
Nature Neuroscience | Volume 25 | November 2022 | 1569–1581  1569

nature neuroscience

https://doi.org/10.1038/s41593-022-01186-3Resource

Mapping neurotransmitter systems to the 
structural and functional organization of the 
human neocortex

Justine Y. Hansen)  )1, Golia Shafiei)  )1, Ross D. Markello)  )1, Kelly Smart)  )2,3, 

Sylvia M. L. Cox4, Martin Nørgaard)  )5,6, Vincent Beliveau)  )6,7, Yanjun Wu2,3, 

Jean-Dominique Gallezot2,3, Étienne Aumont8, Stijn Servaes9, 

Stephanie G. Scala4, Jonathan M. DuBois10, Gabriel Wainstein)  )11, Gleb Bezgin1,9, 

Thomas Funck12, Taylor W. Schmitz)  )13, R. Nathan Spreng)  )1, Marian Galovic14,15,16,  

Matthias J. Koepp15,16, John S. Duncan15,16, Jonathan P. Coles)  )17, Tim D. Fryer18, 

Franklin I. Aigbirhio18, Colm J. McGinnity19, Alexander Hammers)  )19, 

Jean-Paul Soucy1, Sylvain Baillet)  )1, Synthia Guimond)  )20,21, Jarmo Hietala)  )22, 

Marc-André Bedard1,8, Marco Leyton)  )1,4, Eliane Kobayashi1, 

Pedro Rosa-Neto)  )1,9, Melanie Ganz)  )6, Gitte M. Knudsen)  )6,23, 

Nicola Palomero-Gallagher12,24, James M. Shine)  )11, Richard E. Carson)  )2,3, 

Lauri Tuominen20, Alain Dagher)  )1 and Bratislav Misic)  )1 

N eu ro tr an sm itter receptors support the propagation of signals in the human 

brain. How receptor systems are situated within macro-scale neuroanatomy 

and how they shape emergent function remain poorly understood, and 

there exists no comprehensive atlas of receptors. Here we collate positron 

emission tomography data from more than 1,200 healthy individuals to 

construct a whole-brain three-dimensional normative atlas of 19 receptors 

and transporters across nine diferent neurotransmitter systems. We found 

that receptor profles align with structural connectivity and mediate function, 

i nc lu ding n eu ro ph ys io logical oscillatory dynamics and resting-state 

hemodynamic functional connectivity. Using the Neurosynth cognitive atlas, 

we uncovered a topographic gradient of overlapping receptor distributions 

that separates extrinsic and intrinsic psychological processes. Finally, we 

found both expected and novel associations between receptor distributions 

and cortical abnormality patterns across 13 disorders. We replicated all 

fndings in an independently collected a ut or ad io graphy dataset. This work 

demonstrates how chemoarchitecture shapes brain structure and function, 

providing a new direction for studying multi-scale brain organization.

Neurotransmitter receptors are heterogeneously distributed across 

the neocortex and respond to the binding of a neurotransmitter. By 

modulating the excitability and firing rate of the cell, neurotransmit-

ter receptors effectively mediate the transfer and propagation of 

electrical impulses. As such, neurotransmitter receptors drive synap-

tic plasticity, modify neural states and ultimately shape network-wide 

communication1. These receptors are diverse in their structure and 

function: receptors may be ionotropic or metabotropic, may be 
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available at https://github.com/netneurolab/hansen_receptors. We use 

multiple imaging modalities to comprehensively situate cortical neu-

rotransmitter receptor densities within micro-scale and macro-scale 

neural architectures. Using diffusion-weighted magnetic resonance 

imaging (MRI) and functional MRI, we show that neurotransmitter 

receptor densities follow the organizational principles of the brain9s 

structural and functional connectomes. Moreover, we found that 

neurotransmitter receptor densities shape magnetoencephalogra-

phy (MEG)-derived oscillatory neural dynamics. To determine how 

neurotransmitter receptor distributions affect cognition and disease, 

we mapped receptor densities to meta-analytic (Neurosynth-derived) 

functional activations, where we uncovered a spatially co-varying axis 

of neuromodulators and mood-related processes. Next, we linked 

receptor distributions to ENIGMA-derived patterns of cortical atrophy 

across 13 neurological, psychiatric and neurodevelopmental disorders, 

uncovering specific receptor3disorder links. We validated our findings 

and extended the scope of the investigation to additional receptors 

using an independently collected autoradiography neurotransmit-

ter receptor dataset6. Altogether, we demonstrate that, across spatial 

and temporal scales, chemoarchitecture consistently plays a key role 

in brain function.

Results
A comprehensive cortical profile of neurotransmitter receptor densi-

ties was constructed by collating PET images from a total of 19 different 

neurotransmitter receptors, transporters and receptor-binding sites 

across nine different neurotransmitter systems, including dopamine, 

norepinephrine, serotonin, acetylcholine, glutamate, GABA, hista-

mine, cannabinoid and opioid (Fig. 1). All PET images were acquired 

in healthy participants (see Table 1 for a complete list of receptors and 

transporters, corresponding PET tracers, ages and number of partici-

pants). A group-average tracer map was constructed across partici-

pants within each study. To mitigate variation in image acquisition and 

pre-processing, and to ease biological interpretability, all PET tracer 

maps were parcellated into the same 100 cortical regions and z-scored12. 

Note that, although the data include both cortical and subcortical data, 

we restricted our analyses to the cortex. In total, we present tracer maps 

composed of multiple subunits, may exert facilitatory or inhibitory 

influence on the circuit and are coupled to different downstream 

biochemical pathways.

How spatial distributions of different neurotransmitter recep-

tors relate to brain structure and shape brain function at the system 

level remains unknown. Recent technological advances allow for 

high-resolution reconstructions of the brain9s wiring patterns. These 

wiring patterns display non-trivial architectural features, including spe-

cialized network modules that support the segregation of information2 

as well as densely interconnected hub regions that support the integra-

tion of information3. The spatial arrangement of neurotransmitter 

receptors on this network presumably guides the flow of information 

and the emergence of cognitive function. Therefore, understanding the 

link between structure and function is inherently incomplete without 

a comprehensive map of the chemoarchitecture of the brain4,5.

A primary obstacle to studying the relative density distributions 

of receptors across multiple neurotransmitter systems is the lack 

of comprehensive openly accessible datasets. An important excep-

tion is the autoradiography dataset of 15 neurotransmitter receptors 

and receptor-binding sites, collected in three postmortem brains4,6. 

However, these autoradiographs are available in only 44 cytoarchi-

tectonically defined cortical areas. Alternatively, positron emission 

tomography (PET) can estimate in vivo receptor concentrations across 

the whole brain. Despite the relative ease of mapping receptor densi-

ties using PET, there are, nonetheless, difficulties in constructing a 

comprehensive PET dataset of neurotransmitter receptors. Due to 

the radioactivity of the injected PET tracer, mapping multiple differ-

ent receptors in the same individual is not considered a safe practice. 

Combined with the fact that PET image acquisition is relatively expen-

sive, cohorts of control subjects are small and typically include only 

one or two tracers. Therefore, constructing a comprehensive atlas of 

neurotransmitter receptor densities across the brain requires extensive 

data-sharing efforts from multiple research groups7311.

Here we curate and share an atlas of PET-derived whole-brain 

neurotransmitter receptor maps from 19 unique neurotransmitter 

receptors, receptor-binding sites and transporters, across nine differ-

ent neurotransmitter systems and more than 1,200 healthy individuals, 
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Fig. 1 | PET images of neurotransmitter receptors and transporters. PET tracer images were collated and averaged to produce mean receptor distribution maps 

of 19 different neurotransmitter receptors and transporters across nine different neurotransmitter systems and a combined total of more than 1,200 healthy 

participants.
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for 19 unique neurotransmitter receptors and transporters from a com-

bined total of 1,238 healthy participants, resulting in a 100)×)19 matrix 

of relative neurotransmitter receptor/transporter densities. Finally, 

we repeated all analyses in an independently collected autoradiogra-

phy dataset of 15 neurotransmitter receptors (Supplementary Table 1  

(ref. 6)) and across alternative brain parcellations12.

Receptor distributions reflect structural and functional 
organization
To quantify the potential for two brain regions to be similarly modu-

lated by endogenous or exogenous input, we computed the corre-

lation of receptor/transporter fingerprints between pairs of brain 

regions (Fig. 2a). Hereafter, we refer to this quantity as 8receptor simi-

larity9, analogous to other commonly used measures of inter-regional 

attribute similarity, including anatomical covariance13, morphomet-

ric similarity14, gene coexpression15, temporal profile similarity16 and 

microstructural similarity17. Receptor similarity is approximately 

normally distributed (Fig. 2b) and decreases exponentially with 

Euclidean distance, supporting the notion that proximal neural ele-

ments share similar microarchitecture (Fig. 2c; refs. 18,19). We confirm 

that no single receptor or transporter exerts undue influence on 

the receptor similarity matrix (see the 8Sensitivity and robustness 

analyses9 section).

