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Estimating sleep parameters using 
an accelerometer without sleep 
diary
Vincent Theodoor van Hees  1, S. Sabia2,3, S. E. Jones  4, A. R. Wood4, K. N. Anderson5, 

M. Kivimäki  3, T. M. Frayling4, A. I. Pack6, M. Bucan7,8, M. I. Trenell9, Diego R. Mazzotti6, 

P. R. Gehrman6,8, B. A. Singh-Manoux 2,3 & M. N. Weedon4

Wrist worn raw-data accelerometers are used increasingly in large-scale population research. We 

examined whether sleep parameters can be estimated from these data in the absence of sleep diaries. 

Our heuristic algorithm uses the variance in estimated z-axis angle and makes basic assumptions 

about sleep interruptions. Detected sleep period time window (SPT-window) was compared against 

sleep diary in 3752 participants (range = 60–82 years) and polysomnography in sleep clinic patients 
(N = 28) and in healthy good sleepers (N = 22). The SPT-window derived from the algorithm was 10.9 
and 2.9 minutes longer compared with sleep diary in men and women, respectively. Mean C-statistic to 
detect the SPT-window compared to polysomnography was 0.86 and 0.83 in clinic-based and healthy 
sleepers, respectively. We demonstrated the accuracy of our algorithm to detect the SPT-window. The 

value of this algorithm lies in studies such as UK Biobank where a sleep diary was not used.

Wrist-worn raw-data accelerometers are increasingly used for the assessment of physical activity in large popula-
tion studies such as the Whitehall II study or mega-cohorts such as UK Biobank133. Ve decision to use raw-data 
accelerometers is motivated by the improved comparability of output across diferent sensor brands4,5, and better 
control over all steps in data processing6. Accelerometers are commonly worn for 24 hours per day, thus providing 
information over the day and night; making them potentially valuable for sleep research.

A major challenge in accelerometer-based sleep measurement is to derive sleep parameters without additional 
information from sleep diaries1,3,7. Standard methods for sleep detection based on conventional accelerometers 
(actigraphy) involves asking the participant to record their time in bed, sleep onset, and waking up time8310. In a 
previous paper we developed a method to detect sleep guided by sleep diary records11. However, the increasing 
use of accelerometry in studies worldwide without sleep diaries necessitates the development of novel methods 
to derive indicators of sleep behaviour, in the absence of sleep diary records. A crucial step is the detection of 
the sleep period time window (SPT-window), which is the time window starting at sleep onset and ending when 
waking up ager the last sleep episode of the night. Once the SPT-window can be detected without a diary, our 
previously published method can be used to detect sleep episodes within this window11. Polysomnography (PSG) 
is considered the gold-standard measure of sleep parameters, making it an ideal methodology to validate sleep 
detection methods using an accelerometer. Additionally, experiments in daily life can be used to establish con-
current validity with sleep diary.

We aim to develop and evaluate a heuristic algorithm for the detection of the SPT-window from raw data 
accelerometers unaided by a sleep diary and to compare sleep parameters (waking up, sleep onset time and 
SPT-window duration) with sleep diary records assessed in the daily life of a large cohort of older adults, and with 
PSG data collected in a sleep clinic and a group of healthy good sleepers.
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Methods
Study population. In order to assess the validity of our algorithm in diferent settings and against both data 
from sleep diary and polysomnography, data are drawn from three diferent study populations described below.

Ve Whitehall II cohort study12: full details on data collection were previously described11. Briefy, acceler-
ometer measurement was added to the study at the 2012/2013 wave of data collection for participants seen at 
the central London clinic and for those living in the South-Eastern regions of England who underwent a clinical 
evaluation at home2. Of the 4879 participants to whom the accelerometer was proposed in the Whitehall II Study, 
388 did not consent and 210 had contraindications (allergies to plastic or metal, travelling abroad the following 
week). Of the remaining 4281 participants who wore the accelerometer, 4204 (98.2%) had valid accelerometer 
data (a readable data fle). Among them, sleep diary data were missing for 80 participants and 29 additional par-
ticipants did not meet criteria for accelerometer wear time (at least one night defned as noon-noon with >16 h of 
wear time). Of the remaining 4095 participants (a total of 27,966 nights) 342 did not have complete demographic 
data (age, BMI and sex). Verefore, the main assessment of discrepancies between the accelerometer and the sleep 
diary was undertaken in 3752 participants (76.9% of those invited) with a total of 25,645 nights11. Ve resulting 
participants (75.2% men) were on average 69.1 (standard deviation (SD) = 5.6) years old and had a mean body 
mass index (BMI) of 26.4 (SD = 4.2) kg/m2.

Sleep clinic patients: these data come from 28 adult patients who were scheduled for a one-night polysom-
nography (PSG) assessment at the Freeman Hospital, Newcastle upon Tyne, UK, as part of their routine clinical 
assessment and were subsequently invited to participate in the study11. All 28 patients recruited for the pol-
ysomnography study (11 female) had complete accelerometer data for the leg wrist and 27 had complete data 
for the right wrist and were aged between 21 and 72 years (mean ± sd: 45 ± 15 years). Diagnosed sleep disorders 
included: hypersomnia (N = 2), insomnia (N = 2), REM behaviour disorder (N = 3), sleep apnoea (N = 5), nar-
colepsy (N = 1), sleep apnoea (N = 4), parasomnia (N = 1), restless leg syndrome (N = 5), and sleep paralysis 
(N = 1), and nocturnia (N = 1). Vree patients had more than one sleep disorder.

