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Comparative genomics of the major parasitic worms

International Helminth Genomes Consortium*

Parasitic nematodes (roundworms) and platyhelminths (flatworms) cause debilitating chronic infections of humans and ani-
mals, decimate crop production and are a major impediment to socioeconomic development. Here we report a broad compara-
tive study of 81 genomes of parasitic and non-parasitic worms. We have identified gene family births and hundreds of expanded
gene families at key nodes in the phylogeny that are relevant to parasitism. Examples include gene families that modulate host
immune responses, enable parasite migration though host tissues or allow the parasite to feed. We reveal extensive lineage-
specific differences in core metabolism and protein families historically targeted for drug development. From anin silico screen,
we have identified and prioritized new potential drug targets and compounds for testing. This comparative genomics resource

provides a much-needed boost for the research community to understand and combat parasitic worms.

todes (roundworms) or platyhelminths (flatworms)'.

Although rarely lethal, infections are typically chronic,
leading to pain, malnutrition, physical disabilities, delayed devel-
opment, deformity, social stigma or a burden on family members
caring for the afflicted. These diseases encompass many of the most
neglected tropical diseases and attract little research investment.
Parasitic nematodes and platyhelminths impede economic develop-
ment through human disability, and billions of dollars of lost pro-
duction in the livestock? and crop’ industries.

Few drugs are available to treat worm infections. Repeated mass
administration of monotherapies is increasing the risk of resistance
to human anthelmintics* and has driven widespread resistance in
farm animals’. There are no vaccines for humans, and few for ani-
mals®. The commonly used nematicides of plant parasites are envi-
ronmentally toxic’, and need replacement.

The phylum Nematoda is part of the superphylum Ecdysozoa
and has five major clades (I to V), four of which contain human-
infective parasites and are analyzed here (Fig. 1). The phylum
Platyhelminthes is part of the superphylum Lophotrochozoa and
the majority of parasite species are cestodes (tapeworms) and trem-
atodes (flukes). Comparing the genomes of parasites from these
two phyla may reveal common strategies employed to subvert host
defenses and drive disease processes.

We have combined 36 published genomes*~** with new assem-
blies for 31 nematode and 14 platyhelminth species into a large
genome comparison of parasitic and non-parasitic worms. We have
used these data to identify gene families and processes associated
with the major parasitic groups. To accelerate the search for new
interventions, we have mined the dataset of more than 1.4 million
genes to predict new drug targets and drugs.

O ver a quarter of humans are infected with parasitic nema-

Results

Genomic diversity in parasitic nematodes and platyhelminths.
We have produced draft genomes for 45 nematode and platyhel-
minth species and predicted 0.8 million protein-coding genes,
with 9,132-17,274 genes per species (5-95% percentile range; see
Methods, Supplementary Tables 1-3, Supplementary Fig. 1 and
Supplementary Notes 1.1 and 1.2). We combined these new data
with 36 published worm genomes—comprising 31 parasitic*~** and
five free-living'®’'~** species—and 10 outgroups*** from other ani-
mal phyla, into a comparative genomics resource of 91 species (Fig. 1

and Supplementary Tables 2 and 4). There was relatively little varia-
tion in gene set completeness (coefficient of variation, c.v.=0.15)
among the nematodes and platyhelminths, despite variation in
assembly contiguity (c.v.=8.5; Fig. 1b and Supplementary Table 2).
Nevertheless, findings made using a subset of high-quality assem-
blies that were designated ‘tier 1’ (Methods and Supplementary
Table 4) were corroborated against all species.

Genome size varied greatly within each phylum, from 42 to
700 Mb in nematodes, and from 104 to 1,259 Mb in platyhelminths.
In a small number of cases, size estimates may have been artifactu-
ally inflated by high heterozygosity causing alternative haplotypes
to be represented within the assemblies (Supplementary Note 1.3
and Supplementary Table 2a). A more important factor appeared
to be repeat content that ranged widely, from 3.8 to 54.5% (5-95%
percentile; Supplementary Table 5). A multiple regression model,
built to rank the major factors driving genome size variation, iden-
tified long terminal repeat transposons, simple repeats, assembly
quality, DNA transposable elements, total length of introns and low
complexity sequence as being the most important (Supplementary
Note 1.3, Methods and Supplementary Table 6). Genome size
variation is thus largely due to non-coding elements, as expected®,
including repetitive and non-repetitive DNA, suggesting it is either
non-adaptive or responding to selection only at the level of overall
genome size.

