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Intrinsically disordered proteins, defying the traditional protein structure-function paradigm, are a challenge to study experi-
mentally. Because a large part of our knowledge rests on computational predictions, it is crucial that their accuracy is high. The
Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiment was established as a community-based blind
test to determine the state of the art in prediction of intrinsically disordered regions and the subset of residues involved in
binding. A total of 43 methods were evaluated on a dataset of 646 proteins from DisProt. The best methods use deep learning
techniques and notably outperform physicochemical methods. The top disorder predictor has F,_,, = 0.483 on the full dataset
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ntrinsically disordered proteins (IDPs) and regions (IDRs) that

do not adopt a fixed, three-dimensional fold under physiological

conditions are now well recognized in structural biology'. The last
two decades have seen an increase in evidence for the involvement
of IDPs and IDRs in a variety of essential biological processes>’ and
molecular functions that complement those of globular domains®”.
Their involvement in diseases such as Alzheimer’s‘, Parkinson’s” and
cancer® also makes them promising targets for drug discovery”.
Despite their importance, IDPs/IDRs are historically understud-
ied due to the difficulties in direct measurement of their dynamic
behavior and because some of them tend to be disordered only
under specific conditions, such as pH, presence of post-translational
modifications, localization and binding—that is, their structural
disorder is context dependent'. Experimental methods used to
detect intrinsic structural disorder (ID) include X-ray crystallogra-
phy, nuclear magnetic resonance spectroscopy (NMR), small-angle
X-ray scattering, circular dichroism and Forster resonance energy
transfer'>>. Each technique provides a unique point of view on
the phenomenon of ID, and different types of experimental evi-
dence give researchers insights into the functional mechanisms of
IDPs, such as flexibility, folding-upon-binding and conformational
heterogeneity.

An accumulation of experimental evidence has corroborated
the early notion that ID can be inferred from sequence features'e.
Dozens of ID prediction methods based on different principles and
computing techniques have been published”, including VSL2B',
DisEMBL", DISOPRED?, IUPred” and Espritz2. Both predicted
and experimentally derived coordinates of IDRs and annotations
related to their function are stored in a variety of dedicated data-
bases: DisProt*, MobiDB*, IDEAL*, DIBS* and MFIB* each
focus on particular aspects of the ID spectrum. More recently, IDR
annotations are also included in some core data resources including
InterPro*, UniProt* and PDBe™.

Intrinsic structural disorder binding predictions are widely
used, but an assessment of these predictors has never been system-
atically performed and is badly needed. In this report, we describe
the first edition of CAID, a biennial experiment inspired by the

= 0.792 following filtering out of bona fide structured regions. Disordered binding regions remain hard to predict, with
= 0.231. Interestingly, computing times among methods can vary by up to four orders of magnitude.

critical assessment of protein structure prediction (CASP) for the
benchmarking of ID and binding predictors ona community-curated
dataset of 646novel proteins obtained from DisProt”. CAID is
expected to set a new quality standard in the field.

Results

CAID was organized as follows (Fig. 1a). Participants submitted
their implemented prediction software to the assessors and provided
support to install and test them on the MobiDB servers. The asses-
sors ran the packages and generated predictions for a set of proteins
for which disorder annotations were not previously available. Given
a protein sequence, the task of an ID predictor is to assign a score
to each residue for its propensity of being intrinsically disordered at
any stage of the protein’s life. In CAID, we evaluated the accuracy of
the prediction methods as well as software runtimes, which directly
impact their suitability for large-scale analyses.

Structural properties of proteins can be studied by a num-
ber of different experimental techniques, giving direct or indirect
evidence of disorder. Different techniques are biased in different
ways. For example, IDRs inferred from missing residues in X-ray
experiments are generally shorter because longer, noncrystalliz-
able IDRs are either excised when preparing the construct or are
detrimental to crystallization. At the other end of the spectrum is
circular dichroism, which can detect the absence of fixed struc-
ture in the full protein but does not provide any information about
IDR coordinates. IDR annotations are more reliable when con-
firmed by multiple lines of independent and different experimental
evidence.

In this first round of CAID, we selected the DisProt database
as the reference for structural disorder because it provides a large
number of manually curated disorder annotations at the protein
level, with the majority of residues annotated with more than one
experiment”. DisProt annotates IDRs of at least ten residues likely
to be associated with a biological function and excludes short
loops connecting secondary structure elements. DisProt also con-
tains protein-protein interaction interfaces falling into disordered
regions, used as a separate dataset (DisProt-binding).
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Fig. 1| CAID dashboard. a, CAID timeline: phases of CAID from June 2018 to the present. The initial results were presented and discussed at the
conferences Intelligent Systems for Molecular Biology (ISMB) and CASP. b, CAID process: iterative process of the CAID experiment in four phases.

(1) Annotation: any process that produces unpublished annotation of IDR coordinates; in this edition, annotation refers to the DisProt round of annotation.
(2) Prediction: annotations are used to build references with which we test predictors. (3) Evaluation: predictions are evaluated. (4) Report: a report of the
evaluation is produced and published in peer-reviewed journals and on a web page that allows the reader to browse the evaluation of all CAID editions.