Healthy good sleepers: these data come from 22 adults who underwent a one-night PSG assessment at the 
University of Pennsylvania Center for Sleep. Twenty-two participants recruited for the polysomnography study 
(68% female) had complete accelerometer data for the non-dominant wrist and were aged between 18 and 35 
years (mean ± sd: 22.8 ± 4.5 years).

Ethics Statement. In all three studies participants were provided with instructions and an information sheet 
about the study and were given time to ask questions prior to providing written informed consent. Ve studies 
were approved by the University College London ethics committee (85/0938) and the NRES Committee North 
East Sunderland ethics committee (12/NE/0406), and University of Pennsylvania ethics committee (819591) 
respectively. All experiments were performed in accordance with relevant guidelines and regulations.

Instrumentation. Participants in the Whitehall II Study were asked to wear a tri-axial accelerometer 
(GENEActiv, Activinsights Ltd, Kimbolton, UK) on their non-dominant wrist for nine (24-h) consecutive days. 
Vey were asked to complete a simple sleep diary every morning which consisted of two questions: 8what time did 
you frst fall asleep last night?9 and 8what time did you wake up today (eyes open, ready to get up)?9 Ve acceler-
ometer was confgured to collect data at 85.70 Hz with a ±8 g dynamic range. A more complete description of the 
accelerometer protocol can be found in our earlier publication2.

In the second and third study, polysomnography (Embletta®, Denver) was performed using a standard pro-
cedure, including video recording, a sleep electroencephalogram (leads C4-A1 and C3-A2), bilateral eye move-
ments, submental EMG, and bilateral anterior tibialis EMG to record leg movements during sleep. Respiratory 
movements were detected with chest and abdominal bands measuring inductance, airfow was detected with 
nasal cannulae measuring pressure, and oxygen saturation of arterial blood was measured. Airfow limitation and 
changes in respiratory movement were used to detect increased upper-airway resistance. All respiratory events 
and sleep stages were scored according to standard criteria so that EEG determined total sleep time could be 
measured9. Participants in the second study (PSG in sleep clinic) were asked to wear the same brand of accelerom-
eter as in the frst study (GENEActiv, Activinsights Ltd, Kimbolton, UK) on both wrists throughout the one-night 
polysomnography assessment. Here, the accelerometer was also confgured to record at 85.70 Hz. Accelerometer 
data were collected on both wrist to assess the role of sensor location on classifcation performance, unfortunately 
no information on handedness was recorded. Participants in the third study (PSG in healthy good sleepers) were 
asked to wear an accelerometer of the brand Axivity (Axivity Ltd, Hoults Yard, UK) on the non-dominant wrist 
throughout the one-night polysomnography assessment. Here, the accelerometer was confgured to record at 
100 Hz.

Accelerometer data preparation. A previously published method was used to minimize sensor calibra-
tion error13 and to detect and impute accelerometer non-wear periods2,14. Arm angle was estimated as follows:
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where ax, ay, and az are the median values of the three orthogonally positioned raw acceleration sensors in gravi-
tational (g) units (1 g = 1000 mg) derived based on a rolling fve second time window. Here, the z-axis corresponds 
to the axis positioned perpendicular to the skin surface (dorsal-ventral direction when the wrist is in the anatom-
ical position). Next, estimated arm angles were averaged per 5 second epoch and used as input for our algorithms 
for detecting sleep period time (SPT-window) and sleep episodes.
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Heuristic algorithm to detect the SPT-window. Vere are several challenges in the development of an algorithm 
to detect the SPT-window: absence of hard data labels to train a classifer under daily life conditions (not in a 
clinic), consideration of daily life behaviour, e.g. how to handle sleep scattered across the full 24-hour day and 
ensure that the algorithm is not over ftted to a specifc population or accelerometer brand. Vus an algorithm was 
developed by visually inspecting twenty random accelerometer multi-day recordings from diferent studies and 
accelerometer brands (ten from the Whitehall II Study as reported in this paper and ten from UK Biobank study1) 
while iteratively enhancing the algorithm to best detect the visible data segment of no movement without using 
or looking at sleep diary data.