Receptor similarity addresses the between-region similarity of 

receptor fingerprints. To complement this, we calculated the first prin-

cipal component of receptor density, which represents a regional quan-

tification of receptor similarity (Fig. 2d). This gradient separates insular 

and cingulate cortex from somatomotor and posterior parietal regions 

and resembles the macaque principal receptor expression gradient20. 

The first principal component differentiates laminar classes, support-

ing the notion that receptor expression strongly depends on lamination 

(Fig. 2e; one-way ANOVA F)=)15.82, P)=)1.95)×)1028; ref. 21). Additionally, 

we found a significant correlation between the receptor gradient and 

synapse density, consistent with the finding that the macaque receptor 

gradient increases with the number of dendritic spines (Fig. 2f; Pear-

son9s r(98))=)0.44, Pspin)=)0.0003, confidence interval (CI))=)[0.26, 0.58], 

two-tailed)20. For completeness, we stratified receptors by biological 

mechanisms (excitatory/inhibitory, ionotropic/metabotropic and Gs-/

Gi-/Gq-coupled metabotropic pathways) and neurotransmitter protein 

structure (monoamine/non-monoamine) to provide additional insight 

about the underlying biological pathways (Fig. 2g).

Using group-consensus structural and resting-state functional 

connectomes from the Human Connectome Project (HCP), we show 

that neurotransmitter receptor organization reflects structural and 

functional connectivity. Specifically, we found that receptor simi-

larity is greater between pairs of brain regions that are structurally 

connected, suggesting that anatomically connected areas are likely 

to be co-modulated (Fig. 3a). To ensure that the observed relation-

ship between structural connections and receptor similarity is not 

due to spatial proximity or network topography, we assessed signifi-

cance against density-, degree- and edge length-preserving surrogate 

structural connectivity matrices (P)=)0.0001, 10,000 repetitions22). 

Additionally, we found that receptor similarity is significantly corre-

lated with structural connectivity, after regressing Euclidean distance 

from both modalities (Pearson9s r(1134))=)0.16, P)=)1.6)×)1028, CI)=)[0.11, 

0.23], two-sided).

Likewise, receptor similarity is significantly greater between brain 

regions that are within the same intrinsic networks than between dif-

ferent intrinsic networks, according to the Yeo3Krienen seven-network 

classification (Pspin)=)0.001, 10,000 repetitions; Fig. 3b (ref. 23)). This sug-

gests that areas that are in the same cognitive system tend to have simi-

lar receptor profiles4. Significance was assessed non-parametrically by 

permuting the intrinsic network affiliations while preserving spatial 

autocorrelation (8spin test9; refs. 24,25). We also found that receptor 

similarity is significantly correlated with functional connectivity, 

after regressing Euclidean distance from both matrices (Pearson9s 

r(4948))=)0.23, P)=)7.1)×)10261, CI)=)[0.20, 0.26], two-sided). In other 

words, we observed that brain regions with similar receptor and trans-

porter composition show greater functional co-activation. Collectively, 

these results demonstrate that receptor profiles are systematically 

aligned with patterns of structural and functional connectivity above 

and beyond spatial proximity, consistent with the notion that receptor 

profiles guide inter-regional signaling.

Because neurotransmitter receptor and transporter distributions 

are organized according to structural and functional architectures, 

we next asked whether receptor/transporter distributions might aug-

ment the coupling between brain structure and function. To quantify 

structure3function coupling, we relied on the communicability of the 

weighted structural connectome (see results using alternative methods 

in Supplementary Fig. 1). Communicability represents a form of decen-

tralized diffusive communication on the structural connectome26 and 

has been previously shown to mediate the link between brain structure 

and function27. Structure3function coupling at every brain region is 

defined as the adjusted R2 of a simple linear regression model that fits 

regional communicability to regional functional connectivity. We then 

included regional receptor similarity as an independent variable, to 

assess how receptor information changes structure3function coupling. 

Significance was assessed against a null distribution of adjusted R2 from 

a model that adds a rotated regional receptor similarity vector (10,000 

repetitions, one-sided, false disovery rate (FDR)-corrected). Next, we 

cross-validated each regression model using a distance-dependent 

method that was previously developed in-house (Supplementary  

Fig. 2; see Methods for details28). We found that including receptor 

profiles as an input variable alongside brain structure significantly 

improves the prediction of regional functional connectivity in uni-

modal areas and the paracentral lobule (Fig. 3c).

Receptor profiles shape oscillatory neural dynamics
Given that neurotransmitter receptors modulate the firing rates of 

neurons and, therefore, population activity, we sought to relate the 

cortical patterning of neurotransmitter receptors to neural oscillations. 

We used MEG power spectra across six canonical frequency bands from 

the HCP29,30. We fit a multiple linear regression model that predicts the 

cortical power distribution of each frequency band from neurotrans-

mitter receptor and transporter densities. We then cross-validated the 

model using a distance-dependent method (Supplementary Fig. 3). In 

addition to the cross-validation, we assessed the significance of each 

model against a spin-permuted null model (10,000 repetitions) and 

found that all models except high-gamma are significant after FDR 

correction (Pspin)<)0.05, one-sided). We found a close fit between recep-

tor densities and MEG-derived power (0.78 ≤ R

2

adj

≤ 0.94 ; Fig. 4a), 

suggesting that overlapping spatial topographies of multiple neuro-

transmitter systems may ultimately manifest as coherent oscillatory 

patterns.

To identify independent variables (receptors/transporters) that 

contribute most to the fit, we applied dominance analysis, a tech-

nique that assigns a proportion of the final R2

adj

 to each independent 

variable to the statistically significant models31. Dominance was 

normalized by the total fit of the model (R2

adj

), such that dominance 

is comparable across models (Fig. 4b). We found that, compared to 

other receptors, the spatial distribution of MOR (opioid), H3 (hista-

mine) and ³4³2 make a large contribution to the fit between receptors 

and lower-frequency (theta and alpha) as well as low-gamma power 

bands32,33. Interestingly, we found a prominence of ionotropic recep-

tors when we replicated the analysis in the autoradiography dataset 

(see the 8Replication using autoradiography9 section and Supplemen-

tary Fig. 4). Additionally, when we stratified dominance by receptor 

classes, we found that inhibitory, non-monoamine and Gi-coupled 

receptors are more dominant than excitatory, monoamine and Gs-/

Gq-coupled receptors, respectively (Supplementary Fig. 5a).
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Mapping receptors to cognitive function
Previously, we showed that receptor and transporter distributions 

follow the structural and functional organization of the brain and that 

receptors are closely linked to neural dynamics. In this and the next 

subsections, we investigate how the spatial distribution of neurotrans-

mitter receptors and transporters correspond to cognitive processes 

and disease vulnerability.

We used Neurosynth to derive 123 meta-analytic task activation 

maps, which represent the probability that specific brain regions are 

activated during multiple cognitive tasks34. We applied partial least 

squares (PLS) analysis to identify a multivariate mapping between neu-

rotransmitter receptors/transporters and functional activation maps.

PLS analysis extracted a significant latent variable relating recep-

tor/transporter densities to functional activation across the brain 

(Pspin)=)0.010, one-tailed). The latent variable represents the dominant 

spatial pattern of receptor distributions (receptor weights) and func-

tional activations (cognitive weights) that together capture 54% of the 

covariance between the two datasets (Fig. 5a). Projecting the receptor 

density (functional activation) matrix back onto the receptor (cogni-

tive) weights reflects how well a brain area exhibits the receptor and 

cognitive weighted pattern, which we refer to as 8receptor scores9 and 

8cognitive scores9, respectively (Fig. 5b,c). The receptor and cognitive 

score patterns reveal a sensory-fugal spatial gradient, separating lim-

bic, paralimbic and insular cortices from visual and somatosensory 

cortices. We then cross-validated the correlation between receptor and 

cognitive scores using a distance-dependent method (Fig. 5d, mean 

out-of-sample Pearson9s r(98))=)0.54, Pspin)=)0.046, one-sided). This 

result demonstrates a link between receptor distributions and cogni-

tive specialization that is perhaps mediated by laminar differentiation 

and synaptic hierarchies.