Gene family births and expansions. We inferred gene families from
the predicted proteomes of the 91 species using Ensembl Compara®.
Of the 1.6 million proteins, 1.4 million were placed into 108,351
families (Supplementary Note 2.1 and Supplementary Data), for
which phylogenetic trees were built and orthology and paral-
ogy inferred (Methods, Supplementary Fig. 2 and Supplementary
Table 7). Species trees inferred from 202 single-copy gene families
that were present in at least 25% of species (Fig. 1), or from pres-
ence/absence of gene families, largely agreed with the expected
species and clade relationships, except for a couple of known con-
tentious issues (Supplementary Fig. 3, Supplementary Note 2.2
and Methods).

The species in our dataset contained significant novelty in gene
content. For example, ~28,000 parasitic nematode gene families
contained members from two or more parasitic species but were
absent from Caenorhabditis elegans and 47% of gene families lacked
any functional annotation (Supplementary Note 2.1 and Methods).

*A list of members and affiliations appears at the end of the paper.
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The latter families tended to be smaller than those with annotations
(Supplementary Fig. 4) and, in many cases, correspond to families
that are so highly diverged that ancestry cannot be traced, reflecting
the huge breadth of unexplored parasite biology.

Gene families specific to particular parasite clades are likely to
reflect important aspects of parasite biology and possible targets for
new antiparasitic interventions. At key nodes in the phylogeny that
are relevant to parasitism, we identified 5,881 families with appar-
ent clade-specificity (synapomorphies; Supplementary Note 2.3,
Methods and Supplementary Table 8), although our ability to dis-
criminate truly parasite-specific clades was limited by the low num-
ber of free-living species. The apparent synapomorphies were either
gene family births, or subfamilies that were so diverged from their
homologues that they appeared as separate families. Functional
annotation of these families was diverse (Fig. 2), but they were fre-
quently associated with sensory perception (such as G-protein cou-
pled receptors; GPCRs), parasite surfaces (platyhelminth tegument
or nematode cuticle maintenance proteins) and protein degradation
(proteases and protease inhibitors).

Among nematodes, clade IVa (which includes Strongyloides spp.;
Fig. 1) showed the highest number of clade-specific families, includ-
ing a novel ferrochelatase-like family. Most nematodes lack func-
tional ferrochelatases for the last step of haem biosynthesis”, but
harbor ferrochelatase-like genes of unknown function, to which the
synapomorphic clade IVa family was similar (Supplementary Fig. 5
and Methods). Exceptions are animal parasites in nematode clades
II (for example ascarids and filaria) and IV that acquired a func-
tional ferrochelatase via horizontal gene transfer****. Within the par-
asitic platyhelminths, a clade-specific inositol-pentakisphosphate
2-kinase (IP2K) was identified. In some species of Echinococcus
tapeworms, IP2K produces inositol hexakisphosphate nanodeposits
in the extracellular wall (the laminated layer) that protects larval
metacestodes™. The deposits increase the surface area for adsorp-
tion of host proteins and may promote interactions with the host™".

Paralogous expansions of gene families, particularly those that
are large or repeatedly involve related processes, can be evidence
of adaptive evolution. We searched among our 10,986 highest-con-
fidence gene families (those containing >10 genes from tier 1 spe-
cies) for those that had expanded in parasite clades. A combination
of scoring metrics (Methods) reduced the list to 995 differentially
distributed families with a bias in copy number in at least one para-
site clade. Twenty-five expansions have previously been observed,
including 21 with possible roles in parasitism (Supplementary
Fig. 6). A further 43 were placed into major functional classes that
historically have been favored as drug targets (kinases, GPCRs, ion
channels and proteases™; Supplementary Table 9a).

By manually inspecting the distribution of the remaining 927
families across the full species tree, we identified 176 families with
striking expansions (Supplementary Table 9a and Supplementary
Note 2.4). Thirty two had no functional annotation; for exam-
ple, family 393312 was highly expanded in clade Va nematodes
(Supplementary Fig. 7 and Supplementary Table 9a). Even when
families could be functionally annotated to some extent (for exam-
ple, based on a protein domain), discerning their precise biologi-
cal role was a challenge. For example, a sulfotransferase family that
was expanded in flukes compared with tapeworms includes the
Schistosoma mansoni locus that is implicated in resistance to the
drug oxamniquine™ but the endogenous substrate for this enzyme
is unknown (Supplementary Fig. 7j).

