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The landscape of viral associations in human
cancers
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Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, for which whole-genome and—for a sub-
set—whole-transcriptome sequencing data from 2,658 cancers across 38 tumor types was aggregated, we systematically
investigated potential viral pathogens using a consensus approach that integrated three independent pipelines. Viruses were
detected in 382 genome and 68 transcriptome datasets. We found a high prevalence of known tumor-associated viruses such as
Epstein-Barr virus (EBV), hepatitis B virus (HBV) and human papilloma virus (HPV; for example, HPV16 or HPV18). The study
revealed significant exclusivity of HPV and driver mutations in head-and-neck cancer and the association of HPV with APOBEC
mutational signatures, which suggests that impaired antiviral defense is a driving force in cervical, bladder and head-and-neck
carcinoma. For HBV, HPV16, HPV18 and adeno-associated virus-2 (AAV2), viral integration was associated with local varia-
tions in genomic copy numbers. Integrations at the TERT promoter were associated with high telomerase expression evidently
activating this tumor-driving process. High levels of endogenous retrovirus (ERV1) expression were linked to a worse survival

outcome in patients with kidney cancer.

cancers are attributable to infections and 9.9% are linked to

viruses'”. Cancers that are attributable to infections have a
greater incidence than any individual type of cancer worldwide.
Eleven pathogens have been classified as carcinogenic agents
in humans by the International Agency for Research on Cancer
(IARC)®. After Helicobacter pylori (associated with 770,000 cases
worldwide), the four most prominent infection-related causes of can-
cer are estimated to be viral> HPV* (associated with 640,000 cases),
HBV” (420,000 cases), hepatitis C virus (HCV)° (170,000 cases) and
EBV’ (120,000 cases). It has been shown that viruses can contribute
to the biology of multistep oncogenesis and are implicated in many
of the hallmarks of cancer®. Notably, the discovery of links between
infection and cancer types has provided actionable opportunities,
such as the use of HPV vaccines as a preventive measure, to reduce
the global impact of cancer. The following characteristics have
been proposed to define human viruses that cause cancer through
direct or indirect carcinogenesis’: (1) presence and persistence of
viral DNA in tumor biopsies; (2) growth-promoting activity of viral

| he World Health Organization estimates that 15.4% of all

genes in model systems; (3) dependence of a malignant phenotype
on continuous viral oncogene expression or modification of host
genes; and (4) epidemiological evidence that a virus infection repre-
sents a major risk for the development of cancer.

The worldwide efforts of comprehensive genome and whole-
transcriptome analyses of tissue samples from patients with cancer
have generated appropriate facilities for capturing information not
only from human cells but also from other—potentially pathogenic—
organisms or viruses that are present in the tissue. A comprehensive
collection of whole-genome and whole-transcriptome data from
cancer tissues has been generated within the International Cancer
Genome Consortium (ICGC) project PCAWG", providing a unique
opportunity for a systematic search for tumor-associated viruses.

The PCAWG Consortium aggregated whole-genome sequenc-
ing (WGS) data from 2,658 cancers across 38 tumor types that have
been generated by the ICGC and The Cancer Genome Atlas (TCGA)
projects. These sequencing data were reanalyzed with standard-
ized, high-accuracy pipelines to align to the human genome (build
hs37d5) and identify germline variants and somatically acquired
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mutations'’. The PCAWG working group ‘Pathogens’ analyzed
the WGS and whole-transcriptome sequencing (RNA-sequencing
(RNA-seq)) data of the PCAWG consensus cohort (2,656 donors).
Focusing on viral pathogens, we applied three independently
developed pathogen-detection pipelines ‘Computational Pathogen
Sequence Identification’ (CaPSID)", ‘Pathogen Discovery Pipeline’
(P-DiP) and ‘Searching for Pathogens’ (SEPATH) to generate a large
compendium of viral associations across 38 cancer types. We exten-
sively characterized the known and novel viral associations by inte-
grating driver mutations, mutational signatures, gene expression
profiles and patient survival data of the same set of tumors analyzed
by the PCAWG Consortium.

Results

Identification of tumor-associated viruses. To identify the pres-
ence of viral sequences, we explored the WGS data of 5,354 tumor-
normal samples across 38 cancer types, and 1,057 tumor RNA-seq
data across 25 cancer types (Supplementary Tables 1, 2, 20). In
total, 195.8 billion reads were considered for analysis, as they were
not sufficiently aligned to the human reference genome in the
PCAWG-generated alignment. The remaining reads ranged from
28,036 to 800 million reads per WGS and up to 120 million reads
per RNA-seq tumor sample (Fig. la, Extended Data Fig. la-c).
Viral sequences were detected and quantified independently by the
three recently developed pathogen-discovery pipelines CaPSID,
P-DiP and SEPATH. The estimated relative abundance of a virus
was calculated as viral reads per million extracted reads (PMER) at
the genus level to improve consistency between pipelines. To mini-
mize the rate of false-positive hits in virus detection, we applied a
strict threshold of PMER > 1 supported by at least three viral reads
as suggested in previous studies'"'>. Virus detection in a sample
by at least two pipelines was considered to be a consensus hit. In
total, 532 genera were considered for the extensive virus search in
at least two of the pipelines (Extended Data Fig. 1d, Supplementary
Table 18). Filtering of suspected viral laboratory contaminants was
achieved through P-DiP, by examining each assembled contig of
viral sequence segments for artificial, non-viral vector sequences
and inspecting virus genome coverage across all positive samples
(Extended Data Fig. 2a). The most frequent hits prone to suspected
contamination were lambdavirus, alphabaculovirus, microvirus,
simplexvirus, hepacivirus, cytomegalovirus (CMV), orthopoxvirus
and punalikevirus; these were observed across many tumor types
(Fig. 1b). For example, mastadenovirus showed an uneven genome
coverage that could result from contaminating vector sequences.
Therefore, we analyzed the virus detections across sequencing dates
(Extended Data Fig. 2b) to assess any batch effect indicative of a
contaminant; in mastadenovirus, we identified an association with
sequencing date in early-onset prostate cancer regardless of tumor-
normal state. We conclude that our mastadenovirus detections are
due to a contamination that occurred across projects worldwide for
which similar patterns could be identified.

We generally observed a strong overlap of the genera iden-
tified across pipelines (Extended Data Fig. le, Supplementary
Tables 6, 7, 11). From the WGS dataset, we identified 321, 598 and
206 virus—tumor pairs using P-DiP, CaPSID and SEPATH, respec-
tively (Fig. 2a; overlap after random permutation of detections,
Extended Data Fig. 3a, Supplementary Tables 3-5). The number
of hits derived from the RNA-seq dataset differed between the
pipelines (virus-tumor pairs: 101 for P-DiP, 83 for CaPSID, 41 for
SEPATH; Fig. 2b, Supplementary Tables 8-10). SEPATH, which
used a k-mer approach, detected the lowest number of virus hits and
was the least sensitive. Despite this, the identified viruses matched
well with the consensus (DNA 90%, RNA 95%). P-DiP, which was
based on an assembly and BLAST approach, detected more hits
with 59% of the DNA and 54% of the RNA hits in the consensus
set, whereas CaPSID, which was the most sensitive, implemented
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a two-step alignment process complemented with an assembly step
and identified 60% (DNA) and 80% (RNA) hits within the con-
sensus set. Although the majority of the virus hits from RNA-seq
(n=61 out of 68 consensus hits based on RNA-seq) overlapped with
the WGS data, a lower fraction of detections from the WGS data
were present in the RNA-seq data (n=61 out of 168 of 382 consen-
sus hits based on WGS with available RNA-seq data), emphasizing
the importance of DNA sequencing for generating an unbiased cat-
alog of tumor-associated viruses. This difference can also be attrib-
uted to the viral life cycle, as viral gene expression can be minimal
during incubation or latent phases'. Contrasting virus-positive and
virus-negative samples within each organ type shows that the organ
system, as expected, has a significant influence, but virus positiv-
ity does not (P<2X 107", analysis of variance modeling of candi-
date reads that are dependent on organ system and virus positivity;
Extended Data Fig. 1c). This indicates that virus-positive tumors
were not detected owing to a higher number of candidate reads;
this is consistent with the fact that the viral reads in most cases do
not substantially contribute to the reads analyzed. In total, 86% of
the sequence hits detected in WGS and RNA-seq data were found
to be from double-stranded DNA viruses and double-stranded
DNA viruses with reverse transcriptase (Fig. 1c, Supplementary
Table 19). This could be attributed to (1) a higher frequency of
tumor-associated viruses from these genome types’, (2) a larger
sequencing dataset for WGS compared with RNA-seq, (3) a poten-
tial limitation of our analysis due to DNA and RNA extraction pro-
tocols that are less likely to include single-stranded DNA or RNA
viruses or (4) the selection bias of tumor entities included in the
PCAWG study (Fig. 1c).

