nature neuroscience

Resource

https://doi.org/10.1038/s41593-022-01186-3

Mapping neurotransmitter systemstothe
structural and functional organization of the
humanneocortex

Received: 1 November 2021

Accepted: 20 September 2022

Published online: 27 October 2022

W Check for updates

Justine Y. Hansen®', Golia Shafiei®", Ross D. Markello®", Kelly Smart® 23,
Sylvia M. L. Cox?, Martin Norgaard ® °%, Vincent Beliveau ® ®’, Yanjun Wu?3,
Jean-Dominique Gallezot??, Etienne Aumont?, Stijn Servaes®,

Stephanie G. Scala®, Jonathan M. DuBois'®, Gabriel Wainstein®", Gleb Bezgin'®,
Thomas Funck®, Taylor W. Schmitz®, R. Nathan Spreng ®", Marian Galovic'*'>'6,
Matthias J. Koepp™'®, John S. Duncan''¢, Jonathan P. Coles®", Tim D. Fryer'®,
Franklin I. Aigbirhio™, Colm J. McGinnity', Alexander Hammers®,

Jean-Paul Soucy’, Sylvain Baillet®', Synthia Guimond ®2°%, Jarmo Hietala®?,
Marc-André Bedard'®, Marco Leyton ® 4, Eliane Kobayashi',

Pedro Rosa-Neto ®'°, Melanie Ganz® ¢, Gitte M. Knudsen ® 5%,

Nicola Palomero-Gallagher'??*, James M. Shine®", Richard E. Carson ® 23,
Lauri Tuominen?®, Alain Dagher ® ' and Bratislav Misic®'

Neurotransmitter receptors support the propagation of signals in the human
brain. How receptor systems are situated within macro-scale neuroanatomy
and how they shape emergent function remain poorly understood, and

there exists no comprehensive atlas of receptors. Here we collate positron
emission tomography data from more than1,200 healthy individuals to
constructawhole-brain three-dimensional normative atlas of 19 receptors
and transporters across nine different neurotransmitter systems. We found
thatreceptor profiles align with structural connectivity and mediate function,
including neurophysiological oscillatory dynamics and resting-state
hemodynamic functional connectivity. Using the Neurosynth cognitive atlas,
we uncovered a topographic gradient of overlapping receptor distributions
that separates extrinsic and intrinsic psychological processes. Finally, we
found both expected and novel associations between receptor distributions
and cortical abnormality patterns across 13 disorders. We replicated all
findingsinanindependently collected autoradiography dataset. This work
demonstrates how chemoarchitecture shapes brain structure and function,
providing anew direction for studying multi-scale brain organization.

Neurotransmitter receptors are heterogeneously distributed across  electricalimpulses. As such, neurotransmitter receptors drive synap-
the neocortex and respond to the binding of a neurotransmitter. By  tic plasticity, modify neural states and ultimately shape network-wide
modulating the excitability and firing rate of the cell, neurotransmit- communication’. These receptors are diverse in their structure and
ter receptors effectively mediate the transfer and propagation of  function: receptors may be ionotropic or metabotropic, may be
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Fig.1|PET images of neurotransmitter receptors and transporters. PET tracer images were collated and averaged to produce mean receptor distribution maps
of 19 different neurotransmitter receptors and transporters across nine different neurotransmitter systems and acombined total of more than 1,200 healthy

participants.

composed of multiple subunits, may exert facilitatory or inhibitory
influence on the circuit and are coupled to different downstream
biochemical pathways.

How spatial distributions of different neurotransmitter recep-
tors relate to brain structure and shape brain function at the system
level remains unknown. Recent technological advances allow for
high-resolution reconstructions of the brain’s wiring patterns. These
wiring patterns display non-trivial architectural features, including spe-
cialized network modules that support the segregation of information?
aswellas densely interconnected hubregions that support theintegra-
tion of information®. The spatial arrangement of neurotransmitter
receptors on this network presumably guides the flow of information
andthe emergence of cognitive function. Therefore, understanding the
link between structure and functionisinherently incomplete without
acomprehensive map of the chemoarchitecture of the brain*°.

A primary obstacle to studying the relative density distributions
of receptors across multiple neurotransmitter systems is the lack
of comprehensive openly accessible datasets. An important excep-
tion is the autoradiography dataset of 15 neurotransmitter receptors
and receptor-binding sites, collected in three postmortem brains*®.
However, these autoradiographs are available in only 44 cytoarchi-
tectonically defined cortical areas. Alternatively, positron emission
tomography (PET) can estimate in vivo receptor concentrations across
the whole brain. Despite the relative ease of mapping receptor densi-
ties using PET, there are, nonetheless, difficulties in constructing a
comprehensive PET dataset of neurotransmitter receptors. Due to
the radioactivity of the injected PET tracer, mapping multiple differ-
entreceptorsin the sameindividualis not considered a safe practice.
Combined with the fact that PET image acquisitionis relatively expen-
sive, cohorts of control subjects are small and typically include only
one or two tracers. Therefore, constructing acomprehensive atlas of
neurotransmitter receptor densities across the brain requires extensive
data-sharing efforts from multiple research groups’ ™.

Here we curate and share an atlas of PET-derived whole-brain
neurotransmitter receptor maps from 19 unique neurotransmitter
receptors, receptor-binding sites and transporters, across nine differ-
ent neurotransmitter systems and more than1,200 healthy individuals,

available at https://github.com/netneurolab/hansen_receptors. We use
multipleimaging modalities to comprehensively situate cortical neu-
rotransmitter receptor densities within micro-scale and macro-scale
neural architectures. Using diffusion-weighted magnetic resonance
imaging (MRI) and functional MRI, we show that neurotransmitter
receptor densities follow the organizational principles of the brain’s
structural and functional connectomes. Moreover, we found that
neurotransmitter receptor densities shape magnetoencephalogra-
phy (MEG)-derived oscillatory neural dynamics. To determine how
neurotransmitter receptor distributions affect cognition and disease,
we mapped receptor densities to meta-analytic (Neurosynth-derived)
functional activations, where we uncovered aspatially co-varying axis
of neuromodulators and mood-related processes. Next, we linked
receptor distributions to ENIGMA-derived patterns of cortical atrophy
across 13 neurological, psychiatricand neurodevelopmental disorders,
uncovering specific receptor-disorder links. We validated our findings
and extended the scope of the investigation to additional receptors
using an independently collected autoradiography neurotransmit-
ter receptor dataset®. Altogether, we demonstrate that, across spatial
and temporal scales, chemoarchitecture consistently plays a key role
inbrain function.

Results

A comprehensive cortical profile of neurotransmitter receptor densi-
ties was constructed by collating PET images from a total of 19 different
neurotransmitter receptors, transporters and receptor-binding sites
across nine different neurotransmitter systems, including dopamine,
norepinephrine, serotonin, acetylcholine, glutamate, GABA, hista-
mine, cannabinoid and opioid (Fig. 1). All PET images were acquired
in healthy participants (see Table 1foracomplete list of receptors and
transporters, corresponding PET tracers, ages and number of partici-
pants). A group-average tracer map was constructed across partici-
pants within each study. To mitigate variation inimage acquisition and
pre-processing, and to ease biological interpretability, all PET tracer
maps were parcellated into the same 100 cortical regions and z-scored™.
Note that, although the datainclude both cortical and subcortical data,
we restricted our analysesto the cortex. Intotal, we present tracer maps
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for19 unique neurotransmitter receptors and transporters fromacom-
bined total of 1,238 healthy participants, resultingina100 x 19 matrix
of relative neurotransmitter receptor/transporter densities. Finally,
werepeated all analyses in anindependently collected autoradiogra-
phy dataset of 15 neurotransmitter receptors (Supplementary Table 1
(ref.®)) and across alternative brain parcellations™.

Receptor distributions reflect structural and functional
organization

To quantify the potential for two brain regions to be similarly modu-
lated by endogenous or exogenous input, we computed the corre-
lation of receptor/transporter fingerprints between pairs of brain
regions (Fig.2a). Hereafter, we refer to this quantity as ‘receptor simi-
larity’, analogous to other commonly used measures of inter-regional
attribute similarity, including anatomical covariance®, morphomet-
ricsimilarity™, gene coexpression®, temporal profile similarity' and
microstructural similarity”. Receptor similarity is approximately
normally distributed (Fig. 2b) and decreases exponentially with
Euclidean distance, supporting the notion that proximal neural ele-
ments share similar microarchitecture (Fig. 2¢; refs.®'?). We confirm
that no single receptor or transporter exerts undue influence on
the receptor similarity matrix (see the ‘Sensitivity and robustness
analyses’ section).