¢, Residue classification strategy for the DisProt and DisProt-PDB references. d, Number of residues for each class in different references. e, Number of
proteins for each set of annotations that they contain. f, Number of proteins in each taxon.

Ideally DisProt annotations would be complete—that is, each
protein would be annotated with all disordered (or binding) regions
present under physiological conditions. If this were true, we could
simply consider all residues to be structured (that is negatives)
when not annotated as disordered (that is, positives). Since not all
IDRs are yet in DisProt, we created the DisProt-Protein Database
(-PDB) dataset, where negatives are restricted to PDB Observed
residues (Fig. 1c). This dataset is more conservative but can be
considered more reliable as it excludes ‘uncertain’ residues that
have neither structural nor disorder annotation. Compared to
DisProt, DisProt-PDB is more similar to datasets used to train some
disorder predictors (for example, refs. '*****) and for CASP disorder
challenges®.

The distribution of organisms reflects what is known from other
studies*, with the majority of ID targets coming from eukaryotes,
a good representation of viruses and bacteria but much fewer from
archaea (Fig. 1f). At the species level, annotations are strongly
biased in favor of model organisms with a majority from human,
mouse, rat, Escherichia coli and several other common model
organisms (Supplementary Fig. 6). Target proteins are not redun-
dant at the sequence level, and are different from known examples
available in the previous DisProt release. Mean sequence identity
is 22.2% against the previous DisProt release and 17.1% within the
dataset (Supplementary Fig. 3). CAID has two main categories—the
prediction of ID and the prediction of binding sites found in IDRs.
ID prediction can be further divided into prediction of IDRs and
prediction of fully disordered proteins.

IDR prediction performance

The quality of IDR prediction can be evaluated in different ways. In
some cases, it is relevant to know the fraction of disorder while in
others it is more important to know the exact position of the IDR
in the sequence. Since disorder can be used as a proxy either to
estimate the complexity of an organism or complement a sequence
search, it is also important for a predictor to be sufficiently rapid
for genome-scale application. For CAID, we report the maximum
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Fl1-score (F,,,—that is, maximum harmonic mean between preci-
sion and recall across all thresholds), which takes into account pre-
dictions across the entire sensitivity spectrum®. The performance
of top methods, based on F,, and calculated over all targets, is
shown in Figs. 2 and 3 for the datasets DisProt and DisProt-PDB,
respectively. The F1-score, which is insensitive to dataset imbal-
ance (Fig. 1d), provides a ranking almost identical to that obtained
with Matthews correlation coefficient (MCC). Supplementary
Figs. 12, 13, 33 and 34 show a full comparison and the dependence
of Fl-score and MCC on predictor confidence scores, along with
the predictor default confidence threshold (Supplementary Figs. 10,
11, 30 and 31). All methods were compared with the various base-
lines described in Methods. In some applications, the objective was
to predict which protein fragments are disordered based on known
examples in the PDB. This is a different problem than prediction of
functional IDRs—for example, aiming to evaluate their biophysical
properties. The naive baselines help us understand this difference
and assess the effectiveness of the transfer-by-homology of structural
information for IDR prediction (Discussion). In the PDB Observed
baseline, mimicking perfect knowledge, all residues not covered by
any PDB structure are labeled as disordered. Alternatively, in the
Gene3D baseline, residues are considered disordered if they do not
match any Gene3D prediction for homologous domains. In the
Shuffled dataset baseline, the reference is randomly shuffled at the
dataset level while Random is an actual random predictor that does
not use any previous knowledge.

The values of F,,, (Fig. 2b,d) and area under the receiver oper-
ating characteristic (ROC) curve (AUC) (Fig. 3e,g) were substan-
tially different when predictors were tested on the DisProt dataset,
which contained uncertain residues, as opposed to the DisProt-PDB
dataset. By definition, the PDB Observed baseline cannot predict
negative residues outside PDB regions: it generates 56.5% false posi-
tives, which dropped to zero when considering the DisProt-PDB
dataset in which the uncertain residues are completely filtered out.
IDRs overlapping PDB regions, usually corresponding to residues
involved in folding-upon-binding events, instead generate false
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Fig. 2 | Prediction success and CPU times for the ten top-ranking disorder predictors in the DisProt dataset. a, The reference used (DisProt, n=646
proteins) in the analysis and how it was obtained. b-g, Performance of predictors expressed as maximum F1-score across all thresholds (F,.,,) (b) and AUC
(e) for the ten top-ranking methods (light gray) and baselines (white), and distribution of execution time per target (c,f) using the DisProt dataset. b,e, The
horizontal line indicates, respectively, F,, and AUC of the best baseline. d,g, Precision-recall (d) and ROC curves (g) of the ten top-ranking methods and
baselines using the DisProt dataset, with level curves of F1-score and balanced accuracy, respectively. F, F....; C, coverage; A, AUC. ¢.f, Boxplots are defined as
follows: the middle value of the dataset is the median (Q2/50th percentile) and box boundaries are the first quartile (Q1/25th percentile) and third quartile
(Q3/75th percentile), respectively; maximum is Q3 +1.5x (Q3- Q1) and minimum is Q1-1.5x (Q3-Q1). Outliers are hidden for clarity. ¢ f, Magenta dots
indicate that the entire distribution of execution times is <1s. Q1-Q3, first to third quartiles. TPR, true positive rate; FPR, false positive rate.

