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Pancancer survival analysis
of cancer hallmark genes

Adam Nagy'?, Gyéngyi Munkacsy* & Balazs Gyérffyt2

Cancer hallmark genes are responsible for the most essential phenotypic characteristics of malignant
transformation and progression. In this study, our aim was to estimate the prognostic effect of the
established cancer hallmark genes in multiple distinct cancer types. RNA-seq HTSeq counts and
survival data from 26 different tumor types were acquired from the TCGA repository. DESeq was
used for normalization. Correlations between gene expression and survival were computed using the
Cox proportional hazards regression and by plotting Kaplan—Meier survival plots. The false discovery
rate was calculated to correct for multiple hypothesis testing. Signatures based on genes involved

in genome instability and invasion reached significance in most individual cancer types. Thyroid

and glioblastoma were independent of hallmark genes (61 and 54 genes significant, respectively),
while renal clear cell cancer and low grade gliomas harbored the most prognostic changes (403

and 419 genes significant, respectively). The eight genes with the highest significance included
BRCA1 (genome instability, HR 4.26, p <1E-16), RUNX1 (sustaining proliferative signaling, HR 2.96,
p=3.1E-10) and SERPINE1 (inducing angiogenesis, HR 3.36, p=1.5E-12) in low grade glioma, CDK1
(cell death resistance, HR=5.67, p=2.1E-10) in kidney papillary carcinoma, E2F1 (tumor suppressor,
HR 0.38, p=2.4E-05) and EREG (enabling replicative immortality, HR 3.23, p=2.1E-07) in cervical
cancer, FBP1 (deregulation of cellular energetics, HR 0.45, p=2.8E-07) in kidney renal clear cell
carcinoma and MYC (invasion and metastasis, HR 1.81, p=5.8E-05) in bladder cancer. We observed
unexpected heterogeneity and tissue specificity when correlating cancer hallmark genes and survival.
These results will help to prioritize future targeted therapy development in different types of solid
tumors.

Pancancer projects help to analyze the similarities and differences among different types of cancer by investigat-
ing genomic, epigenomic, transcriptomic and proteomic traits of the tumors. A leading effort in the pancancer
genomic field is the PanCancer Atlas from the TCGA consortium !, which focuses on the transcriptome, on
the genomic interactions between somatic drivers and germline mutations, on the links to the methylome, on
the proteome and on the tumor microenvironment and their implications for targeted and immune therapies 2.

During tumorigenesis, normal cells evolve to a neoplastic state in which they share common characteristics,
including sustained proliferative signaling, loss of growth suppressors, apoptosis resistance, replicative immortal-
ity, angiogenesis induction, invasion and metastasis activation, genomic instability, inflammation, and energy
metabolism reprogramming—the so-called “hallmarks of cancer” **. A comprehensive database of genes associ-
ated with diverse cancer hallmarks was recently established, enabling the selection of hallmark-specific genes to
be measured in transcriptome-level studies °. Altogether, 671 cancer genes were grouped into eight main hallmark
categories; notably, some of the genes were linked simultaneously to multiple hallmarks °.

Analysis of gene expression contributed to the identification of molecular cancer subtypes capable of charac-
terizing tumors and recognizing their biological characteristics, enabling the development of effectively targeted
therapeutics. Single or multigene tests have been introduced to measure the deregulation of specific molecu-
lar pathways that can guide therapeutic decision-making by identifying genes that can serve as predictive or
prognostic biomarkers. Breast cancer treatment is an outstanding example of a multigene decision tree-based
treatment decision support protocol. The decision tree includes human epidermal growth factor receptor 2
(HER2), estrogen receptor (ER), and progesterone receptor (PgR). The overexpression or amplification of HER2
is present in approximately 25% of breast cancer cases °©. HER2-overexpressing tumors treated with anti-HER2
(trastuzumab and pertuzumab) therapy have improved disease-free and overall survival ”. ER-positive tumors
are eligible for endocrine therapy ®. Increased disease-free and overall survival time was obtained by targeting
ER with the antiestrogen tamoxifen in breast cancer °. PgR positivity helps to improve the identification of
ER-positive patients. ER, HER2, and PgR define three molecular subtypes of breast cancer, each with different
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treatment modalities. Those patients who are negative for all three markers are designated as triple-negative breast
cancer; these patients have generally worse prognoses and conversely need a more aggressive systemic therapy.