To identify the receptors and cognitive processes that contribute 

most to the spatial pattern in Fig. 5b,c, we correlated each variable 

with the score pattern (Fig. 5e3f; for all stable term loadings, see 

Supplementary Fig. 6). This results in a 8loading9 for each receptor 

and cognitive process, where positively loaded receptors co-vary 

with positively loaded cognitive processes in positively scored brain 

Table 1 | Neurotransmitter receptors and transporters included in analyses. BPND, non-displaceable binding potential; 
VT, tracer distribution volume; Bmax, density (pmol)ml21) converted from binding potential (5-HT) or distributional volume 
(GABA) using autoradiography-derived densities; SUVR, standard uptake value ratio. Values in parentheses (under n) 
indicate the number of females. Neurotransmitter receptor maps without citations refer to previously unpublished 
data. In those cases, contact information for the study principal investigator (PI) is provided in Supplementary Table 3. 
Supplementary Table 3 also includes more extensive methodological details, such as PET camera, number of males and 
females, modeling method, reference region, scan length and modeling notes. Asterisks indicate transporters

Receptor/

transporter

Neurotransmitter Tracer Measure n Age References

D1 Dopamine [11C]SCH23390 BPND 13 (7) 33)±)13 Kaller et al.58

D2 Dopamine [11C]FLB-457 BPND 37 (20) 48.4)±)16.9 Smith et al.59,60

D2 Dopamine [11C]FLB-457 BPND 55 (29) 32.5)±)9.7 Sandiego et al.59363

DAT* Dopamine [123I]-FP-CIT SUVR 174 (65) 61)±)11 Dukart et al.64

NET* Norepinephrine [11C]MRB BPND 77 (27) 33.4)±)9.2 Ding et al.65368

5-HT1A Serotonin [11C]WAY-100635 BPND 35 (17) 26.3)±)5.2 Savli et al.69

5-HT1B Serotonin [11C]P943 BPND 65 (16) 33.7)±)9.7 Gallezot et al.70376

5-HT1B Serotonin [11C]P943 BPND 23 (8) 28.7)±)7.0 Savli et al.69

5-HT2A Serotonin [11C]Cimbi-36 B
max

29 (14) 22.6)±)2.7 Beliveau et al.9

5-HT4 Serotonin [11C]SB207145 B
max

59 (18) 25.9)±)5.3 Beliveau et al.9

5-HT6 Serotonin [11C]GSK215083 BPND 30 (0) 36.6)±)9.0 Radhakrishnan et al.77,78

5-HTT* Serotonin [11C]DASB B
max

100 (71) 25.1)±)5.8 Beliveau et al.9

³4³2 Acetylcholine [18F]Flubatine VT 30 (10) 33.5)±)10.7 Hillmer et al.79,80

M1 Acetylcholine [11C]LSN3172176 BPND 24 (11) 40.5)±)11.7 Naganawa et al.81

VAChT* Acetylcholine [18F]FEOBV SUVR 4 (1) 37)±)10.2 PI: Tuominen, L. & Guimond, S.

VAChT* Acetylcholine [18F]FEOBV SUVR 18 (13) 66.8)±)6.8 Aghourian et al.82

VAChT* Acetylcholine [18F]FEOBV SUVR 5 (1) 68.3)±)3.1 Bedard et al.83

VAChT* Acetylcholine [18F]FEOBV SUVR 3 (3) 66.6)±)0.94 PI: Schmitz, T. W. & Spreng, 

R. N.

NMDA Glutamate [18F]GE-179 VT 29 (8) 40.9)±)12.7 Galovic et al.84386

mGluR5 Glutamate [11C]ABP688 BPND 73 (48) 19.9)±)3.04 Smart et al.52

mGluR5 Glutamate [11C]ABP688 BPND 22 (10) 67.9)±)9.6 PI: Rosa-Neto, P. & Kobayashi, 

E.

mGluR5 Glutamate [11C]ABP688 BPND 28 (13) 33.1)±)11.2 DuBois et al.87

GABAA/BZ GABA [11C]Flumazenil B
max

16 (9) 26.6)±)8 Nørgaard et al.8

H3 Histamine [11C]GSK189254 VT 8 (1) 31.7)±)9.0 Gallezot et al.88

CB1 Cannabinoid [11C]OMAR VT 77 (28) 30.0)±)8.9 Normandin et al.89392

MOR Opioid [11C]Carfentanil BPND 204 (72) 32.3)±)10.8 Kantonen et al.93
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regions and vice versa for negative loadings. Interestingly, we found 

that almost all receptors/transporters have positive loading, with 

metabotropic dopaminergic and serotonergic receptors having the 

greatest loadings (Fig. 5e and Supplementary Fig. 5b). The cognitive 

processes with large positive loadings are enriched for emotional 

and affective processes such as 8emotion9, 8fear9 and 8valence9. This 

suggests that the combination of serotonergic and dopaminergic 

receptor distributions co-vary with mood-related functional activa-

tion in insular and limbic regions, consistent with the role of serotonin 

and dopamine neurotransmitter systems in mood processing and 

mood disorders35. On the other hand, we found that only NET has 

stable negative loading and that it spatially co-varies with functions 

such as 8fixation9, 8planning9 and 8skill9 in primarily unimodal regions. 

This is consistent with the notion that norepinephrine systems are 

involved in integrative functions that require coordination across 

segregated brain regions1. Collectively, these results demonstrate 

a direct link between cortex-wide molecular receptor distributions 

and functional specialization.

Mapping receptors and transporters to disease vulnerability
Neurotransmitter receptors and transporters are implicated in multi-

ple diseases and disorders. Identifying the neurotransmitter receptors/

transporters that correspond to specific disorders is important for 

developing new therapeutic drugs. We, therefore, sought to relate 

neurotransmitter receptors and transporters to patterns of cortical 

abnormality across a range of neurological, developmental and psy-

chiatric disorders. We used datasets from the ENIGMA consortium for 

a total of 13 disorders, including 22q11.2 deletion syndrome, attention 

deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), 

idiopathic generalized epilepsy (IGE), right and left temporal lobe 

epilepsy, depression, obsessive-compulsive disorder (OCD), schizo-

phrenia, bipolar disorder (BD), obesity, schizotypy and Parkinson9s 

disease (PD). We then fit a multiple regression model that predicts each 

disorder9s cortical abnormality pattern from receptor and transporter 

distributions (Fig. 6). We assessed the significance of each model fit 

against an FDR-corrected one-sided spatial autocorrelation-preserving 

null model and evaluated each model using distance-dependent 

D
e

n
si

ty

Receptors

D
e

n
si

ty

Receptors

–1.54 1.54

Mean z-score Regions

R
e

g
io

n
s

–1 

1

0.8

0.6

0.4

0.2

0

D
e

n
si

ty

1.0

Receptor similarity

–1 –0.5 0 0.5 1

a

d

g

e f

b c

R
e

c
e

p
to

r 
g

ra
d

ie
n

t

VAChT

DAT

5-HTT

NET

mGluR5

5-HT6

D1

5-HT4

5-HT2A

NMDA

M1

α4β2

MOR

CB1

5-HT1A

H3

D2

5-HT1B

GABAA

5-HT1A

D1

DAT

5-HT6

D2

5-HTT

5-HT4

5-HT2A

H3

5-HT1B

NET
mGluR5

MOR

VAChT

CB1

α4β2

NMDA

M1

GABAA

VAChT

DAT

5-HTT

NET

mGluR5

MOR

CB1

5-HT6

5-TH1A

D2

5-HT4

M1

5-HT2A

D1

H3

5-HT1B

NMDA

GABAA

α4β2

DAT

NMDA

VAChT

5-HTT

NET
α4β2

GABAA

5-HT6

D1

5-HT4

MOR

CB1

5-HT1A

H3

D2

5-HT1B

MI

mGluR5

5-HT2A

V
A

C
h

T

D
A

T

5
-H

T
T

N
E

T

m
G

lu
R

5

5
-H

T
6

D
1

5
-H

T
4

5
-H

T
2

A

N
M

D
A

M
1

α
4
β

2

M
O

R

C
B

1

5
-H

T
1A H
3

D
2

5
-H

T
1B

G
A

B
A

A

5
-H

T
1A D

1

D
A

T

5
-H

T
6

D
2

5
-H

T
T

5
-H

T
4

5
-H

T
2

A

H
3

5
-H

T
1B

N
E

T
m

G
lu

R
5

M
O

R

V
A

C
h

T

C
B

1

α
4
β

2

N
M

D
A

M
1

G
A

B
A

A

V
A

C
h

T

D
A

T

5
-H

T
T

N
E

T

D
2

M
1

D
1

H
3

m
G

lu
R

5

M
O

R

C
B

1

5
-H

T
6

5
-T

H
1A

5
-H

T
4

5
-H

T
2

A

5
-H

T
1B

N
M

D
A

G
A

B
A

A

α
4
β

2

D
A

T

N
M

D
A

V
A

C
h

T

5
-H

T
T

N
E

T

α
4
β

2

G
A

B
A

A

5
-H

T
4

5
-H

T
6

D
1

C
B

1

H
3

D
2

M
O

R

5
-H

T
1A

5
-H

T
1B M
I

m
G

lu
R

5

5
-H

T
2

A

Transporter Excitatory Inhibitory Monoamine Non-monoamine Transporter Metabotropic Ionotropic Other Gs Gi Gq

Correlate

–6.9 6.9
Score PLMB HET UNI IDT

–5

0

5

10

–6 –4 –2 0 2 4 6

Principal receptor gradient

2

1

0

–1

–2

–3

S
y
n

a
p

se
 d

e
n

si
ty

r = 0.43
Pspin = 0.0003

–1 

1

r

r

20 60 100 140

Euclidean distance (mm)

–0.5

0

0.5

1.0
y = 1.50 × e−0.04x-0.11

R
e

c
e

p
to

r 
si

m
il

a
ri

ty

Fig. 2 | Constructing a cortical neurotransmitter receptor and transporter 

atlas. PET maps for 19 different neurotransmitter receptors and transporters were 

z-scored and collated into a single neurotransmitter receptor atlas. a, For each 

pair of brain regions, the receptor density profiles are correlated (Pearson9s r)  

to construct the receptor similarity matrix (ordered according to the Yeo3

Krienen intrinsic networks: frontoparietal, default mode, dorsal attention, 

limbic, ventral attention, somatomotor and visual23). b, Receptor similarity is 

approximately normally distributed. c, Receptor similarity decays exponentially 

with the Euclidean distance between centroid coordinates of brain regions. 

