SCIENTIFIC REPLIRTS

DNA Methylation QTL

Allan F. McRae®?, Riccardo E. Marioni®**, Sonia Shah?, JianYang(®??, Joseph E. Powell®,
. Sarah E. Harris**#, Jude Gibson®, Anjali K. Henders?, Lisa Bowdler®, Jodie N. Painter®,
Received: 14 April 2016 . Lee Murphy®?, Nicholas G. Martin®¢, John M. Starr*’, Naomi R. Wray2, lan J. Deary*?8,

Accepted: 12 November 2018 Peter M. Visscher%* & Grant W. Montgomery®?

Published online: 04 December 2018 © DNA methylation plays an important role in the regulation of transcription. Genetic control of

. DNA methylation is a potential candidate for explaining the many identified SNP associations

. with disease that are not found in coding regions. We replicated 52,916 cis and 2,025 trans DNA

. methylation quantitative trait loci (nQTL) using methylation from whole blood measured on lllumina

. HumanMethylation450 arrays in the Brisbane Systems Genetics Study (n =614 from 177 families) and

. the Lothian Birth Cohorts of 1921 and 1936 (combined n =1366). The trans mQTL SNPs were found

. to be over-represented in 1 Mbp subtelomeric regions, and on chromosomes 16 and 19. There was a
significant increase in trans mQTL DNA methylation sites in upstream and 5’ UTR regions. The genetic
heritability of a number of complex traits and diseases was partitioned into components due to mQTL
and the remainder of the genome. Significant enrichment was observed for height (p =2.1 x 10719),
ulcerative colitis (p =2 x 10~%), Crohn’s disease (p =6 x 10~%) and coronary artery disease
(p=5.5 X 10~%) when compared to a random sample of SNPs with matched minor allele frequency,
although this enrichment is explained by the genomic location of the mQTL SNPs.

DNA methylation plays an important role in transcriptional regulation and is increasingly recognised as having
arole in health and disease'* The contribution of genetic variation to the inheritance of DNA methylation levels
across a range of tissues has been widely demonstrated both through studies investigating the heritability of DNA
methylation using twin pairs and families®~, and through the identification of methylation quantitative trait loci
or mQTL acting in both cis and trans’-2!.

As the majority of single nucleotide polymorphisms (SNPs) associated with complex traits and disease are
found in non-protein coding regions®, it is hypothesised that the SNPs act through the perturbation of the
regulation of gene-expression. DNA methylation QTL have been associated with other genomic marks that
affect gene regulation, including DNase I accessibility and histone modifications'®!’, as well as directly with
gene-expression'>!°. Therefore, they are potential causal variants for disease. Indeed, the overlap between mQTL

. and disease SNPs has been investigated previously, finding inflation for the number of mQTL in bipolar risk

. SNPs!}, schizophrenia!® and autoimmune disease!”.

: These published studies indicate that mQTL have an influence in disease risk, however some aspects of the

* methodological approach in determining the significance of the overlap may be sub-optimal. For example, most
identified mQTL have been found using Illumina HumanMethylation arrays, but the analytical methods have

. not recognised that the measures of DNA methylation are distributed non-randomly throughout the genome.

: Most of the DNA methylation probes on these arrays are located in genic regions, and, given that the majority of
mQTL are found in cis to DNA methylation sites, the mQTL SNPs are also preferentially located in genic regions.
Genic regions are also known to explain a larger proportion of the genetic variation underlying complex traits
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SNP Location

Probe Location
Figure 1. Location of replicated mQTL across the genome. Each point represents a replicated mQTL with
the position of the CpG site on the X-axis and the SNP location on the Y-axis. Chromosome boundaries are

indicated with dashed lines. The diagonal line shows an abundance of cis mQTL throughout the genome. Also
visible are horizontal bands of trans mQTL in the telomeric regions of the chromosomes. See also Figure S1.

and disease?’. Therefore, any analysis looking into the overlap of mQTL with SNPs identified in genome-wide
association studies (GWAS) needs to account for the proportion of methylation sites assessed in different genomic
regions. In addition, determining the overlap between a mQTL and disease SNP often uses criteria such as an
arbitrary linkage disequilibrium (LD) threshold of r* > 0.8 between the best disease GWAS SNP and the mQTL
SNP. This implicitly assumes that a common causal variant for the mQTL and disease is being tagged by two dif-
ferent SNPs, rather than there being two different causal variants.