Ve resulting heuristic algorithm, which we will refer to as Heuristic algorithm looking at Distribution of 
Change in Z-Angle (HDCZA), applied per participant is illustrated in Fig. 1 and works as follows. Step 1–2: 
Calculate the z-angle per 5 seconds. Steps 3–5: Calculate a 5-minute rolling median of the absolute diferences 
between successive 5 second averages of the z-angle. Vese frst fve steps make the algorithm invariant to the 
potentially unstandardized orientation of the accelerometer relative to the wrist and aggregate it as the roll-
ing variance over time. Step 6–7: Calculate the 10th percentile from the output of step 5 over an individual day 
(noon-noon), and multiply by 15. Vis is used as a critical individual night derived threshold to distinguish 
periods of time involving many and few posture changes. Detect the observation blocks for which the output 
from step 5 was below the critical threshold, and keep the ones lasting longer than 30 minutes. Step 8: Evaluate the 
length of the time gaps between the observation blocks identifed by step 7, if the duration is less than 60 minutes 
then count these gaps towards the identifed blocks. Step 9: Ve longest block in the day (noon-noon) will be the 
main SPT-window, defned as the time elapsed between sleep onset (start of the block) and waking time (end of 
the block). Vese last four steps refect assumptions from us as researcher about the nature of sleep.

Our motivation for the design of the algorithm is as follows. By visually inspecting the angle-z values over 
a day some individuals seemed inactive or sleeping throughout the day with minimal variation in angle, while 
other individuals had more distinct inactive (night time) and active (daytime) periods. Vese diferences pre-
sumably refect the degree of sedentary lifestyle and amount of sleep in a day. Using a percentile as part of the 
threshold calculation allows the threshold to account for between-individual diferences in z-angle distribution. 
Ve factor 15 in step 6 of the algorithm was derived iteratively using visual inspection of the classifcation. Ve 
30-minute time period is motivated by the assumption that people are typically not in bed for less than 30 minutes 
for their nocturnal time in bed, as opposed to daytime napping, and the 60-minute time period is motivated by 
the assumption that sleep separated by awake periods greater than 60 minutes ought to be treated as two distinct 
sleep episodes to avoid adding early evening naps or agernoon naps to the SPT-window. A sensitivity analysis on 
HDCZA parameter settings and their infuence on algorithm performance across the datasets can be found in 
Supplementary information (page 81).

Second algorithm for reference. When comparing our algorithm to the sleep diary we also considered a second, 
but more naïve heuristic algorithm, which we will refer to as L5 ± 6. Ve algorithm is based on the raw signal 
metric Euclidian Norm (vector magnitude) Minus One with negative values rounded to zero (ENMO), which in 
formula corresponds to

+ + −{ }( )max acc acc acc 1 , 0 ,x y z
2 2 2

with accx, accy, and accz referring to the three orthogonal acceleration axes pointing in the lateral, distal, and ven-
tral directions, respectively14. Metric ENMO has previously been demonstrated to be correlated with magnitude 
of acceleration as well as human energy expenditure in the present generation of wearable acceleration sensors14. 
L5 ± 6 takes the 12 hour window centred around L5 (least active fve hours in the day based on metric ENMO) 
and then searches within this window for sustained inactivity periods which were previously described11. In short, 
sustained inactivity periods are calculated as the absence of change in arm elevation angle (same angle-z as used 
above) larger than 5 degrees for more than 5 minutes11. Next, the SPT-window is defned from the start of the frst 
to the end of the last occurrence of a sustained period of inactivity in the 12-hour window.

Sleep episodes within the SPT-window. Sleep episodes were defned as the sustained periods of inactivity within 
the SPT-window, as defned in the previous section11. From this, the number of sleep episodes within each 

Figure 1. Steps of the heuristic algorithm HDCZA for SPT-window detection.
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SPT-window detected (HDCZA, L5 ± 6) was calculated as well as sleep eociency within the SPT-window calcu-
lated as the percentage of time asleep within the SPT-window11.

Statistical analysis. Comparison with sleep diary. Ve SPT-window derived from both the HDCZA and 
L5 ± 6 were compared separately with sleep diary records with a multi-level regression to account for the vari-
ation in availability of night time data and to include both night and person level predictors. For SPT-window 
duration (diference between sleep onset and waking time), sleep onset and waking time, the diference between 
diary and accelerometer-based detection was used as the dependent variable, while population demographics 
(sex, age, BMI), season (winter or summer) and weekend versus weekday were used as predictors. Here, we used 
function lme from R package nlme. Further, correlation coeocients with diary values and mean absolute error 
(MAE) for sleep onset, waking time, and SPT-window duration were calculated. Additionally, the c-statistic, 
also known as the Area Under the Curve (ROC), was calculated from the epoch-level binary classifcations of 
the SPT-window <1> or not <0> by diary and the HDCZA and L5 ± 6. Ve c-statistic, was frst calculated per 
day and then aggregated as average per participant. Additionally, to investigate whether more wakefulness time 
within the SPT-window corresponds to a larger HDCZA-sleep diary diference in SPT-window duration we cal-
culated the amount of wakefulness categorised as [0-1), [1-2), [2-3), [3-4), and at least 4 hours, and compared this 
with the diference in SPT-window duration between sleep diary and the HDCZA. Ve notation [a-b) is used to 
denote an interval that is inclusive of 8a9 but exclusive of 8b9.