d, The first principal component of receptor density. e, The first principal 

gradient of receptor density stratified by classes of laminar differentiation 

reveals a gradient from idiotypic regions to paralimbic regions (one-way ANOVA 

F)=)15.82, P)=)1.95)×)1028; PLMB, paralimbic; HET, heteromodal; UNI, unimodal; 

IDT, idiotypic)17. f, The principal receptor gradient is significantly correlated with 

synapse density (measured using the synaptic vesicle glycoprotein 2A-binding 

[11C]-UCBJ PET tracer; Pearson9s r(98))=)0.44, Pspin)=)0.0003, CI)=)[0.26, 0.58], 

two-tailed). g, Pearson9s correlations between pairs of receptor/transporter 

distributions are shown stratified by excitatory versus inhibitory, monoamine 

versus non-monoamine, ionotropic versus metabotropic and Gs-coupled versus 

Gi-coupled versus Gq-coupled metabotropic receptors.
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cross-validation (Supplementary Fig. 7). Figure 6a shows how receptor 

distributions map onto cortical abnormaltiy patterns across multiple 

disorders. We found that some disorders are more heavily influenced 

by receptor distribution than others (0.23 < R

2

adj

< 0.77). IGE and schi-

zotypy show low and non-significant correspondence with receptor 

distributions, whereas ADHD, autism and temporal lobe epilepsies 

show greater correspondence with receptor distributions. The domi-

nance analysis in Fig. 6b shows the contribution of each input variable 

to the fit of the model, normalized by the total fit (adjusted R2). Inter-

estingly, we found that serotonin transporter (5-HTT) distributions 

contribute more to OCD, schizophrenia and BD profiles than any other 

receptors. Furthermore, the mu-opioid receptor is the strongest con-

tributor of ADHD cortical abnormalities, consistent with findings from 

animal models36. We also note that, in some cases, the analyses do not 

necessarily recover the expected relationships. For instance, in PD, the 

dopamine receptors are not implicated, likely because the analysis was 

restricted to cortex only. Additionally, serotonin receptors do not make 

large contributions to depression, possibly because changes in corti-

cal thickness do not directly measure the primary pathophysiology 

associated with some brain diseases. Although this analysis points to 

mappings between receptors and disorder profiles, we found no 

significant differential contribution of receptor classes to disorder 

profiles (Supplementary Fig. 5c). Our results present an initial step 

toward a comprehensive 8look-up table9 that relates neurotransmitter 

systems to multiple brain disorders.

Replication using autoradiography
In the present report, we comprehensively situate neurotransmitter 

receptor and transporter densities within the brain9s structural and 

functional architecture. However, estimates for neurotransmitter 

receptor densities are acquired from PET imaging alone, and the way 

in which densities are quantified varies across radioligands, image 

acquisition protocols and pre-processing. Autoradiography is an 

alternative technique to measure receptor density and captures local 

densities at a defined number of postmortem brain sections. Due to 

the high cost and labor intensity of acquiring autoradiographs, there 

does not yet exist a complete autoradiography three-dimensional (3D) 

cross-cortex atlas of receptors.

Nonetheless, we repeated the analyses in an autoradiography 

dataset of 15 neurotransmitter receptors across 44 cytoarchitectoni-

cally defined cortical areas, from three postmortem brains6,37. This set 

of 15 neurotransmitter receptors consists of a diverse set of ionotropic 
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Fig. 3 | Receptor distributions reflect structural and functional organization. 

a, Top: group consensus weighted structural connectivity matrix. Middle: 

Receptor similarity is significantly greater between regions that are physically 

connected, against distance- and edge length-preserving null structural 

connectivity matrices (P)=)0.0001, two-tailed Nconnected)=)1,136 edges, 

Nnotconnected)=)3,814 edges22). Bottom: Receptor similarity is significantly positively 

correlated with structural connectivity, after distance regression (Pearson9s 

r(1134))=)0.16, P)=)1.6)×)1028, CI)=)[0.11, 0.23], two-sided). b, Top: group-average 

functional connectivity matrix. Middle: Receptor similarity is significantly 

greater within regions in the same functional network (Pspin)=)0.001, two-tailed, 

Nwithin)=)762 edges, Nbetween)=)4,188 edges). Bottom: Receptor similarity is positively 

correlated with functional connectivity (Pearson9s r(4948))=)0.23, P)=)7.1)×)10261, 

CI)=)[0.20, 0.26], two-sided). c, Regional structure3function coupling was 

computed as the fit (R2

adj

) between communicability of the weighted structural 

connectome and functional connectivity. Top: Structure3function coupling at 

each brain region is plotted when receptor similarity is excluded (x-axis) and 

included (y-axis) in the model. Yellow points indicate brain regions where 

receptor information significantly augments structure3function coupling 

(Pspin)<)0.05, FDR-corrected, one-sided). Bottom: the difference in adjusted R2 

when receptor similarity is and is not included in the regression model. Asterisks 

in a and b denote significance. Box plots in a and b represent the 1st, 2nd 

(median) and 3rd quartiles; whiskers represent the non-outlier endpoints of the 

distribution; and diamonds represent outliers. Connectomes in a and b are 

ordered according to the Yeo3Krienen intrinsic networks (order: frontoparietal, 

default mode, dorsal attention, limbic, ventral attention, somatomotor and 

visual)23. sc, structural connectivity.
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and metabotropic receptors, including excitatory glutamate, acetyl-

choline and norepinephrine receptors (see Supplementary Table 1 for 

a complete list of receptors). Notably, eight of the 15 receptors in the 

autoradiography dataset are not included in the PET dataset, which 

precludes direct comparisons between the two datasets. Receptor 

similarity is shown in Supplementary Fig. 8a. Despite the alternate set 

of neurotransmitter receptors, we found that autoradiography-derived 

receptor similarity is significantly correlated with PET-derived receptor 

similarity (Pearson9s r(1033))=)0.38, P)=)6.7)×)10238, CI)=)[0.33, 0.44]; Sup-

plementary Fig. 8a) and decays exponentially with Euclidean distance. 

Additionally, autoradiography-derived and PET-derived receptor gra-

dients are correlated (Pearson9s r(44))=)0.51, Pperm)=)0.0001, CI)=)[0.26, 

0.70], two-sided). Next, we found that autoradiography-derived recep-

tor densities follow similar architectural patterns as the PET-derived 

receptor densities. Receptor similarity is non-significantly greater 

between structurally connected brain regions (P)=)0.19) and signifi-

cantly correlated with structural connectivity (Pearson9s r(329))=)0.39, 

P)=)1.4)×)10213, CI)=)[0.30, 0.48]; Supplementary Fig. 8d). It is also signifi-

cantly greater in regions within the same intrinsic network (Pspin)=)0.03) 

and is significantly correlated with functional connectivity (Pearson9s 

r(1033))=)0.21, P)=)1.1)×)10212, CI)=)[0.16, 0.28]; Supplementary Fig. 8e). As 

before, receptor information augments structure3function coupling in 

visual, paracentral and somatomotor regions (Supplementary Fig. 8f). 

Finally, we show correlations of receptor density distribution between 

every pair of receptors in Supplementary Fig. 8g.

Because the autoradiography dataset has a more diverse set of 

ionotropic and metabotropic receptors, we also asked whether we 

would observe a prominence of ionotropic receptors for MEG oscil-

lations. When we fit the 15 autoradiography neurotransmitter recep-

tors to MEG power, we found that AMPA, NMDA, GABAA and ³4³24all 

ionotropic receptors4are most dominant (Supplementary Fig. 4). This 

confirms that the fast oscillatory dynamics captured by MEG are closely 

related to the fluctuations in neural activity modulated by ionotropic 

neurotransmitter receptors.

Finally, we repeated analyses mapping receptor densities to 

cognitive functional activation and disease vulnerability. We found 

a similar topographic gradient linking autoradiography-derived 

receptor densities to Neurosynth-derived functional activations (Sup-

plementary Fig. 9a). Indeed, PET-derived and autoradiography-derived 

receptor and cognitive scores are correlated (Supplementary  

Fig. 8b; Pearson9s r)=)20.50, Pperm)=)0.0002, CI)=)[20.69, 20.26] for recep-

tor scores; Pearson9s r)=)20.75, Pperm)=)0.0001, CI)=)[20.86, 20.60] for 

cognitive scores). We also found consistencies regarding the loadings 

of receptors (Supplementary Fig. 9c) and cognitive processes (Sup-

plementary Fig. 9d). Next, when we mapped autoradiography-derived 

receptor densities to cortical abnormality patterns of multiple dis-

orders, we found prominent associations with receptors that were 

not included in the PET dataset, including a relationship between the 

ionotropic glutamate receptor kainate and depression (Supplemen-

tary Fig. 10).