Establishing prognostic multigene classification protocols can contribute to the understanding of tumor biol-
ogy and to better prediction of cancer progression and cancer treatment strategies. One important issue is the
selection of the proper method for the combination of the genes. First, genes can be utilized independently in a
decision tree, where each node can be based on a single gene. Second, when multiple genes are combined, the
most widespread approach is to compute their mean expression and to use this new value as a surrogate for the
activity of the entire signature. A third option is to combine multiple genes after assigning a different weight to
each of them. With breast cancer as an example, such combined signatures are utilized in FDA-approved multi-
gene signature platforms, including the 76-gene signature, 21-gene signature and 70-gene signature platforms;
all three of these can predict the prognosis of cancer under different conditions -2

In this study, our goal was to rank established cancer hallmark genes according to their correlation to survival
in a large cohort of distinct cancer types. We also aimed to correlate the relevance of each cancer hallmark in
each of the available tumor types by assessing the prognostic power of signatures comprising hallmark genes.

Results

Transcriptomic database. The complete dataset of RNA-seq samples with follow-up comprised 9663
specimens from 26 distinct tumor types with breast cancer as the largest (n=1090) and thymoma as the smallest
set (n=118). Across the entire database, the median follow-up for overall survival (OS) was 24.3 months, and
for relapse-free survival (RFS), it was 23.8 months. Most datasets contained both OS and RFS data, with the
exception of AML, glioblastoma, melanoma and thymoma, which only had RES data. Ovarian cancer patients
had the highest median OS, while gastric and head and neck cancer patients had the shortest OS (Fig. 1C). In
addition, glioma and liver cancer patients had the longest and the shortest median RFS at 23.8 and 6.7 months,
respectively (Fig. 1C).

Clinico-pathological characteristics of patients, including stage, grade, sex and race, were available for 6301,
4126, 9720 and 9471 patients, respectively (Table 1). According to the stage, head and neck cancer had the most
patients in stage 4, and testicular cancer had the most patients in stage 0 or stage 1. The proportion of patients
by tumor grade indicates that an unfavorable high grade was more common in bladder cancer, while a favorable
low grade was restricted to head and neck cancer. Sex and ethnicity data of the patients showed that the number
of males with cancer is higher than the number of females with cancer and that Caucasians give the majority in
the TCGA database (Table 1).

The strongest cutoff value in the survival analysis. We demonstrate the calculation of the best cutoff
via the CDK1 gene in kidney papillary carcinoma and ovarian cancer in Fig. 1A,B. To validate the robustness
of CDKI1 expression in kidney papillary carcinoma, we performed multivariate survival analysis for OS using
the somatic mutation data of 278 renal cancer patients including CDK1 expression and the mutations of the top
five mutated genes. These include MET (proportion of patient samples with a mutation in kidney renal papillary
carcinomas: 24%), MUC16 (20%), KMT2C (19%), SETD2 (17%) and FAT1 (15%). In the multivariate survival
analysis, we found that the association between the CDK1 expression retained its significance (p=1.55E-07)
when including the mutation status of MET (p=0.952), MUC16 (p=5.65E-01), KMT2C (p=0.909), SETD2
(p=0.04) and FAT1 (p=0.948) genes.

Prognostic significance of hallmark-associated genes across 26 types of cancer. Cox regres-
sion analysis was performed using the RNA-seq expression of 671 cancer hallmark genes. The results of survival
analysis across 26 types of cancer for each gene are listed in Supplemental Table S1. We computed the proportion
of significant genes in each hallmark and in each tumor type (Fig. 2). Hierarchical clustering was performed to
correlate different tumor types and cancer hallmark-associated genes. In this analysis, genes associated with
invasion and metastasis activation, genome instability, sustained proliferative signaling and cellular energetics
deregulation clustered into separate cohorts (Fig. 2). The top five tumors that contained the highest proportion
of established cancer hallmark genes significantly associated with overall survival were kidney renal clear cell
carcinoma, low grade glioma, melanoma, thymoma, and liver cancer.

Hallmark signatures and survival in different types of tumors. The expression signature of hall-
mark features was determined for each sample, and the prognostic effect of these signatures was investigated in
different types of cancer. Significant p values (p <0.05) are illustrated as forest plots in Fig. 3A.

Of the eight hallmark feature signatures, seven showed a significant association with OS in low grade glioma.
On the other hand, lung squamous carcinoma, uterine, ovarian, sarcoma, bladder and esophageal cancer con-
tained only one significant hallmark signature (Fig. 3B).