In this study we identify >50,000 mQTL in whole blood that are replicated at a stringent significance level
in the Brisbane Systems Genetics Study (BSGS)®** and the Lothian Birth Cohorts of 1921 and 1936 (LBC)*-%".
We then use LD Score regression?®? to partition the genetic variation for complex traits and diseases into com-
ponents due to mQTL SNPs and the remainder of the SNPs in the genome using summary statistics from large
GWAS meta-analyses. These results are compared to null distributions generated by selecting random sets of
SNPs that have been matched by allele frequency or by both allele frequency and genomic annotation. This anal-
ysis both avoids the selection of an arbitrary linkage disequilibrium threshold above which mQTL and disease
SNPs are considered as overlapping, and accounts for the non-random distribution of methylation sites tested
across the genome, providing an unbaised assessment of the role of mQTL in complex traits and disease.

Results

Identification of MQTL. Due to prior evidence showing large cis SNP effects on DNA methylation, we
firstly tested for association in a window spanning 2 Mbp on both sides of the target CpG site. This window is
larger than what is usually considered for cis mQTL, but our prior observation of significant cis mQTL effects
spanning this far in the MHC region on chromosome 6 indicated a larger window is warranted®. This was further
justified by noting that the number of cis mQTL rapidly drops off to a constant background level between 1 and 2
Mbps from the target CpG site (Figure S1).

A total of 62,257 and 61,180 cis mQTL were identified in whole blood in the BSGS and LBC cohorts respec-
tively at a significance threshold of p < 107!1. While only the most significant SNP for each DNA methylation
probe is considered, many of the mQTL are non-independent due to both correlations between DNA methylation
levels for probes separated by small distances and through linkage disequilibrium between SNPs. Of these, 52,916
(~85%) replicated in the other cohort at Bonferonni corrected significance threshold of p < 107 and also had
SNP effects on DNA methylation in the same direction in the other cohort. The correlation of cis mQTL effect
sizes between the two cohorts was 0.97. Thus we have stringently replicated cis mQTL for more than 13% of the
methylation sites tested.

Trans mQTL were defined using a more stringent significance threshold of p < 10~** to account for the extra
multiple testing burden from testing association with the whole genome. The number of significant trans mQTL
found in the BSGS and LBC was 2,454 and 2,048 respectively. Of these, 2,025 replicated in the other cohort with a
Bonferonni corrected p-value of p < 107° and also had the same direction of effect. The correlation in trans mQTL
effect sizes across the two cohorts was 0.91. The location of the replicated mQTL are given in Fig. 1. The extremely
high replication rate for both cis- and trans-mQTL in independent samples demonstrates the high quality of the
data and reliability of the results.

The proportion of phenotypic variation in DNA methylation levels explained by all replicated mQTL in the
LBC cohort is given in Fig. 2. As expected from QTL identified using limited sample sizes (as compared to con-
temporary GWAS for complex traits and disease), the phenotypic variation explained by the mQTL is very large,
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Figure 2. Proportion of phenotypic variation of DNA methylation levels explained by mQTL in the LBC
cohort.

with 8% of cis mQTL explaining greater than 50% of phenotypic variation. While trans mQTL still explain a
substantial proportion of the phenotypic variance, the overall distribution has fewer mQTL explaining very large
amounts of variance. The effect of the “winner’s curse”, where the variance explained by the top SNPs identified
in a GWAS is biased upwards, is likely to be small in this study given the stringency of testing and the high rep-
lication rate.