Evaluation with polysomnography. Ve recording time of PSG is typically constrained to the time in bed win-
dow, which means that our heuristic algorithm (HDCZA) may not detect suocient data corresponding to time 
out of bed to derive its critical threshold and accurately detect the SPT-window. We addressed this concern by 
adding simulated wakefulness data to the beginning and ending of the accelerometer and PSG recording. Ve 
PSG and accelerometer data were expanded with 90 minutes of simulated data at the beginning and ending that 
would not trigger the SPT-window detection: simply the class wakefulness for PSG, and a sine wave with ampli-
tude 40 degrees and period 15 minutes complemented with random numbers (mean = 0, standard deviation = 10) 
for accelerometer-based angle-z. Note that the specifc shape of the simulated values is not critical as long as it 
does not trigger the detection of sleep and the 10th percentile of all the data (step 6 of HDCZA) refects real and 
not simulated data. Ve addition of simulated data is needed because the heuristic detection algorithm efectively 
searches for the beginning and end of a large time period without body movement, if the full PSG represents sleep 
then the algorithm would not be able to detect such a transition in movement level. Additionally, the algorithm9s 
threshold that scales with the variance in the data was constrained to a range corresponding to the 2.5th and 97.5th 
percentile of the distribution of the threshold value observed in a sample of daily life accelerometer recordings, 
0.13 and 0.50, respectively. Vis was done because the in-clinic PSG does not provide a full 24-hour cycle of body 
movement to derive this threshold. In the PSG evaluation we did not evaluate L5 ± 6, because it requires more 
than 12 hours of (non-simulated) data, which most PSG recordings do not ofer. Ager sleep classifcation with 
HDCZA and before running the comparison between HDCZA and PSG, 60 minutes of simulated data were 
removed at the beginning and end.

Ve following performance metrics for SPT-window detection were used: diference in onset, waking time, 
and duration, accuracy, c-statistic, t-test, and mean absolute error (MAE). Performance estimates accuracy and 
c-statistic were derived from both the data, as well as from the data expanded with wakefulness time to simu-
late performance estimates in a 24 hour recording. Sleep classifcation within the SPT-window was evaluated as 
diference in duration (t-test) and as the percentage of time spent in sleep stages REM, and non-REM stages 1, 
2, and 3 (N1, N2, and N3) correctly classifed by the algorithm as part of SPT-window. Sleep eociency within 
the SPT-window by PSG and algorithm was compared via t-test and MAE. A P-value of <0.005 was considered 
signifcant15. Further, method agreement was evaluated with modifed Bland-Altman plots16 with PSG criterion 
values on the horizontal axis.

Considering the relatively small sample size in our PSG analysis, we also report the minimal detectable difer-
ence between estimated and PSG reference values given the sample size, observed standard deviation, observed 
correlation, a required signifcance level of 0.005, and a required power of 0.80 using R package pwr and the 
algorithm for power calculation for paired t-tests as described by Cohen17.

Code availability. Both SPT-window detection algorithms are implemented and available in open source 
R package GGIR version 1.5-23 (https://cran.r-project.org/web/packages/GGIR/)18, see the software9s doc-
umentation on input arguments 8loglocation9 and 8def.noc.sleep9 for further details on the use of L5 ± 6 and 
HDCZA. Ve R code used for our comparisons with sleep diary can be found at: https://github.com/wadpac/
whitehall-acc-spt-detection-eval. Ve R code used for our comparisons with polysomnography can be found at: 
https://github.com/wadpac/psg-ncl-acc-spt-detection-eval, with the code used for the Newcastle data in the mas-
ter branch of the repository and its adaptation for the diferently formatted Pennsylvanian data in the psg-penn 
branch.

Results
Comparison between accelerometer results and that from sleep diary. Demographic character-
istics of the three study cohorts are described in Table 1. Ve probability density distribution for the diference 
between sleep parameter estimates from algorithm and sleep diary is more symmetrical around zero compared 
with the L5 ± 6 approach, see Fig. 2. Ve heuristic algorithm HDCZA estimates sleep onset on average 12.5 and 
7.5 minutes earlier than that reported in the sleep diaries by men and women, respectively, 3.9 minutes per ten 
years of age relative to mean age, and 3.0 minutes for a weekend day, see Table 2. Diference between sleep diary 
estimates and HDCZA estimates in waking time and SPT window duration were associated with sex, age, and 

https://cran.r-project.org/web/packages/GGIR/
https://github.com/wadpac/whitehall-acc-spt-detection-eval
https://github.com/wadpac/whitehall-acc-spt-detection-eval
https://github.com/wadpac/psg-ncl-acc-spt-detection-eval
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BMI, see Table 2. Ve L5 ± 6 method estimates sleep onset on average 86.4 and 78.5 minutes earlier than that 
reported in the sleep diary for men and women, respectively. Diference between sleep diary and L5 ± 6 estimates 
of SPT-window, sleep onset, and waking time were associated with sex and BMI, but inconsistently with weekday, 
see Table 2. Ve Pearson9s correlation coeocients and c-statistics between accelerometer derived sleep parameters, 
and sleep diary, are higher for HDCZA compared with L5 ± 6, see Table 3. Ve combined MAE from onset and 
waking time was 34.8 and 75.6 minutes for HDCZA and L5 ± 6, respectively.

