e., shown in equation (3), on the validation dataset with the
least spread between the training dataset and validation dataset. For building and
training models, the PyTorch v.1.4.0 software package was used and accessed using
the Python package v.3.7.6 interface under CUDA/10.1.243. In addition, data
processing was mainly implemented by NumPy v.1.20.2, SciPy v.1.5.2 and

pandas v.1.1.3. Data visualization was implemented by Matplotlib v.3.3.2 and
seaborn v.0.11.0.

rm.s.e. =

1 n
;;%—mz 3)

where y;, is the predicted k., value, y, is the experimental k., value and # is the total
number of items in the dataset (validation dataset or test dataset).

Enzyme promiscuity analysis based on deep learning model. For enzyme
promiscuity, we explored whether the deep learning model can identify substrate
preference for promiscuous enzymes. For each promiscuous enzyme, we defined
that the substrate with the highest k,,, value was considered as the preferred
substrate, while those with k_, values less than the maximum value were classified
as alternative substrates. Random substrates were randomly chosen from the
compound dataset in our training data, except for the documented substrates and
products for the tested enzyme. By using the deep learning model, we further
predicted and compared the k, values for the preferred, alternative and random
substrates on various promiscuous enzymes. In order to identify high-quality
promiscuous enzymes, entries with an experimentally measured k., value less than
-2 (s") in a log,, scale were excluded in this analysis.

Validation of deep learning-based k., values. According to the classification of
metabolic pathways, metabolic contexts were mainly divided into four different
subsystems: (1) primary metabolism (carbohydrate and energy), involving the
main carbon and energy metabolism, for example, glycolysis/gluconeogenesis,
TCA cycle, pentose phosphate pathway, and so on; (2) primary metabolism (amino
acids, fatty acids and nucleotides); (3) intermediate metabolism, related to the
biosynthesis and degradation of cellular components, such as coenzymes and
cofactors; and (4) secondary metabolism®. To explore the metabolic subsystems for
all of the wild-type enzymes in the experimental dataset, the module in the KEGG
database® was used to assign metabolic pathways for enzyme-substrate pairs by
linking the detailed metabolic pathway in the KEGG application programming
interface with the EC number annotated in each enzyme-substrate pair. Detailed
classification can be found in Supplementary Table 1. Using the trained deep
learning model, the predicted k., values were generated for all the enzyme-
substrate pairs.

Interpretation of the reasoning of deep learning. To interpretate which
subsequences or residue sites are more important for the substrate, the neural
attention mechanism was employed by assigning attention weights to the
subsequences”. A higher attention weight of one residue means that that residue
is more important for the enzyme activity towards the specific substrate. Such
attention weights were modelled based on the output of the neural network. The
mathematical equations for the neural attention mechanism are shown as follows:

C= {cfr), cgt), cgt), . c,(lf) } (4)
hsubstrate :f( WinterYsubstrate + D) %)
hi = f(Winter€i + b) (6)

T
a =0 (hsubslralehi> (7)

where C is a set of hidden vectors for the protein sequence, ¢, to ¢, are the
sub-hidden vectors for the split subsequences, Y, i the substrate molecular
vector, W, and b are the weight matrix and the bias vector in the neural network,
respectively, fis a nonlinear activation function (for example, ReLU), a, is the

final attention weight value, o is the element-wise sigmoid function, and T is the
transpose function.

A defined protein could be split into overlapping n-gram amino acids and
calculated as a set of hidden vectors in equation (4). Given a substrate molecular
Vector Y ad a set of protein hidden vectors, the substrate embeddings
(Mypsirare) @and subsequence embeddings (h;) could be output based on the neural
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network, as shown in equations (5) and (6). By considering the embeddings of
Yeubstrae the attention weight value for each subsequence was accessible in
equation (7), which represents the importance signals of the protein subsequence
towards the enzyme activity for a certain substrate.