The virome landscape across 38 distinct tumor types. We used
a consensus approach that resulted in a reliable set of 389 dis-
tinct virus—tumor pairs from WGS and RNA-seq data (Fig. 2a-d).
Overall, 23 virus genera were detected across 356 patients with can-
cer (13%). The top-five most-prevalent viruses (lymphocryptovirus,
orthohepadnavirus, roseolovirus, alphapapillomavirus and CMV)
account for 85% of the consensus virus hits in tumors (1 =329 out of
389). Among these five prevalent virus genera, three have been well
described in the literature as drivers of tumor initiation and progres-
sion’: (1) lymphocryptovirus (n =145 samples (5.5%); for example,
EBV) is the most common viral infection across a variety of tumor
entities that mainly occur in the gastrointestinal tract and shows a
much lower prevalence in the matched non-malignant control sam-
ples (n=82 (3%); Fig. 2¢); (2) orthohepadnavirus (n=67 (2.5%);
for example, HBV) is—as expected—the most frequent among liver
cancer with HBV present in 62 of 330 donors (18.9%); and (3) alp-
hapapillomavirus (discussed below). Lymphocryptovirus (n=11),
orthohepadnavirus (n=18) and alphapapillomavirus (n=32) were
detected in both RNA-seq and DNA-sequencing data (Fig. 2c, left),
of which alphapapillomavirus was the most frequent (32 out of 39
consensus hits). This is consistent with the constitutive expression of
viral oncogenes in cancers associated with these viruses, a parameter
that supports a direct role in carcinogenesis’. An in-depth analysis
of the virus genome equivalents per human tumor genome equiva-
lent, which considers genome sizes, coverage and tumor purity,
showed overall low viral genome equivalents even for established
tumor viruses (Extended Data Fig. 3c, Supplementary Table 12).
Evidence of a mouse mammary tumor virus (MMTYV, PMER=3.4)
was detected in one renal carcinoma sample and in none of the 214
analyzed breast cancer samples. Previous work has suggested that
MMTYV may have a role in breast cancer but our comprehensive
search of viral sequences could not identify any MMT V-positive
case in breast cancer that would support this claim.

Roseolovirus and alphatorquevirus show a higher number of
hits in non-malignant control samples, which were mainly derived
from blood cells (Fig. 2c). For example, we identified 59 patients
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Fig. 1| Overview, design and summary statistics. a, Workflow to identify and characterize viral sequences from the WGS and RNA sequencing of
tumor and non-malignant samples. Viral hits were characterized in detail by using several clinical annotations and resources generated by PCAWG.

The red line represents the median. CNS, central nervous system. b, Identified viral hits in contigs that showed higher viral reads PMER for artificial
sequences such as vectors than for the virus. All viruses that occurred in at least 20 primary tumor samples in the same contig together with an artificial
sequence are shown. ¢, Summary of the viral search space used in the analysis grouped by virus genome type. The number of virus-positive tumor
samples is indicated in the outer rings (PMER log scale for WGS and RNA-seq data) as detected by any of the pipelines. Taxonomic relations between
the viruses are indicated by the phylogenetic tree. dsDNA, double-stranded DNA; dsDNA-RT, double-stranded DNA with reverse transcriptase; dsRNA,
double-stranded RNA; ssDNA, single-stranded DNA; ssRNA-RT: single-stranded RNA with reverse transcriptase; ssRNA, single-stranded RNA; dsRNA,

double-stranded RNA. The fractions of hits in WGS and RNA-seq data are depicted as stacked bar graphs.
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as roseolovirus-positive (human herpesvirus (HHV)-6A, HHV-6B
and HHV-7) in their tumors (pancreas, 6%; stomach, 8%; colon/
rectum, 8.3%) and 90 patients positive in the non-malignant con-
trol samples. Considering the known cell tropism of roseolovirus
for B and T cells”’, we asked whether immune infiltration would
be higher in roseolovirus-positive tumors. However, we could not
identify a stronger contribution of immune cells in virus-positive
tumor cases as estimated using CIBERSORT" (false-discovery rate
(FDR)-corrected P>0.05 for pancreas; Extended Data Fig. 4a).
Therefore, consistently with current knowledge (reviewed in ref. '°),
we cannot confirm a link between roseolovirus and immune-cell
content or tumor development. Furthermore, we could not iden-
tify actively transcribed viral genes for roseolovirus and alpha-
torquevirus at the transcriptome level. This is in agreement with
the latent state of these viruses in blood mononuclear cells”, and
their transmission through blood transfusions'”. CMV was found,
as expected'®, after identification and removal of contaminations
in both stomach tumors (n=13) and the adjacent non-malignant
tissue (n=11). In line with a recent publication”, we could not
detect CMV in the 294 tumors of the central nervous system
(146 medulloblastomas, 89 pilocytic astrocytoma, 41 glioblastomas
and 18 oligodendrogliomas) that were analyzed. Therefore, a previ-
ously debated role of this virus is not supported. Notably, we did not
identify a significant enrichment of co-infection of multiple viruses
in any tumor type (Extended Data Fig. 3d).

Incidence of HBV. HBV was most frequently detected in liver can-
cers (n=62). Compared with the histopathological gold-standard
HBV PCR test?*?! (n=228), the WGS-based consensus detec-
tions had the same high specificity (96.1%) and a high sensitiv-
ity (84.0%), indicating that HBV detection using WGS is reliable
(Fig. 3a, Extended Data Fig. 4b, Supplementary Table 13).
Furthermore, five out of the seven cases that were positive using
WGS but negative for HBV PCR showed positivity for HBAg, indi-
cating that the WGS analysis has a high sensitivity. In summary, the
precision (85.7%) and recall (84%) for the detection of HBV based
on around 30-fold-coverage WGS data were comparable to those of
targeted PCR. We confirmed a significant exclusivity between HBV
infection and mutations in CTNNBI, TP53 and ARIDIA that was
found in a larger liver cancer cohort analyzed by high-throughput
sequencing (FDR-corrected P=5.35X107¢, 0.0023 and 0.0023,
respectively; DISCOVER?*)*.

Detection of EBV. EBV was detected in many different tumor enti-
ties and normal samples (Fig. 2c). When comparing the PMER of
EBV in tumor and matched normal samples, we see a stronger con-
tribution in matched normal samples from matched solid tissue or
tissue adjacent to the tumor (Extended Data Fig. 4c). For samples
that contained reads for EBV in WGS and with available RNA-seq
data, the absolute score for immune cells based on CIBERSORT"*
was not significantly different between virus-positive and virus-
negative samples (FDR-corrected P> 0.05 for colon/rectum, head-
and-neck, lymphoid and stomach; Extended Data Fig. 4a). In
summary, there is no evidence that the detection of EBV is due to
infiltrating immune cells. This indicates the presence of EBV in the
respective organs. On the basis of the expression data available for

the tumor samples, we identified viral transcripts of the latent as well
as lytic phase of the viral life cycle (Fig. 3b, Extended Data Fig. 4d,
Supplementary Table 13). Eight of the nine tumors that expressed
lytic EBV transcripts were from stomach cancers, confirming the
active contribution of EBV to gastric cancer*.

Identification of alphapapillomaviruses. Alphapapillomaviruses
were mainly detected in head-and-neck cancers (n=18 out of 57),
cervical cancers (n=19 out of 20) and in two bladder cancer cases
out of 23, in agreement with previous studies****°. There is also sup-
porting evidence for 32 out of 39 alphapapillomavirus hits in the
whole-transcriptome data (Fig. 2c). We observed only one HPV
subtype per tumor according to the P-DiP results and HPV16 was
the dominant type in cervical (n=11) and head-and-neck (n=15)
tumors, followed by HPV18, which was present in only cervical
cancer (n=6). As reported previously”’, HPV33 was identified in
head-and-neck (n=3) and cervical (n=1) tumors. Different HPV
variants, type 6 and 45, were detected in bladder cancer.

In head-and-neck cancer, HPV-positive tumors exhibited an
almost complete mutual exclusivity with mutations in known drivers
such as TP53, CDKN2A and TERT (FDR-corrected P=1.73x 1075,
1.73x 10 and 0.012, respectively; multiple testing corrected for
presented mutations in EBV and HPV, DISCOVER*) (Fig. 3c,
Supplementary Table 13), as reported previously”, which could be
explained by the mutation-independent inactivation of TP53 due
to the human papillomaviruses****. Furthermore, we found that
mutational signature 2 was enriched in alphapapillomavirus-positive
cases of head-and-neck cancer’' (FDR-corrected P=0.02; Fig. 3d,
Supplementary Tables 12, 22). In addition, the expression of
APOBECS3B is significantly higher in virus-positive head-and-neck
cancers compared with virus-negative cancers” (P=1.6X10"%
Fig. 3f). However, we did not observe enrichment of APOBEC sig-
natures and changes in expression in EBV-positive samples found in
the cervix or in other tissues.

Distinct expression profiles between virus-positive and virus-
negative tumors in head-and-neck cancer were observed® (Fig. 3e,
Supplementary Table 23). Analyzing the immune cells estimated by
CIBERSORT, we identified a significant increase in macrophages
and T-cell signals in alphapapillomavirus-positive head-and-neck
cancers (P=0.004, 0.012 and 0.012 for follicular helper, CD8
and regulatory T cells, respectively, and P=0.018 for M1 macro-
phages; FDR corrected for all viruses and cell types tested; Fig. 3¢,
Supplementary Table 24). Our integrative analysis of HPV recon-
firms many of the findings related to HPV infection, illustrating the
potential of our systematic approach in identifying and character-
izing tumor-associated viruses.

Activation of endogenous retroviruses linked to outcome. Human
endogenous retroviruses (HERV) are integrations in the human
DNA that originate from infection of germline cells by retroviruses
over millions of years™ and contribute over 500,000 individual
sites, or 2.7% of the overall sequence the human genome®*. ERV's
were identified by all three pathogen-detection pipelines but were
filtered by CaPSID and SEPATH. In addition, an alignment-based
approach was used to detect HERV sequences that were embed-
ded in the human reference genome that could be missed by the

>
>

Fig. 2 | Consensus for detected viruses in WGS and RNA-seq data. Number of genus hits among tumor samples for the three independent pipelines

and the consensus set defined by evidence from multiple pipelines. a, Analysis based on WGS. b, Analysis based on whole-transcriptome sequencing.