There is potential for SNPs located within DNA methylation probe binding regions to have an effect on the
measurement of methylation levels, and thus potentially create false positive mQTL. To address this, we used the
1000Genomes (v3) European samples to identify any genetic variation within a probe site and identified a SNP
in 27% of the probes passing QC. It is of note that many of the SNPs identified within probe sequences are rare
and would not be in strong linkage disequilibrium with the common (>1% frequency) SNPs used for the GWAS.
For trans mQTL, it is very unlikely that a SNP in the probe site was associated with the mQTL SNP, particularly
given the very stringent significance thresholds that were used for mQTL mapping. This is reflected in 499 (25%)
trans mQTL having a SNP in the probe site, which is the same as the null proportion of probes that do not have an
associated mQTL that have SNPs in their binding site (85,621/342,967). SNPs were found within the probe bind-
ing site for 22,267 (42%) of cis mQTL. Thus, we can potentially attribute 15% (42-27%) of cis mQTL to genetic
variation within the probe location causing genotype specific measurement error. However, it can also be argued
that the majority of cis mQTL are found within a very small distance of the probe location, and it would not be
surprising for genetic variation very close to a CpG site to have a genuine effect on methylation levels. To take an
extreme example, a SNP falling within a CpG site completely disrupts DNA methylation at this site, which occurs
for 6,160 (12%) of cis mQTL. For this reason, we include all mQTL - regardless of the identification of SNP within
the probe site - in the further analyses.

Genomic Distribution of Trans mQTL. From Fig. 1, we have an indication that the distribution of trans
mQTL SNPs is non-randomly located throughout the genome. This is investigated in Fig. 3, which shows there
is a large number of trans mQTL SNP located on chromosomes 16 and 19 given their respective sizes. This may
not be surprising under a polygenic model of inheritance given those chromosomes have a higher gene density
than other chromosomes. However, this inflation is beyond that expected given the gene count on those two
chromosomes. The rest of the genome shows a strong correlation between number of genes on a chromosome and
the number of trans mQTL SNPs, except for chromosome 1 which has fewer trans mQTL SNP than expected. Of
interest, chromosome 19 contains DNMT1 (DNA methyltransferase 1) that has a role in the establishment and
regulation of DNA methylation. However, there is no clustering of trans mQTL SNPs around its location.

There are clear horizontal bands of SNPs in Fig. 1, located in the subtelomeric regions of the genome. Indeed,
17.9% of all trans mQTL SNP are located in telomeric regions covering the 1 Mbp at the end of chromosomes,
which represents 1.53% of the genome. There is also some inflation of the numbers of trans mQTL methylation
probes found in the 1 Mbp subtelomeric region (7.0%), but this is primarily due to the increased number of array
probes in the subtelomeric region (5.5%) and this inflation is reflected in the number of cis mQTL methylation
probes also (7.5%). Given the association with trans mQTL SNP in subtelomeric regions, we tested whether the
trans CpG probes or SNPs were significantly associated with telomere length in the LBC1936 cohort. This iden-
tified no inflation of test statistics for either the SNPs or methylation compared to the whole genome (Figure S3).

Unlike trans mQTL SNPs, the CpG probe locations showed no clustering across the genome. To investigate a
functional role of the trans mQTL methylation sites, we annotated the genomic locations of all the array probes
tested (Table 1). As expected from the design of the array, the majority of the probe CpG targets were located in
genic regions. While cis mQTL methylation probes showed no large deviation in genomic annotation from all
probes, the number of trans mQTL CpGs was substantially inflated in both upstream and 5’ UTR regions.
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Figure 3. Chromosomal location of trans mQTL SNP. (a) Chromosomes 16 and 19 have a large number
of trans mQTL SNPs, and this inflation is beyond that expected due to the increased gene density on those
chromosomes. (b) Trans mQTL SNPs on chromosomes 16 and 19 effect DNA methylation throughout the
genome.

Intronic 33.7% 36.0% 28.1%
Intergenic 21.3% 25.8% 14.5%
Upstream 19.2% 17.2% 29.5%
Exonic 9.0% 6.6% 7.1%
UTR5 6.0% 3.4% 13.2%
UTR3 3.8% 3.6% 1.7%
ncRNA-intronic 2.5% 2.9% 1.4%
ncRNA-exonic 1.5% 1.4% 1.8%

Table 1. Genomic annotation of mQTL CpG site locations. Only categories from ANNOVAR that contain
greater than 1% of probes are included. A substantial inflation of “Upstream” and “UTR5” is found for probes
with trans mQTL.