Prediction of k,,, values for 343 yeast/fungi species. The GEMs of 343 yeast/fungi
species were automatically reconstructed in our previous paper' from a yeast/
fungi ‘pan-GEM;, which was derived from the well-curated Yeast8 of S. cerevisiae
combined with the pan-genome annotation. For each model, all reversible
enzymatic reactions were split into forward and backward reactions. Reactions
catalysed by isoenzymes were also split into multiple reactions with one enzyme
complex for each reaction. Substrates were extracted from the model and mapped
to the MetaNetX database to get SMILES information using annotated MetaNet
identifiers (IDs) for metabolites®. Protein IDs for the enzymes were from the
model grRules. Protein sequences were queried by the protein ID in the protein
FASTA file for each species. Reaction IDs, substrate names, substrate SMILES
information and protein IDs were combined as the input file for the deep learning
k., prediction model.

Analysis of k., values and dN/dS for yeast/fungi species. In a previous study,

the genomes of 343 yeast/fungi species combined with comprehensive genome
annotations were publicly available®. The gene-level dN/dS of gene sequences for
pairs of orthologous genes from the 343 species were calculated with yn00 from
PAML v.4.7 (ref. **). For this computational framework, the input is the single-copy
ortholog groups, and the output is the gene-level dN/dS values extracted from the
PAML output files. By mapping the predicted k., values with the gene-level dN/dS
values via the bridge of protein ID, a global analysis was performed between the k.,
values and the dN/dS values for 343 yeast/fungi species across the out-group (11
fungal species) together with 12 major clades divided by the genus-level phylogeny
for 332 yeast species.

ecGEM reconstruction. Besides the constraints in basic (non-ec) GEM, shown in
equations (8) and (9), ecGEM:s are reconstructed by adding enzymatic constraints,
shown in equations (10) and (11).

Subjectto S x v =10 (8)

in which § is the stoichiometry matrix and v is the flux vector. This equation is the
representative of the steady-state assumption of the metabolic model to constrain
the mass balance.

in which Ib and ub are the lower bound and upper bound of the rate for the
reaction j.

Vi < k& % [Ei] (10)
where v; stands for the metabolic flux (mmolgDW-'h"'; gDW, gram dry weight)
of the reaction j; [E,] stands for the enzyme concentration for the enzyme i that
catalyses reaction j; and k¢, is the catalytic turnover number for the enzyme
catalysing reaction j. This constraint is applied to all enzymatic reactions with
available k_, values. Additionally, we added reactions to draw protein mass from
the total protein pool to each enzyme, therefore, a mass balance constraint was

proposed as:

Z [Ei] < 6 X total protein abundance (11)
where 6 is the fraction of metabolic protein in the total protein content of the cell.
This equation means that the sum enzyme usage should be lower or equal to the
total metabolic protein abundance.

To compare the different k,,, value assignment approaches, we built ecGEMs
parameterized with three types of k., values: original-ecGEMs, DL-ecGEMs and
posterior-mean-ecGEMs.

Original-ecGEM reconstruction queried k., values from the BRENDA
database by matching the EC number, a method that relies heavily on the database
EC number annotation for the specific species™®. Since more than 200 out of 343
yeast/fungi species are not annotated in UniProt** and KEGG®, EC numbers for
orthologs annotated in S. cerevisiae were borrowed to facilitate the original-ecGEM
reconstruction process for all these 343 species. The k., extraction process used the
criteria from process 13 in the reconstruction methods of the reference’”.

DL-ecGEM reconstruction extracted all k_, values from the deep learning
predicted file. To assign a k,,, value for each metabolic reaction, we followed these
criteria: If the in vitro k., measurement with matched substrate and enzyme
was available, then the measured in vitro k., values were used rather than the
k., prediction. This pipeline also accepted the user’s input for the k, values.

For enzymes with no k., measurement, predicted k,,, values were used after the
following steps: k., values predicted for currency metabolites such as H,O and H*
were excluded; if there were multiple substrates in the reaction, maximum values

among the substrates were kept; and if multiple subunits existed in the enzyme
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complex, we used the maximum value among all subunits to represent the k., for
the complex. Subunit protein stoichiometry information was multiplied before
comparison. We assumed the same enzyme complex stoichiometry information for
yeast species as that of S. cerevisiae, which is collected from the Protein Data Bank
in Europe database (https://www.ebi.ac.uk/pdbe/) as well as the Complex Portal
(www.ebi.ac.uk/complexportal).