¢, Heat map showing the total number of viruses detected across various cancer entities. The sequencing data used for detection are indicated among the
total number of hits (WGS, blue; RNA sequencing, green). The fraction of virus-positive samples is shown at the top and the type of non-malignant tissue
used in the analysis is indicated if more than 15% of the analyzed samples are from a respective tissue type (solid tissue, lymph node, blood or adjacent
to primary tumor). d, t-SNE clustering of the tumor samples based on PMER of their consensus virome profiles, using Pearson correlation as the distance
metric. Major clusters are highlighted by indicating the strongest viral genus and the dominant tissue types that are positive in that cluster. Dot size

represents the viral reads PMER.
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pipelines by focusing only on non-human reads. In this study, we  Table 14). In comparison to the other HERV families, ERV1 shows
quantified the expression of HERV-like long terminal repeat ret- the strongest expression on average (Fig. 4a) and ERVK the high-
rotransposons that were categorized into several clades by Repbase”  est fraction of active loci (Fig. 4b). By analyzing the expression of
as ERVL, ERVL-MaLR, ERV1, ERVK and ERV (Supplementary ~HERVs, we could identify strong expression of ERV1 in chronic
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lymphocytic leukemia compared with all other tumor tissues and
adjacent normal tissues (Fig. 4c). However, we could not identify a
link between transcriptionally active stemness markers (OCT3/4,
SOX2 and KLF4) and increased HERV expression, in contrast to
a previous report™ (Spearman rank correlation <0.35; Extended
Data Fig. 5). New data suggest that expression of HERV's is associ-
ated with prognosis in clear cell renal cell carcinoma®. Analyzing
HERV expression in relation to patient survival, we found that high
ERV1 expression in kidney cancer was linked to worse survival
outcome (P =0.0081; log-rank test; Fig. 4d, Extended Data Fig. 6,
Supplementary Table 15).

Genomic integration of viral sequences. Viral integration into the
host genome has been shown to be a causal mechanism that can
lead to the development of cancer®. This process is well-established
for HPVs in cervical, head-and-neck and several other carcinomas,
and for HBV in liver cancer*"*.

Low-confidence integration events were detected for HHV4
(gastric cancer and malignant lymphoma) and HPVé6b (head-and-
neck and bladder carcinoma), whereas integration events with
high confidence were demonstrated for HBV (liver cancer), AAV2
(liver), HPV16 and HPV18 (in both cervical and head-and-neck
carcinoma). Most of these integration events were found to be
distributed across chromosomes and a significant number of viral
integrations occurred in the intronic (40%) regions whereas only
3.4% of integrations was detected in gene coding regions (n = 84
intronic versus n = 31 other regions excluding intergenic regions,
two-sample test for equality of proportions, P = 7.0 X 107'%
Extended Data Fig. 7a-d).

HBV was found to be integrated in 36 liver cancer specimens
out of 61 patients who were identified to be HBV positive. Notably,
genomic clusters of viral integrations were identified in TERT
(number of integration sites within a genomic cluster (NGC) of 6),
KMT2B (NGC =4)—which was recently identified to be a likely can-
cer driver gene***'—and RGS12 (NGC=3) (Extended Data Fig. 7e).
Furthermore, two or more integration events in individual samples
were observed in the gene (or gene promoter) regions of CCNE],
CDK15, FSIP2, HEATR6, LINC01158 (also known as PANTRI),
MARS?2 and SLCIA7 (Fig. 5a). Additional events with two integra-
tion sites were also detected within a distance of 50kb from CLMP,
CNTNAP2 and LINC00359 genes. Integration events at TERT were
found to recur in five different liver cancer samples. One sample
had a genomic cluster of three viral integration events within TERT
and four samples contained a single integration event in the TERT
promoter, or 3’ or 5’ untranslated regions (UTR) (Supplementary
Table 17). When comparing gene expression in samples with virus
integration to those without, we found that only TERT was over-
expressed (fold change >2.0) in two liver cancer samples (Fig. 5e).

Additional genes with increased expression that were influenced
by integration events include TEKT3, CCNA2, CDK15 and THRB
(Fig. 5a).

There was a significant association between HBV viral integra-
tions and somatic copy-number alterations (SCNAs, Fig. 5¢). For
samples with HBV integration events, the number of SCNAs was
higher onaveragein thevicinity of viral integration sites (within 1 Mb)
compared with samples without HBV integration (mean 4.2 versus
2.3,P=7.4% 107 two-sided paired t-test). No evidence of an SCNA
association was seen for other integrated viruses like HPV16 and
HPV18 (Extended Data Fig. 8a,b).

HPV18 integration events were detected in seven tumors in total
(Fig. 5b), with the most notable clusters of integration events that
affected TALDOI1 (NGC=4) in cervical cancer samples (Extended
Data Fig. 7g).

In 20 samples, HPV16 integration events were detected.
Genomic clusters of viral integration sites were identified in cer-
vical and head-and-neck cancer samples (Extended Data Fig. 7f).
None of these multiple integration events were observed to recur
across patients (Fig. 5b). Integration events were also observed in
two different long noncoding RNAs (IncRNAs), LINC00111 and
the plasmacytoma variant translocation 1 gene (PVTI), an onco-
genic IncRNA**. Expression of both genes is strongly increased
in the cases with HPV16 integration (Extended Data Fig. 8f,
Supplementary Table 17).

Using the PCAWG SNV calls'’, we found a significant increase
in the number of mutations that occurred within +10,000bp of
high-confidence viral integration sites (average number of muta-
tions per sample, 0.41 (HPV16*) versus 0.14 (HPV16-), P=0.02;
one-sided paired ¢-test, alternative greater, Extended Data Fig. 8¢,d).
Notably, the integration sites are—compared with a random genome
background—enriched in proximity (<1,000bp) to common fragile
sites (P=0.0018, Kolmogorov-Smirnov test). These results suggest
that HPV16 integration reflects either characteristics of chromatin
features that favor viral integration, such as fragile sites or regions
with limited access to DNA repair complexes, or the influence of
integrated HPV16 on the host genome. Such a correlation was not
seen for the integration sites of other viruses (Extended Data Fig. 8e).
Finally, a single AAV2 integration event located in the intronic
region of the cancer driver gene KMT2B* was detected in one liver
cancer sample.

Identification of novel viral species or strains. De novo analysis
using the CaPSID pipeline has generated 56 different contigs that
have been classified into taxonomic groups at the genus level by
CSSSCL*. After filtering de novo contigs for their homology to
known reference sequences, we identified 29 contigs in 28 differ-
ent tumor samples that showed low sequence similarity (on average

>

>

Fig. 3 | Virus-specific findings. a, HBV detections, validations and driver mutations in liver cancer. The asterisk indicates mutual exclusivity between HBV
detection and somatic driver gene mutations. Red boxes represent virus-positive tumor samples, purple boxes show viral genomic integrations, green
boxes indicate driver mutations and gray boxes represent missing data. b, Virus detections in gastric cancer samples, indication of virus phase (lytic/
latent, dark red) and driver mutations (green). A yellow color indicates donors with virus-positive non-malignant samples. The gray box refers to samples
with available RNA-seq data. ¢, Virus detections (red) and driver mutations (green) in cervix (blue) and head-and-neck cancer (brown). The asterisk
indicates mutual exclusivity between alphapapillomavirus detections and somatic driver gene mutations. d, Alphapapillomavirus detection and exposures
of mutational APOBEC signatures SBS2 and SBS13. Sample sizes are shown at the bottom. A two-sided Wilcoxon rank-sum test showed a significant
difference (P=0.02) of mutational signature exposure between virus-positive and virus-negative head-and-neck tumor samples. The black line indicates
the median for each group. e, Gene expression analysis based a t-SNE map of head-and-neck cancer samples shows a distinct gene expression profile

for virus-positive samples. Virus-positive and virus-negative samples are shown as red and gray dots, respectively. f, The violin plot of APOBEC3B gene
expression for alphapapillomavirus-positive and alphapapillomavirus-negative samples in cervix and head-and-neck cancer (FDR-corrected two-sided

Wilcoxon rank-sum test, P=1.6 x107%). FPKM, fragments per kilobase of transcript per million mapped reads. The center line represents the median, and
the upper and lower boundaries of the violin plot refer to the maximum and minimum values, respectively. g, Tumor-infiltrating immune cells as quantified
by CIBERSORT using RNA-seq samples from patient with head-and-neck cancer. All four cell types showed significant enrichment of immune cells in
virus-positive samples (FDR-corrected two-sided Wilcoxon rank-sum test, n=24 virus negative versus 18 virus positive). Tukey box plots show the median
(the middle line) and the 25-75th percentiles (the box); the whiskers show 1.5x the interquartile range from the lower and upper quartile.
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63%) to any nucleotide sequence contained in the BLAST database. ~ However, the total numbers of novel isolates were low in compari-
In this respect, our analysis has shown that WGS and RNA-seq  son to viral hits to well-defined genera (Fig. 2c). These de novo con-
can be used to identify isolates from potentially new viral species.  tigs were not enriched for a specific tumor entity but rather were
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Fig. 4 | Expression of ERVSs. a, Heat map showing the expression of HERV across all tumor samples. HERV transcripts per million (TPM) were grouped

by family and summed up. Hierarchical clustering was performed by family according to Manhattan distance with complete linkage after log,
transformation of HERV TPM expression values.(RCC, renal cell carcinoma). b, Fraction of active loci in the genome with a TPM > 0.2 plotted against the
fraction of samples. ¢, TPM-based expression of the highly expressed HERVs ERV1and ERVK across tumor types. n, number of analyzed tumor samples.
Violin plots are shown; red dots indicate the median. The upper and lower boundaries of the violin plot extend to the maximum and minimum values.

d, Survival difference between patients with kidney cancer expressing high (red) and low levels (blue) of ERV1. Kaplan-Meier curve shows the overall
survival of patients (n=113) with high and low levels of ERV1 with a cut-off of 16.3 TPM (log-rank test P=0.0081). The number of patients at risk is shown

at the bottom.

distributed across cancer types including bladder, head-and-neck
and cervical cancers (Extended Data Fig. 9).