Receptor similarity addresses the between-region similarity of
receptor fingerprints. Tocomplement this, we calculated the first prin-
cipal component of receptor density, which represents aregional quan-
tification of receptor similarity (Fig. 2d). This gradient separatesinsular
and cingulate cortex from somatomotor and posterior parietal regions
and resembles the macaque principal receptor expression gradient.
Thefirst principal component differentiates laminar classes, support-
ingthe notionthat receptor expressionstrongly depends onlamination
(Fig. 2e; one-way ANOVA F=15.82, P=1.95 x 1075 ref. *'). Additionally,
we found a significant correlation between the receptor gradient and
synapse density, consistent with the finding that the macaque receptor
gradient increases with the number of dendritic spines (Fig. 2f; Pear-
son’sr(98) = 0.44, P.,;,= 0.0003, confidenceinterval (CI) = [0.26, 0.58],
two-tailed)®. For completeness, we stratified receptors by biological
mechanisms (excitatory/inhibitory, ionotropic/metabotropic and Gs-/
Gi-/Gg-coupled metabotropic pathways) and neurotransmitter protein
structure (monoamine/non-monoamine) to provide additional insight
about the underlying biological pathways (Fig. 2g).

Using group-consensus structural and resting-state functional
connectomes from the Human Connectome Project (HCP), we show
that neurotransmitter receptor organization reflects structural and
functional connectivity. Specifically, we found that receptor simi-
larity is greater between pairs of brain regions that are structurally
connected, suggesting that anatomically connected areas are likely
to be co-modulated (Fig. 3a). To ensure that the observed relation-
ship between structural connections and receptor similarity is not
due to spatial proximity or network topography, we assessed signifi-
cance against density-, degree- and edge length-preserving surrogate
structural connectivity matrices (P=0.0001, 10,000 repetitions?).
Additionally, we found that receptor similarity is significantly corre-
lated with structural connectivity, after regressing Euclidean distance
fromboth modalities (Pearson’s r(1134) = 0.16, P=1.6 x 108, CI=[0.11,
0.23], two-sided).

Likewise, receptor similarity is significantly greater between brain
regions that are within the same intrinsic networks than between dif-
ferentintrinsic networks, according to the Yeo-Krienen seven-network
classification (P, = 0.001,10,000 repetitions; Fig. 3b (ref.)). This sug-
geststhatareasthatareinthe same cognitive system tend to have simi-
lar receptor profiles. Significance was assessed non-parametrically by
permuting the intrinsic network affiliations while preserving spatial
autocorrelation (‘spin test’; refs. ***°). We also found that receptor
similarity is significantly correlated with functional connectivity,

after regressing Euclidean distance from both matrices (Pearson’s
r(4948) =0.23, P=7.1x10"%, CI=[0.20, 0.26], two-sided). In other
words, we observed that brain regions with similar receptor and trans-
porter composition show greater functional co-activation. Collectively,
these results demonstrate that receptor profiles are systematically
aligned with patterns of structural and functional connectivity above
and beyond spatial proximity, consistent with the notion that receptor
profiles guide inter-regional signaling.

Because neurotransmitter receptor and transporter distributions
are organized according to structural and functional architectures,
we next asked whether receptor/transporter distributions might aug-
ment the coupling between brain structure and function. To quantify
structure-function coupling, we relied on the communicability of the
weighted structural connectome (see results using alternative methods
in Supplementary Fig.1). Communicability represents a form of decen-
tralized diffusive communication on the structural connectome® and
has been previously shown to mediate the link between brain structure
and function?. Structure-function coupling at every brain region is
defined as the adjusted R> of asimple linear regression model that fits
regional communicability to regional functional connectivity. We then
included regional receptor similarity as an independent variable, to
assess how receptor information changes structure-function coupling.
Significance was assessed against anull distribution of adjusted R*from
amodelthataddsarotated regional receptor similarity vector (10,000
repetitions, one-sided, false disovery rate (FDR)-corrected). Next, we
cross-validated each regression model using a distance-dependent
method that was previously developed in-house (Supplementary
Fig. 2; see Methods for details?®). We found that including receptor
profiles as an input variable alongside brain structure significantly
improves the prediction of regional functional connectivity in uni-
modal areas and the paracentral lobule (Fig. 3c).

Receptor profiles shape oscillatory neural dynamics

Given that neurotransmitter receptors modulate the firing rates of
neurons and, therefore, population activity, we sought to relate the
cortical patterning of neurotransmitter receptors to neural oscillations.
We used MEG power spectra across six canonical frequency bands from
the HCP**°, We fit a multiple linear regression model that predicts the
cortical power distribution of each frequency band from neurotrans-
mitter receptor and transporter densities. We then cross-validated the
model using a distance-dependent method (Supplementary Fig.3).In
addition to the cross-validation, we assessed the significance of each
model against a spin-permuted null model (10,000 repetitions) and
found that all models except high-gamma are significant after FDR
correction (P, < 0.05, one-sided). We found a close fit between recep-
tor densities and MEG-derived power (0.78 < Ridj < 0.94;Fig. 4a),
suggesting that overlapping spatial topographies of multiple neuro-
transmitter systems may ultimately manifest as coherent oscillatory
patterns.

Toidentify independent variables (receptors/transporters) that
contribute most to the fit, we applied dominance analysis, a tech-
nique that assigns a proportion of the final Rgdjto eachindependent
variable to the statistically significant models*. Dominance was
normalized by the total fit of the model (Rgdj), such that dominance
is comparable across models (Fig. 4b). We found that, compared to
other receptors, the spatial distribution of MOR (opioid), H; (hista-
mine) and «,[3, make alarge contribution to the fit between receptors
and lower-frequency (theta and alpha) as well as low-gamma power
bands®**. Interestingly, we found a prominence of ionotropic recep-
torswhenwe replicated the analysisinthe autoradiography dataset
(seethe ‘Replication using autoradiography’section and Supplemen-
tary Fig. 4). Additionally, when we stratified dominance by receptor
classes, we found that inhibitory, non-monoamine and Gi-coupled
receptors are more dominant than excitatory, monoamine and Gs-/
Gq-coupled receptors, respectively (Supplementary Fig. 5a).
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Table 1| Neurotransmitter receptors and transporters included in analyses. BP,;, non-displaceable binding potential;
V,, tracer distribution volume; B,,.,, density (pbmolml™) converted from binding potential (5-HT) or distributional volume
(GABA) using autoradiography-derived densities; SUVR, standard uptake value ratio. Values in parentheses (under n)
indicate the number of females. Neurotransmitter receptor maps without citations refer to previously unpublished
data. In those cases, contact information for the study principal investigator (Pl) is provided in Supplementary Table 3.
Supplementary Table 3 also includes more extensive methodological details, such as PET camera, number of males and
females, modeling method, reference region, scan length and modeling notes. Asterisks indicate transporters

Receptor/ Neurotransmitter Tracer Measure n Age References

transporter

D, Dopamine ["CISCH23390 BPyo 13(7) 33+13 Kaller et al.*®

D, Dopamine ["CIFLB-457 BPyp 37(20) 48.4+16.9 Smith et al.>%%°

D, Dopamine ["C]FLB-457 BPyp 55 (29) 32.5+97 Sandiego et al.**-*

DAT Dopamine ['®1]-FP-CIT SUVR 174 (65) 6111 Dukart et al.5*

NET Norepinephrine ["CIMRB BPyp 77 (27) 33.4+9.2 Ding et al.®®

5-HT,s Serotonin ["C]WAY-100635 BPyp 35 (17) 26.3+5.2 Savli et al.®®

5-HTg Serotonin ["C1P943 BPyp 65 (16) 33.7+97 Gallezot et al.’*7®

5-HTg Serotonin ["C1P943 BPyp 23 (8) 287+7.0 Savliet al.*®

5-HT,a Serotonin ["C]lCimbi-36 B max 29 (14) 226+27 Beliveau et al.’

5-HT, Serotonin ["C]SB207145 B 59 (18) 25.9+5.3 Beliveau et al.’

5-HT, Serotonin ["C1GSK215083 BPyo 30(0) 36.6+£9.0 Radhakrishnan et al.””’®

5-HTT Serotonin ["CIDASB Bmax 100 (71) 25.1+5.8 Beliveau et al.’

a,B, Acetylcholine [®FIFlubatine V; 30(10) 33.5+10.7 Hillmer et al.”%%°

M, Acetylcholine ["CILSN3172176 BPyp 24 (11) 40.5+11.7 Naganawa et al.*'

VAChT' Acetylcholine [®FJFEOBV SUVR 4(1) 37+10.2 Pl: Tuominen, L. & Guimond, S.

