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The dynamics of resting 
昀氀uctuations in the brain: 
metastability and its dynamical 
cortical core
Gustavo Deco1,2,3,4, Morten L. Kringelbach  5,6, Viktor K. Jirsa7 & Petra Ritter8,9

In the human brain, spontaneous activity during resting state consists of rapid transitions between 
functional network states over time but the underlying mechanisms are not understood. We use 
connectome based computational brain network modeling to reveal fundamental principles of 
how the human brain generates large-scale activity observable by noninvasive neuroimaging. We 
used structural and functional neuroimaging data to construct whole- brain models. With this novel 
approach, we reveal that the human brain during resting state operates at maximum metastability, 
i.e. in a state of maximum network switching. In addition, we investigate cortical heterogeneity across 
areas. Optimization of the spectral characteristics of each local brain region revealed the dynamical 
cortical core of the human brain, which is driving the activity of the rest of the whole brain. Brain 
network modelling goes beyond correlational neuroimaging analysis and reveals non-trivial network 
mechanisms underlying non-invasive observations. Our novel 昀椀ndings signi昀椀cantly pertain to the 
important role of computational connectomics in understanding principles of brain function.

“When we take a general view of the wonderful stream of our consciousness, what strikes us �rst is the di�erent 
pace of its parts. Like a bird’s life, it seems to be made of an alternation of �ights and perchings.” William James1

Survival remains the perhaps most important problem faced by brains and a key challenge is how to segregate 
and integrate relevant information over di�erent timescales when faced with hostile, o�en constantly changing 
environments2. Reconciling di�erent speeds of information processing, from fast to slow, is especially important, 
and could be key to the relative evolutionary success of mammals whose sophisticated brains are able to com-
bine prior information from past memories with current stimuli to predict the future and to adapt behaviour 
accordingly3–5.

�is was recognized well over a century ago by William James, generally acknowledged as one of the fathers of 
modern cognitive psychology1. Speaking of this problem using the apt metaphor of the stream of consciousness, 
James noted that there is a di�erent pace to its parts, comparing it to the life of a bird whose journey consists of 
an “alternation of �ights and perchings”. In the language of today’s dynamical systems, the �ights are akin to fast, 
segregative tendencies and the perchings to slower, integrative tendencies of the dynamic brain in action2, 6, 7. In 
addition, motivated by recent experimental and modelling work of other labs8, 9, we investigate cortical hetero-
geneity across areas. By optimizing the spectral characteristics of each local brain node (in the coupled network), 
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this allowed us to discover a dynamical core of the brain, i.e. the set of brain regions, which through their oscilla-
tions are driving the rest of the brain. Furthermore, with regards to balancing the di�erent speeds of processing, 
a large body of psychological research has focused on what is known as dual process theories10, 11, identifying 
competing fast and slow systems which have to co-exist and function on multiple time-scales in order for the 
brain to e�ciently allocate the resources necessary for survival12, 13.

Yet, the temporal dynamics and underlying neural mechanisms of this temporal processing on multiple times-
cales are poorly understood. Here we aim to provide a better understanding of the dynamics using computational 
brain network modelling which has emerged as a powerful tool for investigating the causal dynamics of the 
human brain, when carefully constrained by functional (FC) and structural connectivity (SC) obtained from 
empirical neuroimaging data14–18. �is theoretical framework has been largely successful in explaining the highly 
structured dynamics arising from spontaneous brain activity in the so-called resting-state-networks (RSN)19–21, 
even if the resting brain never truly rests20. E�cient task-related brain activity has been shown to rely on meta-
stability of spontaneous brain activity allowing for optimal exploration of the dynamical repertoire22 but it is not 
known if this metastability is maximally metastable6. In dynamic systems, metastability refers to a state that falls 
outside the natural equilibrium state of the system but persists for an extended period of time. One example of 
a metastable dynamical system is a winnerless competition23, however metastability can arise from a number 
of underlying mechanisms and it is in this broader sense that we use the term metastability. Here, we use meta-
stability to denote the variability of the global synchronization as measured by the Kuramoto order parameter, 
following the work of Wildie and Shanahan24. �is is motivated by previous research which has shown that this 
variability can be linked to the underlying metastable cluster synchronization25.

We investigated the dynamics of the brain network system through a local node neural mass description based 
on the most general form of expressing both noisy asynchronous dynamics and oscillations, namely a normal 
form of a Hopf bifurcation26–28. Previous research has shown the usefulness, richness and generality of this type 
of model for describing EEG dynamics at the local node level27, 28. �is normal form allowed us to �t the model to 
neuroimaging data over time, i.e. not only by �tting the grand average FC but also by �tting the temporal structure 
of the �uctuations, functional connectivity dynamics29 (FCD, Fig. 1A,B).