Among the newly identified expansions, we focused on those
with richer functional information, especially where they were
related to similar biological processes. For instance, we identi-
fied several expansions of gene families involved in innate immu-
nity of the parasites, as well as their development. These included
families implicated in protection against bacterial or fungal infec-
tions in nematode clade IVa (bus-4 GT31 galactosyltransferase™,
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irg-3°) and clades Va/Vc (lysozyme™ and the dual oxidase bli-3"")
(Supplementary Fig. 8a-d). In nematode clade IIIb, a family was
expanded that contains orthologs of the Parascaris coiled-coiled
protein PUMA, involved in kinetochore biology™ (Fig. 2b). This
expansion possibly relates to the evolution of chromatin diminution
in this clade, which results in an increased number of chromosomes
requiring correct segregation during metaphase®”. In nematode
clade IVa and in Bursaphelenchus, an expansion of a steroid kinase
family (Supplementary Fig. 8e) is suggestive of novelty in steroid-
regulated processes in this group, such as the switch between free-
living or parasitic stages in Strongyloides®.

Infections with parasitic worms are typified by their chronicity
and a plausible involvement in host-parasite interactions is a recur-
ring theme for many of the families. Taenia tapeworms and clade
V strongylid nematodes (that is Va, Vb and Vc; Fig. 1) contained
two expanded families with apyrase domains that may have a role
in hydrolyzing ATP (a host danger signal) from damaged host tis-
sue® (Fig. 2b and Supplementary Fig. 9a). Moreover, many of the
strongylid members also contained amine oxidoreductase domains,
possibly to reduce production of pro-inflammatory amines, such
as histamine, from host tissues®’. In platyhelminths, we observed
expansions of tetraspanin families that are likely components of
the host/pathogen interface. Described examples show tetraspan-
ins being part of extracellular vesicles released by helminths within
hosts®’; or binding the Fc domain of host antibodies®; or being
highly immunogenic® (Supplementary Fig. 9b,c). In strongylids,
especially clade Vc, an expansion of the fatty acid and retinol-
binding (FAR) family, implicated in host-parasite interaction of
plant- and animal-parasitic nematodes*>*” (Supplementary Fig. 9d),
suggests a role in immune modulation. Repertoires of glycosyl
transferases have expanded in nematode clades Vc and IV, and
tapeworms (Supplementary Fig. 10a—c), and may be used to evade
or divert host immunity by modifying parasite surface molecules
directly exposed to the immune system®; alternatively, surface gly-
coproteins may interact with lectin receptors on innate immune
cells in an inhibitory manner®. An expanded chondroitin hydrolase
family in nematode clade Vc may possibly be used either for larval
migration through host connective tissue or to digest host intes-
tinal walls (Supplementary Fig. 9e). Similarly, an expanded GH5
glycosyl hydrolase family contained schistosome members with
egg-enriched expression®”® that may be used for traversing host tis-
sues such as bladder or intestinal walls (Supplementary Fig. 9f). In
nematode clade I, we found an expansion of a family with the PAN/
Apple domain, which is implicated in attachment of some proto-
zoan parasites to host cells”, and possibly modulates host lectin-
based immune activation (Supplementary Fig. 9g).

The SCP/TAPS (sperm-coating protein/Tpx/antigen 5/patho-
genesis-related protein 1) genes have been associated with parasit-
ism through their abundance, secretion and evidence of their role
in immunomodulation’ but are poorly understood. This diverse
superfamily appeared as eight expanded Compara families. A more
comprehensive phylogenetic analysis of the full repertoire of 3,167
SCP/TAPS sequences (Supplementary Note 2.5, Supplementary
Table 10 and Methods) revealed intra- and interspecific expansions
and diversification over different evolutionary timescales (Fig. 3
and Supplementary Figs. 11a,b and 12). In particular, the SCP/TAPS
superfamily has expanded independently in nematode clade V (18-
381 copies in each species) and in clade IVa parasites (39-166 cop-
ies) (Fig. 3 and Supplementary Fig. 11c). Dracunculus medinensis
(Guinea worm) was unusual in being the only member of clade III
to display an expansion (66 copies), which may reflect modulation
of the host immune response during the tissue migration phase of
its large adult females.