negatives. These are far less common (20.4%) and remain the same
for the two datasets. The Gene3D baseline typically increases PDB
coverage (negatives), exploiting the transfer-by-homology principle.
As a consequence, the probability of false positives is lower (48.6%)
and false negatives are only marginally more frequent (20.9%). For
the DisProt dataset, Gene3D slightly outperforms PDB Observed
in terms of both F,, (Fig. 2b,d) and AUC (Fig. 3e,g). Rather, for

max

the DisProt-PDB dataset, PDB Observed is notably superior to all
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methods with only 6.3% mispredicted residues, all false negatives.
Given the relevance of the host organism in determining environ-
mental factors for IDPs such as temperature, we wondered whether
predictor performance would be affected in different subsets.
Performance was assessed separately for mammalian and prokary-
otic proteins (Supplementary Figs. 19-28 show the DisProt dataset
and Supplementary Figs. 40-49 show the DisProt-PDB dataset).
The ranking changes only slightly after the top two positions.
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Fig. 3 | Prediction success and CPU times for the ten top-ranking disorder predictors in the DisProt-PDB dataset. a, The reference used (DisProt-PDB,
n=646 proteins) in the analysis and how it was obtained. b-g, Performance of predictors expressed as maximum Fl-score across all thresholds (F_,,)

(b) and AUC (e) for the ten top-ranking methods (light gray) and baselines (white), and distribution of execution time per target (¢,f) using the
DisProt-PDB dataset. b,e, The horizontal line indicates, respectively, F..,. and AUC of the best baseline. d,g, Precision-recall (d) and ROC curves (g) of the
ten top-ranking methods and baselines using the DisProt-PDB dataset, with level curves of F1-score and balanced accuracy, respectively. ¢,f, boxplots are
defined as follows: the middle value of the dataset is the median (Q2/50th percentile) and box boundaries are the first quartile (Q1/25th percentile) and
third quartile (Q3/75th percentile), respectively; maximum is Q3+1.5x (Q3-Q1) and minimum is Q1-1.5x (Q3 - Q1). Outliers are hidden for clarity.

cf, Magenta dots indicate that the entire distribution of execution times is <1s.

Performance for mammalian sequences is ~0.05 and ~0.03 lower in
terms of F,,, and AUC, respectively, for all methods, suggesting that
this is a somewhat harder challenge.

Across the different performance measures, the methods
SPOT-Disorder2, fIDPnn, RawMSA and AUCpreD are consistently
found among the top five. While the ordering changes for different
measures and reference sets, and the differences among them are
not statistically significant (Supplementary Figs. 17, 18, 23, 28, 38,
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39, 44 and 49), these methods can be seen broadly as performing
consistently well. Looking at the precision-recall curves (Fig. 2d),
we notice that the top five methods (excluding fIDPnn/Ir in the
DisProt dataset and AUCpred-np in the DisProt-PDB dataset)
leverage evolutionary information, introducing a database search as
a preliminary step. The performance gain, on average 4.5% in terms
of F, ., comes at the cost of slowing prediction by two to four orders
of magnitude (Fig. 2c and Supplementary Figs. 4, 12-14 and 33-35).
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Table 1| Confusion matrix and metrics for the prediction of fully disordered proteins in the DisProt dataset

TN FP FN TP MCC Fl-s TNR TPR PPV BAC

fIDPnn 585 16 19 26 0.569 0.598 0.973 0.578 0.619 0.776
RawMSA 582 19 19 26 0.546 0.578 0.968 0.578 0.578 0.773
VSL2B 578 23 22 23 0.468 0.505 0.962 0.5M 0.500 0.736
fIDPIr 566 35 18 27 0.468 0.505 0.942 0.600 0.435 0.771

Predisorder 589 12 26 19 0.479 0.500 0.980 0.422 0.613 0.701

SPOT-Disorder1 572 29 23 22 0.416 0.458 0.952 0.489 0.431 0.720
DisoMine 551 50 17 28 0.421 0.455 0.917 0.622 0.359 0.770
AUCpreD 588 13 28 17 0.431 0.453 0.978 0.378 0.567 0.678
SPOT-Disorder2 574 27 24 21 0.409 0.452 0.955 0.467 0.438 0.71