For nights with [0-1), [1-2), [2-3), [3-4), and at least 4 hours of accumulated wakefulness an average diference 
in SPT-window duration between sleep diary records and our heuristic algorithm (HDCZA) was observed as 
27, 3, −58, −154, and −236 minutes corresponding to 57.9, 32.1, 7.5, 1.6, and 0.7% of 25,645 recorded nights, 
respectively. Here, the last two categories, corresponding to at least 3 hours of accumulated wakefulness, refect 
8.5% of the participants.

Comparison between accelerometer results and that from polysomnography. In the PSG study 
in sleep clinic patients, on average 9.4 (standard deviation 1.6) hours of matching data from PSG and accelerome-
ter were retrieved per participant, with no diference in recording duration between leg and right wrist (P = 0.75). 
Sleep onset time, waking time, SPT-window duration, and sleep duration within the SPT-window derived from 
the HDCZA algorithm difered all non-signifcantly from polysomnography and MAE ranged from 31 minutes 
for sleep onset to 71 minutes for SPT-window duration, see Table 4. Ve combined MAE from onset and waking 
time was 38.9 and 36.7 minutes for the leg and right wrist, respectively. SPT-window duration was estimated for 
the leg wrist within 2 hours for the majority of individuals (75%) but deviated by more than 2 hours in seven 
individuals, six of which had a sleep disorder, as shown in Fig. 3 (right wrist: 81%, fve, and four, respectively). On 
average, the accuracy and C-statistic for SPT-window classifcation were 87% and 0.86 in the PSG recording win-
dow, and 94% and 0.94 when expanded with simulated wakefulness as an estimate of 24 hour performance, see 
Table 4. Further, the average sensitivity to detect sleep as part of the SPT-window was above 91% in both wrists, 
see Table 4. Results for the PSG study carried out in healthy good sleepers indicated better overall performance as 
shown in Table 5 and Fig. 4. Ve classifcations of the HDCZA algorithm in comparison with the PSG sleep stage 
classifcation for all participants are provided in the Supplementary information chapter 1 (page 2) and chapter 2 
(page 58) to this manuscript.

Ve minimal detectable diference in sleep parameters (leg wrist) for sleep clinic patients was 18, 32, 47, and 
16 minutes for, respectively, sleep onset time, waking time, SPT window duration, and sleep duration within SPT 
(right wrist; 24, 32, 35, and 26 minutes, respectively). Ve minimal detectable diference in sleep eociency was 
4.4 and 7.3 percent point for the leg and right wrist data, respectively. Ve minimal detectable diference in the 
evaluation with healthy good sleepers was 15, 6, 17, and 17 minutes for, respectively, sleep onset time, waking 
time, SPT window duration, and sleep duration within SPT. Ve minimal detectable diference in sleep eociency 
was 2.9 percent point.

Discussion
In this paper we present a heuristic algorithm, referred to as HDCZA, for detecting Sleep Period Time-window 
(SPT-window) from accelerometer data in the absence of a sleep diary. Raw data accelerometers are increasingly 
used in population research, and the value of this algorithm lies in studies such as the UK Biobank where a sleep 
diary was not used1. Although the focus of our analysis is sleep, the present fndings are equally valuable for 
physical activity research as it will help to split the observation period between night sleep and daytime inactivity.

In our comparison with sleep diary records in a large cohort of older adults (60382 years) a small systematic 
diference was found in sleep duration and sleep onset time, diference that varies slightly as a function of sex, 
age, and BMI. Here, the average diference and the Akaike Information Coeocients indicated that the algorithm 
is better than our naïve reference method L5 ± 6. Furthermore, the C-statistic was on average 95% for HDCZA. 
We acknowledge that the sleep diary cannot be considered a gold standard criterion method, but it is reassuring 
to see that diferences between algorithm and sleep diary in a large cohort of elderly individuals are on average 
within a quarter of an hour.

An important limitation of the sleep diary study data is that no information is available on daytime sleep or 
daytime inactivity behaviour to help better understand the misclassifcations in SPT-window by our algorithm. 
To facilitate such research, future methodological studies are warranted to consider implementing daytime sleep 
diaries, and possibly additional sensor technologies such as wearable cameras19, RFID proximity sensors20 or 
additional wearable movement sensors to better capture a lying posture21,22. In addition, impact of handedness on 
the estimates could not be assessed.

Study Daily life (diary) PSG sleep clinic PSG healthy good sleepers

N 3752 28 22

Age (mean ± standard deviation in years) 69.1 ± 5.6 44.9 ± 14.9 22.8 ± 4.5

Sex
2822 males, 930 
females

17 males and 11 
females

7 males and 15 females

SPT-window duration (mean ± standard deviation) 7.7 ± 1.2 hours 8.4 ± 1.6 hours 6.7 ± 0.9 hours

Sleep onset time (mean in hh:mm ± standard deviation) 23:48 ± 71 minutes 22:32 ± 69 minutes 23:24 ± 54 minutes

Waking time (mean in hh:mm ± standard deviation) 7:28 ± 72 minutes 06:58 ± 76 minutes 06:09 ± 32 minutes