Proteins historically targeted for drug development. Proteases,
GPCRs, ion channels and kinases dominate the list of targets
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Fig. 2 | Functional annotation of synapomorphic and expanded gene families. a, Rectangular matrices indicate counts of synapomorphic families grouped
by 18 functional categories, detailed in the top left corner. Representative functional annotation of a family was inferred if more than 90% of the species
present contained at least one gene with a particular domain. The node in the tree to which a panel refers is indicated in each matrix. ‘Other’ indicates
families with functional annotation that could not be grouped into one of the 18 categories. ‘None' indicates families that had no representative functional
annotation. b, Expansions of apyrase and PUMA gene families. Families were defined using Compara. For color key and species labels, see Fig. 1. The plot
for a family shows the gene count in each species, superimposed on the species tree. A scale bar beside the plot for a family shows the minimum, median
and maximum gene count across the species, for that family.

166 NATURE GENETICS | VOL 51| JANUARY 2019 | 163-174 | www.nature.com/naturegenetics


http://www.nature.com/naturegenetics

NATURE GENETICS ARTICLES

Homo saplens GLIPR2

IVa expansion

| Dracunculus expansion

| dnoig

Strongylid expansion

® Bootstrap value > 0.8 == Schistosomatidae

Outgroup m Other Trematoda
Cestoda == |Va

mm Other Platyhelminthes Vb

- | == Va
Illa Vb

= ||Ib = V¢

= |llc == Other clade V

Fig. 3 | Distribution and phylogeny of SCP/TAPS genes. A maximum-
likelihood tree of SCP/TAPS genes. Colors represent different species
groups. Homo sapiens GLIPR2 was used to root the tree. Blue dots show
high bootstrap values (>0.8). A clade was collapsed into a triangle if more
than half its leaves were genes from the same species group. Nematode
clade | had fewer counts, but was collapsed to show its relationship to
other clades’ expansions. ‘Strongylid’ refers to clades Va, Vb and Vc.

for existing drugs for human diseases™, and are attractive leads
for developing new ones. We therefore explored the diversity of
these superfamilies across the nematodes and platyhelminths
(Supplementary Fig. 13, Supplementary Note 3 and Methods).

Proteases and protease inhibitors perform diverse functions in
parasites, including immunomodulation, host tissue penetration,
modification of the host environment (for example, anticoagulation)
and digestion of blood”. M12 astacins have particularly expanded
in nematode clade I'Va (five families), as previously reported'?, but
there are two additional expansions in clades Vc and Vb (Fig. 4,
Supplementary Fig. 14 and Supplementary Table 11). Because many
of these species invade through skin (IVa, Vc; Supplementary Table
12) and migrate through the digestive system and lung (IVa, V¢, Vb;
Supplementary Table 13), these expansions are consistent with evi-
dence that astacins are involved in skin penetration and migration
through connective tissue’. The cathepsin B Cl-cysteine proteases
are particularly expanded in species that feed on blood (two expan-
sions in nematode clades Vc and Va®, with highest platyhelminth
gene counts in schistosomatids and Fasciola'’; Supplementary Fig.
14). Indeed, they are involved in blood digestion in adult nema-
todes™ and platyhelminths™, but some likely have different roles
such as larval development”” and host invasion’.

Different protease inhibitors may modulate activity of para-
site proteases or protect parasitic nematodes and platyhelminths
from degradation by host proteases, facilitate feeding or manipu-
late the host response to the parasite’””. The 12 (Kunitz-BPTI) tryp-
sin inhibitors are the most abundant protease inhibitors across
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parasitic nematodes and platyhelminths (Fig. 4). An expansion of
the I17 family, which includes secretory leukocyte peptidase inhibi-
tor, was reported previously in Trichuris muris' but the striking
confinement of this expansion to most of the parasites of clade I
is now apparent (Fig. 4). We also observed a notable family of
a-2-macroglobulin (I39) protease inhibitors that are present in all
platyhelminths but expanded in tapeworms (Supplementary Fig.
14). The tapeworm a-2-macroglobulins may be involved in reduc-
ing blood clotting at attachment or feeding sites; alternatively, they
may modulate the host immune response, since a-2-macroglobu-
lins bind several cytokines and hormones®. Chymotrypsin/elastase
inhibitors (family I8) were particularly expanded in clades Vc and
IVa (consistent with upregulation of I8 genes in Strongyloides para-
sitic stages'®) and to a lesser extent in clade IIIb (Fig. 4), consistent
with evidence that they may protect Ascaris from host proteases®'.
We also identified protein domain combinations that were specific
to either nematodes or platyhelminths (131 and 50 domain combi-
nations, respectively). Many of these involved protease and protease
inhibitor domains. In nematodes, several combinations included
Kunitz protease inhibitor domains, and in platyhelminths metallo-
protease families M18 and M28 were found in novel combinations
(Supplementary Table 14, Supplementary Note 3.2 and Methods).