Role of mQTL in Complex Traits and Disease. To assess the role of mQTL in driving the phenotypic
variation of complex traits and disease, we used LD Score regression®®? to partition the trait heritability into
components due to mQTL and the rest of the genome. LD Score regression uses summary statistics from GWAS,
allowing us to investigate a range of traits and diseases using results from large consortia (for height*’, BMI*!,
schizophrenia®?, ulcerative colitis**, Crohn’s disease®®, coronary artery disease®, type 2 diabetes®, rheumatoid
arthritis®®, and educational attainment®).

The replicated mQTL were firstly filtered to have no SNP pairs with an estimated r? of greater than 0.8. This
allows for straightforward generation of sets of SNPs to estimate the distribution of variance explained under
the null hypothesis, as then the LD structure is similar to that of a random set of minor allele frequency matched
SNPs. Two different null hypotheses were used. The first (null #1) accounted for the fact that on average SNPs
with a higher heterozygosity explain more variation in a trait by drawing random sets of SNPs with a matched
minor allele frequency (in bins of 0.05 width). The second (null #2) in addition matched the genomic location
of randomly sampled SNPs using annotation from ANNOVAR?. This accounts for the observation that a large
proportion of the genetic variation in complex traits is explained by genic regions and that the array (and thus cis
mQTL locations) is very gene centric.

Under null #1, height, ulcerative colitis, Crohn’s disease and coronary artery disease all showed a significant
inflation of the proportion of genetic variation explained by mQTL (Table 2), although none of these were sig-
nificant after accounting for the genomic location of the mQTL SNP (null #2). However, sets of SNPs generated
for null #2 tag many of the same regions of the genome as the mQTL SNP due to large number of genic mQTL
identified in this study compared to genes in the genome. Thus it is not surprising that none of the tests under
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mQTL Null #1 Null #2
Trait SNP N * Proportion | Mean (S.E.) P-value Mean (S.E) P-value
Height 2,517,431 253,288 0.330 0.083 (0.040) 2.1x10°1° 0.269 (0.052) 0.12
BMI 2,524,366 322,154 0.245 0.206 (0.084) 0.32 0.303 (0.096) 0.73
Schizophrenia 6,101,975 82,3157 0.262 0.152 (0.046) 0.0098 0.271 (0.047) 0.57
Ulcerative colitis** 1,346,293 27,432 0.333 0.071 (0.064) 2x107° 0.299 (0.094) 0.37
Crohn’s Disease™* 948,687 20,883 0.305 0.053 (0.048) 6x10°8 0.252 (0.071) 0.23
Coronary Artery Disease 2,398,186 86,995 0.292 0.038 (0.058) 55x107° 0.238 (0.076) 0.24
Type 2 Diabetes 2,411,307 80,788 0.297 0.172 (0.106) 0.12 0.253 (0.095) 0.32
Rheumatoid Arthritis** 8,409,120 58,284 0.136 0.087 (0.104) 0.32 0.202 (0.127) 0.70
Educational Attainment 2,291,668 126,559 0.110 0.114 (0.062) 0.52 0.227 (0.073) 0.94

Table 2. LDScore regression partitioning of the heritability for a variety of traits and disease. For each trait, the
heritability was partitioned into components explained by mQTL and the rest of the genome and the proportion
of the total explained heritability attributable to mQTL was calculated. Several phenotypes showed a significant
role of mQTL under the first null hypothesis (matched allele frequencies) but these did not remain significant
when SNPs were matched to genomic location (Null #2). *N =N_cases + N_controls for case-control studies.
**Excluding the HLA region of chromosome 6. "Contains non-European samples.

null #2 are significant, and we cannot distinguish between the hypotheses of close linkage and causality. It is of
note that all of those tests that were significant under null #1 explained more than average variation under null #2.