Discussion

Searching large pan-cancer genome and whole-transcriptome
datasets enabled the identification of a high percentage of
virus-associated cases (16%). In particular, analysis of tumor
genomes, which were sequenced on average to a depth of at least

NATURE GENETICS | VOL 52 | MARCH 2020 | 320-330 | www.nature.com/naturegenetics

30-fold coverage, identified considerably more virus-positive cases
than investigations of whole-transcriptome data alone, which is
the search space analyzed in most previous virome studies. This is
probably mainly due to viruses with no or only weak transcriptional
activity in the given tumor tissue. Co-infections, generally believed
to indicate a weak immune system, were very rare (Extended Data
Fig. 3d). This could, however, also be the result of selection pro-
cesses during tumorigenesis.

327


http://www.nature.com/naturegenetics

ARTICLES NATURE GENETICS

a HBYV integrations in Mliver cancer b HPV16/18* integrations in Cervix M Head/neck
1 N N N N N A [ ] |
[ [ [ [ [ ] TERT [ ] STX17
( [ [ [ ] KMT2B - TEX10
- @& SEMA6D (] DOLPP1
- TEKT3
-- CCNA2 [ ] NR4A2*
THRB LINC00111
- CDK15 .. ETS2
- BTD .
- CDH13 [ ] PHLDB2
- LIPI [ ] PLGRKT
- MARS2 (] ERBB2
- NCOR2 [ ] PVT1
- PUM1
- DOK5 - CEACAMS5
- - gmg [ ] MAMLD1
- HEATR6 = - o
- SFMBT2
- - RB1CC1 = MAGI2
FLJ36000 SLC9A7
- Clorf198 [} CRAT
- ERICH1
- GIMAP5 [ ] IQGAP1
= AARS2 [ ] IFT140
CCNET1 ENTPD1
- SLC35F3 = SORBS1
- LINCO1158
- RGS12 [ ] COL6A6
- FSIP2 [ ] STX17-AS1
- USP9Y [ ] ABLIM1*
- PASD1 [ ] TALDO7*
- SLC1A7
- ADAM3A [ ] P3H2
-- GRXCR1 [ ] UTP11
MARK1 .
- DKz - m’f:zszr'
@ zvym4 !
@ SENP5 @ 7re3
M increased gene expression Expression data [l Available M Not available
c ~ d
P=74x107
P v HBV virus integrations vv v
TERT
P 1,250 kb 1,300 kb
10.0 - ! 5 kb '
a Chromosome 5: 1,250,000—1,300,000
=
- [ J
<
S
= 75 e TERT FPKM (UQ normalized)
12}
s o 0 5 10 55
(&) | | | / / |
9] 4 [
5 g 58| o o
[ a p=d 4
£ 501 o S ET % % © ° v v
5 @ S F ¢
z (] 2 - o
L o
[ . . .
P s = V¥ Virus integration
~ @ o S& @ Non-coding driver mutation
1 @ (] S 23
25 bt - [SR =
) = © g
4 s E ; 5
[ 2 5
{ ] 5 S
o p=4
Genomic Virus
background integrations

Fig. 5 | The effect of virus integration. a, Integration sites detected in gene regions (including promoter, exon, intron and 5 UTR regions) are labeled in

red for increased gene expression and blue for expression measured. Rows of

each heat map designate the nearest genes to the integration sites, and

columns represent individual ICGC donor and project IDs. Intragenic HBV integration sites detected in liver cancers (ICGC project codes: LIRI, LIHC and

LINC). For TERT and SEMAG6D, intergenic integrations are also shown. b, Integ

ration sites detected for HPV16 and HPV18 in head-and-neck (magenta)

and cervical (blue) cancers (ICGC project codes: HNSC and CESC). Gene labels with an asterisk indicate HPV18 as opposed to HPV16 viral integrations.

¢, A local increase in the number of SCNAs was shown in the vicinity of HBV i

ntegrations (n=21 viral integrations in individual patients, P=7.4x 1073

two-sided paired t-test). d, Genomic visualization of the HBV integration sites relative to the TERT gene in five patients with liver tumors. e, The increased

gene expression (in FPKM, upper-quartile normalization, UQ) of TERT in two |

iver tumors with HBV integrations in comparison to the expression of TERT in

tumor and non-malignant adjacent tissues. Tumor samples with a non-coding driver mutation are labeled in orange.

Although universal criteria for a causality of viral pathogens
are prone to errors, it is worthwhile to look at individual features
that might support a potentially pathomechanistic contribution of
a given pathogen. These include aspects that affect the expression
of host factors (for example, after viral integration) or the mutual
exclusivity of the presence of viral genomes and other host factors,
which are already known to have a role in the etiology of a given
tumor type. Such aspects need to be carefully considered when dis-
cussing what strengthens the potentially pathogenic role of a virus.
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Not surprisingly, known tumor-associated viruses, such as EBV,
HBV, HPV16 and HPV 18, were among the most frequently detected
targets. Notably, viral detection based on WGS showed similar per-
formance with respect to precision and recall as a targeted PCR for
HBYV, indicating that this approach is sensitive to detect viruses.
This is particularly true for the common integration verified for
HBYV, HPV16 and HPV18 in our study. In addition, the common
theme of potential pathomechanistic effects by the genomic integra-
tion of viruses, which were also supported by the observations of
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multiple nearby integration sites in a given tumor genome that we
report in the present study, has gained further momentum. By ana-
lyzing the effect of viral integrations on gene expression, we identi-
fied several links to genes nearby the integration site. In this regard,
the frequently observed integration of HBV at the TERT promoter
accompanied with the transcriptional upregulation of TERT consti-
tutes an intriguing mechanistic example, as the increased activity of
TERT is a well-understood driver of carcinogenesis*. Furthermore,
we also linked viral integrations to increased mutations (SNVs and
SCNAs) nearby the integration site.

The known causal role of HPV16 and HPV18 in several tumor
entities, which triggered one of the largest measures in cancer pre-
vention, has been the motivation for extensive elucidation of the
pathogenetic processes involved. Nevertheless, comprehensive
analyses of WGS and RNA-seq datasets revealed additional novel
findings. While we confirmed the exclusivity of HPV infection and
TP53, CDKN2A and TERT mutations in head-and-neck tumors, we
could also link virus presence to an increase in mutations attrib-
uted to the mutational signature 2 (ref. *°). These are explained by
the activity of APOBEC, which—among other effects—changes
viral genome sequences as a mechanism of cellular defense against
viruses’. This activation could have an important function in
introducing further host genome alterations and, thus, constitute
an important mechanism that drives tumorigenesis**”. In liver
cancer, mutations in CTNNBI1, TP53 and ARIDIA, major pri-
mary oncogenes in this cancer type and HBV infections were con-
firmed to occur significantly mutually exclusive”. Furthermore, the
virus-positive head-and-neck cancer samples had a significantly
higher abundance of T-cell and M1 macrophage expression signals,
which is in agreement with recently described subtypes of head and
neck squamous cell carcinoma that differ—among other features—
in virus infection and inflammation features.

Online content

Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of
author contributions and competing interests; and statements of
data and code availability are available at https://doi.org/10.1038/
$41588-019-0558-9.

Received: 30 November 2018; Accepted: 22 November 2019;
Published online: 5 February 2020

References

1. Parkin, D. M. The global health burden of infection-associated cancers in the
year 2002. Int. J. Cancer 118, 3030-3044 (2006).

2. Plummer, M. et al. Global burden of cancers attributable to infections in
2012: a synthetic analysis. Lancet Glob. Health 4, ¢609-e616 (2016).

3. Bouvard, V. et al. A review of human carcinogens—part B: biological agents.
Lancet Oncol. 10, 321-322 (2009).

4. Muifoz, N., Castellsagué, X., de Gonzélez, A. B. & Gissmann, L. Chapter 1:
HPV in the etiology of human cancer. Vaccine 24, S1-S10 (2006).

5. Bialecki, E. S. & Di Bisceglie, A. M. Clinical presentation and natural
course of hepatocellular carcinoma. Eur. J. Gastroenterol. Hepatol. 17,
485-489 (2005).

6. Hermine, O. et al. Regression of splenic lymphoma with villous lymphocytes
after treatment of hepatitis C virus infection. N. Engl. J. Med. 347,
89-94 (2002).

7. Thompson, M. P. & Kurzrock, R. Epstein-Barr virus and cancer. Clin. Cancer
Res. 10, 803-821 (2004).

8. Mesri, E. A, Feitelson, M. A. & Munger, K. Human viral oncogenesis: a
cancer hallmarks analysis. Cell Host Microbe 15, 266-282 (2014).
zur Hausen, H. Oncogenic DNA viruses. Oncogene 20, 7820-7823 (2001).

. The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium.
Pan-cancer analysis of whole genomes. Nature https://doi.org/10.1038/
$41586-020-1969-6 (2020).

. Borozan, I. et al. CaPSID: a bioinformatics platform for computational
pathogen sequence identification in human genomes and transcriptomes.
BMC Bioinformatics 13, 206 (2012).

1

—

NATURE GENETICS | VOL 52 | MARCH 2020 | 320-330 | www.nature.com/naturegenetics

21

=}

2

—

22.

23.

24.

25.

26.

27.

28.

30.

3

—

32.

3

w

34.

35.

3

(=2}

37.

38.

39.

40.

4

—_

. Borozan, I, Watt, S. N. & Ferretti, V. Evaluation of alignment algorithms for

discovery and identification of pathogens using RNA-seq. PLoS ONE 8,
€76935 (2013).

. Nicoll, M. P. et al. The HSV-1 latency-associated transcript functions to

repress latent phase lytic gene expression and suppress virus reactivation from
latently infected neurons. PLoS Pathog. 12, 1005539 (2016).