SPOT-Disorder-Single 594 7 30 15 0.452 0.448 0.988 0.333 0.682 0.661

IsUnstruct 588 13 29 16 0.41 0.432 0.978 0.356 0.552 0.667
IUPred2A-long 595 6 32 13 0.420 0.406 0.990 0.289 0.684 0.639
Gene3D 505 96 10 35 0.391 0.398 0.840 0.778 0.267 0.809
ESpritz-N 597 4 33 12 0.426 0.393 0.993 0.267 0.750 0.630
ESpritz-D 555 46 23 22 0.342 0.389 0.923 0.489 0.324 0.706
PyHCA 596 5 33 12 0.41 0.387 0.992 0.267 0.706 0.629
JRONN 595 6 33 12 0.397 0.381 0.990 0.267 0.667 0.628
MobiDB-lite 599 2 34 n 0.437 0.379 0.997 0.244 0.846 0.621

DisPredict-2 586 15 32 13 0.330 0.356 0.975 0.289 0.464 0.632
|UPred2A-short 599 2 35 10 0.413 0.351 0.997 0.222 0.833 0.609
S2D-2 572 29 30 15 0.288 0.337 0.952 0.333 0.341 0.643
PDB Observed 468 133 13 32 0.286 0.305 0.779 0.711 0.194 0.745
AUCpreD-np 590 n 35 10 0.293 0.303 0.982 0.222 0.476 0.602
ESpritz-X 595 6 36 9 0.321 0.300 0.990 0.200 0.600 0.595
FoldUnfold 456 145 14 31 0.256 0.281 0.759 0.689 0.176 0.724
DISOPRED-3.1 596 5 39 6 0.246 0.214 0.992 0133 0.545 0.563
DisEMBL-HL 601 0 41 4 0.288 0.163 1.000 0.089 1.000 0.544
PDB Remote 590 n 42 3 0.085 0.102 0.982 0.067 0.214 0.524
DisEMBL-465 601 0 43 2 0.204 0.085 1.000 0.044 1.000 0.522
PDB Close 589 12 43 2 0.043 0.068 0.980 0.044 0.143 0.512

Conservation 441 160 38 7 —0.064 0.066 0.734 0.156 0.042 0.445
DynaMine 601 0 45 0 0.000 0.000 1.000 0.000 0.000 0.500
GlobPlot 601 0 45 0 0.000 0.000 1.000 0.000 0.000 0.500
DFLpred 601 0 45 0 0.000 0.000 1.000 0.000 0.000 0.500

TN, true negatives count; TP, true positives count; FN, false negatives count; FP, false positives count; F1-s, F1-score; TNR, true negative rate, specificity; TPR, true positive rate, recall; PPV, positive predictive
value, precision; BAC, balanced accuracy for prediction of fully disordered proteins. Proteins with disorder prediction or disorder annotation covering at least 95% of the sequence are considered fully

disordered. Predictors are sorted by their F1-score. Baseline names are in bold.

Fully disordered proteins

We considered fully disordered proteins (IDPs) separately because
these are particularly challenging to investigate experimentally;
for example, they cannot be probed with X-ray crystallography yet
they are of great interest because they fulfill unique biological func-
tions™”. We therefore designed another classification challenge:
separation of IDPs from all other proteins. We consider proteins
as IDPs when at least 95% of residues are predicted or annotated
as disordered, and predictors were asked to identify IDPs based
on this criterion. According to this definition, the number IDPs in
the DisProt dataset is 40 out of 646. Different threshold values did
not substantially affect the ranking (Supplementary Tables 6-8). In
Table 1 all methods are sorted based on F1-score. False positives
are limited for many methods, although correct IDP predictions
are generally made for less than half of the dataset. The fraction
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of residues predicted as disordered is also notably different across
methods (Supplementary Fig. 50), suggesting room for improve-
ment. Methods using secondary structure information may be at a
disadvantage for IDP prediction, since annotations frequently rely
on detection methods without residue-level resolution (for exam-
ple, circular dichroism; Supplementary Fig. 7).

Prediction of disordered binding sites

As a second major challenge, CAID evaluated the prediction of
binding sites within IDRs, commonly referred to as linear interact-
ing peptides™ or short linear motifs* leveraging DisProt annotations
for binding regions (Supplementary Fig. 52 shows dataset composi-
tion and overlap to other databases). In DisProt, binding annota-
tions retrieved from the literature are fraught with more ambiguity
than disorder examples. In addition, experimental evidence for
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Fig. 4 | Prediction success and CPU times for the ten top-ranking binding predictors in the DisProt-binding dataset. a, The reference used (DisProt-binding,
n=646 proteins) in the analysis and how it was obtained. b-g, Performance of predictors expressed as maximum F1-score across all thresholds (F,,,)

(b) and AUC (e) for the ten top-ranking methods (light gray) and baselines (white), and distribution of execution time per target (¢,f) using the
DisProt-binding dataset. b,e, The horizontal line indicates, respectively, f,.., and AUC of the best baseline. d,g, Precision-recall (d) and ROC curves

(g) of the ten top-ranking methods and baselines using the DisProt-binding dataset, with level curves of F1-score and balanced accuracy, respectively.

c.f, boxplots are defined as follows: the middle value of the dataset is the median (Q2/50th percentile) and box boundaries are the first quartile