Posterior-mean-ecGEM reconstruction was parameterized by mean k., values
from accepted posterior distribution. The k., values in the DL-ecGEMs combined
with the r.m.s.e. (which is 1 in the log,, scale) of the k, prediction were used
as mean values and variance to make the prior distribution. Each k, value was
described with a log normal distribution N(k,,/, 1). This prior iteratively morphs
into a posterior through multiple generations*. For each generation, we sampled
126 k., datasets within the distribution; 100 among those 126 datasets with a
smaller distance (see next section for the SMC-ABC distance calculation) between
the phenotype measurements and predictions, which can better represent the
phenotype, were kept to make the distribution for the next generation. Until the
distance was lower than the cut-off (r.m.s.e. for phenotype prediction of 1), we

accepted the final distribution as the posterior distribution™.

SMC-ABC distance function. Experimental growth data and related exchange
rates in batch and chemostat conditions were collected for the yeast/fungi species,
which are available in Supplementary Table 5. The distance function was designed
as the r.m.s.e. between the simulated and experimental phenotypes. To have a
metric for the variance of phenotype prediction of both flux and maximum growth
potential, r.m.s.e. was designed in two parts (each part may contain multiple
measurement entries such as growth with a different medium). The first part
addressed flux prediction. This part checks whether the model predicts similar
fluxes when the carbon uptake rate is constrained, as experimentally measured. In
this part, all data points for the species are used, and all measured exo-metabolite
exchange fluxes are used for comparison. The second part addresses the prediction
of the maximum growth rate potential. This part checks the maximum growth rate
of the model prediction against the experimental measurement for one species
on a certain experimentally tested medium. In this part, only the batch condition
with maximum growth rate measurement was tested. No carbon uptake rate or
other exchange rate was constrained in the model. Growth maximization was set
as the objective function. After simulation, only the maximum growth rate and the
carbon uptake rates were used for comparison with measurement.

After running the above two parts of the simulations, the r.m.s.e. for each
part can be calculated. All measured and simulated rates were normalized
by multiplying the carbon numbers of the corresponding metabolites before
calculation of r.m.s.e. The carbon number for biomass is 41 (the mean value for the
molecular weight of 1 carbon moles (Cmol) biomass of yeast is ~24.42 g (ref. ©°); the
biomass equals 1,000 mg). Note that if the substrate or by-product does not contain
any carbon, such as O,, then the normalizing number is 1. Then the average r.m.s.e.
of both simulations was used to represent the distance. The SMC-ABC search
stopped once the r.m.s.e. reached the accepted value or reached the maximum
generation. The accepted value for the distance was set to be lower than 1, and the
maximum generation was set to be 100.

Simulations with ecGEMs. We performed different kinds of simulations using the

ecGEMs, including simulations of growth and protein abundance. Different media

and growth conditions were set to match the experiment measurement conditions,

for example, using xylose as the carbon source or anaerobic conditions. Since there

are no measured total protein abundances in the biomass for all yeast/fungi species,
we used the protein content mass to serve as the default total protein abundance for
each species and used a factor of 0.5 to serve as the ratio of the metabolic protein to
the total protein.

As for the protein abundance simulation, the medium was set to match the
experimental condition as mentioned above. For the chemostat condition, the
growth rate was fixed as the dilution rate, and the carbon source uptake rate
was minimized, which is a normal set-up for the simulation of the chemostat
condition. For the batch condition, the growth rate maximization was used as
the objective. Then, the simulated protein abundances, which can be extracted
from the fluxes, were compared with those in collected proteome datasets. The
MATLAB (2019b), COBRA (v.3.2), RAVEN (v.2.4)*” and libSBML (v.5.17.0)
toolboxes were used in the process with solver IBM ILOG CPLEX optimizer.
Violinplot-Matlab (https://github.com/bastibe/Violinplot-Matlab) was used for the
visualization of violin plots.