. Newman, A. M. et al. Robust enumeration of cell subsets from tissue

expression profiles. Nat. Methods 12, 453-457 (2015).

. Krug, L. T. & Pellett, P. E. Roseolovirus molecular biology: recent advances.

Curr. Opin. Virol. 9, 170-177 (2014).

. Eliassen, E. et al. Human herpesvirus 6 and malignancy: a review.

Front. Oncol. 8, 512 (2018).

. Spandole, S., Cimponeriu, D., Berca, L. M. & Mihdescu, G. Human

anelloviruses: an update of molecular, epidemiological and clinical aspects.
Arch. Virol. 160, 893-908 (2015).

. van de Berg, P. J. et al. Human cytomegalovirus induces systemic immune

activation characterized by a type 1 cytokine signature. J. Infect. Dis. 202,
690-699 (2010).

. Garcia-Martinez, A. et al. Lack of cytomegalovirus detection in human

glioma. Virol. J. 14, 216 (2017).

. Fujimoto, A. et al. Whole-genome sequencing and comprehensive variant

analysis of a Japanese individual using massively parallel sequencing.
Nat. Genet. 42, 931-936 (2010).

. Furuta, M. et al. Characterization of HBV integration patterns

and timing in liver cancer and HBV-infected livers. Oncotarget 9,
25075-25088 (2018).

Canisius, S., Martens, J. W. M. & Wessels, L. F. A. A novel independence

test for somatic alterations in cancer shows that biology drives mutual
exclusivity but chance explains most co-occurrence. Genome Biol. 17,

261 (2016).

Kawai-Kitahata, F. et al. Comprehensive analyses of mutations and hepatitis B
virus integration in hepatocellular carcinoma with clinicopathological
features. J. Gastroenterol. 51, 473-486 (2016).

Borozan, 1., Zapatka, M., Frappier, L. & Ferretti, V. Analysis of epstein-barr
virus genomes and expression profiles in gastric adenocarcinoma. J. Virol. 92,
€01239-17 (2018).

Mork, J. et al. Human papillomavirus infection as a risk factor for
squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 344,
1125-1131 (2001).

Li, N. et al. Human papillomavirus infection and bladder cancer risk: a
meta-analysis. J. Infect. Dis. 204, 217-223 (2011).

Cao, S. et al. Divergent viral presentation among human tumors and adjacent
normal tissues. Sci. Rep. 6, 28294 (2016).

Travé, G. & Zanier, K. HPV-mediated inactivation of tumor suppressor p53.
Cell Cycle 15, 2231-2232 (2016).

. Werness, B. A, Levine, A. ]. & Howley, P. M. Association of human

papillomavirus types 16 and 18 E6 proteins with p53. Science 248,

76-79 (1990).

Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M.
The E6 oncoprotein encoded by human papillomavirus types 16 and 18
promotes the degradation of p53. Cell 63, 1129-1136 (1990).

. Henderson, S., Chakravarthy, A., Su, X., Boshoff, C. & Fenton, T. R.

APOBEC-mediated cytosine deamination links PIK3CA helical domain
mutations to human papillomavirus-driven tumor development. Cell Rep. 7,
1833-1841 (2014).

Burns, M. B., Temiz, N. A. & Harris, R. S. Evidence for APOBEC3B
mutagenesis in multiple human cancers. Nat. Genet. 45, 977-983 (2013).

. Schlecht, N. et al. Gene expression profiles in HPV-infected head and neck

cancer. J. Pathol. 213, 283-293 (2007).

Nelson, P. N. et al. Demystified. Human endogenous retroviruses.

Mol. Pathol. 56, 11-18 (2003).

Paces, J. et al. HERVd: the human endogenous retroviruses database: update.
Nucleic Acids Res. 32, D50 (2004).

. Pavlicek, A., Paces, J., Elleder, D. & Hejnar, J. Processed pseudogenes of

human endogenous retroviruses generated by LINEs: their integration,
stability, and distribution. Genome Res. 12, 391-399 (2002).

Bao, W, Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive
elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).

Ohnuki, M. et al. Dynamic regulation of human endogenous retroviruses
mediates factor-induced reprogramming and differentiation potential.

Proc. Natl Acad. Sci. USA 111, 12426-12431 (2014).

Smith, C. C. et al. Endogenous retroviral signatures predict immunotherapy
response in clear cell renal cell carcinoma. J. Clin. Invest. 128, 4804-4820
(2018).

Tang, K.-W. & Larsson, E. Tumour virology in the era of high-throughput
genomics. Phil. Trans. R. Soc. Lond. B 372, 20160265 (2017).

. Jiang, Z. et al. The effects of hepatitis B virus integration into

the genomes of hepatocellular carcinoma patients. Genome Res. 22,
593-601 (2012).

329


https://doi.org/10.1038/s41588-019-0558-9
https://doi.org/10.1038/s41588-019-0558-9
https://doi.org/10.1038/s41586-020-1969-6
https://doi.org/10.1038/s41586-020-1969-6
http://www.nature.com/naturegenetics

ARTICLES

NATURE GENETICS

42.

43.

44.

45.

46.

47.

48.

49.

Hu, Z. et al. Genome-wide profiling of HPV integration in cervical

cancer identifies clustered genomic hot spots and a potential
microhomology-mediated integration mechanism. Nat. Genet. 47,

158-163 (2015).

Zhao, L.-H. et al. Genomic and oncogenic preference of HBV integration in
hepatocellular carcinoma. Nat. Commun. 7, 12992 (2016).

Li, X. et al. The function of targeted host genes determines the

oncogenicity of HBV integration in hepatocellular carcinoma. J. Hepatol. 60,
975-984 (2014).

Shen, C.-J., Cheng, Y.-M. & Wang, C.-L. IncRNA PVT1 epigenetically silences
miR-195 and modulates EMT and chemoresistance in cervical cancer cells.
J. Drug Target. 25, 637-644 (2017).

Tang, K.-W.,, Alaei-Mahabadi, B., Samuelsson, T., Lindh, M. & Larsson, E. The
landscape of viral expression and host gene fusion and adaptation in human
cancer. Nat. Commun. 4, 2513 (2013).

Nault, J.-C. et al. Recurrent AAV2-related insertional mutagenesis in human
hepatocellular carcinomas. Nat. Genet. 47, 1187-1193 (2015).

Borozan, I. & Ferretti, V. CSSSCL: a Python package that uses combined
sequence similarity scores for accurate taxonomic classification of long and
short sequence reads. Bioinformatics 32, 453-455 (2015).

Sung, W. K. et al. Genome-wide survey of recurrent HBV integration in
hepatocellular carcinoma. Nat. Genet. 44, 765-769 (2012).

PCAWG Pathogens

50. Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. & Stratton, M.
R. Deciphering signatures of mutational processes operative in human cancer.
Cell Rep. 3, 246-259 (2013).

51. Wallace, N. A. & Miinger, K. The curious case of APOBEC3 activation by
cancer-associated human papillomaviruses. PLoS Pathog. 14, e1006717 (2018).

52. Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is
widespread in human cancers. Nat. Genet. 45, 970-976 (2013).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.
Attribution 4.0 International License, which permits use, sharing, adap-

tation, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The images or other

Open Access This article is licensed under a Creative Commons

third party material in this article are included in the article’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons license and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2020

Malik Alawi®”, lvan Borozan?, Daniel S. Brewer*#, Colin S. Cooper34'>16, Nikita Desai®®,

Roland Eils'®", Vincent Ferretti?®?', Adam Grundhoff>¢, Murat Iskar', Kortine Kleinheinz'"',

Peter Lichter''?, Hidewaki Nakagawa?3, Akinyemi l. Ojesina?*?52¢, Chandra Sekhar Pedamallu?’282°,
Matthias Schlesner”2°, Xiaoping Su®' and Marc Zapatka'

ZRIKEN Center for Integrative Medical Sciences, Yokohama, Japan. #*Department of Epidemiology, University of Alabama at Birmingham, Birmingham,
AL, USA. #HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA. 2°0'Neal Comprehensive Cancer Center, University of Alabama at Birmingham,
Birmingham, AL, USA. #Broad Institute of MIT and Harvard, Cambridge, MA, USA. ?®Harvard Medical School, Boston, MA, USA. ??Department of Medical
Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. 3°Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ),
Heidelberg, Germany. 3'University of Texas MD Anderson Cancer Center, Houston, TX, USA.

330

NATURE GENETICS | VOL 52 | MARCH 2020 | 320-330 | www.nature.com/naturegenetics


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturegenetics

NATURE GENETICS

ARTICLES

Methods

Identifying potential pathogenic reads. To reduce the number of reads to be
considered for the pathogen search, we identified potential pathogenic reads by
using P-DiP (https://github.com/mzapatka/p-dip). On the basis of reads aligned

to hgl9 by BWA™ or STAR’ using the standard PCAWG approach, we identified
read pairs for which at least one read did not map well to the human genome
(longest stretch of mapped bases from 20 to 30 bases) and read pairs that were
unmapped or mapped to NC_007605 (human herpesvirus 4, which is contained
in the 1000 Genomes version of the hgl9 human reference genome), and extracted
these for further processing. To speed up the extraction, we used bamcollate2 from
Biobambam?2 (v.2.08) *° as an input stream to the Python script.

Identification of ERVs. The expression of ERV's was analyzed using RNA-seq
data and aligned STAR sequences based on the settings developed within PCAWG
(hg19 and Gencode 19). In contrast to the standard pipeline, the reference
transcripts from Gencode 19 were enriched by adding HERV locations extracted
from RepeatMasker (http://www.repeatmasker.org, rmsk from UCSC, version
17/08/03) and Featurecounts (subread-1.5.3)* applied to identify reads mapping
to the modified reference transcripts. Resulting reads counts were converted into
TPM according to Wagner et al.””.