VAChT Acetylcholine ['®F]JFEOBV SUVR 18 (13) 66.8+6.8 Aghourian et al.#

VAChT Acetylcholine [®FIFEOBV SUVR 5(1) 68.3+3.1 Bedard et al.®®

VAChT Acetylcholine [®FIFEOBV SUVR 3(3) 66.6+0.94 PI: Schmitz, T. W. & Spreng,
R.N.

NMDA Glutamate ["®*FIGE-179 V¢ 29 (8) 40.9+12.7 Galovic et al.®**

mGluRg Glutamate ["C]ABP688 BPyo 73 (48) 19.9+3.04 Smart et al.*

mGluRg Glutamate ["C]ABP688 BPyp 22 (10) 67.9+9.6 PI: Rosa-Neto, P. & Kobayashi,
E.

mGluRg Glutamate ["C]ABP688 BPyo 28 (13) 33.1+£11.2 DuBois et al.?’

GABA g, GABA ["CIFlumazenil Bmax 16 (9) 26.6+8 Ngrgaard et al.®

H, Histamine ["C1GSK189254 Vy 8(1) 31.7+9.0 Gallezot et al.?®

CB, Cannabinoid ["CIOMAR V; 77 (28) 30.0+8.9 Normandin et al.?%-%?

MOR Opioid ["C]Carfentanil BPyp 204 (72) 32.3+10.8 Kantonen et al.*®

Mapping receptors to cognitive function

Previously, we showed that receptor and transporter distributions
follow the structural and functional organization of the brain and that
receptors are closely linked to neural dynamics. In this and the next
subsections, we investigate how the spatial distribution of neurotrans-
mitter receptors and transporters correspond to cognitive processes
and disease vulnerability.

We used Neurosynth to derive 123 meta-analytic task activation
maps, which represent the probability that specific brain regions are
activated during multiple cognitive tasks**. We applied partial least
squares (PLS) analysis to identify a multivariate mapping between neu-
rotransmitter receptors/transporters and functional activation maps.

PLS analysis extracted asignificant latent variable relating recep-
tor/transporter densities to functional activation across the brain
(Pypin=0.010, one-tailed). The latent variable represents the dominant
spatial pattern of receptor distributions (receptor weights) and func-
tional activations (cognitive weights) that together capture 54% of the
covariance between the two datasets (Fig. 5a). Projecting the receptor

density (functional activation) matrix back onto the receptor (cogni-
tive) weights reflects how well a brain area exhibits the receptor and
cognitive weighted pattern, which we refer to as ‘receptor scores’ and
‘cognitive scores’, respectively (Fig. 5b,c). The receptor and cognitive
score patternsreveal a sensory-fugal spatial gradient, separating lim-
bic, paralimbic and insular cortices from visual and somatosensory
cortices. We then cross-validated the correlation between receptor and
cognitive scores using a distance-dependent method (Fig. 5d, mean
out-of-sample Pearson’s r(98) = 0.54, P, = 0.046, one-sided). This
result demonstrates a link between receptor distributions and cogni-
tive specialization thatis perhaps mediated by laminar differentiation
and synaptic hierarchies.

Toidentify the receptors and cognitive processes that contribute
most to the spatial pattern in Fig. 5b,c, we correlated each variable
with the score pattern (Fig. 5e-f; for all stable term loadings, see
Supplementary Fig. 6). This results in a ‘loading’ for each receptor
and cognitive process, where positively loaded receptors co-vary
with positively loaded cognitive processes in positively scored brain
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Fig.2| Constructing a cortical neurotransmitter receptor and transporter
atlas. PET maps for 19 different neurotransmitter receptors and transporters were
z-scored and collated into a single neurotransmitter receptor atlas. a, For each
pair of brainregions, the receptor density profiles are correlated (Pearson’s r)

to construct the receptor similarity matrix (ordered according to the Yeo-
Krienenintrinsic networks: frontoparietal, default mode, dorsal attention,
limbic, ventral attention, somatomotor and visual®). b, Receptor similarity is
approximately normally distributed. ¢, Receptor similarity decays exponentially
with the Euclidean distance between centroid coordinates of brain regions.

d, Thefirst principal component of receptor density. e, The first principal

NMDA
GABA,

aB,

Transporter

fonotropic

gradient of receptor density stratified by classes of laminar differentiation
reveals a gradient from idiotypic regions to paralimbic regions (one-way ANOVA
F=15.82, P=1.95 x 10°%; PLMB, paralimbic; HET, heteromodal; UNI, unimodal;
IDT, idiotypic)". f, The principal receptor gradient is significantly correlated with
synapse density (measured using the synaptic vesicle glycoprotein 2A-binding
["C]-UCBJ PET tracer; Pearson’s r(98) = 0.44, P,;, = 0.0003, Cl = [0.26, 0.58],
two-tailed). g, Pearson’s correlations between pairs of receptor/transporter
distributions are shown stratified by excitatory versus inhibitory, monoamine
versus non-monoamine, ionotropic versus metabotropic and Gs-coupled versus
Gi-coupled versus Gq-coupled metabotropic receptors.

regions and vice versafor negative loadings. Interestingly, we found
that almost all receptors/transporters have positive loading, with
metabotropic dopaminergic and serotonergic receptors having the
greatest loadings (Fig. 5e and Supplementary Fig. 5b). The cognitive
processes with large positive loadings are enriched for emotional
and affective processes such as ‘emotion’, ‘fear’ and ‘valence’. This
suggests that the combination of serotonergic and dopaminergic
receptor distributions co-vary with mood-related functional activa-
tionininsularand limbic regions, consistent with the role of serotonin
and dopamine neurotransmitter systems in mood processing and
mood disorders®. On the other hand, we found that only NET has
stable negative loading and that it spatially co-varies with functions
such as ‘fixation’, ‘planning’ and ‘skill’ in primarily unimodal regions.
This is consistent with the notion that norepinephrine systems are
involved in integrative functions that require coordination across
segregated brain regions'. Collectively, these results demonstrate
adirect link between cortex-wide molecular receptor distributions
and functional specialization.

Mapping receptors and transporters to disease vulnerability

Neurotransmitter receptors and transporters are implicated in multi-
plediseases and disorders. Identifying the neurotransmitter receptors/
transporters that correspond to specific disorders is important for
developing new therapeutic drugs. We, therefore, sought to relate
neurotransmitter receptors and transporters to patterns of cortical
abnormality across a range of neurological, developmental and psy-
chiatricdisorders. We used datasets from the ENIGMA consortium for
atotal of13 disorders, including 22q11.2 deletion syndrome, attention
deficithyperactivity disorder (ADHD), autism spectrumdisorder (ASD),
idiopathic generalized epilepsy (IGE), right and left temporal lobe
epilepsy, depression, obsessive-compulsive disorder (OCD), schizo-
phrenia, bipolar disorder (BD), obesity, schizotypy and Parkinson’s
disease (PD). We then fitamultiple regression model that predicts each
disorder’s cortical abnormality pattern fromreceptor and transporter
distributions (Fig. 6). We assessed the significance of each model fit
againstan FDR-corrected one-sided spatial autocorrelation-preserving
null model and evaluated each model using distance-dependent

Nature Neuroscience | Volume 25 | November 2022 | 1569-1581

1573


http://www.nature.com/natureneuroscience

Resource

https://doi.org/10.1038/s41593-022-01186-3

Cc
0.6 4
(2
LI 6 05 -
& Y ol
é j) 8 0.4
e = < 9]
ko]
= 0] W 0.60 g 0.3 1
(& 3
(k K 3 g 0.2+
l 1 B ()f o
> =
U 0.1 4
E o Pgpin < 0.05
= : l -1 T T T T T T
(0] 0.05 010 0.15 0.20 0.25
R? from sc
Not connected * Between *
<>
I I I I I I I I
-0.5 o 0.5 1 -0.5 o] 0.5 1

Receptor similarity Receptor similarity

(]

.