Sensitivity and robustness analyses
Finally, to ensure that results are not influenced by specific methodo-

logical choices, we repeated analyses using different parcellation reso-

lutions and different receptor subsets, and we compared alternative 

PET tracers to the chosen PET tracers in the present report. Due to 

the low spatial resolution of PET tracer binding, we opted to present 

our main results using a coarse resolution of 100 cortical regions12. 

However, when using a parcellation resolution of 200 and 400 corti-

cal regions, we found that the mean receptor density and receptor 

similarity remains consistent (Supplementary Fig. 11). We next asked 

whether any single receptor or transporter disproportionately influ-

ences receptor similarity. To test this, we iteratively removed a single 

receptor/transporter from the dataset and recomputed the recep-

tor similarity matrix. These 19 different receptor similarity matrices 

are all highly correlated with the original similarity matrix (Pearson9s 

r(4948))>)0.98), confirming that the correspondence between regional 

receptor profiles is not driven by a single neurotransmitter receptor/

transporter.

We also tested whether participant age affects the reported results. 

However, only mean age of individuals included in each tracer map 

was available. Therefore, we fit a linear model between the mean age 

of scanned participants contributing to each receptor/transporter 

tracer map and the z-scored receptor/transporter density, for each 
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Fig. 4 | Receptor profiles shape oscillatory neural dynamics. We fit a 

multi-linear regression model that predicts MEG-derived power distributions 

from receptor distributions. a, Receptor distributions closely correspond to all 

six MEG-derived power bands (0.78 ≤ R

2

adj

(80) ≤ 0.94). The significance of each 

model is assessed against a spatial permutation-preserving null model and 

corrected for multiple comparisons (FDR correction). Asterisks denote 

significant models (FDR-corrected Pspin)<)0.05, one-tailed). Delta R2

adj

(80) = 0.89, 

Pspin)=)0.03; theta R2

adj

(80) = 0.94, Pspin)=)0.0006; alpha R2

adj

(80) = 0.93, 

Pspin)=)0.0006; beta R2

adj

(80) = 0.84, Pspin)=)0.008; low-gamma R2

adj

(80) = 0.83, 

Pspin)=)0.04; and high-gamma R2

adj

(80) = 0.78, Pspin)=)0.16. b, Dominance analysis 

distributes the fit of the model across input variables such that the contribution 

of each variable can be assessed and compared to other input variables. The 

percent contribution of each input variable is defined as the variable9s 

dominance normalized by the total fit (R2

adj

) of the model. Note that dominance 

analysis is not applied to the input variables of non-significant models (that is, 

high-gamma).
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brain region separately. We then subtracted the relationship with age 

from the original receptor densities, resulting in an age-regressed 

receptor density matrix. We found that both age-regressed receptor 

density and age-regressed receptor similarity is highly correlated 

with the original receptor density/similarity (Pearson9s r(4948))=)0.78, 

P)=)0, CI)=)[0.76, 0.79] and Pearson9s r(4948))=)0.984, P)=)0, CI)=)[0.982, 

0.985], respectively; Supplementary Fig. 12), suggesting that age has 

a negligible effect on the reported findings. However, we note that 

this analysis is not sensitive to individual subject variability and that 

certain neurotransmitter receptor systems show changes in receptor 

availability with age38340.

Discussion
In the present report, we curate a comprehensive 3D atlas of 19 neuro-

transmitter receptors and transporters. We demonstrate that chemo-

architecture is a key layer of the multi-scale organization of the brain. 

Neurotransmitter receptor profiles closely align with the structural 

connectivity of the brain and mediate its link with function, including 

neurophysiological oscillatory dynamics and resting-state hemody-

namic functional connectivity. The overlapping topographic distribu-

tions of these receptors ultimately manifest as patterns of cognitive 

specialization and disease vulnerability.

A key question in neuroscience remains how the brain9s struc-

tural architecture gives rise to its function41. The relationship between 

whole-brain structure and function has been viewed through the 

lens of 8connectomics9, in which the brain9s structural or functional 

architectures are represented by regional nodes interconnected by 

structural and functional links. The key assumption of this model is 

that nodes are homogenous, effectively abstracting away important 

microarchitectural differences between regions. The present work is 

part of an emerging effort to annotate the connectome with molecular, 

cellular and laminar attributes. Indeed, recent work has incorporated 

microarray gene transcription28, cell types42, myelination19, laminar 

differentiation43 and intrinsic dynamics44 into structural and functional 

models of the brain.

Neurotransmitter receptors and transporters are an important 

molecular annotation for bridging brain structure to brain function. 

Despite this, a comprehensive cortical map of neurotransmitter 

receptors has remained elusive due to numerous methodological and 

data-sharing challenges (but see the ongoing PET-BIDS effort as well as the 

OpenNeuro PET initiative at https://openneuropet.github.io/ (refs. 10,11)).  

The present study is an ongoing Open Science grassroots effort to 

assemble harmonized high-resolution normative images of receptors 

and transporters that can be used to annotate connectomic models 
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Fig. 5 | Mapping receptors to cognitive function. a, Using PLS analysis, we 
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between receptor distributions and Neurosynth-derived cognitive functional 

activation (Pspin)=)0.010, 10,000 repetitions, one-sided). b,c, This latent variable 

represents a pattern of co-activation between receptors (8receptor scores9) 

and cognitive terms (8cognitive scores9). d, The PLS model was cross-validated 

using a method that stratifies the training set (yellow points) and test set (gray 

points) based on the distance between each node to a source node (red point), 

and the procedure is repeated such that each brain region is assigned as the 

source node once (100 repetitions). The significance of the mean out-of-

sample test set correlation was assessed against a null distribution of mean 

correlation constructed by rotating the receptor density matrix before the PLS 

analysis (see Methods for details). e, Receptor loadings are computed as the 
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distribution; and open circles represent outliers.

http://www.nature.com/natureneuroscience
https://openneuropet.github.io/


Nature Neuroscience | Volume 25 | November 2022 | 1569–1581  1577

Resource https://doi.org/10.1038/s41593-022-01186-3

of the brain. This work builds on previous initiatives to map receptor 

densities using autoradiography, which has discovered prominent gra-

dients of receptor expression in both human and macaque brains6,20,37. 

Notably, we found consistent results between autoradiography and 

PET datasets, which is encouraging because the PET dataset consists 

of a different group of receptors and transporters and has the added 

advantage of providing in vivo whole-brain data in large samples of 

healthy young participants.

We found a prominent link between receptor distribution and 

both brain structure and function, which supports the idea that the 

emergent functional architecture strongly depends on the underlying 

chemoarchitecture4. Interestingly, we found that the canonical elec-

trophysiological frequency bands can be captured by the overlapping 

topographies of multiple receptors, consistent with the notion that 

receptors influence function by tuning gain and synchrony between 

neuronal populations45. Because receptors are correlated with multiple 

features of brain structure and function, a natural next question is how 

receptor distributions relate to psychological processes. We found a 

multivariate mapping between receptor profiles and cognitive activa-

tions. Interestingly, although individual receptors have been associated 

with specific functions (for example, D1 and selective attention46), our 

findings suggest that the combined spatial distribution of serotonergic 

and dopaminergic receptors underlie patterns of cognitive activation 

related to affect. Altogether, these results offer clues about how mul-

tiple neurotransmitter systems collectively influence cognitive func-

tions and present novel hypotheses that future causal studies can test.

Finally, we discovered a robust spatial concordance between multi-

ple receptor maps and cortical abnormality profiles across a wide range 

of brain disorders. A key step toward developing therapies for specific 

syndromes is to reliably map them onto underlying neural systems. This 

goal is challenging because psychiatric and neurological nosology is 

built around clinical features rather than neurobiological mechanisms. 

Our results complement some previously established associations 

between disorders and neurotransmitter systems and also reveal new 

associations. For instance, we found that the serotonin transporter is 

the strongest contributor to schizophrenia and BD, consistent with 
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the fact that mood disorders are often accompanied with abnormal 

serotonin signaling47,48. On the other hand, we found associations that 

have some preliminary support in the literature but, to our knowledge, 

have not been conclusively established and adopted into clinical prac-

tice, including histamine H3 in PD49, MOR in ADHD36 and D1 and NET in 

temporal lobe epilepsy50,51. Mapping disease phenotypes to receptor 

profiles will help to identify novel targets for pharmacotherapy. This 

analysis is restricted to a single perspective of disease pathology (cor-

tical thinning/thickening) and should be expanded in future work to 

encompass other forms of disease presentation as well as the effects 

of age and pathology on receptor/transporter density.

Collectively, the main results in the present report aim to go 

beyond traditional one-to-one (that is, univariate) associations 

between receptors and brain function, toward considering how mul-

tiple neurotransmitter systems work together. The present report 

builds on the theories generated by previous neurochemical and phar-

macological causal studies, and it is encouraging to see consistent 

results at the level of the whole brain, across multiple neurotransmit-

ter systems and using different imaging modalities. Furthermore, the 

comprehensive approach of this study showcases novel associations 

that may not have been considered before. This large-scale characteri-

zation of receptor systems should be validated in, and will hopefully 

inspire, future causal studies, driving the cycle of discovery. Altogether, 

our data and analyses provide a framework that allows us to test pre-

dictions from the wider literature and consolidate knowledge about 

neurotransmitter systems.