We further explored if the optimal working point where FC and FCD are �tted corresponds to a dynamical 
region where the global metastability of the whole brain is maximized6. In addition, motivated by recent experi-
mental and modelling work of other labs8, 9, we investigate cortical heterogeneity across areas. By optimizing the 

Figure 1. Methods for measuring �t between simulated and empirical data. (A) �e �tting of the FC is 
measured by the Pearson correlation coe�cient between corresponding elements of the upper triangular 
part of the matrices. (B) For comparing the FCD statistics, we collected the upper triangular elements of 
the matrices (over all participants or sessions) and compared the simulated and empirical distribution by 
means of the Kolmogorov-Smirnov distance between them. �e Kolmogorov–Smirnov distance quanti�es 
the maximal di�erence between the cumulative distribution functions of the two samples. (C) We measure 
the metastability as the standard deviation of the Kuramoto order parameter across time. �e Kuramoto 
order parameter measures the global level of synchronization of the n oscillating signals. Under complete 
independence, the n phases are uniformly distributed and thus R is nearly zero, whereas R = 1 if all phases are 
equal (full synchronization). For calculating the metastability of the empirical and simulated BOLD signals, 
we �rst band-pass �ltered within the narrowband 0.04–0.07 Hz and computed the instantaneous phase ϕk(t) of 
each narrowband signal k using the Hilbert transform. �e Hilbert transform yields the associated analytical 
signals. �e analytic signal represents a narrowband signal, s(t), in the time domain as a rotating vector with 
an instantaneous phase, ϕ(t), and an instantaneous amplitude, A(t). Bottom panel visualizes a single example 
scenario (of many possible others) where the model system’s metastability increases as a function of G. We 
also indicate the metastability measured in empirical data. Part of �gure B is based on the work of Allen and 
colleagues44.
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spectral characteristics of each local brain node (in the coupled network), this allowed us discovering a dynamical 
core of the brain, i.e. the set of brain regions, which through their oscillations is driving the rest of the brain. As 
such this investigation was designed to provide an empirical, scienti�c footing for James’ metaphorical specula-
tions of the �ights and perchings of human brain dynamics, and to demonstrate the potential of sophisticated 
brain network computational modelling to provide new insights into the causal mechanisms of neuroimaging 
results.

Results
�e results arose from using brain network computational models for the analysis of empirical neuroimaging 
data characterising the functional and structural connectivity of 24 healthy human participants acquired using 
standard MRI techniques17 (see Methods). In particular, we were able to gain new insights on the emergence of 
transiently spatiotemporal structured networks among segregated brain regions by examining a whole-brain 
network model using a very general neural mass model known as the normal form of a Hopf bifurcation (also 
known as Landau-Stuart Oscillators), which is the canonical model for studying the transition from noisy to 
oscillatory dynamics26 (Fig. 2). Here, we extended previous research on local node dynamics27, 28 by studying the 
whole-brain network dynamics, i.e. by investigating how those local noisy oscillators interact, and how the emerg-
ing whole-brain network activity relates to fMRI resting state dynamics. Within this model, each node of the 
network is modeled by a normal Hopf bifurcation, with an intrinsic frequency ωi in the 0.04–0.07 Hz band (i = 1, 
…,n). �e intrinsic frequencies were estimated directly from the data, as given by the averaged peak frequency 
of the narrowband BOLD signals of each brain region (see Methods). �e state of each node i is determined by its 
phase, ϕi(t), and the interaction between nodes depends both on the structural couplings and the phase di�erence 
between the nodes. �e model has only two types of control parameters, namely: one single global parameter, G, 
that represents the global scaling of the anatomical connectivity matrix, and the bifurcation parameters aj for each 
node (see Fig. 3 and methods for the general structure and strategy of the brain network model).

Maximal metastability at the optimal working point of model. Using the Hopf model, we were 
able discern the dynamical properties of the optimal working point of the system that is able to �t the charac-
teristics of the empirical fMRI data. We were able to distinguish the origin of resting activity between the two 
hypothesized scenarios, namely: 1) noisy excursions at the edge of a critical bifurcation19, 20, 30, 31 or 2) metastable 
oscillations16. �e �rst scenario refers to the entrainment of noisy dynamics through the underlying anatomical 

Figure 2. Construction of individual brain network models. (A) �e brain network model was based on 
individual structural connectivity (SC) matrices from 24 participants derived from tractography of DTI (le�) 
between the 68 regions of the Desikan-Kahilly parcellation (middle). �e control parameters of the models were 
tuned using the grand average FC and FCD derived from fMRI BOLD data (right). (B) For modelling local 
neural masses we used the normal form of a Hopf bifurcation, where depending on the bifurcation parameter, 
the local model generates a noisy signal (le�), a mixed noisy and oscillatory signal (middle) or an oscillatory 
signal (right). It is at the border between noisy and oscillatory behaviour (middle), where the simulated signal 
looks like the empirical data, i.e. like noise with an oscillatory component around 0.05 Hz.
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connectivity matrix, i.e. inducing correlations of the local noise because of the underlying SC connections. �e 
second scenario refers to the structuring of metastable cluster synchronizations of the underlying local oscillatory 
dynamics through the underlying anatomical SC connections. We de�ne metastability as the standard deviation 
of synchrony at the network level described by order parameter R(t), where R(t) measures the phase uniformity 
and varies between 0 for a fully desynchronized network and 1 for a fully synchronized network (see methods and 
Fig. 1C)24. �e present model is able to describe both types of dynamics, and the smooth transitions from one to 
the other, i.e. the transition from noisy to oscillatory dynamics (Fig. 2). In order to distinguish the dynamical sce-
nario, we investigated the capabilities of the model for �tting the grand average FC and also the time dependent 
characteristics of the RSN as re�ected in the FCD in the di�erent dynamical working regions (i.e. as a function of 
the control parameters). �e grand average FC describes the mean spatial structure of the resting activity, whereas 
the FCD captures the statistical characteristic of the temporal structure of those spatial correlations (see Methods 
and ref. 29).