Difference in R?
©o

o

1.0 4 r=0.16 1.0 4r=0.23
z z
= <
S 05 S 05
£ £
2 04 2 04
] [e]
kel 8
o Q
8 _05 A 8 054
Q Q
[+'4 (24

-1.0 1 1.0

T T T T T T T T
-0.4 -0.2 0 02 -0.25 0 0.25 05

Structural connectivity

Fig.3|Receptor distributions reflect structural and functional organization.
a, Top: group consensus weighted structural connectivity matrix. Middle:
Receptor similarity is significantly greater between regions that are physically
connected, against distance- and edge length-preserving null structural
connectivity matrices (P=0.0001, two-tailed N qunecea = 1,136 €dges,

Noorconnectea = 3,814 edges?). Bottom: Receptor similarity is significantly positively
correlated with structural connectivity, after distance regression (Pearson’s
r(1134) =0.16, P=1.6 x 1078, CI =[0.11, 0.23], two-sided). b, Top: group-average
functional connectivity matrix. Middle: Receptor similarity is significantly
greater within regions in the same functional network (P,;, = 0.001, two-tailed,
Nyichin = 762 €dges, Nyeween = 4,188 edges). Bottom: Receptor similarity is positively
correlated with functional connectivity (Pearson’s r(4948) = 0.23,P=7.1x10"°,
CI1=[0.20,0.26], two-sided). ¢, Regional structure-function coupling was

Functional connectivity

computed as the fit (Ridj) between communicability of the weighted structural
connectome and functional connectivity. Top: Structure-function coupling at
eachbrainregionis plotted when receptor similarity is excluded (x-axis) and
included (y-axis) in the model. Yellow points indicate brain regions where
receptor information significantly augments structure-function coupling

(P.in < 0.05, FDR-corrected, one-sided). Bottom: the difference in adjusted R*
when receptor similarity is and is not included in the regression model. Asterisks
inaand b denote significance. Box plotsinaandb represent the 1st, 2nd
(median) and 3rd quartiles; whiskers represent the non-outlier endpoints of the
distribution; and diamonds represent outliers. Connectomesinaand b are
ordered according to the Yeo-Krienen intrinsic networks (order: frontoparietal,
default mode, dorsal attention, limbic, ventral attention, somatomotor and
visual)®. sc, structural connectivity.

cross-validation (Supplementary Fig. 7). Figure 6a shows how receptor
distributions map onto cortical abnormaltiy patterns across multiple
disorders. We found that some disorders are more heavily influenced
byreceptor distribution than others (0.23 < Rgdj < 0.77).1GE and schi-
zotypy show low and non-significant correspondence with receptor
distributions, whereas ADHD, autism and temporal lobe epilepsies
show greater correspondence with receptor distributions. The domi-
nance analysisin Fig. 6b shows the contribution of each input variable
to the fit of the model, normalized by the total fit (adjusted R?). Inter-
estingly, we found that serotonin transporter (5-HTT) distributions
contribute more to OCD, schizophreniaand BD profiles than any other
receptors. Furthermore, the mu-opioid receptor is the strongest con-
tributor of ADHD cortical abnormalities, consistent with findings from
animal models*®. We also note that, in some cases, the analyses do not
necessarily recover the expected relationships. For instance, in PD, the
dopaminereceptors are notimplicated, likely because the analysis was
restricted to cortex only. Additionally, serotonin receptors do not make
large contributions to depression, possibly because changes in corti-
cal thickness do not directly measure the primary pathophysiology
associated with some brain diseases. Although this analysis points to
mappings between receptors and disorder profiles, we found no

significant differential contribution of receptor classes to disorder
profiles (Supplementary Fig. 5¢). Our results present an initial step
toward acomprehensive ‘look-up table’ that relates neurotransmitter
systems to multiple brain disorders.

Replication using autoradiography

In the present report, we comprehensively situate neurotransmitter
receptor and transporter densities within the brain’s structural and
functional architecture. However, estimates for neurotransmitter
receptor densities are acquired from PET imaging alone, and the way
in which densities are quantified varies across radioligands, image
acquisition protocols and pre-processing. Autoradiography is an
alternative technique to measure receptor density and captures local
densities at a defined number of postmortem brain sections. Due to
the high cost and labor intensity of acquiring autoradiographs, there
does not yet existacomplete autoradiography three-dimensional (3D)
cross-cortex atlas of receptors.

Nonetheless, we repeated the analyses in an autoradiography
dataset of 15 neurotransmitter receptors across 44 cytoarchitectoni-
cally defined cortical areas, from three postmortem brains®”’. This set
of15 neurotransmitter receptors consists of a diverse set ofionotropic
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Fig. 4| Receptor profiles shape oscillatory neural dynamics. We fita
multi-linear regression model that predicts MEG-derived power distributions
from receptor distributions. a, Receptor distributions closely correspond to all
six MEG-derived power bands (0.78 < Rgdj(SO) < 0.94).Thesignificance of each
modelis assessed against a spatial permutation-preserving null model and
corrected for multiple comparisons (FDR correction). Asterisks denote
significant models (FDR-corrected P, < 0.05, one-tailed). Delta Rgdj (80) = 0.89,
Poyin=0.03; theta R2,(80) = 0.94, Py, =0.0006; alpha R2,,(80) = 0.93,

Py,in=0.0006; beta Rgdj(SO) = 0.84, P,,;,=0.008; low-gamma Rgdj(SO) =0.83,
Py =0.04;and high-gamma dej(SO) = 0.78, Py, = 0.16. b, Dominance analysis
distributes the fit of the model across input variables such that the contribution
of each variable can be assessed and compared to other input variables. The
percent contribution of each input variable is defined as the variable’s
dominance normalized by the total fit (Rﬁdj) of the model. Note that dominance
analysis is not applied to the input variables of non-significant models (that is,
high-gamma).

and metabotropic receptors, including excitatory glutamate, acetyl-
choline and norepinephrine receptors (see Supplementary Table1for
a complete list of receptors). Notably, eight of the 15 receptors in the
autoradiography dataset are not included in the PET dataset, which
precludes direct comparisons between the two datasets. Receptor
similarity isshownin Supplementary Fig. 8a. Despite the alternate set
of neurotransmitter receptors, we found that autoradiography-derived
receptor similarity is significantly correlated with PET-derived receptor
similarity (Pearson’s r(1033) = 0.38,P= 6.7 x 107, CI =[0.33,0.44]; Sup-
plementary Fig. 8a) and decays exponentially with Euclidean distance.
Additionally, autoradiography-derived and PET-derived receptor gra-
dientsare correlated (Pearson’sr(44) = 0.51, P, = 0.0001, CI=[0.26,
0.70], two-sided). Next, we found that autoradiography-derived recep-
tor densities follow similar architectural patterns as the PET-derived
receptor densities. Receptor similarity is non-significantly greater
between structurally connected brain regions (P= 0.19) and signifi-
cantly correlated with structural connectivity (Pearson’s r(329) = 0.39,
P=1.4x107,CI=[0.30, 0.48]; Supplementary Fig. 8d). Itis also signifi-
cantly greater inregions within the same intrinsic network (P, = 0.03)
andis significantly correlated with functional connectivity (Pearson’s
r(1033)=0.21, P=1.1x107"%,CI=[0.16,0.28]; Supplementary Fig. 8e). As
before, receptor information augments structure-function couplingin
visual, paracentral and somatomotor regions (Supplementary Fig. 8f).
Finally, we show correlations of receptor density distributionbetween
every pair of receptors in Supplementary Fig. 8g.

Because the autoradiography dataset has a more diverse set of
ionotropic and metabotropic receptors, we also asked whether we
would observe a prominence of ionotropic receptors for MEG oscil-
lations. When we fit the 15 autoradiography neurotransmitter recep-
tors to MEG power, we found that AMPA, NMDA, GABA, and «,[3,—all
ionotropicreceptors—are most dominant (Supplementary Fig.4). This
confirmsthat the fast oscillatory dynamics captured by MEG are closely
related to the fluctuations in neural activity modulated by ionotropic
neurotransmitter receptors.

Finally, we repeated analyses mapping receptor densities to
cognitive functional activation and disease vulnerability. We found
a similar topographic gradient linking autoradiography-derived

receptor densities to Neurosynth-derived functional activations (Sup-
plementaryFig. 9a).Indeed, PET-derived and autoradiography-derived
receptor and cognitive scores are correlated (Supplementary
Fig.8b;Pearson’sr=-0.50, P, = 0.0002, CI=[-0.69,-0.26] for recep-
tor scores; Pearson’s r =—0.75, P, = 0.0001, CI=[-0.86, -0.60] for
cognitive scores). We also found consistencies regarding the loadings
of receptors (Supplementary Fig. 9c) and cognitive processes (Sup-
plementary Fig. 9d). Next, when we mapped autoradiography-derived
receptor densities to cortical abnormality patterns of multiple dis-
orders, we found prominent associations with receptors that were
notincludedin the PET dataset, including a relationship between the
ionotropic glutamate receptor kainate and depression (Supplemen-
tary Fig.10).