Some potential avenues for future complementary research are 

to study how receptor architecture changes in healthy aging, across 

the sexes, and how they map onto subcortical structures. Indeed, 

dopamine D1 and D2 receptor availability is commonly acknowl-

edged to decrease with age in the subcortex38; serotonin transporter 

and receptor density have been reported to be significantly lower in 

older adults39; and GABAA density is reported to be higher in older 

adults40. Likewise, previously published literature has reported 

greater whole-brain glutamate receptor densities in men52, greater 

kappa-opioid receptor density in men53 and greater mu-opioid recep-

tor density in women54. Finally, multiple neurotransmitter projection 

systems originate in the subcortex1, and neurodegenerative disease 

progression has been linked with abnormal subcortical receptor 

expression55. Ultimately, future research is necessary to characterize 

multi-system receptor distributions across age and sex and within 

subcortical structures.

The present work should be considered alongside some important 

methodological considerations. First, main analyses were conducted 

using PET images, which detect tracer uptake at a low spatial resolution 

and without laminar specificity. Although results were replicated using 

an autoradiography dataset, and in a finer parcellation resolution, a 

comprehensive atlas of laminar-resolved receptor density measure-

ments is necessary to fully understand how regional variations in recep-

tor densities affect brain structure and function21. Second, PET tracer 

maps were acquired around the world, in different participants, on 

different scanners and using specific image acquisition and processing 

protocols recommended for each individual radioligand56,57. To miti-

gate this challenge, we normalized the spatial distributions and focused 

only on analyses related to the relative spatial topographies of recep-

tors as opposed to the absolute values. Third, the linear models used 

in the present analyses assume independence between observations 

and linear relationships between receptors; we, therefore, employed 

spatial autocorrelation-preserving null models to account for the 

spatial dependencies between regions throughout the report. Fourth, 

analyses were restricted to the cortex, obscuring the contributions of 

subcortical neuromodulatory systems. Fifth, although we repeated 

our analyses in an autoradiography dataset, eight of the 15 receptors 

included in the autoradiography dataset are not included in the PET 

datasets, and, therefore, a direct comparison between datasets was not 

possible. Altogether, a 3D whole-brain comprehensive neurotransmit-

ter receptor density dataset constructed using autoradiographs would 

be a valuable complement to the present work6,21.

In summary, we assembled a normative 3D atlas of neurotransmit-

ter receptors in the human brain. We systematically mapped receptors 

to connectivity, dynamics, cognitive specialization and disease vulner-

ability. Our work uncovers a fundamental organizational feature of 

the brain and provides new direction for a multi-scale systems-level 

understanding of brain structure and function.
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Methods
All code and data used to perform the analyses can be found at https://

github.com/netneurolab/hansen_receptors. Volumetric PET images are 

included in neuromaps (https://github.com/netneurolab/neuromaps) 

where they can be easily converted between template spaces94.

PET data acquisition
Volumetric PET images were collected for 19 different neurotransmit-

ter receptors and transporters across multiple studies. To protect 

patient confidentiality, individual participant maps were averaged 

within studies before being shared. Details of each study, the associ-

ated receptor/transporter, tracer, number of healthy participants, 

age and reference with full methodological details can be found in 

Table 1. A more extensive table can be found in the supplementary 

material (Supplementary Table 3), which additionally includes the 

PET camera, number of males and females, PET modeling method, 

reference region, scan length, modeling notes and additional ref-

erences, if applicable. In all cases, only healthy participants were 

scanned (n)=)1,238; 718 males and 520 females). Images were acquired 

using best practice imaging protocols recommended for each radioli-

gand56. Altogether, the images are an estimate proportional to recep-

tor densities, and we, therefore, refer to the measured value (that is, 

binding potential and tracer distribution volume) simply as density. 

Note that the NMDA receptor tracer ([18F]GE-179) binds to open (that 

is, active) NMDA receptors86,95. PET images were all registered to the 

MNI-ICBM 152 non-linear 2009 (version c, asymmetric) template 

and then parcellated to 100, 200 and 400 regions according to the 

Schaefer atlas12. Receptors and transporters with more than one 

mean image of the same tracer (that is, 5-HT1B, D2, mGluR5 and VAChT) 

were combined using a weighted average after confirming that the 

images are highly correlated to one another (Supplementary Fig. 13a). 

Finally, each tracer map corresponding to each receptor/transporter 

was z-scored across regions and concatenated into a final region by 

receptor matrix of relative densities.

In some cases, more than one tracer map was available for the same 

neurotransmitter receptor/transporter. We show the comparisons 

between tracers in Supplementary Fig. 13b for the following neuro-

transmitter receptors/transporters: 5-HT1A
9,69, 5-HT1B

9,69,70, 5-HT2A
9,69,96, 

5-HTT9,69, CB1 (refs. (89,97)), D2 (refs. (59,60,98,99)), DAT64,100, GABAA
8,64, MOR93,101 

and NET65,102. Here, we make some specific notes: (1) 5-HTT and GABAA 

involve comparisons between the same tracers (DASB and flumazenil, 

respectively), but one map is converted to density using autoradiography 

data (see ref. 9 and ref. 8) and the other is not7,64,69; (2) raclopride is a popular 

D2 tracer but has unreliable binding in the cortex and is, therefore, an 

inappropriate tracer to use for mapping D2 densities in the cortex, but we 

show its comparison to FLB457 and another D2 tracer, fallypride, for com-

pleteness98,99,103; and (3) the chosen carfentanil (MOR) map was collated 

across carfentanil images in the PET Turku Centre database4because our 

alternative map is a partly overlapping subset of participants, we did not 

combine the tracers into a single mean map93,101.

Synapse density in the cortex was measured in 76 healthy adults 

(45 males, 48.9)±)18.4)years of age) by administering [11C]UCB-J, a PET 

tracer that binds to the synaptic vesicle glycoprotein 2A (SV2A)104. Data 

were collected on an HRRT PET camera for 90)minutes after injection. 

Non-displaceable binding potential (BPND) was modeled using SRTM2, 

with the centrum semiovale as reference and k′ fixed to 0.027 (popula-

tion value). This group-averaged map was first presented in ref. 105.

Autoradiography receptor data acquisition
Receptor autoradiography data were originally acquired as described 

in ref. 6. Fifteen neurotransmitter receptor densities across 44 cyto-

architectonically defined areas were collected in three postmortem 

brains (age range: 72377)years, two males). See Supplementary Table 

1 for a complete list of receptors included in the autoradiography 

dataset; see Supplementary Table 2 in ref. 6 for the originally reported 

receptor densities; and see https://github.com/AlGoulas/receptor_

principles for machine-readable Python numpy files of receptor den-

sities37. To best compare PET data analyses with the autoradiography 

dataset, a region-to-region mapping was manually created between 

the 44 available cortical areas in the autoradiography dataset and the 

50 left hemisphere cortical Schaefer-100 regions. Four regions in the 

Schaefer atlas did not have a suitable mapping to the autoradiography 

atlas. As such, the 44-region autoradiography atlas was converted to 

46 Schaefer left hemisphere regions. Finally, receptor densities were 

concatenated and z-scored to create a single map of receptor densities 

across the cortex.

Structural and functional data acquisition
Following the procedure described in ref. 106, we obtained struc-

tural and functional MRI data for 326 unrelated participants (age 

range: 22335)years, 145 males) from the HCP (S900 release29). All 

four resting-state functional MRI scans (two scans (R/L and L/R 

phase-encoding directions) on day 1 and two scans (R/L and L/R 

phase-encoding directions) on day 2, each about 15)minutes long; 

TR)=)720)ms), as well as diffusion-weighted imaging (DWI) data were 

available for all participants. All the structural and functional MRI data 

were pre-processed using HCP minimal pre-processing pipelines29,107. 

We provide a brief description of data pre-processing below, whereas 

detailed information regarding data acquisition and pre-processing 

is available elsewhere29,107.

Structural network reconstruction
DWI data were pre-processed using the MRtrix3 package108 (https://

www.mrtrix.org/). More specifically, fiber orientation distributions 

were generated using the multi-shell, multi-tissue constrained spheri-

cal deconvolution algorithm from MRtrix109,110. White matter edges were 

then reconstructed using probabilistic streamline tractography based 

on the generated fiber orientation distributions111. The tract weights 

were then optimized by estimating an appropriate cross-section mul-

tiplier for each streamline following the procedure proposed by ref. 112,  

and a connectivity matrix was built for each participant using the 

100-region Schaefer parcellation12. A group consensus binary net-

work was constructed using a method that preserves the density and 

edge-length distributions of the individual connectomes113. Edges in 

the group consensus network were assigned weights by averaging 

the log-transformed streamline count of non-zero edges across par-

ticipants. Edge weights were then scaled to values between 0 and 1.

Functional network reconstruction
All 3T functional MRI time series were corrected for gradient 

non-linearity, head motion using a rigid body transformation and 

geometric distortions using scan pairs with opposite phase encod-

ing directions (R/L and L/R)106. Further pre-processing steps include 

co-registration of the corrected images to the T1w structural MR 

images, brain extraction, normalization of whole brain intensity, 

high-pass filtering (>2,000s full width at half maximum (FWHM); to 

correct for scanner drifts) and removing additional noise using the 

ICA-FIX process106,114. The pre-processed time-series were then parcel-

lated to 100 cortical brain regions according to the Schaefer atlas12. 