Due to the limitations of the genomic partitioning, a second approach to investigate the effect of mQTL on
complex traits and disease was taken. If mQTL are a driving force behind phenotypic variation, then it would be
expected that mQTL SNPs with large effects on DNA methylation would also have large effects on the complex
trait. To test this, we estimated the correlation between the mQTL SNP effect size and its effect from the large
GWAS studies. The absolute value of the effect (or log odds-ratio) on both DNA methylation and the trait was
used as it is expected that there will be variation in whether DNA methylation is protective or not for different
regions of the genome. In addition, the effect sizes were corrected for the expected relationship between effect size
and minor allele frequency by multiplying the effect size by ./2f(1 — f), where fis the minor allele frequency of
the SNP. After correcting for minor allele frequency, no significant correlation was observed between the effects
sizes of the SNPs on the mQTL and the corresponding SNP effect sizes on any of the tested traits (Table S2).

Discussion

We have identified 52,916 cis and 2,025 trans mQTL that are replicated across two independent cohorts at very
stringent significance levels. While the mQTL can explain a large proportion of the genetic variation underlying
DNA methylation variation, there is still substantial genetic variation remaining to be explained. Using the twin
family structure in the Brisbane Systems Genetics Study, we have previously shown that the average heritability of
DNA methylation at sites measured by the Illumina HumanMethylation450 array is 0.187°. The average propor-
tion of phenotypic variation explained by all mQTL across all DNA methylation probes in this study (including
probes that had no mQTL and thus explained zero variation) is 0.021. Thus, the mQTL identified here explain
approximately 11.2% of the total genetic variation for DNA methylation. This implies there is substantial genetic
variation for DNA methylation remaining to be discovered through additional variants in cis and/or many more
trans variants with small effects in larger samples.

By partitioning heritability into components due to mQTL SNPs and the rest of the genome, we established
that the identified mQTL explained a significant amount of the genetic variation for a number of complex traits
and diseases. Using a null distribution generated by randomly sampling SNPs from the genome with matching
minor allele frequencies showed significant amounts of genetic variation were explained by mQTL for height,
schizophrenia, ulcerative colitis, Crohn’s disease, and coronary artery disease. This enrichment of mQTL in dis-
ease associated regions was explained by the genomic location of the mQTL SNP. This is due to most mQTL
SNP being cis to the DNA methylation probes, which also tend to be found in genic regions due to the design
of the array, combined with the observation that genic regions explain more of the heritability for many traits?.
Previous studies that have shown a relationship between mQTL and bipolar disorder!! and schizophrenia'® QTL
whilst only considered MAF when sampling SNPs for the null distribution, and, as demonstrated here, the results
are likely to be driven by the common genomic function of the SNPs. Testing for a role of mQTL in complex traits
and disease beyond that explained by genomic location is difficult due to the large number of mQTL replicated in
this study. This means that a large proportion of genes in the genome are tagged by an mQTL and any null sam-
ple of SNPs will cover many of the same genomic regions. This makes any test for the proportion of heritability
explained by mQTL being extremely conservative.

Determining whether associations detected in the same genetic region for DNA methylation and a disease are
the result of (mediated) pleiotropy or just close linkage is a difficult prospect. To have potential for pleiotropy, the
set of potential causal variants for the two associations will need to overlap. Fine-mapping to a set of potential
causal variants can be determined by statistical prioritisation using only association statistics®*!, or in combi-
nation with other genomic data*~*. Reducing the set of potential causal variant(s) underlying a mQTL using
these approaches is helped by the large amount of phenotypic variation the mQTLs explain. There is also strong
potential to determine causal SNPs for mQTLs in cell lines using CRISPR genome editing*® as the end phenotype
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is directly observable in the cell, unlike the case for complex traits and disease where a phenotype to investigate
in cell lines is generally unclear.

We observed a strong over-representation of trans mQTL SNP in the 1 Mbp subtelomeric region of the
genome, as had been previously noted!’. No association of the trans mQTL SNP or methylation probes was
found with telomere length in the LBC1936 cohort. The trans mQTLs were significantly inflated for methylation
probes found in the upstream regions of genes, indicating a potential effect on the regulation of gene-expression.
However, there was no overlap with trans eQTLs identified in the BSGS?*. The mechanism and potential impor-
tance of subtelomeric regions in altering DNA methylation throughout the genome warrants further investigation
and at this stage artefacts of the technology cannot be excluded.