(Q1/25th percentile) and third quartile (Q3/75th percentile), respectively; maximum is Q3 +1.5x (Q3-Q1) and minimum is Q1-1.5x (Q3-Q1). Outliers
are hidden for clarity. ¢,f, Magenta dots indicate that the entire distribution of execution times is <1s.

the exact position of a binding region is often inaccurate because
binding is annotated as a feature of an IDR. Our reference includes
all entries in the DisProt dataset, even if they were not annotated
with binding regions. This translates to a dataset where the major-
ity of targets (414 out of 646) have no positives. In this challenge,
we retained the PDB Observed and Gene3D baselines even if they
were not designed to detect binding regions. Because target binding
regions in DisProt are found within IDRs, the baselines are expected
to attain high recall and low precision. All models perform poorly,
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as do the naive baselines (Fig. 4b,d). At F,,,, their recall is higher
than their precision as for the baselines (Fig. 4c). However, the top
five methods—ANCHOR-2 (ref. %), DisoRDPbind**, MoRFchibi
(light and web)* and OPAL¥—perform better than the baselines
(Fig. 4b), which trade off considerably more precision due to an
abundant overprediction. The execution times of the top five meth-
ods have very different scales and are inversely proportional to their
performance, with the best methods requiring less central process-
ing unit (CPU) time. The performance of predictors on mammalian
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and prokaryotic proteins for the DisProt-binding dataset is only
marginal (Supplementary Figs. 63-72).

Software implementation

We also evaluated those technical aspects related to software imple-
mentation—that is, speed and usability—that have a direct impact
on their application for large-scale analyses. Speed in particular is
highly variable, with methods of comparable performance varying
by up to four orders of magnitude in execution time (Supplementary
Fig. 4). In general, all methods incorporate a mix of different scripts
and programming languages. Some software configuration scripts
contain errors. In many cases data paths and file names are hard-
coded in the program—for example, the sequence database or out-
put file path. Only a few programs allow specification of a temporary
folder, which is important for parallel execution. It is possible to
provide precalculated sequence searches for only a few methods.
Several methods implemented are reliant on dependencies, some-
times on specific software versions or CPUs with a modern instruc-
tion set. Some programs are particularly eager for random-access
memory (RAM), crashing with longer input sequences or do not
have a timeout control and execute forever. Output formats dif-
fer, with some not adequately documented. Only a few software
programs support multithreading and only one was submitted as
a Docker container. In summary, the software implementation for
disorder predictors has considerable room for improvement regard-
ing practical purposes.

Discussion

The problem of predicting protein ID is challenging, for several rea-
sons. The first is in the definition of ID, indicating that a protein
sequence does not encode a stable structural state that is ordered.
Defining ID as a property that a protein does not have (that is, order)
implies that many conformational states fit the definition, covering
a continuum between fully disordered states and folded states with
long dynamic regions**. The second problem is the lack of a consen-
sus reference experimental method, or set of experimental methods,
yielding an operational definition of ID (compared to X-ray crystal-
lography in the definition of ordered structures). The third problem
is the dependence of ID on events or conditions at certain points
in time along the life of a protein. Some proteins remain unfolded
until they bind a partner* while others are disordered providing
they are in a specific cellular compartment and fold following trans-
location”, and some enzymes undergo order-to-disorder-to-order
transition as part of their catalytic cycle®. Given these challenges,
CAID represents a community-based effort to develop and imple-
ment evaluation strategies to assess (1) clear definitions of ID and
(2) the performance of methods used in the prediction of ID. In
its first round, CAID leverages the DisProt database* of curated
experimental evidence to assess ID predictors. In DisProt, curators
store the coordinates of IDRs when there is experimental evidence
in peer-reviewed articles of highly mobile residue stretches longer
than ten residues. We anticipate that future rounds may include
reference data arising from ever-improving consensus operational
definitions—for example, NMR measurements, which are particu-
larly powerful in the characterization of experimental protein disor-
der. For example, one could define disordered regions as those that
exhibit high conformational variability under physiological condi-
tions using multiple orthogonal measures. ID predictors were previ-
ously assessed from the fifth to the tenth editions of CASP, but this
was abandoned due to the lack of good reference data.

A long-term goal for CAID is to help the selection of candidate
IDPs for experimental testing. One of the main properties of IDPs
is their ability to form many low-affinity and high-specificity inter-
actions™. It remains challenging to predict the interacting residues
of an IDP from its sequence. At present, multiple high-throughput
experiments are available for the detection of interactions capable
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of resolving interacting regions*. However, binding sites obtained
from high-throughput experiments (for example, ColIP, Y2H)
and reported in the literature often lack this grade of resolution.
Furthermore, while some attempts have been made to mitigate this
problem*, ahigh false-positive rate plagues all experimental methods
used to identify binding: proteins interacting in experimental con-
ditions do not necessarily interact in the cell under physiological
physicochemical conditions, or simply due to spatiotemporal segre-
gation*. DisProt annotates binding partners and interaction regions
of IDPs used in CAID to attempt the first assessment of binding
predictors.