Of the 230 gene families annotated as GPCRs (Supplementary
Figs. 13 and 15 and Supplementary Note 3.3), only 21 were con-
served across phyla. Chemosensory GPCRs, while abundant in
nematodes, were not identified in platyhelminths, although they are
identifiable in other Lophotrochozoa (such as Mollusca®’), suggest-
ing that either the platyhelminths have lost this class or they are
very divergent (Supplementary Table 15). GPCR families lacking
sequence similarity with known receptors included the platyhel-
minth-specific rhodopsin-like orphan families (PROFs), which are
likely to be class A receptors and peptide responsive, and several
other fluke-specific non-PROF GPCR families. The massive radia-
tion of chemoreceptors in C. elegans was unmatched in any other
nematode (87% versus <48% of GPCRs). All parasitic nematodes
possessed chemoreceptors, with the most in clade IVa, including
several large families synapomorphic to this clade (Supplementary
Fig. 15), perhaps related to their unusual life cycles that alternate
between free-living and parasitic forms.

Independent expansion and functional divergence has differ-
entiated the nematode and platyhelminth pentameric ligand gated
ion channels (Supplementary Fig. 16, Supplementary Table 16 and
Supplementary Note 3.4). For example, glutamate signaling arose
independently in platyhelminths and nematodes®, and in trema-
todes the normal role of acetylcholine has been reversed, from
activating to inhibitory®. Our analysis suggested the platyhelminth
acetylcholine-gated anion channels are most related to the Acr-
26/27 group of nematode nicotinic acetylcholine receptors that are
the target of the anthelmintics morantel and pyrantel®, rather than
to nematode acetylcholine-gated cation channels, targeted by nico-
tine and levamisole (Supplementary Fig. 17).

ABC transporters (Supplementary Table 17 and Supplementary
Note 3.5) and kinases (Supplementary Note 3.6 and Supplementary
Fig. 18) showed losses and independent expansion within nema-
todes and platyhelminths. The P-glycoprotein class of transporters,
responsible for the transport of environmental toxins and linked
with anthelmintic resistance, is expanded relative to vertebrates®,
with increased numbers in nematodes (Supplementary Fig. 19).

Metabolic reconstructions of nematodes and platyhelminths. In
the context of drug discovery, understanding the metabolic capa-
bilities of parasitic worms may reveal vulnerabilities that can be
exploited in target-based screens for new compounds. For each
of the 81 nematode and platyhelminth species, metabolism was
reconstructed based on high confidence assignment of enzyme
classes (Supplementary Table 18a). The nematodes had a greater
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Fig. 4 | Abundances of superfamilies historically targeted for drug development. Relative abundance profiles for 84 protease and 31 protease inhibitor families
represented in at least 3 of the 81 nematode and platyhelminth species. Thirty-three protease families and 6 protease inhibitor families present in fewer than

3 species were omitted from the visualization. For each species, the gene count in a class was normalized by dividing by the total gene count for that species.
Families mentioned in the Results or Supplementary Note text are labeled; complete annotations of all protease families are in Supplementary Table 11.
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range of annotated enzymes per species than the platyhelminths or divergence from model organisms® could bias enzyme predic-
(Supplementary Fig. 20a), in part reflecting the paucity of biochem-  tions, we identified losses of pathways and differences in pathway
ical studies in platyhelminths. Because variation in assembly quality ~ coverage across different clades (Supplementary Note 4, Methods,
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Fig. 5 and Supplementary Fig. 21). Pathways related to almost all
metabolic superpathways in the Kyoto Encyclopedia of Genes and
Genomes (KEGG)* showed significantly lower coverage for platy-
helminths (versus nematodes) and filaria (versus other nematodes)
(Supplementary Fig. 20b).