Figure 3 shows that the best �t to the empirical data of Hopf model is found at the brink of the Hopf bifurca-
tion. We equalized all local bifurcation parameters to a common value i.e. aj = a, in order to reduce the investiga-
tions to just two parameters, namely global bifurcation parameter (a) and global coupling strength (G). Figure 3 
shows how the empirical data are �tted in the Hopf model for di�erent working points. �e right column of Fig. 3 
shows the level of �tting of the FC, FCD and metastability. As can be seen, the best �tting of the three measures 
is obtained at the region on the brink of the Hopf bifurcation, i.e. for bifurcation parameter a, at the edge of zero 
on the negative side, such that the oscillators remain damped still. In this region not only the correlation between 
the empirical and simulated FC is maximized, but also the statistics of the rapid switching between FC(t) across 
time (FCD) is minimized in Kolmogorov-Smirnov sense, and the level of metastability of the data is reproduced. 
�e �tting of the FC was measured by the Pearson correlation coe�cient between corresponding elements of the 
upper triangular part of the matrices (see Fig. 1 and Methods). For comparing the FCD statistics, we collected 
the upper triangular elements of the matrices (over all participants or sessions) and compared the simulated and 
empirical distribution by means of the Kolmogorov-Smirnov distance between them (see Methods).

Furthermore, the results showed that only in the region at the border between noisy and oscillatory behaviour, 
is where the signals resembles the data, i.e. like noise with an oscillatory component around 0.05 Hz (Fig. 2). 
�e �rst three columns of Fig. 3 show the dependence of those measurements as a function of the global scaling 
parameter G for three speci�c values of the bifurcation parameter a, namely at the noisy region, at the edge of the 
bifurcation and at the oscillatory regime. Clearly, the best results are obtained for the second column (at the edge 
of the bifurcation). �e same panel shows that the FCD is the best constraining measure. �ere is a broad range 
of G where the FC and the metastability is well �tted, but only a relative narrow range where the FCD statistics is 

Figure 3. Fitting of the empirical data by the brain network Hopf model for di�erent working points. (A) Level 
of �tting of the FC, FCD and metastability as a function of the global scaling parameter G for three di�erent 
bifurcation parameters a = [−0.2 0 0.2], namely at the noisy oscillatory region, at the edge of the bifurcation and 
at the oscillatory regime. (B) �e three measures for assessing �tting between simulated and empirical data are 
shown color-coded as a function of bifurcation parameter a and global scaling parameter, G. �e best �tting of 
the three measures is obtained for a region at the brink of the Hopf bifurcation, i.e. for bifurcation parameter 
a, at the edge of zero on the negative side. In this region not only the correlation between the empirical and 
simulated FC is maximized (upper panel), but also the statistics of the rapid switching between FC(t) across 
time (FCD) is minimized in Kolmogorov-Smirnov sense (middle panel), and the level of metastability of the 
data is perfectly reproduced (bottom panel).
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minimal, i.e. maximally �tted. In other words, the spatiotemporal structure of the FC is more informative than the 
grand average of the FC (i.e. the “classical” RSN). �is is important, because until now, brain network models have 
always been �tted with the grand average FC - but see also the work of Hansen and colleagues29.

We would like to remark that Fig. 3 characterizes some of the bifurcation behaviour of the whole system. 
Indeed, the metastability for example serves as a network metric and characterizes the variability of this global 
synchronization as a function of those two control parameters. All three parameter spaces in Fig. 3B, in con-
junction, present a full picture of the spatiotemporal organization of the system. �e three metrics characterize 
computationally the bifurcation properties of the full network dynamics.

Perhaps most importantly, as shown in Fig. 3, the brain network model shows maximal metastability at the 
optimal working point of the model (a = 0 and G = 2.85), where the metastability is re�ecting the variability of the 
synchronization between di�erent nodes, i.e. the �uctuations of the states of phase con�gurations as a function of 
time24. Further characterisation of these results is shown in Fig. 4 which shows the optimal working point at the 
edge of the Hopf bifurcation (i.e. bifurcation parameter a = 0), the FC, FCD and FCD statistics for three levels of 
global coupling G namely low, optimal and large. For comparison, the same matrices and distributions are plotted 
on the rightmost column for the empirical data (Fig. 4B). Only the FCD and its statistics (bottom row) are con-
straining enough for optimizing the working point. Please note that for low G the FCD statistics does not show 
any switching between states in the RSN and that for very large G there are too much switching between states.

Figure 4. Fitting to the grand average FC is a necessary but not su�cient condition for best empirical �tting. 
(A) �e �gure shows the result of �tting the model to the empirical as a function of the global coupling 
parameter, G, at the optimal working point at the edge of the Hopf bifurcation (i.e. bifurcation parameter a = 0). 
�ree di�erent coupling points were selected (low, optimal and large in the three columns) and we show the 
resulting FC correlation, FCD correlations and FCD histogram. Note that for low G the FCD statistics does not 
show any switching between RSN and that for very large G there are too much switching between states. (B) 
For comparison, the same matrices and distributions are plotted for the empirical data. Note how only the FCD 
(row 2) and its statistics (row 3) are constraining enough for optimizing the working point the model to �t the 
empirical data (compare the distributions in row 3 and compare plots for FCD and FC �tting in row 1).
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Dynamical core: contribution of individual brain regions to dynamics. In order to obtain infor-
mation about the dynamical characteristics of each single brain area and to generate a heterogeneous brain 
network model (i.e. with di�erent dynamics at each node), we optimized each single bifurcation parameter aj 
independently by �tting for each value of global coupling G the spectral characteristics of the simulated and 
empirical BOLD signals at each brain area (see Methods). �e main results are plotted in Fig. 5, where Fig. 5A 
shows the evolution of the �tting of the FC and FCD statistics as a function of G. For large enough value of the 
global coupling a good �tting of both is obtained, i.e. large correlation between the empirical and simulated grand 
average FC and low di�erence in the statistics of the empirical and simulated FCD (Kolmogorov-Smirnov dis-
tance). Please note that Fig. 5A is generated in a di�erent way than Fig. 4A (which uses only the optimum �t a = 0 
for all regions and G = 2.85). Instead, in Fig. 5A, for each G we optimize the bifurcation value, a, for each region 
(shown in Fig. 5B). As can be seen at a critical value of G, the bifurcation values remain the same, only scaled. 
�us the FCD �t in Fig. 5A will asymptote as G increases.