Sensitivity and robustness analyses

Finally, to ensure that results are not influenced by specific methodo-
logical choices, we repeated analyses using different parcellation reso-
lutions and different receptor subsets, and we compared alternative
PET tracers to the chosen PET tracers in the present report. Due to
the low spatial resolution of PET tracer binding, we opted to present
our main results using a coarse resolution of 100 cortical regions'.
However, when using a parcellation resolution of 200 and 400 corti-
cal regions, we found that the mean receptor density and receptor
similarity remains consistent (Supplementary Fig. 11). We next asked
whether any single receptor or transporter disproportionately influ-
ences receptor similarity. To test this, we iteratively removed a single
receptor/transporter from the dataset and recomputed the recep-
tor similarity matrix. These 19 different receptor similarity matrices
are all highly correlated with the original similarity matrix (Pearson’s
r(4948) > 0.98), confirming that the correspondence between regional
receptor profiles is not driven by a single neurotransmitter receptor/
transporter.

Wealsotested whether participant age affects the reportedresults.
However, only mean age of individuals included in each tracer map
was available. Therefore, we fit a linear model between the mean age
of scanned participants contributing to each receptor/transporter
tracer map and the z-scored receptor/transporter density, for each
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Fig. 5| Mapping receptors to cognitive function. a, Using PLS analysis, we
found a significant latent variable that accounts for 54% of the covariation
between receptor distributions and Neurosynth-derived cognitive functional
activation (P, = 0.010,10,000 repetitions, one-sided). b,c, This latent variable
represents a pattern of co-activation between receptors (‘receptor scores’)
and cognitive terms (‘cognitive scores’). d, The PLS model was cross-validated
using amethod that stratifies the training set (yellow points) and test set (gray
points) based on the distance between each node to a source node (red point),
and the procedure is repeated such that each brain region is assigned as the
source node once (100 repetitions). The significance of the mean out-of-
sample test set correlation was assessed against a null distribution of mean
correlation constructed by rotating the receptor density matrix before the PLS
analysis (see Methods for details). e, Receptor loadings are computed as the

correlation (Pearson’s r) between each receptor’s distribution across the cortex
and the PLS-derived scores and can be interpreted as the contribution of each
receptor to the latent variable. f, Similarly, cognitive loadings are computed as
the correlation (Pearson’s r) between each term’s functional activation across
brain regions and the PLS-derived scores and can be interpreted as the cognitive
processes that contribute most to the latent variable. Here, only the 25% most
positively and negatively loaded cognitive processes are shown. For all stable
cognitive loadings, see Supplementary Fig. 6, and, for all 123 cognitive processes
included in the analysis, see Supplementary Table 2. Bounds of the box plots in
aanddrepresent the 1st (25%) and 3rd (75%) quartiles; the center line represents
the median; whiskers represent the non-outlier minima and maxima of the
distribution; and open circles represent outliers.

brainregion separately. We then subtracted the relationship with age
from the original receptor densities, resulting in an age-regressed
receptor density matrix. We found that both age-regressed receptor
density and age-regressed receptor similarity is highly correlated
with the original receptor density/similarity (Pearson’s r(4948) = 0.78,
P=0,Cl=[0.76,0.79] and Pearson’s r(4948) = 0.984, P=0,CIl =[0.982,
0.985], respectively; Supplementary Fig. 12), suggesting that age has
anegligible effect on the reported findings. However, we note that
this analysis is not sensitive to individual subject variability and that
certain neurotransmitter receptor systems show changes in receptor
availability with age®*°.

Discussion

Inthe present report, we curate acomprehensive 3D atlas 0of 19 neuro-
transmitter receptors and transporters. We demonstrate that chemo-
architecture is akey layer of the multi-scale organization of the brain.
Neurotransmitter receptor profiles closely align with the structural
connectivity of the brainand mediate its link with function, including
neurophysiological oscillatory dynamics and resting-state hemody-
namic functional connectivity. The overlapping topographic distribu-
tions of these receptors ultimately manifest as patterns of cognitive
specialization and disease vulnerability.

A key question in neuroscience remains how the brain’s struc-
tural architecture givesrise to its function*’. The relationship between
whole-brain structure and function has been viewed through the
lens of ‘connectomics’, in which the brain’s structural or functional
architectures are represented by regional nodes interconnected by
structural and functional links. The key assumption of this model is
that nodes are homogenous, effectively abstracting away important
microarchitectural differences between regions. The present work is
partofan emerging effort to annotate the connectome with molecular,
cellular and laminar attributes. Indeed, recent work hasincorporated
microarray gene transcription®, cell types*?, myelination', laminar
differentiation** and intrinsic dynamics**into structural and functional
models of the brain.

Neurotransmitter receptors and transporters are an important
molecular annotation for bridging brain structure to brain function.
Despite this, a comprehensive cortical map of neurotransmitter
receptors has remained elusive due to numerous methodological and
data-sharingchallenges (butseetheongoing PET-BIDS effortaswellasthe
OpenNeuroPET initiative at https://openneuropet.github.io/ (refs.™)).
The present study is an ongoing Open Science grassroots effort to
assemble harmonized high-resolution normative images of receptors
and transporters that can be used to annotate connectomic models
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Fig. 6| Mapping receptors to disease vulnerability. Using a multi-linear model,
neurotransmitter receptor/transporter distributions were fit to patterns of
cortical abnormality for 13 neurological, psychiatric and neurodevelopmental
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model is assessed using a spatial autocorrelation-preserving null model and is
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eachinputvariable is defined as the variable’s dominance normalized by the total
fit (Rgdj) of the model. Note that dominance analysis is not applied to the input
variables of non-significant models (that is, IGE and schizotypy) and that this
analysis is conducted using the Desikan-Killiany atlas because this is the only

representation of ENIGMA datasets.

of the brain. This work builds on previous initiatives to map receptor
densities using autoradiography, which has discovered prominent gra-
dients of receptor expressionin both humanand macaque brains®**?’,
Notably, we found consistent results between autoradiography and
PET datasets, which is encouraging because the PET dataset consists
of a different group of receptors and transporters and has the added
advantage of providing in vivo whole-brain data in large samples of
healthy young participants.

We found a prominent link between receptor distribution and
both brain structure and function, which supports the idea that the
emergent functional architecture strongly depends on the underlying
chemoarchitecture®. Interestingly, we found that the canonical elec-
trophysiological frequency bands can be captured by the overlapping
topographies of multiple receptors, consistent with the notion that
receptors influence function by tuning gain and synchrony between
neuronal populations*. Because receptors are correlated with multiple
features of brain structure and function, a natural next question is how
receptor distributions relate to psychological processes. We found a

multivariate mapping between receptor profiles and cognitive activa-
tions. Interestingly, althoughindividual receptors have been associated
with specific functions (for example, D1and selective attention*), our
findings suggest that the combined spatial distribution of serotonergic
and dopaminergicreceptors underlie patterns of cognitive activation
related to affect. Altogether, these results offer clues about how mul-
tiple neurotransmitter systems collectively influence cognitive func-
tions and present novel hypotheses that future causal studies can test.

Finally, we discovered arobust spatial concordance between multi-
plereceptor maps and cortical abnormality profiles across awide range
ofbraindisorders. Akey step toward developing therapies for specific
syndromesistoreliably map them onto underlying neural systems. This
goal is challenging because psychiatric and neurological nosology is
built around clinical features rather than neurobiological mechanisms.
Our results complement some previously established associations
between disorders and neurotransmitter systems and also reveal new
associations. For instance, we found that the serotonin transporter is
the strongest contributor to schizophrenia and BD, consistent with
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the fact that mood disorders are often accompanied with abnormal
serotoninsignaling**®, On the other hand, we found associations that
have some preliminary supportin theliterature but, to our knowledge,
have not been conclusively established and adopted into clinical prac-
tice, including histamine H,in PD*, MOR in ADHD** and D,and NET in
temporal lobe epilepsy’®'. Mapping disease phenotypes to receptor
profiles will help to identify novel targets for pharmacotherapy. This
analysisisrestricted to asingle perspective of disease pathology (cor-
tical thinning/thickening) and should be expanded in future work to
encompass other forms of disease presentation as well as the effects
ofage and pathology on receptor/transporter density.

Collectively, the main results in the present report aim to go
beyond traditional one-to-one (that is, univariate) associations
between receptors and brain function, toward considering how mul-
tiple neurotransmitter systems work together. The present report
builds onthe theories generated by previous neurochemical and phar-
macological causal studies, and it is encouraging to see consistent
results at the level of the whole brain, across multiple neurotransmit-
ter systems and using differentimaging modalities. Furthermore, the
comprehensive approach of this study showcases novel associations
that may not have been considered before. This large-scale characteri-
zation of receptor systems should be validated in, and will hopefully
inspire, future causal studies, driving the cycle of discovery. Altogether,
our data and analyses provide a framework that allows us to test pre-
dictions from the wider literature and consolidate knowledge about
neurotransmitter systems.