The SEPATH pipeline. Our starting point is to take reads that are not mapped to
the human genome, using the extracted potentially pathogenic reads. Low quality
bases (q <30) were trimmed from the read ends and the TruSeq indexed adapter
and TruSeq universal adapter were removed using Cutadapt (v.1.8.1)*". Reads less
than 32bp were discarded. Additional filtering was performed to remove reads
that contained more than 5% of Ns or those with low complexity (dust method
with maximum score of 10) by using Prinseq (v.0.20.3)*. Metagenomic Phylogenic
Analysis (MetaPhlAn)®¢' was then applied to identify and quantify the presence of
bacterial and viral populations. MetaPhlAn comes with a curated marker database
of around 1 million unique clade-specific marker genes identified from reference
genomes (version 2.0 of the database was used). Reads were aligned against the
unique marker gene database by using Bowtie2 (v.2.2.1)* with presets set to
sensitive. Reads were then counted and normalized giving an estimation of the
relative abundance for each level of the phylogenetic tree.

Detection and analysis of microbial infectious agents by NGS P-DiP. The
assembly-based pipeline (P-DiP) was further developed based on a version
implemented by M.A. and A.G.”’. In summary, the pipeline runs preprocessing,
assembly and BLAST searches and stores processing details and final results in a
postgreSQL database. For the WGS and RNA-seq analyses, we started with the
potentially pathogenic reads extracted from the BWA-aligned WGS BAM files. As
a first step, reads were trimmed based on quality using trimmomatic. Thereafter,
host reads were subtracted by aligning to the human reference genome (WGS:
hg19 excluding NC_007605 and hs37d5 and adding phiX; RNA sequencing:
Homo_sapiens.GRCh37.dna.primary_assembly) using Bowtie2 (v.2.2.8)%. Trinity
(v.2.0.6)** was used for the read assembly of WGS reads that were not aligned

by Bowtie with sufficient quality (not aligned with --very-fast (-D 5-R 1 -N

0 -L 22 -1§,0,2.50) to Homo_sapiens.GRCh37.ncrna, Homo_sapiens.GRCh37.
cdna.all or PhiX); for the RNA-seq data we applied idba assembler (v.1.1.3)%".
Assembled contigs were filtered by size (minimal length of 300 bp). Abundance was
estimated by remapping all of the reads that did not align to the human reference
to the assembled contigs by using Bowtie2. Putative PCR duplicates identified

by mapping location were removed from the abundance count. The taxonomic
classification of the size-filtered contigs was performed using the BLAST+ package
(v.2.2.30)* and nucleotide databases nt (ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/
nt.gz, accessed 15 May 2015) and nr (https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/
nr.gz, accessed 20 April 2015). For the extraction of pathogen hits R-scripts were
used to filter the BLAST results (https://github.com/mzapatka/p-dip). In summary,
for each of the contigs, the best BLAST hits for each segment of the contig

were considered and the reads aligning to these segments identified. Potential
contaminants were defined based on the taxonomy annotation in NCBI taxonomy.
Any taxonomy ID below plasmids (36,549), transposons (2,387), midivariant
sequences (31,896), insertion sequences (2,673), artificial sequences (81,077) and
synthetic viruses (512,285) was annotated as potential contamination. Segments
with higher read counts of these sequences compared to pathogen hits were flagged
as contaminants and not further considered.

CaPSID description of the analysis workflow. The metagenomic analysis
pipeline of CaPSID"' starts by first processing a BAM file that contains the reads
sequenced from a tumor (or normal) sample aligned to the human reference
sequence (GRCh37/hgl9). Reads that did not map to the human reference were
extracted and filtered for low complexity and quality using the SGA®” preprocessing
module and then aligned in single-end mode using the Bowtie2 aligner® to 5,652
NCBI* viral reference sequences (RefSeq) and a filter sequence reference database
composed of 5,242 bacterial and 1,138 fungal reference sequences that were

also downloaded from the NCBI. To improve the sensitivity and specificity with
which viral sequences were detected, reads that did not map to any reference with
Bowtie2 were realigned to the same viral RefSeq database, using the more-sensitive
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aligner SHRiMP2 in local alignment mode®. At the completion of this two-step
alignment process, reads that aligned to viral reference sequences were annotated
using the information stored in the genome database of CaPSID, which contains
full NCBI GenBank and taxa information. Using information from each aligned
read, CaPSID then calculates the following four metrics: (1) the total number of
reads (or hits) that aligned across any given viral genome, (2) the total number of
reads that aligned only across gene regions within any given viral genome, (3) the
total coverage across each viral genome and (4) the maximum coverage across any
of the genes in a given viral genome.

Filtering of viral candidates with low significance. For the analysis of the tumor
WGS or RNA-seq samples, CaPSID reports candidate sequences from dozens of
different viral genomes, some of which are not related to the cancer phenotype.
Some of these reported viral hits are also due to a series of experimental and
computational artifacts. To reduce the number of potential false-positive hits, the
CaPSID pipeline flags viral genomes that could be the result of artifacts present in
the sequencing data or those with no obvious relation to cancer phenotype and that
could be filtered in subsequent steps. The following criteria were used to flag and
filter for potential viral candidates: (1) flag viral candidates with low coverage, (2)
flag bacteriophage viral genome sequences, (3) report only viral candidates with a
read composition different from the one expected when generated from the host’s
reference GRCh37/hgl9 sequence, (4) flag viral candidates that are typically not
known to infect humans and those with low read abundance and/or low overall
alignment read accuracy.

In the first step, CaPSID flagged viral genomes with low read count and/or
coverage using three metrics, including total number of uniquely aligned reads <3,
total genome coverage <10% and maximum gene coverage <50%. Viral genomes
with low read count can arise as a result of (1) low read/transcript abundance in
the human sequenced sample, (2) unspecific alignment between sequenced short
reads (for example, low complexity reads) and viral reference sequences and (3)
for RNA-seq library preparation in which highly expressed transcripts generally
dominate over low abundance targets. To limit the reporting of viral genomes
with very low coverage, we chose to flag all genomes for which the maximum gene
coverage was <50%. As this lower bound on the maximum gene coverage applied
to individual genes and not to the complete viral genome, it appears to be unlikely
that viruses with such low coverage are biologically important. The second step in
our filtering approach was to flag bacteriophage viral genomes that are most likely
not related to any cancer phenotype. Bacteriophages are detected as a result of the
presence of bacteria (or bacterial contamination) in human sequenced samples.
The third step was used to determine whether the genome coverage observed for
each viral candidate was different from the one expected to arise from reads that
originated exclusively from the human reference DNA GRCh37/hg19 sequence.
To build the CaPSID background model, we used the ART NGS read simulator.
The entire GRCh37/hg19 sequence reference file is first fed to the ART” simulator
(parameters: art_illumina [Illumina platform] -1 [read length=100bp] -f [the
fold of read coverage to be simulated=100] with default values for indels and
substitution rates), which then generates single-end (or paired-end) reads and base
quality values.

Reads simulated by ART were then aligned to the viral reference sequence
database using the same alignment approach for reads that originated from tumor
samples (see above). CaPSID then calculated the four metrics for the GRCh37/
hg19 background model using the alignment information from simulated reads
that aligned to viral reference sequences. The fourth step consisted of flagging viral
candidates that were typically not known to infect humans using a dictionary of
around 130 terms that we compiled from a database of all viruses known to infect
humans. In addition to the above filtering criteria, CaPSID also considered the read
abundance associated with each viral candidate sequence (abundance is expressed
in terms of aligned reads in parts-per million of total number of unmapped reads)
and the average read percentage identity with which reads aligned to a given viral
candidate reference sequence.

De novo assembly and taxonomic classification of contigs. The purpose of this
analysis step is to attempt to characterize potential novel viral sequences at the
species or subspecies level. Unaligned reads that could not be aligned to any of
the filter/host or viral reference sequences were assembled into contigs using
the IDBA algorithm®. Assembled contigs were then masked for repeat regions
by using RepeatMasker and then filtered for their size and read coverage (contig
length >500bp and coverage >5X). Resulting contigs were then assigned to
taxonomic groups at the genus level by using the CSSSCL algorithm*. Contigs
lacking sequence homology to reference sequences contained in the CaPSID or
BLAST nucleotide databases with percentage identity <90% were then selected as
suggestive of the presence of new viral strains/isolates or species.

Defining consensus hits. Identification of the consensus hits was achieved

by optimizing two features of the individual genus hits: PMER 1 as cut-off
(Supplementary Note) and percentage identity >90%. The 90% percentage identity
threshold was determined based on our benchmarking study' that indicated that
an alignment-based approach can still accurately characterize viral sequences with
up to 10% mutation rate (compared with sequences stored in a reference database).
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Lowering the threshold, with which short reads align to any given reference
sequence below 90% identity on average, results in a drop of sequence coverage
due to a high attrition rate of aligned reads, lowering the detection rate and thus
providing more uncertain characterizations of viral candidates. Notably, there was
no difference in the PMER distribution of common hits across the three pipelines,
indicating that a common detection cut-off is reasonable (Extended Data Fig. 3b).

The consensus set was restricted to genera that were covered in at least two
detection pipelines (Extended Data Fig. 1b). Notably, we could not detect any
more hits with high PMER using the unique search space of P-DiP, indicating
that almost all of the viral hits from individual pipelines were also screened by
another pipeline.