In summary, we have identified and replicated a large number of genetic loci associated with DNA methyla-
tion in both cis and trans. We demonstrated an overlap of mQTL and loci for complex traits and diseases, which
was explained by the genomic location of the mQTL SNPs.

Materials and Methods

Brisbane Systems Genetics Study (BSGS). DNA methylation was measured on 614 individuals from
177 families of European descent recruited as part of a study on adolescent twins and selected from individuals
in the Brisbane Systems Genetics Study®?**. Families consist of adolescent monozygotic (MZ) and dizygotic (DZ)
twins, their siblings, and their parents. DNA was extracted from peripheral blood lymphocytes by the salt pre-
cipitation method*. The BSGS study was approved by the Queensland Institute for Medical Research Human
Research Ethics Committee, and all methods were performed in accordance with the relevant guidelines and
regulations. All participants gave informed written consent.

Lothian Birth Cohorts. Methylation data were analysed from the combined data of the Lothian Birth
Cohort 1921 (LBC1921) and the Lothian Birth Cohort 1936 (LBC1936)**~%’. The LBC1921 and LBC1936 are
longitudinal studies of ageing, with a focus on cognition, in groups of initially healthy older people. DNA meth-
ylation was measured in 446 LBC1921 subjects at an average age of 79 years, and in 920 LBC1936 subjects at an
average age of 70 years?. Following informed consent, venesected whole blood was collected for DNA extraction
by standard methods in both LBC1921 and LBC1936. Ethics permission for the LBC1921 was obtained from
the Lothian Research Ethics Committee (Wave 1: LREC/1998/4/183). Ethics permission for the LBC1936 was
obtained from the Multi-Centre Research Ethics Committee for Scotland (Wave 1: MREC/01/0/56), the Lothian
Research Ethics Committee (Wave 1: LREC/2003/2/29) and all methods were performed in accordance with the
relevant guidelines and regulations. Written informed consent was obtained from all subjects.

DNA Methylation. DNA methylation was measured using Illumina HumanMethylation450 BeadChips as
described in detail elsewhere®*. The HM 450 BeadChip-assessed methylation status was interrogated at 485,577
CpG sites across the genome. It provides coverage of 99% of RefSeq genes. Methylation scores for each CpG site
are obtained as a ratio of the intensities of fluorescent signals and are represented as 3-values. DNA methylation
data for the BSGS is available at the Gene Expression Omnibus under accession code GSE56105, and the LBC
data is available at the European Genome-phenome Archive under accession number EGAS00001000910.

Probes on the sex chromosomes or having been annotated as binding to multiple chromosomes*® were
removed from the analysis, as were non CpG sites. Probes with excess missingness or high numbers of individuals
with detection p-value less than 0.001 were also removed. After cleaning, 397,710 probes remained for association
analysis in both cohorts.

Normalisation. Array data were background corrected, followed by individual probes being normalised
using a generalised linear model with a logistic link function. Corrections were made for the effects of chip (which
encompasses batch processing effects), position on the chip, sex, age, agez, sex x age and sex X agez. In addition,
the LBC data were corrected for white blood cell counts (basophils, eosinophils, monocytes, lymphocytes, and
neutrophils). The LBC data were normalised for the two cohorts individually before combining the data for fur-
ther analysis.

Outlying data points can result in a high number of false positive in GWAS analysis when associated with
rare variants. To address this, the BSGS cohort removed any measurement at a probe that was greater than five
interquartile ranges from its nearest quartile. In the LBC, probes that had such outliers were restricted to testing
association with SNPs having a minor allele frequency greater than 5%.

Genotyping and Imputation. Both the BSGS and LBC were genotyped on Illumina 610-Quad Beadchip
arrays, with full details of genotyping procedures described elsewhere**°. After standard quality control, the
BSGS and LBC had 528,509 and 549,692 SNPs remaining respectively.

The remaining genotyped SNPs were phased using SHAPEIT*'*? and imputed against 1000 Genomes Phase
I Version 3°*** using Impute V256, Raw imputed SNPs were filtered to remove any SNPs with low imputation
quality as defined by an r? < 0.8. Subsequent quality control removed SNPs with MAF < 0.05, and those with
HWE p <1 x 107 The “best-guess” (highest probability) genotype was used for the GWAS analyses.