Tumor mutation burden was also determined, and it showed a significant association with OS in glioma (HR
3.25, p=6.3E-11), melanoma (HR 0.41, p =6.5E—-10), bladder cancer (HR 0.49, p=5.6E—06), uterine cancer (HR
0.33, p=2.5E-05), ovarian cancer (HR 0.69, p=3.8E—03), stomach cancer (HR=0.62, p=4.2E-03) and kidney
renal clear cell carcinoma (HR 2.26, p=2.0E-04) (Fig. 3C). To demonstrate the reliability of these results, we
selected breast cancer and performed univariate survival analysis for the significant cancer hallmark signatures
using an independent gene expression dataset of 1976 samples obtained from the METABRIC study '*. Of the
four cancer hallmark signatures significant in the TCGA dataset, three were also significant in the META-
BRIC (sustaining proliferative signaling: HR 0.83, p=2.55E-03, CI 0.74-0.94; inducing angiogenesis: HR 0.77,
p=2.13E-05, CI 0.69-0.87; deregulation of cellular energetics: HR 1.23, p=2.98E—-03, CI 1.07-1.41) showing
high reproducibility of the overall analysis pipeline (Fig. 3B).
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Figure 1. Overview of cutoff determination and survival distribution in the database. The determination of the
best cutoff value in the survival analysis demonstrated with the CDK1 gene in kidney papillary carcinoma (A)
and ovarian cancer (B). Survival time characteristics of tumors with observed events (C).

In multivariate analysis of OS, including the expression signature of hallmark features, sex, race, tumor stage,
tumor grade and age, most of the signatures retained their significance (Table 2).

Genes with the greatest prognostic power in multiple tumor types. In at least ten tumor types,
there were 39 genes whose expression was associated with OS (Fig. 4A). We pinpointed the genes with the high-
est prognostic power in each cancer hallmark feature: BRCA1 associated with genome instability in low grade
glioma (HR 4.26, p<1E-16), CDKI1 linked to cell death resistance in kidney papillary carcinoma (HR 5.67,
p=2.1E-10), the E2F1 tumor suppressor in cervical cancer (HR 0.38, p=2.4E-05), EREG enabling replicative
immortality in cervical cancer (HR 3.23, p=2.1E-07), FBP1 participating in the deregulation of cellular energet-
ics in kidney renal clear cell carcinoma (HR 0.45, p=2.8E—07), MYC activating invasion and metastasis in blad-
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Median Median
survival survival Race
Median time in Median in patients (White/
Samples | survival- patients survival- with a Grade Asian/

Tumor TCGA with RNA- | OS with an RFS relapse Stage (S0/S1/S2/ (low/ Black-
type code seq data (months) | Events (n) | OS event | (months) | Events (n) | (months) | Sex (F/M) | $3/S4) high) African)
AML LAML 151 10.13 97 7.13 0.00 0 - 68/83 - - 135/1/13
Bladder | BLCA 405 17.87 179 13.60 0.00 31 15.40 106/299 | 0/2/130/138/133 21/381 | 321/44/23
Breast BRCA 1090 28.10 151 42.40 21.35 84 25.77 1078/12 | 0/181/619/247/20 - 752/61/182
Cervical | CESC 304 21.23 71 20.23 12.75 26 16.10 304/0 - 153/119 | 209/20/30
Colon COAD 454 22.30 102 13.47 0.00 23 16.87 214/240 | 0/75/176/128/64 - 212/11/59
Esophagus | ESCA 161 13.57 64 13.38 0.00 21 7.47 23/138 | 0/16/69/49/8 82/44 100/38/5
glri‘l)flas' GBM 153 11.90 122 12.70 0.00 1 51.67 54/99 - - 137/5/10
Glioma |LGG 510 22.12 125 27.13 0.00 20 19.93 228/282 |- 248/261 | 470/8/21
nH:é‘lf and | pnsc 500 2127 217 14.33 0.00 28 7.70 133/367 | 0/25/70/78/259 360/121 | 426/10/47
Eil(:::}c,ell) KIRC 530 39.85 173 27.30 0.00 15 30.00 186/344 | 0/265/57/123/82 241/281 | 459/8/56
Kidney | xirp 288 25.58 44 21.37 13.22 28 15.72 76/212 | 0/172/21/51/15 - 205/6/60
(papillary)
Liver LIHC 371 19.57 130 13.85 10.73 143 9.10 121/250 | 0/171/86/85/5 232/134 | 184/158/17
(L;;‘e%m) LUAD 513 21.13 187 19.93 9.80 89 15.90 276/237 | 0/274/121/84/26 - 387/7/52
Lung
(squa- LUSC 501 21.63 216 17.85 11.83 61 18.40 130/371 | 0/244/162/84/7 - 349/9/30
mous)
Melanoma | SKCM 468 34.45 215 35.67 0.00 0 - 179/289 | 7/76/140/170/23 - 445/12/1
Ovarium | OV 374 34.03 230 36.55 0.00 126 17.67 374/0 - 43/321 | 324/11/25
Pancreas | PAAD 177 15.43 92 12.90 0.00 23 14.97 80/97 0/21/146/3/4 125/50 | 156/11/6
gﬁ;ﬁi“’ PCPG 178 25.08 6 15.08 20.42 4 27.65 101/77 |- - 147/6/20
Prostate | PRAD 495 30.80 10 36.73 20.53 30 25.30 0/495 - - 147/2/7
Rectum | READ 165 20.33 25 20.33 0.00 6 28.68 75/90 0/30/51/51/24 - 80/1/6
Sarcoma | SARC 259 31.57 98 22.27 537 66 11.17 141/118 | - - 226/6/18
Stomach | STAD 375 14.23 147 11.60 6.60 37 10.50 134/241 | 0/53/111/150/38 147/219 | 238/74/11
Testis TGCT 134 42.03 4 18.85 20.67 27 15.03 0/134 0/55/12/14/0 - 119/4/6
Thymoma | THYM 119 38.83 9 28.43 0.00 0 - 57/62 - - 99/12/6
Thyroid | THCA 502 31.47 16 34.03 18.72 26 16.43 367/135 | 0/281/52/112/55 - 332/51/27
Uterine | UCEC 543 30.37 91 23.63 21.03 57 17.33 543/0 - 218/325 | 372/20/106
z - 9720 24.33 2821 19.23 23.8 972 15.6 5048/4672 | 7/1941/2023/1567/763 | 1870/2256 | 7031/596/844