Virus integration detection analysis. A subset of viral candidates identified

to be present in tumor samples by the CaPSID analysis pipeline (parameters

used: PMER > 1.1 and genome coverage > simulated background model) was
selected for the detection of viral integration events using the VERSE"' algorithm.
This subset of viruses included: herpesviruses (HHV1, HHV2, HHV4, HHV5,
HHV6A/B), simian virus 40 (§V40) and 12 (SV12), human immunodeficiency
virus (HIV1), human and simian T-cell lymphotropic virus type 1 (HTLV1 and
STLV1), BK polyomavirus (BKP), human parvovirus B19, mouse mammary tumor
virus, murine type C retrovirus, Mason-Pfizer monkey virus, HBV, HPV (HPV16,
HPV18 and HPV6a) and AAV2. Below we describe the steps used for the viral
integration detection analysis.

Viral integration events in the host can be detected by using paired-end NGS
technologies that facilitate the detection of genomic rearrangements, as well
as gene fusions and novel transcripts. VERSE is capable of determining virus
integration sites within a single base resolution by requiring the presence of both
chimeric and soft clipped reads. In addition, VERSE improves the detection
through customizing reference genomes and was shown to substantially enhance
the sensitivity of the detection of virus integration sites”’. VERSE categorizes its
predictions into one of two classes: (1) a high confidence hit with a single base
resolution—if there was a sufficient number of soft-clipped reads to support an
integration locus so that CREST was able to detect it; or (2) a low confidence hit
with a 10-bp resolution for which CREST failed to detect an integration event
because of the lack of high-quality soft-clipped reads.

To further limit the false-positive rate associated with viral integration sites,
we compared results obtained with VERSE to those from a previous study’”. Out
of 64 WGS liver cancer samples with HBV integration events that were reported
previously”, 50 were part of the PCAWG dataset analyzed in this study. Of
those, 45 out of 50 tested positive for HBV when analyzed by CaPSID (filtering
criteria used: PMER > 1.0, genome coverage > host background model and read
percentage identity >89%). In addition, 50 of these WGS samples had 23 matching
whole-transcriptome samples and 22 of these were identified to be positive for
HBV by CaPSID (filtering criteria used: maximum gene coverage >50%, read
percentage identity >89% and PMER > 1.0). By combining WGS and RNA-seq
tumor samples, 47 out of 50 samples tested positive for HBV when analyzed
by CaPSID.

Using VERSE, virus integration sites were detected in 28 out of 47 (60%) of
these. This result indicates that for a subset of viral integration events, VERSE
might be a more stringent approach compared to previously used methods™. This
can be explained by the fact that VERSE requires both the presence of paired-end
chimeric and soft clipped reads whereas the previously described method” relied
only on paired-end reads. To explore these results further, we compared integration
sites obtained with VERSE and those described previously’ with an overlapping
window of 10bp. Our analysis indicates that among 23 integration sites identified
by VERSE in RNA-seq data and that overlap with the previously published
results’, 91% were classified with high confidence hits and only 9% with low
(N total overlap=23, high=21 (91%) and low=2 (9%)). However, a similar
result was not observed for integration events found using WGS data (N total
overlap =14, high=6 (43%), low =8 (57%)), for which the proportion of
integration events classified as high and low was similar.

Thus, our analysis indicates that one important factor for improving the
agreement between these two datasets is the confidence level assigned by
VERSE to each candidate integration site—but only in the case when integration
sites are detected using RNA-seq data. To reduce the potential number of
false-positive hits, we decided to use all integration sites predicted by VERSE when
these were obtained using WGS data and only high-confidence calls when using
RNA-seq data.

Contaminations. On the basis of the presence of vector sequences in the contig
assembled by P-DiP and the background model from CaPSID, we could identify
which virus hits originated from common laboratory contaminants or were due
to sequence similarities to the human genome. In addition, we filtered known
contaminants (see below). For P-DiP, we filtered all hits that did not have more
target reads than any artificial sequence (excluding artificial viruses) on an
individual contig region. Hits caused by vector and other artificial sequences were
identified by analyzing the assembled contigs for combined hits to viral pathogens
and artificial sequences. Checking viral hits that occurred at least 40 times in such
a contig, we could clearly separate contaminants from viral pathogens.

The gammaretrovirus hits (NCBI taxonomy ID 153135; species, murine
leukemia virus) were also marked as artifacts, on the basis of the additional BLAST
hits of the corresponding contigs to the Mus musculus genome by P-DiP as well
as the background model of the CaPSID pipeline, which was designed to limit the
number of spurious hits. Most of the frequent virus hits prone to contamination
by artificial sequences were lambdalikevirus, alphabaculovirus, microvirus,
simplexvirus, hepacivirus, CMV, orthopoxvirus and punalikevirus. However,
restricting to at least 1 PMER for the potential virus hit contaminants reduced
these to one CMV case.

Filtering contaminants. We filtered all Microviridae (taxonomy ID 10841) because
of the phix174 spike-in used during sequencing. Caudovirales (taxonomy ID
28883), tailed bacteriophages, were removed as they typically infect bacterial hosts.
Baculoviridae were filtered because these infect insect cells and are commonly
used in the laboratory. The virus coverage was analyzed by aligning the potentially
pathogenic reads with BWA-mem to the human hg19 reference genome after
adding the respective virus reference sequence that was most frequently detected
within the genus. Coverage was thereafter calculated base specific using BEDTools
coverage. As we identified EBV in all 14 normal blood controls from ovarian
cancer that were EBV immortalized, these were removed from the virus hits.

Integration of external PCAWG datasets. We tested for mutual exclusivity,

for example, between virus detections and driver gene mutations by applying
DISCOVER™. On the basis of the gene expression data, immune-cell proportions
were analyzed by CIBERSORT". For survival analysis, Cox proportional hazards
analysis was performed using R libraries ‘survival’ and ‘survminer’ for the figures.
The optimal cut points were identified by maxstat using a previously described
method” (library maxstat).

Virus load. The viral load in relation to the human genome equivalents was
calculated based on the human bases sequenced (read length X number of

reads mapped to the human genomes), tumor sample purity (if available or
100% otherwise) assuming a ploidy of two and using a human genome size of
2,897,310,462 bases (the mappable part of the human genome). This number of
human genome equivalents was then related to the viral genome equivalents that
were calculated based on the number of identified viral reads, read length and
virus genome size.

tumor genome equivalents =
read length x number of reads mapped to the human genome

t it
mappable human genome size x tumor ploidy * tumorpurity

read length x number of viral sequences

virus genome equivalents = - -
virus genome size

. virus genome equivalents
virusload = 8 4

tumor genome equivalents

Human research participants. The ethics oversight for the PCAWG protocol
was undertaken by the TCGA Program Office and the Ethics and Governance
Committee of the ICGC. Each individual ICGC and TCGA project that
contributed data to PCAWG had its own local arrangements for ethics oversight
and regulatory alignment.

Statistics. If not specified otherwise, we used two-sided Wilcoxon rank-sum
tests for groups with n> 3. Further details can be found in the Nature Research
Reporting Summary.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Somatic and germline variant calls, mutational signatures, subclonal
reconstructions, transcript abundance, splice calls and other core data generated

by the ICGC/TCGA PCAWG Consortium are described in an associated paper'’
and are available for download at https://dcc.icgc.org/releases/PCAWG. Additional
information on accessing the data, including raw read files, can be found at https://
docs.icgc.org/pcawg/data/. In accordance with the data-access policies of the ICGC
and TCGA projects, most molecular, clinical and specimen data are in an open tier
that does not require access approval. To access potentially identifying information,
such as germline alleles and underlying sequencing data, researchers will need to
apply to the TCGA Data Access Committee (DAC) via dbGaP (https://dbgap.ncbi.
nlm.nih.gov/aa/wga.cgi?page=login) for access to the TCGA portion of the dataset,
and to the ICGC Data Access Compliance Office (DACO; http://icgc.org/daco)

for the ICGC portion. In addition, to access somatic SNVs derived from TCGA
donors, researchers will need to obtain dbGaP authorization. Datasets described
specifically in this manuscript can be found in the Supplementary Tables.
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Code availability

The core computational pipelines used by the PCAWG Consortium for
alignment, quality control and variant calling are available to the public at
https://dockstore.org/search?search=pcawg under the GNU General Public
License v.3.0, which enables the reuse and distribution of the pipelines. The
pathogen-discovery pipeline P-DiP is available on GitHub (https://github.com/
mzapatka/p-dip). CaPSID is available from GitHub (pipeline, https://github.com/
capsid/capsid-pipeline; webapp, https://github.com/capsid/capsid-webapp).