Some potential avenues for future complementary research are
to study how receptor architecture changes in healthy aging, across
the sexes, and how they map onto subcortical structures. Indeed,
dopamine D1 and D2 receptor availability is commonly acknowl-
edged to decrease with age in the subcortex®®; serotonin transporter
and receptor density have been reported to be significantly lower in
older adults®; and GABA, density is reported to be higher in older
adults*. Likewise, previously published literature has reported
greater whole-brain glutamate receptor densities in men*?, greater
kappa-opioid receptor density in men** and greater mu-opioid recep-
tor density in women®*. Finally, multiple neurotransmitter projection
systems originate in the subcortex’, and neurodegenerative disease
progression has been linked with abnormal subcortical receptor
expression®. Ultimately, future researchis necessary to characterize
multi-system receptor distributions across age and sex and within
subcortical structures.

The present work should be considered alongside some important
methodological considerations. First, main analyses were conducted
using PET images, which detect tracer uptake atalow spatial resolution
and without laminar specificity. Although results were replicated using
an autoradiography dataset, and in a finer parcellation resolution, a
comprehensive atlas of laminar-resolved receptor density measure-
mentsis necessary to fully understand how regional variationsin recep-
tor densities affect brain structure and function. Second, PET tracer
maps were acquired around the world, in different participants, on
different scanners and using specificimage acquisitionand processing
protocols recommended for each individual radioligand®**’. To miti-
gate this challenge, we normalized the spatial distributions and focused
only on analyses related to the relative spatial topographies of recep-
tors as opposed to the absolute values. Third, the linear models used
in the present analyses assume independence between observations
and linear relationships between receptors; we, therefore, employed
spatial autocorrelation-preserving null models to account for the
spatial dependencies between regions throughout the report. Fourth,
analyses wererestricted to the cortex, obscuring the contributions of
subcortical neuromodulatory systems. Fifth, although we repeated
our analyses in an autoradiography dataset, eight of the 15 receptors
included in the autoradiography dataset are not included in the PET
datasets, and, therefore, adirect comparison between datasets was not

possible. Altogether, a3D whole-brain comprehensive neurotransmit-
ter receptor density dataset constructed using autoradiographs would
be avaluable complement to the present work®?',

Insummary, we assembled anormative 3D atlas of neurotransmit-
terreceptorsin the human brain. We systematically mapped receptors
to connectivity, dynamics, cognitive specialization and disease vulner-
ability. Our work uncovers a fundamental organizational feature of
the brain and provides new direction for a multi-scale systems-level
understanding of brain structure and function.

Online content

Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
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Methods

Allcode and data used to perform the analyses can be found at https://
github.com/netneurolab/hansen_receptors. Volumetric PET images are
includedinneuromaps (https://github.com/netneurolab/neuromaps)
where they can be easily converted between template spaces’.

PET data acquisition

Volumetric PET images were collected for 19 different neurotransmit-
ter receptors and transporters across multiple studies. To protect
patient confidentiality, individual participant maps were averaged
within studies before being shared. Details of each study, the associ-
ated receptor/transporter, tracer, number of healthy participants,
age and reference with full methodological details can be found in
Table 1. A more extensive table can be found in the supplementary
material (Supplementary Table 3), which additionally includes the
PET camera, number of males and females, PET modeling method,
reference region, scan length, modeling notes and additional ref-
erences, if applicable. In all cases, only healthy participants were
scanned (n=1,238; 718 males and 520 females). Images were acquired
using best practiceimaging protocols recommended for each radioli-
gand®. Altogether, theimages are an estimate proportional to recep-
tor densities, and we, therefore, refer to the measured value (that s,
binding potential and tracer distribution volume) simply as density.
Note that the NMDA receptor tracer ([**F]1GE-179) binds to open (that
is, active) NMDA receptors®®. PET images were all registered to the
MNI-ICBM 152 non-linear 2009 (version ¢, asymmetric) template
and then parcellated to 100, 200 and 400 regions according to the
Schaefer atlas™. Receptors and transporters with more than one
meanimage of the same tracer (thatis, 5-HT,;, D,, mGluR;and VAChT)
were combined using a weighted average after confirming that the
images are highly correlated to one another (Supplementary Fig. 13a).
Finally, each tracer map correspondingto each receptor/transporter
was z-scored across regions and concatenated into a final region by
receptor matrix of relative densities.

Insome cases, more than one tracer map was available for the same
neurotransmitter receptor/transporter. We show the comparisons
between tracers in Supplementary Fig. 13b for the following neuro-
transmitter receptors/transporters: 5-HT1,7°, 5-HT1,%%%7°, 5-HT2,%¢%,
S-HTT%[), CB, (refs. (89,97))’ D, (refs. (59,60,98,99))' D AT64,100’ GAB AA8,64' MOR?10!
and NET®*'%%, Here, we make some specific notes: (1) 5-HTT and GABA,
involve comparisons between the same tracers (DASB and flumazenil,
respectively), butonemapis converted to density using autoradiography
data(seeref.’ and ref.®) and the other is not”***’; (2) raclopride is a popular
D, tracer but has unreliable binding in the cortex and is, therefore, an
inappropriate tracer to use for mapping D, densitiesin the cortex, but we
showits comparisonto FLB457 and another D, tracer, fallypride, for com-
pleteness’®“*'%%; and (3) the chosen carfentanil (MOR) map was collated
across carfentanilimagesin the PET Turku Centre database—because our
alternative mapisa partly overlapping subset of participants, we did not
combine the tracers into asingle mean map”*'%,

Synapse density in the cortex was measured in 76 healthy adults
(45 males, 48.9 +18.4 years of age) by administering [*CJUCB-J, a PET
tracer that binds to the synaptic vesicle glycoprotein 2A (SV2A)'**. Data
were collected onan HRRT PET camera for 90 minutes after injection.
Non-displaceable binding potential (BPy,) was modeled using SRTM2,
with the centrum semiovale as reference and k'fixed to 0.027 (popula-
tionvalue). This group-averaged map was first presented in ref.'®,

Autoradiography receptor data acquisition

Receptor autoradiography datawere originally acquired as described
in ref. °. Fifteen neurotransmitter receptor densities across 44 cyto-
architectonically defined areas were collected in three postmortem
brains (age range: 72-77 years, two males). See Supplementary Table
1for a complete list of receptors included in the autoradiography
dataset; see Supplementary Table 2 inref.  for the originally reported

receptor densities; and see https://github.com/AlGoulas/receptor_
principles for machine-readable Python numpy files of receptor den-
sities”. To best compare PET data analyses with the autoradiography
dataset, a region-to-region mapping was manually created between
the 44 available cortical areas in the autoradiography dataset and the
50 left hemisphere cortical Schaefer-100 regions. Four regions in the
Schaefer atlas did not have asuitable mapping to the autoradiography
atlas. As such, the 44-region autoradiography atlas was converted to
46 Schaefer left hemisphere regions. Finally, receptor densities were
concatenated and z-scored to create a single map of receptor densities
across the cortex.

Structural and functional data acquisition

Following the procedure described in ref. '°°, we obtained struc-
tural and functional MRI data for 326 unrelated participants (age
range: 22-35 years, 145 males) from the HCP (S900 release?). All
four resting-state functional MRI scans (two scans (R/L and L/R
phase-encoding directions) on day 1 and two scans (R/L and L/R
phase-encoding directions) on day 2, each about 15 minutes long;
TR =720 ms), as well as diffusion-weighted imaging (DWI) data were
availablefor all participants. All the structural and functional MRl data
were pre-processed using HCP minimal pre-processing pipelines®'””.
We provide a brief description of data pre-processing below, whereas
detailed information regarding data acquisition and pre-processing
isavailable elsewhere?'?”.

Structural network reconstruction

DWI data were pre-processed using the MRtrix3 package'®® (https://
www.mrtrix.org/). More specifically, fiber orientation distributions
were generated using the multi-shell, multi-tissue constrained spheri-
cal deconvolutionalgorithm from MRtrix'**"°, White matter edges were
thenreconstructed using probabilistic streamline tractography based
on the generated fiber orientation distributions™. The tract weights
were then optimized by estimating an appropriate cross-section mul-
tiplier for each streamline following the procedure proposed by ref."?,
and a connectivity matrix was built for each participant using the
100-region Schaefer parcellation™. A group consensus binary net-
work was constructed using a method that preserves the density and
edge-length distributions of the individual connectomes'”. Edges in
the group consensus network were assigned weights by averaging
the log-transformed streamline count of non-zero edges across par-
ticipants. Edge weights were then scaled to values between O and 1.