In contrast to most animals, nematodes possess the glyoxyl-
ate cycle that enables conversion of lipids to carbohydrates, to be
used for biosyntheses (for example, during early development)
and to avert starvation®. The glyoxylate cycle appears to have
been lost independently in the filaria and Trichinella species (Fig.
5a; M00012), both of which are tissue-dwelling obligate parasites.
The filaria and Trichinella have also independently lost alanine-
glyoxylate transaminase that converts glyoxylate to glycine (Fig.
5b). Glycine can be converted by the glycine cleavage system (GCS)
to 5,10-methylenetetrahydrofolate, a useful one-carbon pool for
biosyntheses, and two key GCS proteins appear to have been lost
independently from filaria and tapeworms, suggesting their GCS
is non-functional (Supplementary Table 19e). In addition, filaria
have lost the ability to produce and use ketone bodies, a tempo-
rary store of acetyl coenzyme A (CoA) under starvation conditions
(Supplementary Table 19b). The filaria lost these features after they
diverged from D. medinensis, an outgroup to the filaria in clade IIIc
that has a major difference in its life cycle, namely, a free-living lar-
val stage (Supplementary Table 12).

The absence of multiple initial steps of pyrimidine synthesis was
observed in some nematodes, including all filaria (as previously
reported”) and tapeworms, suggesting they obtain pyrimidines
from Wolbachia endosymbionts or from their hosts, respectively
(Supplementary Table 19f). Similarly, all platyhelminths and some
nematodes (especially clade IVa and filaria IIlc) appear to lack key
enzymes for purine synthesis (Supplementary Table 19g) and rely on
salvage instead. However, despite the widespread belief that nema-
todes cannot synthesize purines”’!, complete or near-complete
purine synthesis pathways were found in most members of clades I,
IIIb and V. Nematodes are known to be unable to synthesize haem”’
but the pathway was found in platyhelminths, including S. mansoni
(despite conflicting biochemical data*) (Supplementary Table 19h
and Supplementary Table 20i).

Genes from the p-oxidation pathway, used to break down lipids
as an energy source, were not detected in schistosomes and some
cyclophyllidean tapeworms (Hymenolepis, Echinococcus; Fig. 5a,
MO00087; Supplementary Table 19a). These species live in glucose-
rich environments and may have evolved to use glucose and glyco-
gen as principal energy sources. However, biochemical data suggest
they do perform p-oxidation®, so they may have highly diverged
but functional B-oxidation genes.

The lactate dehydrogenase (LDH) pathway is a major source of
ATP in anaerobic but glucose-rich environments. Platyhelminths
have high numbers of LDH genes, as do blood-feeding Ancylostoma
hookworms (Supplementary Fig. 22g). Nematode clades Vc (includ-
ing Ancylostoma) and IIIb have expansions of a-glucosidases that
may break down starch and disaccharides in host food to glu-
cose (Supplementary Fig. 22a). Many nematodes and flatworms
use malate dismutation as an alternative pathway for anaerobic
ATP production”. The importance of the pathway for clade IIIb
nematodes was reflected in expanded families encoding two key
pathway enzymes PEPCK and methylmalonyl CoA epimerase,
and the intracellular trafficking chaperone for cobalamin (vita-
min B-12), a cofactor for the pathway (Supplementary Fig. 22c-e
and Supplementary Table 9a). A second cobalamin-related family
(CobQ/CbiP) is clade IIIb-specific and appears to have been gained
by horizontal gene transfer from bacteria (Supplementary Fig. 23a,
Supplementary Note 2.6 and Methods). A glutamate dehydroge-
nase family expanded in clade IIIb (Supplementary Fig. 22h) is
consistent with a GABA (y-aminobutyric acid) shunt that helps
maintain redox balance during malate dismutation. In clade Va, an
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Fig. 5 | Metabolic modules and biochemical pathways in platyhelminths
and nematodes. a, Topology-based detection of KEGG metabolic
modules among tier 1 species (dark green, present; light green,

largely present (only one enzyme not found)). Only modules detected

to be complete in at least one species are shown. The EC annotations
used for this figure included those from pathway hole-filling and

those based on Compara families (Supplementary Table 18a, b).

b, Biochemical pathways that appear to have been completely or
partially lost from certain platyhelminth and nematode clades. PRPP,
phosphoribosyl pyrophosphate.
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expansion in the propionate breakdown pathway” (Supplementary
Fig. 22f), suggested degradation of propionate, originating from
malate dismutation or fermentation in the host’s stomach®. Clade
I nematodes have an acetate/succinate transporter that appeared
to have been gained from bacteria (Supplementary Note 2.6 and
Methods), and may participate in acetate/succinate uptake or efflux
(Supplementary Fig. 23b).