Table 1. Clinical characteristics of patients.

der cancer (HR 1.81, p=5.8E—05), RUNXI sustaining proliferative signaling in glioma (HR 2.96, p=3.1E-10)

and SERPINEL playing a role in inducing angiogenesis in glioma (HR 3.36, p=1.5E-12) (Fig. 4B-I).

In addition, multivariate Cox regression analysis was also performed using the expression of the 39 most

significant genes and the available clinical variables, including race, sex, age, tumor stage and tumor grade. Of
the clinical parameters, age and tumor stage were the variables that reached significance in the Cox model in
most tumors (for detailed results, see Supplemental Table S2).
Gene set enrichment analysis. In glioma, the expression of BRCA1, RUNXI, and SERPINE1 were
analyzed using GSEA. High expression of BRCA1 was associated with the enrichment of cell cycle checkpoint
genes (p < 1E-16) and DNA repair genes (p =0.038) that have important role in genome instability. High expres-
sion of RUNX1 was associated with several proliferation signaling genes such as JAK-STAT (p < 1E-16), KRAS
(p<1E-16) and TGFB (p=0.007) signaling genes. In patients with high expression of SERPINE1 angiogenesis
associated genes (p=0.02), apoptosis genes (p < 1E-16) and hypoxia related genes (p < 1E-16) were overrepre-
sented.

In cervical cancer, the high expression of E2F1 was associated with the enrichment of tumor suppressor genes
such as E2F signaling pathway genes (p =0.002) and the high expression of EREG was associated with TGF-beta
(p <1E-16) signaling pathway genes.

In renal papillary carcinoma, the high expression CDK1 was associated with the enrichment of apoptosis
genes (p=0.025). In renal clear cell cancer the high expression of FBP1 gene was associated with enrichment
of metabolic genes such as fatty acid metabolism (p < 1E-16), reactive oxygen species pathway (p=0.015), and
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Figure 2. The prognostic power of cancer hallmark genes.

bile acid metabolism (p =0.002). In bladder cancer, the high expression of MYC was associated with metastasis
related genes that takes role in apical junction (p=0.002) and MYC signaling pathway genes (p=0.008).
Overall, the GSEA identified cancer hallmark gene sets are in line with our previous results.

Discussion

In this study, we examined the prognostic significance of previously established cancer hallmark genes °. For the
survival analysis, we utilized an RNA-seq database from the TCGA that contains 9720 patients of 26 tumor types
with clinical annotations. Kidney renal clear cell carcinoma, low grade glioma and melanoma had the highest
proportion of cancer hallmark genes that correlated with survival. Hierarchical clustering analysis showed that
some cancer hallmark genes clustered together, such as those involved with invasion and metastasis activation,
genome instability, sustained proliferative signaling and cellular energetics deregulation (distance was based on
the percentage of significant genes per hallmark in each tumor type).