Functional network reconstruction

All 3T functional MRI time series were corrected for gradient
non-linearity, head motion using a rigid body transformation and
geometric distortions using scan pairs with opposite phase encod-
ing directions (R/L and L/R)'°°. Further pre-processing steps include
co-registration of the corrected images to the Tlw structural MR
images, brain extraction, normalization of whole brain intensity,
high-pass filtering (>2,000s full width at half maximum (FWHM); to
correct for scanner drifts) and removing additional noise using the
ICA-FIX process'*®™. The pre-processed time-series were then parcel-
lated to 100 cortical brain regions according to the Schaefer atlas®.
The parcellated time series were used to construct functional con-
nectivity matrices as a Pearson correlation coefficient between pairs
of regional time series for each of the four scans of each participant. A
group-average functional connectivity matrix was constructed as the
mean functional connectivity across all individuals and scans.

Structure-function coupling

Structure-function coupling at every brain region is defined as the
adjusted R? of asimple linear regression model that fits regional com-
municability (that is, the communicability between a brain region to
every other brain region) to regional functional connectivity (that is,
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the functional connectivity between a brain region and every other
brain region). Communicability is defined as the weighted average
of all walks and paths between two brain regions and represents dif*-
fusive communication®*'”, Additionally, communicability has been
previously demonstrated as an important bridge between brain
structure and function®. In the receptor-informed model, receptor
similarity between the region of interest and every other region was
included as an additional independent variable. The significance of
the receptor-informed structure-function coupling was assessed
against a null distribution of adjusted R? from a model that adds a
rotated regional receptor similarity vector (10,000 repetitions). This
ensures that the increase in R? when receptor informationis included
in the model is robust against the addition of a random variable with
identical spatial autocorrelation.

MEG power

Six-minute resting-state eyes-open magenetoencephalography (MEG)
time series were acquired from the HCP (S1200 release) for 33 unre-
lated participants (age range: 22-35 years, 17 males)?*'””. Complete
MEG acquisition protocols can be found in the HCP S1200 Release
Manual. For each participant, we computed the power spectrum at
the vertex level across six different frequency bands: delta (2-4 Hz),
theta (5-7 Hz), alpha (8-12 Hz), beta (15-29 Hz), low gamma (30-59 Hz)
and high gamma (60-90 Hz), using the open-source software Brain-
storm"®. The pre-processing was performed by applying notch filters
at 60,120,180,240 and 300 Hz and was followed by a high-pass filter
at 0.3 Hztoremove slow-wave and DC-offset artifacts. Pre-processed
sensor-level data were used to obtain a source estimation on HCP’s
fsLR4k cortex surface for each participant. Head models were com-
puted using overlapping spheres, and the data and noise covariance
matrices were estimated from the resting-state MEG and noise record-
ings. Brainstorm’s linearly constrained minimum variance (LCMV)
beamformers method was applied to obtain the source activity for
each participant. Welch’s method was then applied to estimate power
spectrum density (PSD) for the source-level data, using overlapping
windows of length 4 seconds with 50% overlap. Average power at
each frequency band was then calculated for each vertex (that is,
source). Source-level power datawere then parcellated into 100 corti-
cal regions for each frequency band™.

ENIGMA cortical abnormality maps

The ENIGMA (Enhancing Neuroimaging Genetics through
Meta-Analysis) consortium is a data-sharing initiative that relies on
standardized image acquisition and processing pipelines, such that
disorder maps are comparable'”. Patterns of cortical abnormality
were collected for 13 neurological, neurodevelopmental and psychi-
atric disorders fromthe ENIGMA consortium and the Enigma toolbox
(https://github.com/MICA-MNI/ENIGMA; ref. 8), including: 22q11.2
deletion syndrome (22q)"?, ADHD"*°, ASD", idiopathic generalized
epilepsy'?, right temporal lobe epilepsy'?, left temporal lobe epi-
lepsy'?, depression'”, 0CD'**, schizophrenia'*, BD'*°, obesity'?, schi-
zotypy'*® and PD'. Although most disorders show decreasesin cortical
thickness, some (for example, 22q, ASD and schizotypy) also show
regional increases in cortical thickness. We, therefore, refer to the
disorder profiles as ‘cortical abnormalities’. All cortical abnormality
maps were collected fromadult patients (except for ASD for which only
an age-aggregated (2-64 years) map was available), following identi-
cal processing protocols, for a total of over 21,000 scanned patients
against almost 26,000 controls. The values for each map are z-scored
effect sizes (Cohen’s d) of cortical thickness in patient populations
versus healthy controls. Note that the native and only representatin of
ENIGMA datasets is the Desikan—Killiany atlas (68 cortical regions)™°.
For visualization purposes, data are inverted such that larger values
represent greater cortical thinning. Imaging and processing protocols
can be found at http://enigma.ini.usc.edu/protocols/.

Dominance analysis

Dominance analysis seeks to determine the relative contribution
(‘dominance’ of eachindependent variable to the overall fit (adjusted
R?)) of the multiple linear regression model (https://github.com/
dominance-analysis/dominance-analysis (ref.*)). Thisis done by fitting
the same regression model on every combination of input variables
(27 -1submodels for amodel with pinput variables). Total dominance
is defined as the average of the relative increase in R when adding a
singleinput variable of interest to asubmodel, across all 2” - 1submod-
els. Thesum ofthe dominance of allinput variables is equal to the total
adjusted R? of the complete model, making total dominance anintuitive
method that partitions the total effect size across predictors. There-
fore, unlike other methods of assessing predictorimportance, such as
methods based on regression coefficients or univariate correlations,
dominance analysis accounts for predictor-predictor interactions and
isinterpretable. Dominance was then normalized by the total fit (Rgdj)
of the model, to make dominance fully comparable both within and
across models.

Cognitive meta-analytic activation

Probabilistic measures of the association between voxels and cogni-
tive processes were obtained from Neurosynth, a meta-analytic tool
that synthesizes results from more than 15,000 published functional
MRIstudies by searching for high-frequency keywords (such as ‘pain’
and ‘attention’) that are published alongside functional MRI voxel
coordinates (https://github.com/neurosynth/neurosynth, using the
volumetric association test maps>*). This measure of association is
the probability that a given cognitive processis reported in the study
if there is activation observed at a given voxel. Although more than
1,000 cognitive processes are reported in Neurosynth, we focused
primarily on cognitive function and, therefore, limit the terms of inter-
estto cognitive and behavioral terms. These terms were selected from
the Cogpnitive Atlas, a public ontology of cognitive science', which
includes a comprehensive list of neurocognitive processes. We used
123 terms, ranging from umbrella terms (‘attention’ and ‘emotion’)
to specific cognitive processes (‘visual attention’ and ‘episodic mem-
ory’), behaviors (‘eating’ and ‘sleep’) and emotional states (‘fear’ and
‘anxiety’). The coordinates reported by Neurosynth were parcellated
according to the Schaefer-100 atlas and z-scored®. The probabilistic
measure reported by Neurosynth can be interpreted as a quantitative
representation of how regional fluctuations in activity are related to
psychological processes. The full list of cognitive processes is shown
inSupplementary Table 2.

Partial least squares analysis

Partial least squares (PLS) analysis was used to relate neurotransmitter
receptor distributions to functional activation. PLS is an unsupervised
multivariate statistical technique that decomposes the two datasets
into orthogonal sets of latent variables with maximum covariance™>.
The latent variables consist of receptor weights, cognitive weights
and asingular value that represents the covariance between receptor
distributions and functional activations thatis explained by the latent
variable.Receptor and cognitive scores are computed by projecting the
original data onto the respective weights, such that each brainregion
is assigned a receptor and cognitive score. Finally, receptor loadings
arecomputed as the Pearson’s correlation betweenreceptor densities
and receptor scores and vice versa for cognitive loadings. Note that
PLS analysis does not (1) speak to causal relationships between recep-
tors and cognition, (2) make specific univariate receptor—cognition
associations and (3) preclude the existence of additional relationships
between receptors and cognitive function.

The significance of the latent variable was assessed on the
singular value, against the spin-test (see the ‘Null models’ sec-
tion). In the present report, only the first latent variable was sig-
nificant; the remaining latent variables were not analyzed further.
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Finally, the correlation between receptor and cognitive scores was
cross-validated (see the ‘Distance-dependent cross-validation’ sec-
tion). The empirical correlation between receptor and cognitive
scores across all brain regions was r(98) = 0.70; the mean training
set correlation was r(98) = 0.71; and the mean test set correlation was
r(98) = 0.54 and P, = 0.046, one-sided.