For optimizing aj values, we use a greedy optimisation strategy, where we iteratively increase or decrease the 
aj value according to the local power of the signal in a given region j. Greedy algorithms exploit local optima, but 
o�en approximate optimal solutions well in reasonable time and produce good results as shown in Fig. 5. �e 
local bifurcation parameters for each region for the uncoupled network (i.e. G = 0) and for the optimal coupling 
(G = 5.4) can be seen in Fig. 5C. If the network is uncoupled, each single brain area �tted the spectral charac-
teristics of the empirical BOLD signals in a very homogeneous way by local bifurcations parameters at the edge 
of the local Hopf bifurcation, i.e. at zero. When the brain network is coupled, the “true” intrinsic local dynamics 
for the pro�le of optimal local bifurcation parameters aj observed at that point that �t the local empirical BOLD 
characteristics and the global quantities FC, FCD and metastability (Fig. 5D).

Figure 5. Spectral characteristics of the dynamical core of the human brain. To generate a heterogeneous brain 
network model (i.e. with di�erent dynamics at each node), we optimized each single bifurcation parameter 
independently by �tting for each value of global coupling G the spectral characteristics of the simulated and 
empirical BOLD signals at each brain area. (A) �e evolution of the �tting of the FC and FCD statistics as 
a function of G. For large enough value of the global coupling a good �tting of both is obtained, i.e. large 
correlation between the empirical and simulated grand average FC and low di�erence in the statistics of the 
empirical and simulated FCD (Kolmogorov-Smirnov distance). (B) �e evolution of the single values of the 
local bifurcations parameters as a function of the global coupling G. For low values of G homogeneous local 
bifurcation parameters around zero are obtained. When the level of �tting improves for larger values of G a 
more heterogeneous distribution of is obtained. (C) �e local bifurcation parameters for each region for the 
uncoupled network (i.e. G = 0) and for the optimal coupling (G = 5.4). If the network is uncoupled, each single 
brain area �tted the spectral characteristics of the empirical BOLD signals in a very homogeneous way by local 
bifurcations parameters at the edge of the local Hopf bifurcation, i.e. at zero. (D) When the whole-brain network 
is coupled, we can discover the “true” intrinsic local dynamics that �ts the local empirical BOLD characteristics 
and the global quantities FC, FCD and metastability.
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Brain regions, for which best predictions were achieved in an oscillatory mode, i.e. with bifurcation parame-
ters a > 0.1 are visualised in Fig. 6. We found that the dynamical core within this parcellation consisted of eight 
lateralised brain regions: medial orbitofrontal cortex, posterior cingulate cortex and transverse temporal gyrus 
in the right hemisphere, and caudal middle frontal gyrus, precentral gyrus, precuneus cortex, rostral anterior 
cingulate cortex and transverse temporal gyrus in the le� hemisphere. �ose nodes working at the edge of the 
bifurcation are highlighted as a “dynamical core” whose perturbations can propagate in an optimal way to the rest 
of the network.

Discussion
We provide mechanistic explanations of the complex spatiotemporal dynamics of brain function arising from 
James’ early speculations1 to much more detailed scienti�c enquiry2, 32–34. �is con�rms that brain results from 
complex interactions in a system of non-linearly coupled, non-linear oscillatory processes which display dynam-
ical system phenomena such as multiple stable states, instability, state transitions and metastability, of which the 
latter has been proposed to form a core dynamical description of coordinated brain and behavioral activity6.

In the 1980s the physicist Hermann Haken suggested to mechanistically interpret brain processes of segrega-
tion and integration as a sequence of semistable states, so-called saddle states35. He proposed to view the complex 
integrative and segregative tendencies as expressions of emergent lower-dimensional behavior of collective varia-
bles, which he termed ‘order parameters’. Scott Kelso popularized this concept using the term ‘metastability’ based 
on his brain-behaviour experiments and drawing inspiration from other researchers including Rodolfo Llinás 
and Francisco Varela33, 34. He generalized metastability to include the oscillatory states of brain processes found 

Figure 6. Dynamical core in the human brain. �e �gure shows the dynamical core regions on the edge of 
bifurcation (location of neural masses shown in light blue and transparent blue for the full region). �ese are 
the nodes with the ability to react immediately to changes in the predicted input and thus likely to drive the rest 
of the brain networks. �e eight regions are clearly lateralised; and in the right hemisphere encompass medial 
orbitofrontal cortex, posterior cingulate cortex and transverse temporal gyrus, while in the le� hemisphere 
include caudal middle frontal gyrus, precentral gyrus, precuneus cortex, rostral anterior cingulate cortex and 
transverse temporal gyrus. Interestingly, some of these regions are part of the default mode network (medial 
orbitofrontal cortex, posterior cingulate cortex and precuneus cortex) while others have been implicated 
in memory processing (parahippocampal and transverse temporal gyrus), auditory processing (transverse 
temporal gyrus), selection for action (rostral anterior cingulate cortex and caudal middle frontal gyrus) and 
motor execution (precentral gyrus).
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in between complete synchronization and independence32, 36. Later research has formalized these concepts more 
rigorously, e.g. via the heteroclinic channel37, 38 and Structured Flows on Manifolds (SFM)39, 40.