Table 1. Participant characteristics used for the analyses.
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When compared against polysomnography in 28 sleep clinic patients, accuracy and C-statistic values indicate 
good agreement on an epoch by epoch level. Estimated SPT-window duration by HDCZA deviated by more than 
2 hours from PSG in seven individuals (six of which has a sleep disorder) as shown in Fig. 3. Inspection of the 
PSG results indicated that poor classifcation typically occurs in patients with absence of deep sleep or who have 
long periods of wakefulness (>1 hour) in the middle of the night, e.g. Supplementary information (page 12) and 
(page 28), respectively. However, the interpretation of the results was complicated in case of SPT-window split 
into several periods separated by long waking periods. For example, one particular individual had a short sleep 
episode at the beginning of the PSG recording followed by several hours of wakefulness, see Supplementary infor-
mation (page 11), indicating a possible ambiguity in the correct defnition of the SPT-window by both PSG and 
HDCZA. Ve statistical power analysis in the sleep clinic PSG analysis revealed that the minimal detectable bias 
in sleep onset time, waking time, and SPT window duration is limited to half-, three quarters of- and a full hour, 
respectively. Verefore, our PSG fndings should be considered as evidence that HDCZA based sleep parameter 
estimates are at least not much larger than those detectable diferences. From the perspective of large scale popu-
lation research this is reassuring.

To investigate the extent to which the larger diferences in individuals with long periods of wakefulness 
observed in the PSG study occur in the general population we went back to the free-living data from the frst 
study. In the free-living data, more wakefulness during the night corresponded to larger diferences between sleep 
diary and algorithm derived SPT-window duration, indicating that more wakefulness time is indeed a challenge 
in a daily life recording setting. However, it was reassuring to see that only a small fraction (2.4%) of all the nights 
scattered across 8.5% of the participants were afected by one hour or more. In line with this observation the tails 
in the distribution of diferences with sleep diary (Fig. 2) may be explained by wakefulness during the night or 

Figure 2. Probability density distributions for accelerometer-based estimates of sleep duration, sleep onset, and 
waking up time using dots to indicate the 5th, 25th, 75th and 95th percentile.

Sleep parameters HDCZA L5 ± 6

Method Sleep onset time Waking time SPT-window duration Sleep onset time Waking time SPT-window duration

Y-intercept (SE) −12.5 (0.9)**
−1.6 (0.8)
P = 0.04

10.9 (1.1)** −86.5 (1.0)** 45.9 (0.9)** 131.7 (1.2)**

Betas (SE)

Women 5.0 (1.1)** −3.0 (0.9)* −8.0 (1.3)** 8.0 (1.4)** −8.6 (1.1)** −16.2(1.6) **

Ten years of age 3.9 (0.8)** −2.9 (0.7)** −6.8 (1.0)** 0.3 (1.0) P = 0.78 0.2 (0.8) P = 0.83 −0.2 (1.2) P = 0.89

Five BMI index points! 1.0 (0.5) P = 0.06 −1.5 (0.5)* −2.5 (0.7)** −3.2 (0.7)** 1.8 (0.6)* 4.8 (0.8)**

Weekend 3.0 (1.0)* 2.0 (0.9) P = 0.02 −1.0 (1.2) P = 0.41 6.4 (1.3)** −0.3 (1.0) P = 0.77 −6.3 (1.4)**

Winter 1.0 (0.9) P = 0.27
−1.2 (0.8) 
P = 0.12

−2.2 (1.1) P = 0.05 −1.0 (1.2) P = 0.39 0.6 (1.0) P = 0.51 1.7 (1.3) P = 0.2

Within individual residual SD 24.7 21.3 30.9 18 13 20.6

Between individual residual SD 66.1 56.9 82.3 88.9 74.9 101.8

AIC 81175 73538 92433 94053 84956 100978

Table 2. Sleep parameter diferences (minutes) between estimates from sleep diary and two accelerometer-
based methods (N = 25,645 nights, N = 3752 individuals). Degrees of freedom = 25,645;  Relative to mean age 
of 69.1 years; !Relative to mean BMI of 26.4 kg/m2; SE: Standard Error; SD: Standard Deviation; AIC = Akaike 
information coeocient, *P < 0.005, **P < 0.0005.
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sleep episodes being scattered over the day. Ve problem then is that the SPT- window lacks a clear construct 
defnition. Another possible explanation for the tails in the distribution includes the subjective nature of sleep 
diary as well.

Diferences and mean absolute error were better in the evaluation with healthy good sleepers (Pennsylvania), 
indicating that SPT-window detection is a challenge in those with sleep disorders. Ve expansion of PSG data 
with daytime wakefulness to simulate algorithm performance in a full day has to our knowledge not been done 
before. We think this can help the comparison and interpretation of the c-statistic between the night time only 
PSG and full day sleep diary studies. A downside of this approach is that it comes with the assumption that 
daytime is always correctly classifed. Verefore, we presented both performance estimates with and without the 
additional simulated data.