Identifying new anthelmintic drug targets and drugs. As an
alternative to a purely target-based approach that would require
extensive compound screening, we explored drug repurposing
possibilities. We developed a pipeline to identify the most prom-
ising targets from parasitic nematodes and platyhelminths. These
sequences were used in searches of the ChEMBL database that
contains curated activity data on defined targets in other species
and their associated drugs and compounds (Supplementary Note
5 and Methods). Our pipeline identified compounds that are pre-
dicted to interact with the top 15% of highest-scoring worm tar-
gets (n=289). These targets included 17 out of 19 known or likely
targets for World Health Organization-listed anthelmintics that are
represented in ChEMBL (Supplementary Table 21b). When com-
pounds within a single chemical class were collapsed to one rep-
resentative, this potential screening set contained 5,046 drug-like
compounds, including 817 drugs with phase III or IV approval and
4,229 medicinal chemistry compounds (Supplementary Table 21d).
We used a self-organizing map to cluster these compounds based on
their molecular fingerprints (Fig. 6). This classification showed that
the screening set was significantly more structurally diverse than
existing anthelmintic compounds (Supplementary Fig. 24).

The 289 targets were further reduced to 40 high-priority targets,
based on predicted selectivity, avoidance of side-effects (clade-
specific chokepoints or lack of human homologues) and putative
vulnerabilities, such as those suggested by gene family expansions
in parasite lineages, or belonging to pathways containing known or
likely anthelmintic targets (Supplementary Fig. 25). These 40 tar-
gets were associated with 720 drug-like compounds comprising 181
phase III/IV drugs and 539 medicinal chemistry compounds. There
is independent evidence that some of these have anthelmintic activ-
ity. For example, we identified several compounds that potentially
target glycogen phosphorylase, which is in the same pathway as a
likely anthelmintic target (glycogen phosphorylase phosphatase,
likely target of niridazole; Supplementary Fig. 25). These com-
pounds included the phase III drug alvocidib (flavopiridol), which
has anthelmintic activity against C. elegans®. Another example is the
target cathepsin B, expanded in nematode clade Va (Supplementary
Table 9a), for which we identified several compounds including the
phase IIT drug odanacatib, which has been shown to have anthel-
mintic activity against hookworms”. Existing drugs such as these
are attractive candidates for repurposing and fast-track therapy
development, while the medicinal chemistry compounds provide a
starting point for broader anthelmintic screening.

Discussion

The evolution of parasitism in nematodes and platyhelminths
occurred independently, starting from different ancestral gene
sets and physiologies. Despite this, common selective pressures of
adaptation to host gut, blood or tissue environments, the need to
avoid hosts’ immune systems, and the acquisition of complex life
cycles to effect transmission, may have driven adaptations in com-
mon biological pathways. While previous comparative analyses of
parasitic worms have been limited to a small number of species
within narrow clades, we have surveyed parasitic worms spanning
two phyla, with a focus on those infecting humans and livestock. A
large body of draft genome data (both published and unpublished)
was utilized but, by focusing on lineage-specific trends rather than
individual species-specific differences, our analysis was deliberately

170

Ivermectin

Oxyclozanide Albendazole

14 O ‘
12 d %
10 Q 3
: 0 %
4 [
2 o)
0000

Q00
30 OO
U

’ O
CHEMBL225577 CHEMBL1215 CHEM_B!.1185 CHEMBL2260566
on phenylephrine zolmitriptan

Fig. 6 | Self-organizing map of known anthelmintic compounds and

the proposed screening set of 5,046 drug-like compounds. A self-
organizing map clustering known anthelmintic compounds (Supplementary
Table 21a) and our proposed screening set of 5,046 compounds. The
density of red and green shows the number of screening set and known
anthelmintic compounds clustered in each cell, respectively. Structures for
representative known anthelmintic compounds are shown at the top, and
examples from the proposed screening set along the bottom.