One of the major challenges in CAID is the definition of nega-
tives—that is, residues that are not disordered or do not bind.
Knowledge about negative results is a long-standing problem
in biology"” and is especially relevant for our assessment. If the
annotation of IDRs in a protein is not complete, how do we know
which regions are structured? This is even more relevant for bind-
ing regions, because we are far from being able to map all binding
partners of a protein with residue resolution under different cellular
settings. To overcome this problem, which is intrinsic to how we
detect and store data, ID predictor performance was tested in two
scenarios. In the first of these we assumed that all annotations were
complete, considering all residues outside of annotated regions as
structured. In the second scenario, we used resolved residues from
PDBs to annotate structure and filtered out all residues that were
covered by neither disorder nor structure annotation. Binding site
predictors were tested on a dataset where all residues outside of
binding regions are considered nonbinding.

Despite these challenges, CAID revealed progress in the detec-
tion of ID from sequence and highlighted that there remains scope
for improvement in both disorder and binding site predictors. One
of the primary goals was to determine whether automated algo-
rithms perform better than naive assumptions such as sequence
conservation or three-dimensional structure. As far as ID is con-
cerned, the performance of predictors in comparison to naive base-
lines largely depends on the assumption made on nondisordered
residues. On the DisProt-PDB dataset, where disorder is inferred
from DisProt annotation, order from the presence of a PDB struc-
ture and all other residues is filtered out: naive baselines outperform
predictors. However, when only DisProt annotations are considered
(DisProt dataset), the tables are turned and predictors, while obtain-
ing lower overall scores, outperform naive baselines (Figs. 2 and 3).
When uncertain residues are retained in the analysis (DisProt data-
set), the number of false positives increases and precision plunges,
lowering the F1-score. This means that either predictors detect ID
in the uncertain residues—suggesting that DisProt annotation is
incomplete, predictors overpredict or both. Naive baselines are out-
performed by predictors since they predict all uncertain residues as
disordered, which are all counted as false positives. This suggests
that predictors have reached a state of maturity and can be trusted
with relative confidence when no experimental evidence is avail-
able. It also confirms that when experimental evidence is present, it
is more reliable than predictions.

An interesting special case is how predictors behave with fully
disordered DisProt targets (Table 1). This case is compelling because
predictors are usually not trained on these examples. Predictors
vastly outperform naive baselines in these cases due to their large
overprediction. The count of false positives puts baselines at a dis-
advantage, compensating for their low count of false negatives. PDB
Observed classifies a protein as fully disordered whenever no struc-
ture is available for that protein. However, the absence of a protein
from PDB may be simply due to the lack of studies on that protein.
Gene3D performs better since it generalizes from existing structures,
but still tends to overpredict disorder (or underpredict order). At
the opposite side of the spectrum, methods that are too conservative
in their disorder classification (for example, MobiDB-lite) perform
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worse than expected on fully disordered proteins. Results from the
DisProt dataset suggest that several methods are consistently among
the top performers, although the exact ranking is subject to some
variation. fIDPnn and SPOT-Disorder2 perform consistently well,
with RawMSA and AUCpreD following closely. The execution
times for these four methods vary by up to three orders of magni-
tude, suggesting there is room for optimization of the software. Of
note, both fIDPnn and RawMSA were unpublished at the time of
the CAID experiment. While top-performing methods are able to
achieve a certain balance between under- and overprediction, it is
interesting to note how they are not able to identify all fully disor-
dered targets. Not even methods that trade off specificity to increase
the detection of relevant cases are able to attain full sensitivity. This
confirms that predictors are not trained on this particular class of
proteins, and suggests that they have room for improvement in this
direction.

CAID offers an attempt at assessment of binding predictors. As
discussed above, this is intrinsically difficult due to the complex
nature of this phenomenon and how it is detected and stored. While
we are aware of these difficulties, we still think that an assessment
is useful for researchers who either use or develop binding predic-
tors. Furthermore, while it is arguable that this evaluation has limi-
tations, its publication helps highlight such constraints and exposes
this problem to the rest of the scientific community. We compared
predictors to the same baselines used for the disorder challenge
but, while their design remains unchanged, their underlying naive
assumption changes slightly. The PDB Observed baseline assumes
that whatever is not covered by a structural annotation in PDB is not
only disordered but also involved in one or more interactions. When
considering all targets in the CAID dataset, including those not
annotated as binders, predictors slightly outperform the baselines
but have limited performance overall. Figure 4 shows disagreement
with the DisProt-binding reference in both positive and negative
classification, highlighting the potential for improvement of bind-
ing predictors. We have to consider that the dataset used is strongly
unbalanced. Although a prominent function of IDPs is mediation of
protein—protein interactions, most targets (414 of 646) do not con-
tain an identified binding region and those that do include binding
regions often have them spanning the whole disordered region in
which they are found. This strong bias is due to how DisProt was
previously annotated, with the label ‘binding’ being associated with
an entire IDR. In the latest DisProt version this annotation style
has been replaced with a more detailed one, ensuring that future
editions of CAID will be less biased towards long binding regions.
The improved definition of boundaries for disordered bind-
ing regions could favor methods trained specifically to recognize
shorter binding regions. Overall, this suggests a large growth poten-
tial in both predictors and reference sets for this challenge.