In the absence of a gold standard criterion method that can be applied in a representative part of the pop-
ulation under daily life conditions to train and test a classifer, we consider the heuristic approach the most 
promising for detecting the SPT-window. Ve heuristic approach comes with the following advantages: (i) It 
is not optimized with subjective and therefore potential erroneous sleep diary records, (ii) It avoids potentially 
overftting towards a small patient population in a PSG study unrepresentative for the general population, (iii) 
It does not make assumptions about the timing or duration of the SPT-window, and (iv) It is computationally 
simple which will facilitate easy replication. Ve sensitivity analysis on parameter confguration as reported in 
Supplementary information (Page 81) demonstrates that the current confguration provides a relatively good 
average performance across alternative confgurations that is relatively robust against changing study conditions. 
Improvement in algorithm performance in a specifc dataset via optimization of parameter confguration can lead 
to overftting, which comes with poor performance in other datasets or a subset of the data.

We found one other study that compared SPT-window extracted from accelerometry (or actigraphy) unaided 
by sleep diary to facilitate further interpretation of our current fndings. Recently, O9Donnell and colleagues also 
investigated possible approaches to SPT-window detection, currently available as a non-peer reviewed preprint on 
bioRxiv23. To compare algorithm performance, we replicated their main performance metric: the mean absolute 

Parameter Metric

HDCZA L5 ± 6

Value t; DF P Value t; DF P

sleep onset time
Correlation in timing 0.78 (95% CI: 0.7730.79)

76; 3750 **
0.66 (95% CI: 0.6430.68)

54; 3750 **
MAE (min) 39.9 93.3

waking time
Correlation in timing 0.81 (95% CI: 0.830.82)

84; 3750 **
0.68 (95% CI: 0.6630.7)

57; 3750 **
MAE (min) 29.9 58.4

SPT-window

Correlation in duration 0.52 (95% CI: 0.530.55)
38; 3750 **

0.26 (95% CI: 0.2330.29)
16; 3750 **

MAE (min) 40 128.4

c-statistic 0.95 (IQR: 0.9430.98) 4 4 0.92 (IQR: 0.9030.94) 4 4

Table 3. Correlation, mean absolute error, and concordance between sleep diary and accelerometer estimates 
(N = 3,752). DF: Degrees of freedom; MAE: mean absolute error; min: minutes; *P < 0.005; **P < 0.0005; 
 −0.03 diference (95% CI for diference: −0.031; −0.029), t = −44, DF = 3751, P < 0.0005.

Parameters Metric

Leg wrist (N = 28) Right wrist (N = 27)

Value t; DF P Value t; DF P

Sleep onset
Diference (min) −10 (95% CI: −30; −9) −1.08; 27 0.29 0 (95% CI: −27; 27) 0.02; 26 0.98

MAE (min) 30.8 4 4 40.2

Sleep wake
Diference (min) −37 (95% CI: −75; 1) −2.00; 27 0.06 −31 (95% CI: −57; −6) −2.54; 26 0.02

MAE (min) 47.1 4 4 33.2

SPT-window

Diference in duration (min) −27 (95% CI: −73; 19) −1.21; 27 0.23 −32 (95% CI: −71; 6) −1.72; 26 0.10

MAE (min) 70.9 4 4 63.5 4 4

c-statistic 0.86 (IQR: 0.8130.98) 4 4 0.87 (IQR: 0. 8130.95) 4 4

c-statistic 24 hour 0.93 (IQR: 0.9430.99) 4 4 0.94 (IQR: 0.9430.99) 4 4

Accuracy (%) 87 (IQR: 81398) 4 4 88 (IQR: 84397) 4 4

Accuracy 24 hour  (%) 94 (IQR: 92399) 4 4 94 (IQR: 93399) 4 4

Sleep within SPT
Diference in duration (min) 30 (95% CI: 1; 58) 2.11; 27 0.04 18 (95% CI: −12; 48) 1.24; 26 0.23

Sensitivity (%) 92 (IQR: 973100) 4 4 91 (IQR: 983100) 4 4

Sleep eociency within SPT
Diference (percent point) 8.7 (95% CI: 3.63313.82) 3.51; 27 * 9.4 (95% CI: 3.76315.06) 3.42; 26 *

MAE (percent point) 10.1 4 4 10.6 4 4

Table 4. Comparison algorithm with polysomnography in sleep clinic patients (Newcastle study). *P < 0.005; 
MAE: mean absolute error; min: minutes; SPT-window: Sleep period time window; CI: Confdence Interval; 
DF: degrees of freedom; t: t-statistic; IQR: Inter quartile range;  Recording expanded with simulated data of 
wakefulness to resemble 24 hours.
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error (MAE) in sleep onset and waking time. Our HDCZA algorithm has a MAE of 34.8 minutes when compared 
against sleep diary (N = 3751), which is comparable with the 33.3, 34.4, and 35.9 minutes reported for the three 
algorithms investigated by O9Donnell (N = 14)23. Although the age range is similar between the studies, a substan-
tial diference in sample size and unknown diferences in the prevalence of disturbed sleep warrants future stand-
ardized comparison between the algorithms. Further, the MAE estimates in our PSG studies are 38.9, 36.7, and 
26.9 minutes in the leg- and right wrist sleep clinic patient data, and healthy good sleepers, respectively. When we 
consider the design of our and their approach, we observe a couple of diferences: their change-point and random 
forest approaches were optimized on a trained data set with sleep diary data as criterion, which our approach 
avoids following aforementioned point (i). Further, O9Donnell9s thresholding approach relies on the assumption 
that the average SPT-window duration is 8 hours, which our approach also avoids following aforementioned point 
(iii). Other strengths of our approach are the evaluation with sleep diary in much larger cohort than theirs and we 
evaluated our approach against PSG in sleep clinic patients arguably a challenging subpopulation to classify sleep 
in. Neither our nor their approach currently uses the available temperature or light sensor information, in our 
case because of concerns about measurement bias from environmental conditions. Verefore, future research is 
needed to explore the potential of temperature and light information to enhance the SPT-window classifcation.