A transcriptomic surrogate signature for each hallmark was also determined; this is based on the means of the
average expression of the cancer genes associated with the given hallmark. The prognostic significance of these
factors was examined in different types of cancers. Among the eight main hallmark signatures, those associated
with oncogene activation, genome instability, cellular energetics, invasion and metastasis and cell death resist-
ance were significant in at least five tumor types.

It is important to mention that in this analysis we did not simply averaged genes whose overexpression wors-
ens the prognosis and those whose loss worsens prognosis. Rather, we use a pre-selected set of genes linked to a
single cancer hallmark. Therefore, not the mean of the genes but their relative change influences the final clas-
sification. Within a single hallmark, we do not expect to have a perfect negative or positive correlation between
the genes, and their mean will be representative for the overall activity of the hallmark.

This approach is supported by the observation that many genes have inverse expression patterns—a negative
correlation in terms absolute gene expression levels. For example, for CDKN2A and CCND1 this was observed
in multiple studies '**7. In case of a negative correlation, exactly those genes should be combined for which
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Figure 3. Effect of hallmark signatures (A) and tumor mutation burden (C) on patient survival. Summary of
the significant prognostic hallmark signatures in different types of tumors (B).

the higher expression of one is linked to worse prognosis and the low expression of another also leads to worse
prognosis. By combining these into a single signature the overall power of detecting the combined effect will
increase. Because of the large number of genes involved in each cancer hallmark we believe that the combined
signature is satisfactorily robust. Of note, this issue is complicated by the fact that different genes have different
correlation to survival in different tumor types. For example both CDKN2A and CCND1 had increase expres-
sion in senescent fibroblasts '®.

Oncogenes have a major role in the control of cell proliferation, differentiation and survival during tumori-
genesis. c-MYC was the first characterized oncogene that is activated by chromosome translocation in human
Burkitt’s lymphomas *°. Expression of the altered c-MYC gene is increased in tumor cells and is associated with
extensive cell proliferation and contributes to tumor development. The association between c-MYC expres-
sion and patient survival remains controversial °, and we observed a worse prognosis in patients with higher
expression of c-MYC. Similar results were present in the case of the ERBB2 gene, which encodes a cell surface
protein-tyrosine kinase receptor that is associated with the progression of breast cancer *° and higher expres-
sion of genes in the Wnt-B-catenin pathway. This pathway is mutated in more than 85% of colorectal cancers 2'.
B-catenin (CTNNB1) is the most frequently mutated gene, and it can be detected in more than 80% of colorectal
tumors. In addition, high expression of CTNNBI is associated with shorter survival in colorectal cancer 21
Finally, overexpression of cyclin D1 (CCND1), a member of the cyclin family, also correlated with poor survival
in esophageal squamous cell carcinoma 2.

Chromosomal instability (CIN) and microsatellite instability (MSI) are the two main types of genomic insta-
bility in human cancers . The expression of genomic instability-related genes is higher in metastatic samples
than in primary tumors ?. In breast cancer, Habermann et al. performed gene expression profiling in which they
examined the correlation between gene expression, genome instability and clinical outcomes ** and identified a
12-gene aneuploidy-specific signature that is an independent predictor of clinical outcome. In our analysis, the
transcriptomic signature consisting of 150 genes contributing to genome instability ° was prognostic in eight
tumors. Among these, high signature expression was associated with poor survival in low grade glioma, liver
cancer, kidney papillary cancer, lung adenocarcinoma and sarcoma. In cervical cancer, renal clear cell carcinoma
and thymoma, the high expression of the hallmark signature was correlated with a favorable outcome.