We shed new causal light on the mechanisms underlying RSNs by extending previous research which has 
demonstrated the existence of RSNs, i.e. brain networks correlated within the grand average FC during resting 
state21, 41, 42. FC has become routinely used as a biomarker in various clinical applications, even though its predic-
tive value holds only for group analyses, and not currently for the individual43. �is problem arises most likely 
from the lack of taking time into account, i.e. the non-stationary nature of the resting state dynamics44, 45. Hansen 
and colleagues demonstrated that the grand average FC is more closely linked to the SC and linear models of 
FC29. When non-linearities are considered in the network models, the spatiotemporally dynamic repertoire of the 
network is signi�cantly enhanced and the resting state dynamics shows the non-stationary FCD, which expresses 
itself as the switching dynamics of the FC. While Hansen and colleagues proposed FCD as a novel biomarker and 
demonstrated that all known RSNs can be derived from the non-linear network dynamics of FCD, they did not �t 
the model to the empirical functional time series data. �e patterns in the FCD matrix arise from what is essen-
tially a random process and thus di�erent for di�erent measurements. �is renders the �tting process for brain 
network models more complex than �tting with the grand average FC, for which a Pearson correlation across 
empirical and simulated FC matrices is su�cient.

We have addressed this issue through a systematic �tting approach of the random process in FCD to the 
empirical data. �e conjunction of using sophisticated �tting and systematic parameter analysis allowed us to test 
the mechanistic hypotheses underlying the resting state, i.e. whether the brain at rest operates close to the edge of 
a bifurcation and/or occupies a metastable state. Both scenarios can be mechanistically realized by non-linearly 
coupling Hopf bifurcators26. Hopf oscillators have been used previously in connectome-based modelling of rest-
ing state dynamics in EEG/MEG and fMRI14, as well as for the modelling of the detailed temporal dynamics in 
EEG/MEG27, 28. �e usage here though is di�erent from the previous research, since the Hopf oscillators act as the 
sources of BOLD signal in the connectome based network model. Ghosh and colleagues used the Hopf oscillators 
as the sources of the electrophysiological signal and employed the Balloon Windkessel to derive the BOLD sig-
nal46. Given this interpretation, they needed to include all the signal transmission delays. In our present approach, 
the oscillation frequencies are signi�cantly slower and thus permit the neglect of the time delays, which simpli�es 
the computational e�ort of the simulation and thus the computational �tting of the models against empirical data.

Our key �nding is the demonstration that the optimal operating regime is at the edge of the local Hopf bifurca-
tion, i.e. a balance of noisy excursions in the oscillatory state. We not only were able to demonstrate that previous 
�ndings on the optimal operating point based on grand-average FC hold true if we take into account the temporal 
dynamics of FC, i.e. FCD. We also demonstrated that a better way of constraining brain network models is by 
not only �tting the grand average FC, but by also �tting the temporal structure of the �uctuations using the FCD.

Another remarkable and important �nding is that high metastability is only present in a narrow range of 
bifurcation parameter when a is close to the edge of the bifurcation. In other words, the FCD of the spontaneous 
resting state, in conjunction with brain network modelling provide evidence that the brain at rest is maximally 
metastable, re�ning and demonstrating the hypothesis of Tognoli and Kelso6. Note that there is also a region for 
very small G and positive a (oscillatory regime) where a relatively good �tting is obtained. �is dynamic regime 
was previously observed with a pure oscillatory Kuramoto model of the BOLD signals at the mesoscopic level47. 
Nevertheless, the level of �tting for the FC, metastability and even FCD is not as good as the one obtained in the 
region at the edge of the Hopf bifurcation. On the other hand, besides the extreme sensitivity of that working 
point (ultra-narrow regime of optimality) which means that the result is not so robust, the qualitative description 
of the BOLD signals is not realistic in the pure oscillatory regime in comparison with the noisy/oscillatory excur-
sions evidenced in the regime of the bifurcation parameter a near zero.

For constructing a heterogeneous brain network model with di�erent local parameter values, we took into 
account the spectral information of the BOLD data. We addressed the question if the oscillations at the individual 
nodes play a mechanistic role for the emergence of FC/FCD. In particular, we identi�ed a cortical core of eight 
brain regions with the optimal �t of bifurcation parameter a close to the edge of bifurcation. We propose to call 
this the dynamical cortical core of the brain. Interestingly, three of these regions (the medial orbitofrontal cortex, 
posterior cingulate cortex and precuneus cortex) are part of the default mode network and thus re-experience 
past events and pre-experience possible future events48, 49. In this vein other regions (parahippocampal and trans-
verse temporal gyrus) have also been implicated in memory processing and may thus perhaps be helping integrate 
information over di�erent timescales, binding fast and slow processes over time2. �is information is always con-
textual and in the noisy, unpredictable scanner it is perhaps not surprising that the brain is attending to the audi-
tory signals (transverse temporal gyrus). As such this information processing is available for con�ict monitoring 
and selection for action (rostral anterior cingulate cortex and caudal middle frontal gyrus) and motor execution 
(precentral gyrus)50. Equally, the involvement of the cingulate cortex is interesting given that this region recently 
has been shown to be part of the common neurobiological substrate for mental illness across across six diverse 
diagnostic groups (schizophrenia, bipolar disorder, depression, addiction, obsessive-compulsive disorder, and 
anxiety) based on a meta-analysis of grey matter loss in 193 neuroimaging studies of 15892 individuals51. �is 
reinforces the potential use of brain network computational modelling for understanding the underlying mech-
anisms of neuropsychiatric disorders52. �e right-handed quality of Fig. 6, presumably arises from the speci�cs 
of the data used to �t the model and we will be exploring its biological validity in subsequent studies with larger 
group sizes.