In conclusion, the CAID experiment has provided a fully blind
assessment of ID predictors, almost a decade after CASP stopped
assessing them, and a new assessment of ID binding regions. The
results are encouraging, showing that the methods are sufficiently
mature to be useful but also that substantial room for improvement
remains. As the quality of ID data improves, we expect predictors to
become more accurate and reliable.
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Methods

All software programs were executed using a homogeneous cluster of nodes
running Ubuntu 16.04 on Intel 8 core processors with 16 GB of RAM and a
mechanical hard disk. In the text we refer to proteins as targets, to disordered
residues as positive labels and to structured/ordered residues as negative labels.
Experiment design is described in the Nature Research Reporting Summary.

Reference sets. In CAID different reference sets were built, differing in the subset
of DisProt used to define positive labels and in the definition of negatives labels.

For the disorder challenge, we generated two reference sets called DisProt
and DisProt-PDB. Both references are composed of a set of 646 targets, annotated
between June 2018 and November 2018 (DisProt release 2018_11). Positive
labels in both reference sets are those residues annotated as disordered in
the DisProt database. In the DisProt reference set, all labels not positive are
assigned as negatives. In the DisProt-PDB set, PDB structures mapping on
the protein sequence define negative labels. All residues not covered by either
DisProt annotation or PDB structures are masked and were excluded from the
analysis. It should be noted that a fraction of resolved structures in the PDB has
been annotated as disordered***’. While in this edition of CAID we decided to
consider any resolved residue from crystallography, NMR or electron microscopy
experiments (excluding those overlapping with DisProt annotation) as structured,
we plan to apply a filtering on subsequent editions. This problem will become
progressively less relevant as DisProt annotations become more complete, since
disorder always overwrites structure.

For the binding challenge we generated a reference set that we called
DisProt-binding. Positive labels are those residues annotated as binding in the
DisProt database, whereas all labels not positive are assigned as negatives. Notice
that 232 targets have at least one annotation of binding in the DisProt database.
Because DisProt-binding is composed of all 646 targets considered in the analysis,
the majority of targets (that is, 646 — 232 =414) do not contain positive labels.

Predictions. Most predictors output a series of score and state pairs per residue
of the input sequence. Scores are floating point numbers while states are binary
labels predicting whether a residue is in a disordered or structured state. If
scores are missing, states will be used as scores. If states are missing, they are
generated by applying a threshold to scores. By default, thresholds are inferred
from states. When states are not available and a threshold is not specified by the
authors of the method, we set the threshold to 0.5. This ensures correct default
threshold estimates for any distribution of scores. Prediction scores are rounded
to the third decimal figure, which sets the number of possible thresholds to
1,000. Bootstrapping samples the whole dataset with replacements 1,000 times.
Resampling is done at the label (residue) level. Confidence intervals are calculated
on Student’s t-distribution at alpha set to 0.05.

Baselines. A number of baseline predictors have been built for comparison with
actual predictors. Two are based on randomization of the dataset (Shuffled dataset,
Random) and one on an estimate of residue conservation through evolution
(Conservation). The last four consider the opposite of structure as disorder

(PDB Observed, PDB Close, PDB Remote and Gene3D).

The Shuffled dataset is a reshuffling of the DisProt dataset—that is, random
permutation of labels across the entire dataset. This preserves the proportion of
positive labels across the dataset but not necessarily for each single target. The
Random baseline is a random classifier in which the prediction score of each label
is assigned randomly. It is built by randomly drawing floating point numbers out of
a uniform distribution [0,..,1] and applying a threshold of 0.5.

The Conservation baseline uses the naive consideration that IDPs on average
are less conserved than globular proteins. It is calculated from the distance between
the residue frequencies of homologous sequences for each target against the residue
frequencies of the BLOSUMS62 alignments. Amino acid frequencies for the targets
are extracted from the position-specific scoring matrix generated by running three
iterations of PSI-BLAST*" against UniRef90. The distance is calculated from the
Jensen—Shannon divergence’ of the two frequencies. This returns values in the
[0,...,1] interval where any position with a score >0.4 is considered positive (that
is, disordered).

Several naive baselines are based on the assumption that whatever is not
annotated as structure in the PDB is disordered. PDB Observed has the structure
annotation defined by PDB structures as mapped on UniProt sequences by
Mobi 2.0 (ref. 2) (October 2019). Whenever we are unable to map perfectly the
PDB sequence on the UniProt sequence, unmapped residues were considered
not observed and excluded from the analysis. This applies to His-tags, mutated
sequences and missing residues (in both X-ray and NMR structures); PDB Close
and PDB Remote have the structure annotation defined by observed residues in
PDBs with similar sequence. The similarity is calculated as the identity percentage
given by a three-iteration PSI-BLAST* of DisProt targets against PDB seqres.