Statistical tests for Bayesian approach. Sampled prior and posterior k_,, datasets
were compared for the difference in the mean values and the variance. Welch’s
t-test was used to test the significance for the mean values, while a one-tailed F-test
was used for the reduced variances. The cut-off for the significance was set to 0.01
for the adjusted P value corrected by the Siddk method. PVAL_ADJUST (https://
github.com/nunofachada/pval_adjust) was used in the analysis.

Proteome data processing. We normalized the collected relative proteome datasets

using the identical condition of the absolute proteome data from the literature
following the same method as in ref. °*. The reference absolute datasets for those
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relative proteome datasets were documented in the collected file in the GitHub
repository.

Calculation of protein cost and efficiency. To calculate the protein cost of the

HY pathway, the glucose uptake rate was fixed at 1 mmolgDW"h"', and the
non-growth associated maintenance energy (NGAM) reaction was maximized. The
total protein pool reaction was then minimized by fixing the NGAM reaction at
the maximized value. The minimized flux through the total protein pool reaction
is the protein cost of the HY pathway for converting one glucose to ATP. As for

the protein cost calculation of the LY pathway, the glucose uptake rate was fixed

at 1 mmol gDW"h"', and ethanol production was maximized. Then the ethanol
exchange rate was fixed at the maximized value, and NGAM was maximized. After
that, NGAM was also fixed at the maximized value, and the total protein pool was
minimized to calculate the protein cost for the LY pathway. We also examined

the flux distribution to ensure that other energy-producing pathways were all
inactive during this simulation. Protein efficiency is defined as the protein cost for
producing one flux ATP in each pathway.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Protein sequence FASTA files, deep learning predicted k., values, GEMs,
original-ecGEMs, DL-ecGEMs and posterior-mean-ecGEMs for 343 yeast/
fungi species are available as a supplementary dataset on Zenodo: https://doi.
org/10.5281/zenodo.6438262. Collected proteome data are available in the
GitHub repository: https://github.com/SysBioChalmers/DLKcat/tree/master/
BayesianApporach/Data/Proteome_ref.xlsx. All other collected datasets such

as the training dataset and the deep learning model are available in the GitHub
repository: https://github.com/SysBioChalmers/DLKcat. Databases including
BRENDA (https://www.brenda-enzymes.org), SABIO-RK (http://sabiork.h-its.
org/), UniProt database (https://www.uniprot.org/) and PubChem (https://
pubchem.ncbi.nlm.nih.gov) were used in the DLKcat model construction. KEGG
(http://www.kegg.jp/) was used in the evaluation of the DLKcat performance.
Databases including the MetaNetX database (https://www.metanetx.org/), the
Protein Data Bank in Europe database (https://www.ebi.ac.uk/pdbe/) and the
Complex Portal (https://www.ebi.ac.uk/complexportal) were used in the ecGEM
reconstruction. The authors declare that all data supporting the findings and

for reproducing all figures of this study are available within the paper and its
Supplementary Information. Source data are provided with this paper.

Code availability

To facilitate further usage, we provide all codes and detailed instruction in the
GitHub repository: https://github.com/SysBioChalmers/DLKcat. A user-friendly
example for k., prediction is also included in the repository.
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The RAVEN toolbox (version 2.4.0)
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Protein sequence FASTA files, deep learning predicted kcat values, GEMs, original-ecGEMs, DL-ecGEMs and Posterior-mean-ecGEMs for 343 yeast/fungi species are
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All attempts at replication were successful. The conclusions in the manuscript was successfully reproduced. All scripts for reproducibility are
included in the GitHub repository.

Randomization  As for the SMC-ABC approach, all values were randomly sampled from the Prior distribution without any seed.

Blinding Not relevant with this computational study, but instead publicly available enzyme kinetics data from the BRENDA and SABIO-RK database was
used.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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