The parcellated time series were used to construct functional con-

nectivity matrices as a Pearson correlation coefficient between pairs 

of regional time series for each of the four scans of each participant. A 

group-average functional connectivity matrix was constructed as the 

mean functional connectivity across all individuals and scans.

Structure–function coupling
Structure3function coupling at every brain region is defined as the 

adjusted R2 of a simple linear regression model that fits regional com-

municability (that is, the communicability between a brain region to 

every other brain region) to regional functional connectivity (that is, 
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the functional connectivity between a brain region and every other 

brain region). Communicability is defined as the weighted average 

of all walks and paths between two brain regions and represents dif-

fusive communication26,115. Additionally, communicability has been 

previously demonstrated as an important bridge between brain 

structure and function27. In the receptor-informed model, receptor 

similarity between the region of interest and every other region was 

included as an additional independent variable. The significance of 

the receptor-informed structure3function coupling was assessed 

against a null distribution of adjusted R2 from a model that adds a 

rotated regional receptor similarity vector (10,000 repetitions). This 

ensures that the increase in R2 when receptor information is included 

in the model is robust against the addition of a random variable with 

identical spatial autocorrelation.

MEG power
Six-minute resting-state eyes-open magenetoencephalography (MEG) 

time series were acquired from the HCP (S1200 release) for 33 unre-

lated participants (age range: 22335)years, 17 males)29,107. Complete 

MEG acquisition protocols can be found in the HCP S1200 Release 

Manual. For each participant, we computed the power spectrum at 

the vertex level across six different frequency bands: delta (234)Hz), 

theta (537)Hz), alpha (8312)Hz), beta (15329)Hz), low gamma (30359)Hz) 

and high gamma (60390)Hz), using the open-source software Brain-

storm116. The pre-processing was performed by applying notch filters 

at 60, 120, 180, 240 and 300)Hz and was followed by a high-pass filter 

at 0.3)Hz to remove slow-wave and DC-offset artifacts. Pre-processed 

sensor-level data were used to obtain a source estimation on HCP9s 

fsLR4k cortex surface for each participant. Head models were com-

puted using overlapping spheres, and the data and noise covariance 

matrices were estimated from the resting-state MEG and noise record-

ings. Brainstorm9s linearly constrained minimum variance (LCMV) 

beamformers method was applied to obtain the source activity for 

each participant. Welch9s method was then applied to estimate power 

spectrum density (PSD) for the source-level data, using overlapping 

windows of length 4)seconds with 50% overlap. Average power at 

each frequency band was then calculated for each vertex (that is, 

source). Source-level power data were then parcellated into 100 corti-

cal regions for each frequency band12.

ENIGMA cortical abnormality maps
The ENIGMA (Enhancing Neuroimaging Genetics through 

Meta-Analysis) consortium is a data-sharing initiative that relies on 

standardized image acquisition and processing pipelines, such that 

disorder maps are comparable117. Patterns of cortical abnormality 

were collected for 13 neurological, neurodevelopmental and psychi-

atric disorders from the ENIGMA consortium and the Enigma toolbox 

(https://github.com/MICA-MNI/ENIGMA; ref. 118), including: 22q11.2 

deletion syndrome (22q)119, ADHD120, ASD121, idiopathic generalized 

epilepsy122, right temporal lobe epilepsy122, left temporal lobe epi-

lepsy122, depression123, OCD124, schizophrenia125, BD126, obesity127, schi-

zotypy128 and PD129. Although most disorders show decreases in cortical 

thickness, some (for example, 22q, ASD and schizotypy) also show 

regional increases in cortical thickness. We, therefore, refer to the 

disorder profiles as 8cortical abnormalities9. All cortical abnormality 

maps were collected from adult patients (except for ASD for which only 

an age-aggregated (2364)years) map was available), following identi-

cal processing protocols, for a total of over 21,000 scanned patients 

against almost 26,000 controls. The values for each map are z-scored 

effect sizes (Cohen9s d) of cortical thickness in patient populations 

versus healthy controls. Note that the native and only representatin of 

ENIGMA datasets is the Desikan3Killiany atlas (68 cortical regions)130. 

For visualization purposes, data are inverted such that larger values 

represent greater cortical thinning. Imaging and processing protocols 

can be found at http://enigma.ini.usc.edu/protocols/.

Dominance analysis
Dominance analysis seeks to determine the relative contribution 

(8dominance9 of each independent variable to the overall fit (adjusted 

R2)) of the multiple linear regression model (https://github.com/

dominance-analysis/dominance-analysis (ref. 31)). This is done by fitting 

the same regression model on every combination of input variables 

(2p)2)1 submodels for a model with p input variables). Total dominance 

is defined as the average of the relative increase in R2 when adding a 

single input variable of interest to a submodel, across all 2p)2)1 submod-

els. The sum of the dominance of all input variables is equal to the total 

adjusted R2 of the complete model, making total dominance an intuitive 

method that partitions the total effect size across predictors. There-

fore, unlike other methods of assessing predictor importance, such as 

methods based on regression coefficients or univariate correlations, 

dominance analysis accounts for predictor3predictor interactions and 

is interpretable. Dominance was then normalized by the total fit (R2

adj

) 

of the model, to make dominance fully comparable both within and 

across models.

Cognitive meta-analytic activation
Probabilistic measures of the association between voxels and cogni-

tive processes were obtained from Neurosynth, a meta-analytic tool 

that synthesizes results from more than 15,000 published functional 

MRI studies by searching for high-frequency keywords (such as 8pain9 

and 8attention9) that are published alongside functional MRI voxel 

coordinates (https://github.com/neurosynth/neurosynth, using the 

volumetric association test maps34). This measure of association is 

the probability that a given cognitive process is reported in the study 

if there is activation observed at a given voxel. Although more than 

1,000 cognitive processes are reported in Neurosynth, we focused 

primarily on cognitive function and, therefore, limit the terms of inter-

est to cognitive and behavioral terms. These terms were selected from 

the Cognitive Atlas, a public ontology of cognitive science131, which 

includes a comprehensive list of neurocognitive processes. We used 

123 terms, ranging from umbrella terms (8attention9 and 8emotion9) 

to specific cognitive processes (8visual attention9 and 8episodic mem-

ory9), behaviors (8eating9 and 8sleep9) and emotional states (8fear9 and 

8anxiety9). The coordinates reported by Neurosynth were parcellated 

according to the Schaefer-100 atlas and z-scored12. The probabilistic 

measure reported by Neurosynth can be interpreted as a quantitative 

representation of how regional fluctuations in activity are related to 

psychological processes. The full list of cognitive processes is shown 

in Supplementary Table 2.

Partial least squares analysis
Partial least squares (PLS) analysis was used to relate neurotransmitter 

receptor distributions to functional activation. PLS is an unsupervised 

multivariate statistical technique that decomposes the two datasets 

into orthogonal sets of latent variables with maximum covariance132. 

The latent variables consist of receptor weights, cognitive weights 

and a singular value that represents the covariance between receptor 

distributions and functional activations that is explained by the latent 

variable. Receptor and cognitive scores are computed by projecting the 

original data onto the respective weights, such that each brain region 

is assigned a receptor and cognitive score. Finally, receptor loadings 

are computed as the Pearson9s correlation between receptor densities 

and receptor scores and vice versa for cognitive loadings. Note that 

PLS analysis does not (1) speak to causal relationships between recep-

tors and cognition, (2) make specific univariate receptor3cognition 

associations and (3) preclude the existence of additional relationships 

between receptors and cognitive function.

The significance of the latent variable was assessed on the 

singular value, against the spin-test (see the 8Null models9 sec-

tion). In the present report, only the first latent variable was sig-

nificant; the remaining latent variables were not analyzed further. 
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Finally, the correlation between receptor and cognitive scores was 

cross-validated (see the 8Distance-dependent cross-validation9 sec-

tion). The empirical correlation between receptor and cognitive 

scores across all brain regions was r(98))=)0.70; the mean training 

set correlation was r(98))=)0.71; and the mean test set correlation was 

r(98))=)0.54 and Pspin)=)0.046, one-sided.

Distance-dependent cross-validation
The robustness of each multilinear model was assessed by 

cross-validating the model by using a distance-dependent method28. 

Specifically, this method was applied to every multilinear regression 

model (Figs. 3c, 4 and 6) and the PLS model (Fig. 5). For each brain 

region (source node), we selected the 75% closest regions as the train-

ing set and the remaining 25% of brain regions as the test set, for a 

total of 100 repetitions in the Schaefer atlas and 68 repetitions in the 

Desikan3Killiany atlas. This stratification procedure minimizes the 

dependence among the two sets due to spatial autocorrelation. In the 

case of multilinear regression models, the model was fit on the training 

set, and the predicted test set output variable (regional functional con-

nectivity, MEG power or disorder maps) was correlated to the empiri-

cal test set values. The distribution of Pearson9s correlations between 

predicted and empirical variables across all repetitions (that is, all brain 

regions) can be found in Supplementary Fig. 2 (structure3function 

coupling), Supplementary Fig. 3 (MEG power) and Supplementary 

Fig. 7 (disorder maps).