It should be noted that the historical studies like the one by Cole-Kripke24 and later studies25,26 focussed on 
automatic distinction of sleep and wakefulness aided by the boundaries of time in bed, lights of, or diary records 
of the SPT-window. Vese studies then focussed on correct classifcation of Wake Ager Sleep Onset (WASO), 
Total Sleep Time (TST), and Sleep Eociency. Overall these sleep estimates based on algorithms aided by sleep 
diary show better agreement with PSG estimates than algorithms not aided by a sleep diary. However, these 
studies represent a diferent measurement construct and methodological challenge than discussed in the present 
work and can therefore not be used as a reference point. To give the reader an idea of how much better the MAE is 
when a sleep diary is available to aid the detection of the SPT window, we have calculated this from the analysis in 
our previous publication11: the MAE was on average 12 minutes (inter quartile range: 7315) using the same sleep 
diary as reference point.

Figure 3. Modifed Bland-Altman plots with 95% limits of agreement (LoA) for SPT-window duration and 
sleep duration relative to polysomnography (PSG) in sleep clinic patients, with dashed lines indicating LoA 
and straight line indicating the mean. Open bullets refect individuals with a sleep disorder, while closed bullets 
refect normal sleepers.
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Our algorithm does not facilitate the detection of sleep latency. To derive sleep latency, one would need diary 
records of time in bed or the lights out period. Future research is warranted to investigate how sleep latency, time 
in bed, and the lights out period may reliably be detected from wearable accelerometer data without asking the 
participant to record their sleep behaviour using a diary or marker button.

Ve analysis presented in this paper will facilitate feasible large-scale population research on sleep and physical 
activity. In addition to the proof of validity as provided in this paper additional support for the credibility of the 
algorithm was found in our separate study (non-peer reviewed preprint on bioRxiv) identifying genome wide 
associations with sleep parameters derived from our algorithm in UK Biobank, replicating signals previously 
associated with self-reported sleep duration and chronotype27334. Our algorithm can be applied to data from the 
three most widely used accelerometer brands: Actigraph, Axivity, and GENEActiv, and is available as part of open 
source R package GGIR (https://cran.r-project.org/web/packages/GGIR/).

Data availability. Whitehall II data, protocols, and other metadata are available to the scientifc community. 
Please refer to the Whitehall II data sharing policy at https://www.ucl.ac.uk/whitehallII/data-sharing. Raw data 
from the polysomnography study has been made open access available in anonymized format on zenodo.org35. 
Data from the University of Pennsylvania are available through the National Institute of Mental Health data 
archive.

Parameters Metric Value t; DF P

Sleep onset
Diference (min) −20 (95% CI: −39; −2) −2.30; 21 0.03

MAE (min) 32.9 4 4

Sleep wake
Diference (min) −17 (95% CI: −39; 4) −1.67; 21 0.11

MAE (min) 21.0 4 4

SPT-window

Diference in duration (min) 2 (95% CI: −24; 27) 0.14; 21 0.89

MAE in duration (min) 37.7 4 4

c-statistic 0.83 (IQR: 0.8030.90) 4 4

c-statistic 24 hour 0.95 (IQR: 0.9530.99) 4 4

Accuracy (%) 89 (IQR: 86397) 4 4

Accuracy 24 hour  (%) 96 (IQR: 95399) 4 4

Sleep within SPT
Diference in duration (min) −6 (95% CI: −27; 15) −0.59; 21 0.56

Sensitivity (%) 93 (IQR: 943100) 4 4

Sleep eociency within SPT
Diference (percent point) −1.74 (95% CI: −4.46; 0.98) −1.33; 21 0.20

MAE (min) 4.8 4 4

Table 5. Comparison algorithm with polysomnography in healthy good sleepers (N = 22, Pennsylvania). 
*P < 0.005; MAE: mean absolute error; min: minutes; SPT-window: Sleep period time window; CI: Confdence 
Interval; DF: degrees of freedom; t: t-statistic; IQR: Inter quartile range;  Recording expanded with simulated 
data of wakefulness to resemble 24 hours.

Figure 4. Modifed Bland-Altman plots with 95% limits of agreement (LoA) for SPT-window duration and 
sleep duration relative to polysomnography (PSG) in healthy good sleepers, with dashed lines indicating LoA 
and straight line indicating the mean.

https://cran.r-project.org/web/packages/GGIR/
https://www.ucl.ac.uk/whitehallII/data-sharing
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