The taxonomic classifier CSSSCL is available from GitHub (https://github.com/
oicr-ibe/cssscl).
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Extended Data Fig. 1| Statistics of analyzed reads from WGS and RNA-seq samples. a, Number of identified candidate pathogen reads used for WGS
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across the three pipelines. e, Hit space overlap for genera across the three pipelines.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Specific findings for lymphocrypto- and roseolovirus, HBV and EBV. Overall contribution of immune cells across organ system in
samples positive or negative for lymphocryptovirus and roseolovirus. Tukey boxplot indicates the median by the middle line and the 25-75th percentiles
by the box. The whiskers were drawn up to the 1.5 interquartile range from the lower and upper quartile. b, Comparison of histopathologically detected
HBV in liver cancer with the PMERs detected in WGS. Precision and recall of the PCR based HBV test versus the consensus calls from WGS data. Red

dot indicates the PMER cut-off of 1. ¢, Relation of PMER for EBV detections in tumor and normal samples across organ system and normal tissue type.

d, Epstein-Barr virus expression presenting lytic (red) and latent (green) genes across organ systems. Reads were counted after alignment with kallisto to
the EBV reference transcriptome (see Methods).
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Extended Data Fig. 7 | Number of viral integration events as a function of the chromosome and genomic location. a, Shows the number of viral
integration events detected for HBV, HPV16 and HPV18 as a function of the human chromosome. Numbers within each stacked bar plot represent the
number of integration events detected for each virus and within each chromosome. b, Shows the percentage of the total number of integration events
detected for each chromosome averaged over three viral types shown in panel A. ¢, Number of viral integration events detected for HBV, HPV16 and
HPV18 as a function of the host's genomic location. Numbers within each stacked bar plot represent the number of integration events detected for each
virus and within each genomic location. d, Shows the percentage of the total number of integration events detected within each genomic location averaged
over three viral types shown in panel C. e, Shows the number of HBV integration events detected in liver cancers in the host's gene coding and/or gene
promoter regions. Stacked bar plot represents the number of integration events detected within each sample and each gene, each sample is indicated
using the color code shown in the legend to the right. f, Shows the number of HPV18 integration events detected in head/neck and cervical cancers in the
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Comparison of the somatic copy nhumber alterations (SCNA) and single nucleotide variants (SNVs) for samples with and without
HPV and HBV integrations into human genome. a, Boxplots showing the number of SCNA detected in head/neck and cervical cancers: HPV16+(red)

vs HPV16- (grey) samples. SCNAs are calculated using three different distances from the integration site: i) greater than 1 Megabases (Mbp), ii) exactly
+/—1Mbp away, and iii) below 1 Mbp (n=17 virus integrations). b, Boxplots showing the number of SCNAs detected in head/neck and cervical cancers
with and without HPV18 integrations (n =8 virus integrations). ¢, Number of SNVs detected in head/neck and cervical cancers with and without HPV16
integrations. Number of SNVs are calculated using three different ranges for the human genome: i) SNVs within the nearest gene to the virus integration
site (maximum: 50Kb), ii) SNVs at the location of the viral integration site in the chromosomal region +/— the position of the second breakpoint located
in the viral sequence, and iii) SNVs around 10 kb of the viral integration site. Blue triangles indicate the mean values. (n=87 virus integrations) d, Number
of SNVs detected in liver cancers with and without HBV integrations (n=109 virus integrations). e. Number of SNVs detected in head/neck and cervical
cancers with and without HPV18 integrations (n=14 virus integrations). In all Tukey boxplots, black line in the middle represents median and the 25-75th
percentiles by the box. The whiskers were drawn up to the 1.5 interquartile range from the lower and upper quartile. f, Expression of tumors and normal
samples for long noncoding RNAs with and without HPV16 integrations near to the integration site.
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Extended Data Fig. 9 | Contigs from de novo assembly identified as possibly originating from novel viral species or strains. Barplot showing the number
of contigs obtained using the CaPSID's de novo assembly step (see Methods) within each genus. Taxonomic classification for each contig was performed
using the CSSSCL algorithm. Each of the 29 contigs considered for this plot had to have a sequence homology <90% when aligned to any known sequence
contained by the latest nucleotide BLAST database. The legend to the right indicates the following ICGC project codes: BLCA—bladder cancer, CESC—
cervical cancer, CLLE—chronic lymphocytic leukemia, HNSC—head and neck, LIHC and LIRI—liver cancer, PBCA—pediatric brain cancer, and STAD—
stomach cancer.
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Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

>
~
Q

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Data and metadata were collected from International Cancer Genome Consortium (ICGC) consortium members using custom software
packages designed by the ICGC Data Coordinating Centre. The general-purpose core libraries and utilities underlying this software have
been released under the GPLv3 open source license as the "Overture" package and are available at https://www.overture.bio. Other data
collection software used in this effort, such as ICGC-specific portal user interfaces, are available upon request to contact@overture.bio.

Data analysis The workflows executing core WGS alignment, QC and variant-calling software are packaged as executable Dockstore images and
available at: https://dockstore.org/search?labels.value.keyword=pcawg&searchMode=files. Individual software components are as
follows: BWA-MEM v0.78.8-r455; DELLY v0.6.6; ACEseq v1.0.189; DKFZ somatic SNV workflow v1.0.132-1; Platypus v0.7.4; ascatNgs
v1.5.2; BRASS v4.012; grass v1.1.6; CaVEMan v1.50; Pindel v1.5.7; ABSOLUTE/JaBbA v1.5; SVABA 2015-05-20; dRanger 2016-03-13;
BreakPointer 2015-12-22; MuTect v1.1.4; MuSE v1.0rc; SMUFIN 2014-10-26; Ox0oG 2016-4-28; VAGrENT v2.1.2; ANNOVAR v2014Nov12;
VariantBAM v2017Dec12; SNV-Merge v2017May26; SV-MERGE v2017Dec12; DKFZ v2016Dec15. The identification of potential
pathogenic reads was speed up by Biobambam?2 v2.0.8. For HERV identifcation we used repeatmasker rmsk version 17/08/03 and
Featurecounts from subread-1.5.3. SEPATH Cutadapt v1.8.1,Prinseq v0.20.3, MetaPhlAn v2.0, BowTie2 v2.2.1.

The pathogen discovery pipeline P-DIP is available on github at https://github.com/mzapatka/p-dip.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

WGS somatic and germline variant calls, mutational signatures, subclonal reconstructions, transcript abundance, splice calls and other core data generated by the
ICGC/TCGA Pan-cancer Analysis of Whole Genomes Consortium are available for download at https://dcc.icgc.org/releases/PCAWG. Additional information on
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accessing the data, including raw read files, can be found at https://docs.icgc.org/pcawg/data/. In accordance with the data access policies of the ICGC and TCGA
projects, most molecular, clinical and specimen data are in an open tier which does not require access approval. To access potentially identification information,
such as germline alleles and underlying sequencing data, researchers will need to apply to the TCGA Data Access Committee (DAC) via dbGaP (https://
dbgap.ncbi.nim.nih.gov/aa/wga.cgi?page=login) for access to the TCGA portion of the dataset, and to the ICGC Data Access Compliance Office (DACO; http://
icgc.org/daco) for the ICGC portion. In addition, to access somatic single nucleotide variants derived from TCGA donors, researchers will also need to obtain dbGaP
authorization.

Data sets described specifically in this manuscript can be found in the supplementary tables.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X] Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We compiled an inventory of matched tumour/normal whole cancer genomes in the ICGC Data Coordinating Centre. Most samples came
from treatment-naive, primary cancers, but there were a small number of donors with multiple samples of primary, metastatic and/or
recurrent tumours. Our inclusion criteria were: (i) matched tumour and normal specimen pair; (ii) a minimal set of clinical fields; and (iii)
characterisation of tumour and normal whole genomes using Illumina HiSeq paired-end sequencing reads.
We collected genome data from 2,834 donors, representing all ICGC and TCGA donors that met these criteria at the time of the final data
freeze in autumn 2014. We chose the largest possible sample size given alls ICGC and TCGA samples meeting the defined criteria.

Data exclusions  After quality assurance, data from 176 donors were excluded as unusable. Reasons for data exclusions identified after initial quality check
included inadequate coverage, extreme bias in coverage across the genome, evidence for contamination in samples and excessive sequencing
errors (for example, through 8-oxoguanine).

Replication In order to evaluate the performance of each of the mutation-calling pipelines and determine an integration strategy, we performed a
largescale deep sequencing validation experiment. We selected a pilot set of 63 representative tumour/normal pairs, on which we ran the
three core pipelines, together with a set of 10 additional somatic variant-calling pipelines contributed by members of the SNV Calling Working
Group. Overall, the sensitivity and precision of the consensus somatic variant calls were 95% (CI90%: 88-98%) and 95% (CI90%: 71-99%)
respectively for SNVs. For somatic indels, sensitivity and precision were 60% (34-72%) and 91% (73-96%) respectively. Regarding SVs, we
estimate the sensitivity of the merging algorithm to be 90% for true calls generated by any one caller; precision was estimated as 97.5% - that
is, 97.5% of SVs in the merged SV call-set have an associated copy number change or balanced partner rearrangement.

For the virus detection pipeline we identified the cutoffs for virus detections based on a validation set and evaluated the performance
comparing to the histopathological gold standard HBV PCR in 228 tumors identifying a specificity of 96.1% and a sensitivity of 84.0%.

Randomization  No randomisation was performed as we included all possible samples meeting the criteria explained above.

Blinding No blinding was undertaken as it is irrelevant for the study because we searched for viruses linked to tumors in an exploratory way.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study
Antibodies
Eukaryotic cell lines

Palaeontology

Clinical data
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n/a | Involved in the study

[] chip-seq

|:| Flow cytometry

[ ] MRI-based neuroimaging

Animals and other organisms

Human research participants

Human research participants

Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

Patient-by-patient clinical data are provided in the marker paper for the PCAWG consortium (Extended Data Table 1 of that
manuscript). Demographically, the cohort included 1,469 males (55%) and 1,189 females (45%), with a mean age of 56 years
(range, 1-90 years). Using population ancestry-differentiated single nucleotide polymorphisms (SNPs), the ancestry distribution
was heavily weighted towards donors of European descent (77% of total) followed by East Asians (16%), as expected for large
contributions from European, North American and Australian projects. We consolidated histopathology descriptions of the
tumour samples, using the ICD-0-3 tumour site controlled vocabulary. Overall, the PCAWG data set comprises 38 distinct tumour
types. While the most common tumour types are included in the dataset, their distribution does not match the relative
population incidences, largely due to differences among contributing ICGC/TCGA groups in numbers sequenced.

Patients were recruited by the participating centres following local protocols. As different numbers of patients from the
individual cancer entities are included in the data set this distribution introduces a bias that we controlled by perfoming also
cancer entity specific analyses.

The Ethics oversight for the PCAWG protocol was undertaken by the TCGA Program Office and the Ethics and Governance
Committee of the ICGC. Each individual ICGC and TCGA project that contributed data to PCAWG had their own local
arrangements for ethics oversight and regulatory alignment.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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