Altered energy metabolism involves an increased rate of glycolysis and limited oxidative phosphorylation.
These features of proliferating cancer cells enable the retention of macromolecules, which help to drive con-
stitutive cell growth and proliferation *. Among the numerous metabolic pathway-associated genes, the high
expression of GLUT1, G6PD, TKTL1 and PGI/AMF are significantly correlated with decreased survival in
breast cancer »°. The FAS gene is upregulated at an early stage in multiple cancers, including breast 2, stomach ¥
and prostate cancers %% its expression is positively correlated with poor survival. Our results show that the high
expression of the transcriptomic signature of cancer metabolism-associated genes is linked to decreased survival
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Tumor types P HR P HR P HR P HR P HR P HR P HR P HR
Bladder 9.90E-09 | 0.78 1.45E-08 | 0.8 8.23E-09 | 1.48 1.92E-08 | 0.86 1.95E-08 0.86 5.56E-09 | 1.4 1.61E-08 | 1.17 6.76E-09 | 1.37
Breast 1.05E-16 | 0.64 8.41E-17 | 0.69 3.23E-16 | 0.73 1.67E-16 | 1.57 1.59E-16 1.42 7.19E-18 | 1.88 1.93E-17 | 1.59 4.02E-16 | 1.34
Cervical n.s 0.82 n.s 1.08 4.85E-02 | 1.73 7.82E-05 | 0.32 n.s 1.25 n.s 1.3 n.s 0.81 1.14E-02 | 2.19
Colon 1.45E-05 | 1.02 1.93E-06 | 0.55 1.31E-05 | 1.2 1.36E-05 | 0.97 1.29E-06 0.51 5.66E-06 | 1.57 1.40E-05 | 0.97 1.44E-05 | 1.01
Esophagus 1.94E-02 | 0.84 1.73E-02 | 0.72 1.72E-02 | 0.77 1.77E-02 | 1.21 2.01E-02 0.93 9.40E-03 | 2.16 2.60E-04 | 3.68 1.80E-02 | 0.77
Glioblastoma 1.38E-03 | 1.62 1.91E-03 | 1.53 7.66E-03 | 1.22 1.09E-03 | 0.64 2.44E-03 0.68 1.78E-03 | 1.51 8.59E-03 | 1.18 7.36E-03 | 1.26
Head and neck 3.24E-05 | 0.81 5.94E-05 | 0.87 1.74E-05 | 1.34 2.89E-05 | 1.28 4.71E-05 0.85 4.79E-05 | 1.17 1.72E-06 | 1.83 6.61E-06 | 1.49
Kidney (clear cell) | 1.60E-24 | 0.85 1.77E-25 | 0.69 8.43E-25 | 0.86 1.08E-25 | 0.69 3.02E-25 0.73 1.25E-24 | 0.86 6.68E-26 | 0.67 6.87E-25 | 0.78
Kidney (papillary) | 4.69E-10 | 2.8 6.04E-10 | 2.76 5.53E-09 | 0.54 3.38E-09 | 2.04 3.08E-09 2.64 1.84E-09 | 2.29 5.41E-12 | 0.06 7.56E-09 | 1.49
AML 8.22E-07 | 0.62 2.75E-06 | 0.76 4.57E-06 | 1.15 3.29E-06 | 1.28 1.44E-07 1.78 1.67E-06 | 1.41 6.19E-10 | 2.69 4.58E-08 | 1.98
Glioma 529E-21 | 1.82 7.40E-19 | 0.91 5.72E-22 | 2.12 1.26E-20 | 1.7 2.49E-19 1.35 9.92E-24 | 2.28 9.58E-22 | 0.5 2.48E-24 | 2.67
Liver 1.09E-05 | 1.57 2.40E-06 | 1.86 3.66E-05 | 0.7 1.01E-06 | 1.94 3.02E-05 1.37 2.89E-06 | 1.72 8.93E-05 | 1.09 1.12E-06 | 1.86
Lung (adeno) 8.35E-08 | 1.36 1.35E-07 | 1.26 1.73E-07 | 0.84 1.22E-08 | 1.53 1.29E-07 131 4.11E-09 | 1.65 6.27E-08 | 1.53 5.86E-08 | 1.43
Lung (squamous) | 8.48E-07 | 1.99 9.11E-05 | 1.45 3.73E-04 | 1.34 1.54E-04 | 0.71 2.09E-04 0.71 1.09E-03 | 1.1 7.24E-04 | 0.83 2.79E-04 | 1.34
Ovarium 1.68E-04 | 1.53 4.45E-03 | 0.87 1.05E-03 | 0.75 1.88E-03 | 0.77 5.94E-03 1.08 3.14E-03 | 0.83 4.26E-03 | 0.85 1.14E-03 | 1.36
Pancreas 7.58E-03 | 2.03 3.70E-02 | 1.82 n.s 1.51 4.84E-02 | 1.52 ns 137 ns 1.42 n.s 1.32 1.53E-02 | 1.81
Paraganglioma 6.27E-02 | 0.12 3.61 n.s 0.25 n.s 4.57 n.s 2.73 n.s 1.69 n.s * n.s 0.48
Prostate n.s * inf 9.98E-02 | * n.s inf n.s * n.s * n.s inf n.s *
Rectum 1.77E-02 | 2.8 1.36E-02 | 0.49 8.56E-03 | 0.44 2.90E-02 | 0.6 2.24E-02 0.64 3.54E-02 | 1.02 3.28E-02 | 1.39 3.53E-02 | 1.23
Sarcoma 2.83E-02 | 1.51 0.73 2.47E-03 | 0.53 2.73E-03 | 2.01 2.40E-02 1.49 2.56E-02 | 1.47 n.s 118 n.s 0.71
Melanoma 4.35E-10 | 0.67 4.29E-13 | 0.5 1.12E-10 | 0.61 8.21E-11 | 1.63 9.88E-09 1.1 2.58E-09 | 0.75 1.63E-10 | 1.6 9.99E-09 | 0.93
Stomach 2.15E-03 | 1.14 | 2.20E-03 | 1.19 1.42E-03 | 1.35 1.28E-03 | 0.75 3.74E-04 0.64 1.67E-03 | 1.21 2.50E-03 | 0.92 1.00E-03 | 1.48
Testis 5.88E-03 | * 5.72E-03 | * 3.58E-03 | * 2.96E-03 | >100 4.93E-03 * 5.81E-03 | * 5.87E-03 | >100 4.56E-03 | *
Thyroid 1.73E-10 | 0.4 6.54E-11 | 0.34 1.52E-11 | 3.38 2.36E-10 | 0.77 6.82E-11 2.02 6.40E-13 | 0.35 1.31E-11 | 6.24 2.29E-10 | 0.59
Thymoma n.s 0.43 2.35 1.24E-02 | 7.68 1.65E-02 | 0.08 n.s 0.25 8.35E-03 | 0.04 4.97E-02 | 4.11 2.83E-02 | 0.2
Uterine 2.07E-07 | 1.56 9.32E-07 | 1.54 1.34E-06 | 0.85 1.58E-06 | 1.21 7.64E-07 1.43 1.01E-06 | 1.32 1.89E-06 | 1.02 1.62E-06 | 0.82