Although the bifurcation parameter does not have a direct biophysical correlate, it seems to be involved in 
mediating biophysical e�ects. Another note of caution: we have presented a mesoscopic phenomenological 
model, i.e. the dynamical equation corresponds directly to the measured BOLD signals and not to the neural 
signals. It is a phenomenological model since the real coupling between regions does not, of course, occur between 
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the hemodynamic signals, but between the underlying neural activity. Still, by using this simpli�ed approach, we 
do not need to convolve modelled neural signals with the haemodynamic response function47.

We therefore propose that in future both the global bifurcation parameter as well as the individual param-
eters could potentially serve as biomarkers for disease. It will be important to explore the changes for di�erent 
brain diseases, e.g. within a standardized framework for connectome-based modelling such as �e Virtual Brain 
(TVB)53, 54, and applications such as �tting of TVB’s dynamic regime and TVB Processing pipeline17.

Overall, we have shown that neuroimaging data can be causally analysed by constructing a relatively simple 
brain network computational model using a Hopf bifurcation. �is model was shown to be maximally metastable 
at the optimal �tting with the spatiotemporal dynamics of spontaneous brain activity. �is dynamical regime may 
well allow for the optimal integration and segregation of fast and slow information over di�erent time-scales, the 
“�ights” and “perchings” of the stream of consciousness alluded to by William James over 100 years ago.

Methods
Ethics Statement. All participants of this study gave written informed consent before the study, which was 
performed in compliance with the relevant laws and institutional guidelines and approved by the ethics commit-
tee of the Charité University Berlin.

Empirical MRI Data Collection. Structural data from DTI and resting-state BOLD signal time series were 
acquired for 24 healthy participants (age between 18 and 33 years old, mean 25.7, 12 females, 12 males). A full 
description of the generation of SC and FC matrices from those data can be found in ref. 17. Here, we provide a 
quick overview of the employed methods. Empirical data were acquired at Berlin Center for Advanced Imaging, 
Charité University Medicine, Berlin, Germany. For simultaneous EEG-fMRI55, 56, participants were asked to stay 
awake and keep their eyes closed. No other controlled task had to be performed. In addition, a localizer, DTI 
and T2 sequence were recorded for each participant. MRI was performed using a 3 Tesla Siemens Trim Trio MR 
scanner and a 12-channel Siemens head coil. Speci�cations for the employed sequences can be found in ref. 56. 
For each participant anatomical T1-weighted scans were acquired. DTI and GRE �eld mapping were measured 
directly a�er the anatomical scans. Next, functional MRI (BOLD-sensitive, T2*-weighted, TR 1940 ms, TE 30 ms, 
FA 78°, 32 transversal slices (3 mm), voxel size 3 × 3 × 3 mm, FoV 192 mm, 64 matrix) was recorded simultane-
ously to the EEG recording.

MRI Data Analysis. Processing steps executed by the public Berlin automatized processing pipeline56 com-
prised 1) preprocessing of T1-weighted scans, cortical reconstruction, tessellation and parcellation, 2) transfor-
mation of anatomical masks to di�usion space, 3) processing of di�usion data, 4) transformation of anatomical 
masks to fMRI space, 5) Processing of fMRI data.

Anatomical MRI Data Analysis. �e highly resolved anatomical images are important to create a pre-
cise parcellation of the brain. For each of those parcellated units, empirical functional data time series are spa-
tially aggregated. T1-weighted images are pre-processed using FREESURFER including probabilistic atlas based 
cortical parcellation, here using Desikan-Killany (DK) atlas57 (Table 1). �is generates volumes that contain all 
cortical and subcortical parcellated regions with corresponding region labels used for �ber-tracking and BOLD 
time-series extraction.