In the case of the PLS analysis, the model was fit on the  

training set, and the weights were projected onto the test set to 

calculate predicted receptor and cognitive scores. Training and 

test sets were defined as described above, and the procedure was 

repeated for each brain region as the source node (100 repetitions). 

The correlation between receptor and cognitive score was sepa-

rately calculated in the training and test set. The significance of the 

mean out-of-sample correlation was assessed against a permuted 

null model, constructed by repeating the cross-validation on spatial 

autocorrelation-preserving permutations of the functional associa-

tion matrix (1,000 repetitions; Fig. 5d).

Null models
Spatial autocorrelation-preserving permutation tests were used to 

assess statistical significance of associations across brain regions, 

termed 8spin tests924,25,133. We created a surface-based representation 

of the parcellation on the FreeSurfer fsaverage surface via files from 

the Connectome Mapper toolkit (https://github.com/LTS5/cmp). We 

used the spherical projection of the fsaverage surface to define spatial 

coordinates for each parcel by selecting the coordinates of the vertex 

closest to the center of the mass of each parcel. These parcel coordi-

nates were then randomly rotated, and original parcels were reassigned 

the value of the closest rotated parcel (10,000 repetitions). Parcels for 

which the medial wall was closest were assigned the value of the next 

most proximal parcel instead. The procedure was performed at the 

parcel resolution rather than the vertex resolution to avoid upsampling 

the data and to each hemisphere separately. Note that the spin test was 

not applied to autroadiography data because of missing samples. A 

permutation test was applied instead.

A second null model was used to test whether receptor similarity 

is greater in connected regions than unconnected regions. This model 

generates a null structural connectome that preserves the density, edge 

length and degree distributions of the empirical structural connec-

tome22,133. In brief, edges were binned according to Euclidean distance. 

Within each bin, pairs of edges were selected at random and swapped. 

This procedure was then repeated 10,000 times. To compute a P value, 

the mean receptor similarity of unconnected edges was subtracted 

from the mean receptor similarity of connected edges, and this dif-

ference was compared to a null distribution of differences computed 

on the rewired networks.

Reporting Summary
Further information on research design is available in the Nature 

Research Reporting Summary linked to this article.

Data availability
All data used to perform the analyses can be found at https://github.

com/netneurolab/hansen_receptors. Volumetric PET images, includ-

ing receptor images and synaptic density, are included in neuromaps 

(https://github.com/netneurolab/neuromaps) where they can be 

converted between template spaces94. Autoradiography data are 

available in Supplementary Table 2 of ref. 6. The HCP dataset, includ-

ing diffusion-weighted MRI, functional MRI and MEG, is available at 

https://db.humanconnectome.org/. Neurosynth data are available at 

https://neurosynth.org/. The ENIGMA datasets are available through 

the ENIGMA consortium and the ENIGMA Toolbox (https://github.

com/MICA-MNI/ENIGMA (ref. 134)). Parcellation atlases, including the 

Schaefer-100 and Desikan3Killiany atlas, were obtained from netneu-

rotools (https://github.com/netneurolab/netneurotools).

Code availability
All code used to perform the analyses can be found at https://github.

com/netneurolab/hansen_receptors.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection enigmatoolbox v1.1.1 (https://github.com/MICA-MNI/ENIGMA) was used for fetching ENIGMA data.  

MEG data was processed using the open software toolbox Brainstorm v220420. 

HCP structural data was processed using MRtrix3 v3.0.0

Data analysis All code used to analyze data can be found at https://github.com/netneurolab/hansen_receptors. Data was analyzed using Python 3.8.10, 

MATLAB R2022a, netneurotools v0.2.3 and neuromaps v0.0.3.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All data used to perform the analyses can be found at https://github.com/netneurolab/hansen_receptors. Volumetric PET images, including receptor images and 

synaptic density, are included in neuromaps (https://github.com/netneurolab/neuromaps) where they can be easily converted between template spaces. 

Autoradiography data is available in Supplementary Table 2 of Zilles & Palomero-Gallagher 2017, Frontiers in Neuroanatomy. The HCP dataset, including diffusion 

weighted MRI, fMRI, and MEG is available at https://db.humanconnectome.org/. Neurosynth data is available at https://neurosynth.org/. The ENIGMA datasets are 
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available through the ENIGMA consortium and the ENIGMA toolbox (https://github.com/MICA-MNI/ENIGMA). Parcellation atlases including the Schaefer-100 and 

Desikan-Killiany atlas were fetched from netneurotools (https://github.com/netneurolab/netneurotools).

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculations were performed. We collated as many PET tracer images as possible to construct a comprehensive (19-receptor/

transporter) atlas. HCP data was used because of the large number of subjects and the relatively equal male/female balance. For HCP data, 

only unrelated subjects were included. For PET data, only healthy subjects were included. The ENIGMA dataset was selected because of the 

large number of subjects in each meta-analysis and because it contains many brain maps for diseases/disorders/conditions that have been 

similarly processed such that comparison between datasets is possible.

Data exclusions No data was excluded.

Replication The analysis pipeline was conducted and replicated: (1) at the Schaefer-100 parcellation resolution, (2) at the Schaefer-200 parcellation 

resolution, (3) at the Schaefer-400 parcellation resolution, (4) using the 68-node Desikan Killiany atlas alongside structural/functional 

connectomes from the Lausanne atlas. Furthermore, we recalculated the receptor similarity matrix in a leave-one-out fashion, and confirmed 

that no single receptor/transporter exerts undue influence on this similarity matrix (correlation between leave-one-out similarity matrix and 

original similarity matrix >0.98 for all receptors). Finally, analyses were repeated using autoradiography data for 15 receptors as opposed to 

PET data for 19 receptors/transporters.

Randomization No randomization was performed as this study does not include experimental groups.

Blinding Blinding is not relevant to this study because it does not include experimental groups.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics Demographic information for all PET subjects can be found in Table 1. 

Recruitment Only data from healthy control subjects were used in the analyses.

Ethics oversight Each individual PET study was approved, details can be found in the references found in Table 1.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Magnetic resonance imaging

Experimental design

Design type Resting-state fMRI and diffusion-weighted MRI

Design specifications Following the procedure described in Vos De Wael et al., 2018, we obtained structural and functional magnetic 

resonance imaging (MRI) data for 326 unrelated participants (age range 22–35 years, 145 males) from the Human 

Connectome Project (HCP; S900 release). All four resting state fMRI scans (two scans (R/L and L/R phase encoding 

directions) on day 1 and two scans (R/L and L/R phase encoding directions) on day 2, each about 15 min long; TR=720 

ms), as well as diffusion weighted imaging (DWI) data were available for all participants. All the structural and functional 

MRI data were pre-processed using HCP minimal pre-processing pipelines. Detailed information regarding data 

acquisition and pre-processing is available elsewhere (Van Essen et al., 2013, Glasser et al., 2013)

Behavioral performance measures No behavioural measures were recorded during the fMRI runs. 

Acquisition

Imaging type(s) Functional and diffusion-weighted MRI

Field strength 3T

Sequence & imaging parameters Multi-band sequence; functional images have a 2-mm isotropic signal resolution, structural modalities were acquired on 

a Siemens Skyra 3T scanner and included a T1-weighted MPRAGE sequence at an isotropic resolution of 0.7mm, and a 

T2-weighted SPACE at an isotropic resolution of 0.7mm. More details on imaging protocols and procedures are available 

at http://protocols.humanconnectome.org/HCP/3T/imaging-protocols.html.

Area of acquisition Whole-brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software We used the HCP data that was previously preprocessed. This preprocessing was done using FSL 5.0.6, FreeSurfer 5.3.0-HCP, 

and Connectome Workbench v1.1.1.

Normalization Image processing includes correcting for gradient distortion caused by non-linearities, correcting for bias field distortions, 

and registering the images to a standard reference space.

Normalization template fs_LR_32k surface mesh

Noise and artifact removal FMRIB's ICA-based X-noisefier (FIX) and global signal regression

Volume censoring No volume censoring was performed.

Statistical modeling & inference

Model type and settings Functional and structural connectomes were used for comparison with PET-derived receptor similarity.

Effect(s) tested We tested whether receptor similarity is greater when regions are connected (SC) or within the same intrinsic functional 

network (fMRI).

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

NA

Correction NA

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity We used functional connectivity, which was constructed by correlated pairwise regional functional time 

series, and averaging this across subjects.

Graph analysis We used structural connectivity (weighted) matrices. Structural connectivity between pairs of regions was 
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Graph analysis measured in terms of fiber density, defined as the number of streamlines between two regions, normalized 

by the average length of the streamlines and average surface area of the two regions. The goal of this 

normalization is to compensate for the bias toward longer fibers inherent in the tractography procedure, as 

well as differences in region size.

Multivariate modeling and predictive analysis Regional vectors of functional and connectivity were used in a multilinear regression model which fit 

measures of structure (distance, path length, communicability) and receptor similarity to functional 

connectivity.