Table 2. Multivariate Cox regression analysis of hallmark gene signatures after including sex, race, stage, grade
and age. Significant p (p <0.05) and HR values in univariate and both uni- and multivariate survival analyses
are bold and italics, respectively. HR values with asterisk (*) shows that there are not any events in one of the
groups in the survival analysis*.

in acute myeloid leukemia, head and neck cancers, breast cancer, lung adenocarcinoma and melanoma. However,
in kidney renal clear cell carcinoma, kidney papillary cancer and low grade glioma, the high expression of the
signature was associated with a better outcome.

Epithelial-mesenchymal transition (EMT) is a multistep process that contributes to the migratory and invasive
capacity of cells, which are essential for the development and metastasis of cancer *. In many types of cancer,
including breast and head and neck cancers, developmental EMT pathways such as Notch have been reported
to be dysregulated, and activation of these pathways often correlates with poor survival %. The suppression of
EMT results in the increase of cell proliferation with increased expression of nucleoside transporters in pancre-
atic tumors. These changes lead to enhanced sensitivity to gemcitabine treatment and increased overall survival
in mice *°. The importance of EMT is supported by our observation that the transcriptomic signature of the
tumor invasion and metastasis activation-associated genes > had prognostic significance in the highest number
of tumors. Among the tumors, the high expression of the signature was linked to poor survival outcome in low
grade glioma, liver cancer, acute myeloid leukemia, cervical cancer, head and neck cancers, pancreas cancer,
bladder cancer and lung adenocarcinoma.

The resistance of cancer cells to apoptosis is a fundamental aspect of cancer development, which includes the
upregulation of antiapoptotic proteins and the downregulation of proapoptotic proteins *'. The number of gene
expression signature studies of apoptotic genes is limited, and studies more commonly reflect on single apoptotic
genes. Holleman et al. performed a microarray gene expression study in which they examined the expression
pattern of 70 key apoptotic genes in acute lymphoblastic leukemia (ALL) and concluded that leukemia subtypes
have a unique expression pattern of apoptosis genes and that select genes are linked to cellular drug resistance
and prognosis in childhood B-lineage ALL *. Another study investigated 40 genes involved in the extrinsic and
intrinsic pathways in myeloma cells, and these genes were linked to poor prognosis and were overexpressed in
normal plasmablastic cells **. In our study, the cell death resistance signature based on a set of 119 genes**** was
linked to poor survival in liver and pancreatic cancers and good survival in melanoma, kidney renal clear cell
carcinoma, breast cancer and thyroid cancer.

In brief, RNA-seq-based transcriptomic data were utilized to perform survival analysis across 26 different
types of cancer. Strikingly, the signatures constructed from the cancer hallmark genes showed tumor type-specific
correlations with survival. Individual cancer hallmark genes showing prognostic significance in more than 10
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Figure 4. Best performing genes in at least 10 distinct tumor types.

cancer types were also uncovered. These results help to prioritize targeting the most relevant hallmark for drug
development in each tumor type.