Empirical DTI Data Analysis and Tractography. Tractography requires binary WM masks to restrict 
tracking to WM voxels. Upon extraction of gradient vectors and values (known as b-table) using MRTrix, 
dw-MRI data are pre-processed using FREESURFER. Besides motion correction and eddy current correction 
(ECC) the b0 image is linearly registered (6 degrees of freedom, DOF) to the participant’s anatomical T1-weighted 
image and the resulting registration rule is stored for later use. We transformed the high-resolution mask volumes 
from the anatomical space to the participant’s di�usion space, to further use it for �ber tracking. �e cortical and 
subcortical parcellations are resampled into di�usion space, one time using the original 1 mm isotropic voxel 
size (for subvoxel seeding) and one time matching that of our dw-MRI data, i.e., 2.3 mm isotropic voxel size. 
During MRTrix pre-processing di�usion tensor images that store the di�usion tensor (i.e., the di�usion ellip-
soid) for each voxel location are computed. Based on that, a fractional anisotropy (FA) and an eigenvector map 
are computed and masked by the binary WM mask created previously. For subsequent �ber-response function 
estimation, a mask containing high-anisotropy voxels is computed. Fibre orientation distributions are estimated 
using constrained spherical deconvolution58 based on a response function estimated in voxels that are expected 
to contain a single, coherently-oriented �bre bundle (commands dwi2response tournier and dwi2fod; see MRTrix 
Documentation: http://mrtrix.readthedocs.io/en/latest/). In order to resolve crossing pathways, �bers are pro-
longed by employing a probabilistic tracking approach as provided by MRTrix. In order to exclude spurious 
tracks, three types of masks are used to constrain tracking: seeding-, target- and stop-masks. In order to restrict 
track-prolongation to WM, a WM-mask that contains the union of GM-WM-interface and cortical WM voxels is 
de�ned as a global stop mask for tracking. To address several confounds in the estimation of connection strengths 
(information transmission capacities), a new seeding and �ber aggregation strategy was employed developed for 
this pipeline and described in detail in ref. 17. In combination with a new aggregation scheme, it is based on an 
appropriate selection of seed voxels and controlling for the number of generated tracks in each seed voxel. Instead 
of using every WM voxel, tracks are initiated from GM-WM-interface voxels and a �xed number of tracks are 
generated for each seed-voxel. Since a GM parcellation-based aggregation is performed, each seed-mask is asso-
ciated with a ROI of the GM atlas. Along with seeding-masks complementary target-masks are de�ned specifying 
valid terminal regions for each track that was initiated in a speci�c seed voxel. �e capacity measures that we 
derive between each pair of regions are intended to estimate the strength of the in�uence that one region exerts 
over another, i.e., their SC. In order to improve existing methods for capacities estimation the approach makes use 

http://mrtrix.readthedocs.io/en/latest/
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of several assumptions with regard to seed-ROI selection, tracking and aggregation of generated tracks17. Upon 
tractography the pipeline aggregates generated tracks to structural connectome matrices. �e weighted distinct 
connection count used here divides each distinct connection by the number of distinct connections leaving the 
seed-voxel (yielding asymmetric capacities matrix). Values have been normalized by the total surface area of the 
GWI of a participant.

Empirical fMRI Data Analysis. In order to generate the FC matrices, FSL’s FEAT pipeline is used to per-
form the following operations: deleting the �rst �ve images of the series to exclude possible saturation e�ects in 
the images, high-pass temporal �ltering (100 seconds high-pass �lter), motion correction, brain extraction and a 
6 DOF linear registration to the MNI space. Functional data is registered to the participant’s T1-weighted images 
and parcellated according to FREESURFER’s cortical segmentation. By inverting the mapping rule found by regis-
tration, anatomical segmentations are mapped onto the functional space. Finally, average BOLD signal time series 
for each region are generated by computing the mean over all voxel time-series for each region. From the region 
wise aggregated BOLD data, FC matrices are computed within MATLAB using and Pearson’s linear correlation 
coe�cient as FC metrics. We did not perform global signal regression on data.

Brain Network Model. �e brain network model consists of 68 coupled brain areas (nodes) derived from 
the parcellation explained above. �e global dynamics of the brain network model used here results from the 
mutual interactions of local node dynamics coupled through the underlying empirical anatomical structural 
connectivity matrix Cij (see Fig. 2). �e structural matrix Ci denotes the density of �bres between cortical area i 
and j as extracted from the DTI based tractography (scaled to a maximum value of 0.2). �e local dynamics of 
each individual node is described by the normal form of a supercritical Hopf bifurcation, which is able to describe 

Region number Region name

1;35 Superior temporal sulcus, banks of

2;36 Caudal anterior cingulate cortex

3;37 Caudal middle frontal gyrus

4;38 Cuneus cortex

5;39 Entorhinal cortex

6;40 Fusiform gyrus

7;41 Inferior parietal cortex

8;42 Inferior temporal gyrus

9;43 Isthmus of cingulate cortex

10;44 Lateral occipital cortex

11;45 Lateral orbitofrontal cortex

12;46 Lingual gyrus

13;47 Medial orbitofrontal cortex

14;48 Middle temporal gyrus

15;49 Parahippocampal gyrus

16;50 Paracentral lobule

17;51 Pars opercularis

18;52 Pars orbitalis

19;53 Pars triangularis

20;54 Pericalcarine cortex

21;55 Postcentral gyrus

22;56 Posterior cingulate cortex

23;57 Precentral gyrus

24;58 Precuneus cortex

25;59 Rostral anterior cingulate cortex

26;60 Rostral middle frontal gyrus

27;61 Superior frontal cortex

28;62 Superior parietal cortex

29;63 Superior temporal gyrus

30;64 Supramarginal gyrus

31;65 Frontal pole

32;66 Temporal pole

33;67
Transverse temporal cortex (primary auditory 
cortex)

34;68 Insula

Table 1. Anatomical labels for the 68 regions in the Desikan-Kahilly parcellation. �e two region numbers per 
line refer to right and le� hemisphere respectively.
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the transition from asynchronous noisy behavior to full oscillations. �us, in complex coordinates, each node j is 
described by following equation:

ω βη= + − | | +
dz

dt
z a i z t[ ] ( )

(1)
j

j j j j
2

where

ρ= = +
θz e x iy (2)j j

i
j j

j

and ηi(t) is additive Gaussian noise with standard deviation β=0.02. �is normal form has a supercritical bifurca-
tion at aj = 0, so that for aj < 0 the local dynamics has a stable �xed point at zj = 0 (which because of the additive 
noise corresponds to a low activity asynchronous state) and for aj > 0 there exists a stable limit cycle oscillation 
with frequency ω π=f /2

j j . We insert equation 2 in equation 1 and separate real part in equation 3 and imaginary 

part in equation 4.
�us, the whole-brain dynamics is de�ned by following set of coupled equations:

∑ω βη= − − − + −
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Please note that following the literature from physics, the equations are written in Cartesian, rather than polar 
coordinates59–62. We couple the equations using the common di�erence coupling, which approximates the sim-
plest (linear) part of a general coupling function. �ese equations are valid in the weakly coupled oscillator limit, 
in which the coupling preserves the periodic orbit of the uncoupled oscillators. If the linear coupling (following 
a Taylor expansion of the full coupling) does not exist, the next non-vanishing higher order term should be con-
sidered, which is a case we do not address here (please see Kuramoto59 (see Eq 5.3.1) and Pikovsky, Arkady and 
Kurths60 (see Eq. 8.12) for more detailed analytic treatments of the equations).