Distance-dependent cross-validation

The robustness of each multilinear model was assessed by
cross-validating the model by using a distance-dependent method?.
Specifically, this method was applied to every multilinear regression
model (Figs. 3¢, 4 and 6) and the PLS model (Fig. 5). For each brain
region (source node), we selected the 75% closest regions as the train-
ing set and the remaining 25% of brain regions as the test set, for a
total of 100 repetitions in the Schaefer atlas and 68 repetitions in the
Desikan-Killiany atlas. This stratification procedure minimizes the
dependence among the two sets due to spatial autocorrelation. Inthe
case of multilinear regression models, the model was fit on the training
set,and the predicted test set output variable (regional functional con-
nectivity, MEG power or disorder maps) was correlated to the empiri-
cal test set values. The distribution of Pearson’s correlations between
predicted and empirical variables across all repetitions (that s, all brain
regions) can be found in Supplementary Fig. 2 (structure-function
coupling), Supplementary Fig. 3 (MEG power) and Supplementary
Fig.7 (disorder maps).

In the case of the PLS analysis, the model was fit on the
training set, and the weights were projected onto the test set to
calculate predicted receptor and cognitive scores. Training and
test sets were defined as described above, and the procedure was
repeated for each brainregion as the source node (100 repetitions).
The correlation between receptor and cognitive score was sepa-
rately calculated in the training and test set. The significance of the
mean out-of-sample correlation was assessed against a permuted
nullmodel, constructed by repeating the cross-validation on spatial
autocorrelation-preserving permutations of the functional associa-
tion matrix (1,000 repetitions; Fig. 5d).

Null models

Spatial autocorrelation-preserving permutation tests were used to
assess statistical significance of associations across brain regions,
termed ‘spin tests****'*>, We created a surface-based representation
of the parcellation on the FreeSurfer fsaverage surface via files from
the Connectome Mapper toolkit (https://github.com/LTS5/cmp). We
used the spherical projection of the fsaverage surface to define spatial
coordinates for each parcel by selecting the coordinates of the vertex
closest to the center of the mass of each parcel. These parcel coordi-
nates were thenrandomly rotated, and original parcels were reassigned
the value of the closest rotated parcel (10,000 repetitions). Parcels for
which the medial wall was closest were assigned the value of the next
most proximal parcel instead. The procedure was performed at the
parcelresolution rather thanthe vertex resolutionto avoid upsampling
the dataandtoeach hemisphere separately. Note that the spin test was
not applied to autroadiography data because of missing samples. A
permutation test was applied instead.

Asecond null model was used to test whether receptor similarity
isgreaterin connected regions than unconnected regions. This model
generatesanullstructural connectome that preserves the density, edge
length and degree distributions of the empirical structural connec-
tome”. Inbrief, edges were binned according to Euclidean distance.
Withineachbin, pairs of edges were selected at random and swapped.
This procedure was thenrepeated 10,000 times. To compute a Pvalue,
the mean receptor similarity of unconnected edges was subtracted
from the mean receptor similarity of connected edges, and this dif-
ference was compared to a null distribution of differences computed
onthe rewired networks.

Reporting Summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All data used to perform the analyses can be found at https://github.
com/netneurolab/hansen_receptors. Volumetric PET images, includ-
ing receptor images and synaptic density, are included in neuromaps
(https://github.com/netneurolab/neuromaps) where they can be
converted between template spaces’. Autoradiography data are
available in Supplementary Table 2 of ref. ¢. The HCP dataset, includ-
ing diffusion-weighted MRI, functional MRI and MEG, is available at
https://db.humanconnectome.org/. Neurosynth data are available at
https://neurosynth.org/. The ENIGMA datasets are available through
the ENIGMA consortium and the ENIGMA Toolbox (https://github.
com/MICA-MNI/ENIGMA (ref.™*)). Parcellation atlases, including the
Schaefer-100 and Desikan-Killiany atlas, were obtained from netneu-
rotools (https://github.com/netneurolab/netneurotools).

Code availability
All code used to perform the analyses can be found at https://github.
com/netneurolab/hansen_receptors.
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available through the ENIGMA consortium and the ENIGMA toolbox (https://github.com/MICA-MNI/ENIGMA). Parcellation atlases including the Schaefer-100 and
Desikan-Killiany atlas were fetched from netneurotools (https://github.com/netneurolab/netneurotools).
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Data exclusions  No data was excluded.
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resolution, (3) at the Schaefer-400 parcellation resolution, (4) using the 68-node Desikan Killiany atlas alongside structural/functional
connectomes from the Lausanne atlas. Furthermore, we recalculated the receptor similarity matrix in a leave-one-out fashion, and confirmed
that no single receptor/transporter exerts undue influence on this similarity matrix (correlation between leave-one-out similarity matrix and
original similarity matrix >0.98 for all receptors). Finally, analyses were repeated using autoradiography data for 15 receptors as opposed to
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Population characteristics Demographic information for all PET subjects can be found in Table 1.
Recruitment Only data from healthy control subjects were used in the analyses.
Ethics oversight Each individual PET study was approved, details can be found in the references found in Table 1.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Magnetic resonance imaging

Experimental design

Design type Resting-state fMRI and diffusion-weighted MRI

Design specifications Following the procedure described in Vos De Wael et al., 2018, we obtained structural and functional magnetic
resonance imaging (MRI) data for 326 unrelated participants (age range 22—35 years, 145 males) from the Human
Connectome Project (HCP; S900 release). All four resting state fMRI scans (two scans (R/L and L/R phase encoding
directions) on day 1 and two scans (R/L and L/R phase encoding directions) on day 2, each about 15 min long; TR=720
ms), as well as diffusion weighted imaging (DWI) data were available for all participants. All the structural and functional
MRI data were pre-processed using HCP minimal pre-processing pipelines. Detailed information regarding data
acquisition and pre-processing is available elsewhere (Van Essen et al., 2013, Glasser et al., 2013)

Behavioral performance measures  No behavioural measures were recorded during the fMRI runs.
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Acquisition

Imaging type(s) Functional and diffusion-weighted MRI

Field strength 3T

Sequence & imaging parameters Multi-band sequence; functional images have a 2-mm isotropic signal resolution, structural modalities were acquired on
a Siemens Skyra 3T scanner and included a T1-weighted MPRAGE sequence at an isotropic resolution of 0.7mm, and a
T2-weighted SPACE at an isotropic resolution of 0.7mm. More details on imaging protocols and procedures are available
at http://protocols.humanconnectome.org/HCP/3T/imaging-protocols.html.

Area of acquisition Whole-brain

Diffusion MRI [ ] Used [ ] Not used

Preprocessing

Preprocessing software We used the HCP data that was previously preprocessed. This preprocessing was done using FSL 5.0.6, FreeSurfer 5.3.0-HCP,
and Connectome Workbench v1.1.1.

Normalization Image processing includes correcting for gradient distortion caused by non-linearities, correcting for bias field distortions,
and registering the images to a standard reference space.

Normalization template fs_LR_32k surface mesh
Noise and artifact removal FMRIB's ICA-based X-noisefier (FIX) and global signal regression
Volume censoring No volume censoring was performed.

Statistical modeling & inference

Model type and settings Functional and structural connectomes were used for comparison with PET-derived receptor similarity.

Effect(s) tested We tested whether receptor similarity is greater when regions are connected (SC) or within the same intrinsic functional
network (fMRI).

Specify type of analysis:  [X] Whole brain [ ] ROI-based [ ] Both

Statistic type for inference NA
(See Eklund et al. 2016)

Correction NA

Models & analysis

n/a | Involved in the study
|:| |X| Functional and/or effective connectivity

|:| |X| Graph analysis

|:| |X| Multivariate modeling or predictive analysis

Functional and/or effective connectivity We used functional connectivity, which was constructed by correlated pairwise regional functional time
series, and averaging this across subjects.

Graph analysis We used structural connectivity (weighted) matrices. Structural connectivity between pairs of regions was




Graph analysis

Multivariate modeling and predictive analysis

measured in terms of fiber density, defined as the number of streamlines between two regions, normalized
by the average length of the streamlines and average surface area of the two regions. The goal of this
normalization is to compensate for the bias toward longer fibers inherent in the tractography procedure, as
well as differences in region size.

Regional vectors of functional and connectivity were used in a multilinear regression model which fit
measures of structure (distance, path length, communicability) and receptor similarity to functional
connectivity.
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