Methods

Database setup. All data processing steps and statistical analyses were performed in the R v3.5.2 statisti-
cal environment (http://www.r-project.org). The source code are available at GitHub: https://github.com/adam-
nagy91/pancancer_survival_analysis. RNA sequencing (RNA-seq) data were utilized from the Cancer Genome
Atlas (TCGA, https://cancergenome.nih.gov/). Only tumor types with more than 100 cancer specimens were
included to ensure a robust sample number in each analysis.

The RNA-seq HTSeq count data generated by the Illumina HiSeq 2000 RNA Sequencing Version 2 platform
were used in the expression analyses. The “DESeq” package based on the negative binomial distribution was
used to normalize the raw count data *°. The Bioconductor “AnnotationDbi” package (http://bioconductor.org/
packages/AnnotationDbi/) was applied to annotate Ensembl transcript IDs with gene symbols (n=25,228). A
second scaling normalization was performed to set the mean expression of all genes in each patient sample to
1000 to reduce batch effects.

For each sample, the preprocessed and annotated Mutation Annotation Format (MAF) data files that were
generated by using MuTect2 for variant detection were used to compute the tumor mutation burden. The
“maftools” package (http://bioconductor.org/packages/maftools/) was used for the aggregation and visualiza-
tion of mutation data.

Defining cancer hallmark signatures. Altogether, 671 cancer genes were grouped into eight hallmarks
4, based on gene assignment to hallmarks as described previously °. The surrogate hallmark expression signature
was calculated by computing the mean expression of all genes associated with the given hallmark in each tumor
sample.

Survival analysis and calculation of the strongest cutoff. Cox proportional hazards regression anal-
ysis was performed to examine the correlation between gene expression and overall survival (OS). The “survival”
R package v2.38 (http://CRAN.R-project.org/package=survival/) was utilized to calculate log-rank P values, haz-
ard ratios (HR) and 95% confidence intervals (CI). In addition, the survival differences were visualized by gen-
erating Kaplan—Meier survival plots.

Scientific Reports |

(2021) 11:6047 | https://doi.org/10.1038/s41598-021-84787-5 nature portfolio


http://www.r-project.org
https://github.com/adam-nagy91/pancancer_survival_analysis
https://github.com/adam-nagy91/pancancer_survival_analysis
https://cancergenome.nih.gov/
http://bioconductor.org/packages/AnnotationDbi/
http://bioconductor.org/packages/AnnotationDbi/
http://bioconductor.org/packages/maftools/
http://CRAN.R-project.org/package=survival/

www.nature.com/scientificreports/

To maximize the sensitivity of the analysis and to uncover any potential correlation to survival independent
of a preset cutoft value (e.g., median), we computed each possible cutoff between the lower and upper quartiles
of expression. Then, each of these cutoff values was used in a separate Cox regression analysis. The false discovery
rate (FDR) was computed to correct for multiple hypothesis testing, and the result was only accepted as significant
in the case of FDR < 10%. The best performing cutoff with the lowest p value was used in the final analysis when
drawing the Kaplan-Meier plot.

In addition, multivariate survival analysis was performed for the gene expression and clinical features to
assess independence from known epidemiological and clinical variables, including race, sex, age, tumor stage
and tumor grade.

Data visualization. Hierarchical clustering was applied to group and to visualize the survival-associated
cancer hallmark genes in different types of cancer using the Genesis software *’. The “forestplot” R package
(https://CRAN.R-project.org/package=forestplot) was used to examine the association of cancer hallmark gene
signatures with OS across different types of cancer. The “survplot” R package (http://www.cbs.dtu.dk/~eklund/
survplot/) was used to generate the Kaplan-Meier plots.

Gene set enrichment analysis (GSEA). Gene set enrichment analysis (GSEA) * was performed for the
most significant cancer hallmark genes (Fig. 4B-I). Patients were divided into high and low expression groups
based on the expression of the selected gene across all patients within each tumor type. To categorize patients
into two groups, we used the same cutoff point also used in the survival analysis. These categories were to des-
ignate the “phenotype labels” in the gene set enrichment analysis. The normalized RNA-seq expression and the
built in “hallmark cancer genes” sets were used as expression datasets and gene set database, respectively.

Data availability
TCGA (The Cancer Genome Atlas) dataset is available using the following link: https://portal.gdc.cancer.gov/.
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