Genome-Wide Association Analysis. Genome-wide association (GWAS) was performed individually on
the BSGS and LBC cohorts, with each serving as an independent discovery cohort and replication performed in
the other. Association testing was performed using MERLIN*” using the-fastAssoc option for the BSGS cohort
(to account for family structure) and PLINK® for the combined LBC cohorts.

To reduce the massive computational burden, GWAS was performed in two stages. Firstly the cis region to the
methylation probe - defined as a window 2 Mbp each side of the target CpG site location - was investigated. A
significance threshold of 107! was used, which is a stringent p = 0.05 Bonferroni correction for the approximate
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number of independent SNPs in the window and number of probes analysed. Significant associations were rep-
licated with a Bonferroni corrected (based on the approximate number of independent mQTL) p-value of 106
and having effect in the same direction in the other sample. When a single methylation probe had a replicated
association from both cohorts but at a different SNP, the SNP with the best combined evidence of association was
selected for further analyses.

Association with trans SNPs (defined as all SNPs outside the 4 Mbp window used in the cis analysis) was per-
formed in two steps. Firstly, all chromosome/probe pairs were analysed on non-imputed genotyped data, which
reduced the number of tests performed by a factor of 10. This was particularly important for the BSGS cohort
which had related individuals and thus was much slower to analyse. Any chromosome/probe pair that had an
association at p < 1077 was then reanalysed using imputed SNP data. An experiment-wide significance of 1073
was used for trans associations, which is the standard GWAS genome-wide significance threshold of 5 x 107#
Bonferroni corrected for the number of probes tested. The replication threshold of 1075 was used, again being
more stringent than a 5% significance Bonferroni corrected for the number of associations to be replicated.

Genomic Annotation of SNP and Methylation Sites. SNPs and the CpG targets of methylation probes
were functionally annotated using ANNOVAR?, using the hg19 annotation with the distance of the upstream and
downstream regions of genes being 2 Mbp to align with our definition of cis loci.

Telomere Measurements. Telomere length was measured using the same blood sample as methylation
in the LBC1936 cohort using a quantitative real-time polymerase chain reaction (PCR) assay®. The intra-assay
coeflicient of variation was 2.7% and the inter-assay coeficient of variation was 5.1%. Four internal control
DNA samples were run within each plate to correct for plate-to-plate variation. These internal controls are cell
lines of known absolute telomere length whose relative ratio values (telomere starting quantity/glyceraldehyde
3-phosphate dehydrogenase starting quantity) were used to generate a regression line by which values of rela-
tive telomere length for the actual samples were converted into absolute telomere lengths. Measurements were
performed in quadruplicate and the mean of the measurements used. PCRs were performed on an Applied
Biosystems (Pleasonton, CA, USA) 7900HT Fast Real Time PCR machine.

Partitioning Heritability. The heritability of a trait explained by all GWASed SNPs was partitioned in to
a component due to all discovered mQTL and all remaining SNP using LD Score regression®*%. The sum of the
LD r* values for between that target SNP and all other SNPs within the 1 Mbp region centred on the target SNP,
and was calculated using the European samples from the 1000 Genomes project™>* using the software GCTA (-
1d-score option)®!. The LD score at a SNP, j, is then calculated as:

— 2_ 1
Lj_1+2r—N W

Where # is the number of SNP in the window and N is sample size used to calculate the 2 measures.
Using the summary statistics from a large GWAS for a quantitative trait or disease, the heritability of the trait
is partitioned into components due to mQTL and the rest of the genome using a regression

2
X; = @ +Buonilimare + Geljc 2)

where ij is the chi-square test statistics for SNP j. The heritability attributable to mQTL is calculated as

Buar * Muor
Nowas (3)

where M,,,or; is the number of mQTL SNPs and Ny is the sample size of the GWAS from which the summary
statistics were obtained. The heritability attributable to the rest of the genome is calculated similarly.

Data Availability

DNA methylation data for the BSGS is available at the Gene Expression Omnibus under accession code
GSE56105, and the LBC data is available at the European Genome-phenome Archive under accession number
EGAS00001000910.
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