PDB Close considers PDB structures with at least 30% sequence identity (that is,
close homologs), while PDB remote considers only PDB structures with sequence
identity 20-30% (that is, remote homologs). Gene3D has structure annotations
defined by Gene3D*’ (v.4.2.0) predictions, calculated with InterProScan*
(v.5.38-76.0).

Target and dataset metrics. Metrics were calculated following two strategies—
dataset and target. In the dataset strategy, all targets (proteins) reference
classifications and prediction classifications are concatenated in two single
arrays. Confusion matrix and subsequent evaluation metrics are calculated once,
comparing these arrays. In the target strategy confusion matrix and subsequent
evaluation, metrics are calculated for each target (protein) and the mean value
of the evaluation metrics is taken. The former strategy is equivalent to summing
the confusion matrices for each target and computing evaluation metrics on the
resulting confusion matrix, while the latter is equivalent to calculation of the
evaluation metrics on the average of the confusion matrices of the targets.

Notes on calculation of evaluation metrics. Throughout the manuscript, F,,,
and AUC are the main assessment criteria used. F,,,, is the maximum point in the
precision-recall curve while AUC is the area under the ROC curve. Additional
metrics are used for comparison, and they all follow standard definitions as
described in Supplementary Table 4. F-beta (0.5, 1, 2) and MCC are set to 0 if the
denominator is 0. Since the MCC denominator is a multiplication of the number
of positive and negative classifications and positive and negative labels in the
reference, if any of these classes amounts to 0 we set MCC to 0. This means that,
for both fully disordered proteins and those predicted to be fully disordered or
fully ordered, MCC is 0. This situation is very likely in target strategy with the
DisProt-PDB dataset, and explains why the MCC for target strategy is much lower
than that for the dataset strategy (Supplementary Fig. 34). This effect can also be
seen in the heatmap of target MCC, where a large number of targets have MCC=0.

Statistics. In ranking plots (Supplementary Figs. 17, 18, 23, 28, 38, 39, 44, 49, 61,
66 and 71), Pvalues are calculated with a two-tailed t-test. The bootstrapping used
in Figs. 2-4 samples the whole dataset with replacements 1,000 times. Resampling
is done at the label (residue) level. Confidence intervals are calculated based on
Student’s t-distribution at alpha set to 0.05.

Assessors’ policy. Prediction methods published by the assessors were not
included in the challenges: their methods are included for reference only.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Raw DisProt annotations, reference datasets and predictions in CAID format are
available at https://idpcentral.org/caid/data/1/. Description of the process and code
to produce references is available in the GitHub CAID repository at https://github.
com/BioComputingUP/CAID. All data used in the analysis are also available in the
Code Ocean capsule (https://doi.org/10.24433/C0O.3610625.v1).

Code availability

Results of the CAID assessment can be fully reproduced by downloading the

code and following the instructions in the CAID GitHub repository at https://
github.com/BioComputingUP/CAID. The CAID software is a Python 3 package
that produces all outputs necessary for CAID, including baselines, references and
plots. See Data availability for information about how to obtain Input predictions,
references and sequence annotations. The CAID package is dependent on public
Python 3 libraries and on the vectorized_cls_metrics library, available at https://
github.com/marnec/vectorized_cls_metrics. The code is also available and
reproducible in the Code Ocean capsule (https://doi.org/10.24433/C0.3610625.v1).
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Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
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Q

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XXX [0 OOXK [0 X[
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No software was used for data collection

Data analysis Results of the CAID assessment can be fully reproduced downloading the code and following the instructions in the CAID GitHub repository at
URL https://github.com/BioComputingUP/CAID.
The CAID software is a Python 3 package that produces all outputs necessary for CAID, including baselines, references, plots. See the Data
Availability section for information about how to obtain Input predictions, references and sequence annotations. The CAID package depends
on public Python 3 libraries and on the vectorized_cls_metrics library, available at URL https://github.com/marnec/vectorized_cls_metrics.
The code is also available and reproducible in the Code Ocean capsule available at URL https://doi.org/10.24433/C0.3610625.v1.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Raw DisProt annotations, reference datasets and predictions in CAID format are available at URL https://idpcentral.org/caid/data/1/.
The description of the process and code to produce references is available in the GitHub CAID repository at URL https://github.com/BioComputingUP/CAID.
All data used in the analysis are also available in the Code Ocean capsule available at URL https://doi.org/10.24433/C0.3610625.v1.
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Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences D Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size of 646 proteins was used. All non-ambiguous entries annotated in DisProt (annotation round 2018) were used in the analysis.
Bootstrapping of this dataset produced confidence intervals for the classification metrics in the order of 107-5
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Data exclusions  DisProt annotations marked by curators as "ambiguous" were excluded. This ensures that only disordered regions annotated with strong
confidence were considered in the analysis. This exclusion was planned in advance.

Replication Replication was used for confidence interval calculations, which were provided for all analyses at the dataset level (not protein level).
Randomization  Randomization was used in the design of "random" and "shuffled-dataset" baselines.

Blinding The assessment was blind by design, since disorder annotations were not publicly available at the time of the collection of predictors. Hence,
predictors could not be trained (or parametrized) on such data.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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