In the latter equations, G is a global scaling factor (global conductivity parameter scaling equally all synaptic 
connections). �e global scaling factor G and the bifurcation parameters aj are the control parameters with which 
we study the optimal dynamical working region where the simulations maximally �t the empirical FC and the 
FCD. We model with the variables xj the BOLD signal of each node j. �e empirical BOLD signals were band-pass 
�ltered within the narrowband 0.04–0.07 Hz. �is frequency band has been mapped to the gray matter and it has 
been shown to be more reliable and functionally relevant than other frequency bands63–66. Within this model, 
the intrinsic frequency ωj of each node is in the 0.04–0.07 Hz band (i = 1, …, n). �e intrinsic frequencies were 
estimated from the data, as given by the averaged peak frequency of the narrowband BOLD signals of each brain 
region.

Grand average FC and FCD matrices. �e grand average FC is de�ned as the matrix of correlations of the 
BOLD signals between two brain areas over the whole time window of acquisition. In order to characterize the 
time dependent structure of the resting �uctuations, we estimate the FCD matrix29 (see Fig. 1). Each full-length 
BOLD signal of 22 min is split up into M=61 sliding windows of 60 sec, overlapping by 40 sec. For each sliding 
window, centered at time t, we calculated a separate FC matrix, FC(t). �e FCD is a MxM symmetric matrix 
whose (t1, t2) entry is de�ned by the Pearson correlation between the upper triangular parts of the two matrices 
FC(t1) and FC(t2). Epochs of stable FC(t) con�gurations are re�ected around the FCD diagonal in blocks of 
elevated inter-FC(t) correlations.

�e grand average FC and the FCD matrices were estimated for the recordings of each of the 24 participants as 
well as for 24 simulations of 22 minutes of the computational model. We compared the FC matrices of the model 
(averaged Fisher’s z-transformed over the 24 sessions) and the empirical data (averaged Fisher’s z-transformed 
over the 24 participants), adopting as a measure of similarity between the two matrices the Pearson correlation 
coe�cient between corresponding elements of the upper triangular part of the matrices. For comparing the FCD 
statistics, we collected the upper triangular elements of the matrices (over all participants or sessions) and gen-
erated the distribution of them. �en, we compared the simulated and empirical distribution by means of the 
Kolmogorov-Smirnov distance between them. �e Kolmogorov–Smirnov distance quanti�es the maximal di�er-
ence between the cumulative distribution functions of the two samples.

Metastability. Here, we refer to metastability as a measure of how variable are the states of phase con�gu-
rations as a function of time, i.e. how the synchronization between the di�erent nodes �uctuates across time24. 
�us, we measure the metastability as the standard deviation of the Kuramoto order parameter across time. �e 
Kuramoto order parameter is de�ned by following equation:

∑=
ϕ

=

R t e n( ) /
(5)k

n
i t

1

( )
k

where ϕk(t) is the instantaneous phase of each narrowband BOLD signal at node k. �e Kuramoto order param-
eter measures the global level of synchronization of the n oscillating signals. Under complete independence, the 
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n phases are uniformly distributed and thus R is nearly zero, whereas R=1 if all phases are equal (full synchroni-
zation). �us, for calculating the metastability of the empirical and simulated BOLD signals, we �rst band-pass 
�ltered within the narrowband 0.04–0.07 Hz (as previously explained) and computed the instantaneous phase 
ϕk(t) of each narrowband signal k using the Hilbert transform. �e Hilbert transform yields the associated ana-
lytical signals. �e analytic signal represents a narrowband signal, s(t), in the time domain as a rotating vector 
with an instantaneous phase, ϕk(t), and an instantaneous amplitude, A(t), i.e., ϕ=s t A t t( ) ( )cos( ( )). �e phase and 
the amplitude are given by the argument and the modulus, respectively, of the complex signal z(t), given by 

= + .z t s t i H s t( ) ( ) [ ( )], where i is the imaginary unit and H[s(t)] is the Hilbert transform of s(t).

Local Optimization of Brain Nodes. �e local optimization of each single bifurcation parameter aj is 
based on the �tting of the spectral information of the empirical BOLD signals in each node. In particular, we aim 
to �t the proportion of power in the 0.04–0.07 Hz band with respect to the 0.04–0.25 Hz band (i.e. we remove 
the smallest frequencies below 0.04 Hz and consider the whole spectra until the Nyquist frequency which is 
0.25 Hz)47. For this, we �ltered the BOLD signals in the 0.04–0.25 Hz band, and calculated the power spectrum 
Pj(f) for each node j. We de�ne the proportion,

∫

∫
= .
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and update the local bifurcation parameters by a gradient descendent strategy, i.e.:

η= + −a a p p( ) (7)j j j
empirical

j
simulated

until convergence. We used here η = 0.1. �e updates of the aj values are done in each optimization step in parallel.
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