Number of known
anthelmintic compounds
©

conservative. In particular, we have focused on large gene family
expansions, supported by the best-quality data and for which func-
tional information was available. Sequencing of further free-living
species, better functional characterization, and identification of
remote orthologs (particularly for platyhelminths®), will undoubt-
edly refine the resolution of parasite-specific differences, but our
gene family analyses have already revealed expansions and synapo-
morphies in functional classes of likely importance to parasitism,
such as feeding and interaction with hosts. We have used a drug
repurposing approach to predict potential new anthelmintic drug
targets and drugs/drug-like compounds that we urge the commu-
nity to explore. Further new potential drug targets, worthy of high-
throughput compound screening, may be exposed by the losses of
key metabolic pathways and horizontally acquired genes that we
find in particular parasite groups. This is an unprecedented dataset
of parasitic worm genomes that provides a new type of pan-spe-
cies reference and a much needed stimulus to the study of parasitic
worm biology.

URLs. SMALT, http://www.sanger.ac.uk/science/tools/smalt-0;
RepeatModeler, http://www.repeatmasker.org/RepeatModeler.
html; TransposonPSI, http://transposonpsi.sourceforge.net;

RepeatMasker, http://www.repeatmasker.org; code for calculating
gene family metrics, http://tinyurl.com/comparaFamiliesAnalysis-
py; WormBase ParaSite, https://parasite.wormbase.org/.
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Methods

Sample collection and preparation. Sources of material and sequencing
approaches are summarized in Supplementary Table 1.

Wellcome Sanger Institute (WSI) data production. The genomes of 36 species
(Supplementary Tables 1 and 2) were sequenced at WSI. The C. elegans N2 was also
resequenced at WSL.

WSI sequencing and assembly. PCR-free 400-550 bp paired-end Illumina libraries
were prepared from <0.1ng to 5ug genomic DNA, as described for Strongyloides
stercoralis'®. Where there was insufficient DNA, adapter-ligated material was
subjected to ~8 PCR cycles.

We used 1-10 pg gDNA or whole genome amplification DNA to generate 3 kb
mate-pair libraries, as described for S. stercoralis'®. If there was insufficient gDNA,
whole genome amplification was performed using GenomiPhi v2. Each library was
run on >1 Illumina HiSeq 2000 lane.

Short insert paired-end reads were corrected and assembled with SGA
v0.9.7* (Supplementary Fig. 26a). This assembly was used to calculate the k-mer
distribution for all odd k of 41-81, using GenomeTools v.1.3.7””. The k-mer length
for which the maximum number of unique k-mers was present was used as the
k-mer setting in a second assembly, using Velvet v1.2.03'" with SGA-corrected
reads. For species with 3 kb mate-pair data, the Velvet assembly was scaffolded
using SSPACE'"". Contigs were extended, and gaps closed and shortened, using
Gapfiller'”” and IMAGE'”. Short fragment reads were remapped to the assembly
using SMALT (see URLs), and unaligned reads assembled using Velvet'” and this
merged with the main assembly. The assembly was re-scaffolded using SSPACE'",
and consensus base quality improved with iCORN'". REAPR'”* was used to break
incorrectly assembled scaffolds/contigs. We carried out manual improvement for
Wiuchereria bancrofti and D. medinensis using Gap5'*® and Illumina read-pairs.

WSI assembly quality control. Contamination screening. Assemblies were screened
for contamination using BLAST'” against vertebrate and invertebrate sequences (see
ref. '"%). For Anisakis simplex, the assembly contained minor laboratory contamination
with S. mansoni, which we removed using BLASTN against S. mansoni.

Assembly completeness. CEGMA v2.4'* was used to assess completeness.
Consistent sets of CEGMA genes were missing from some phylogenetic groups
(Supplementary Table 2); these were discounted from the completeness calculation
for those species (‘CEGMA’ in Supplementary Table 2).

Effect of repeats. We re-mapped the short-insert library’s reads to the
appropriate assembly using SMALT (see URLs; indexing -k13 -s4 and mapping
-y 0.9 -x -r 1). For each scaffold of >8kb, median (med,) and mean (m,) per-base
read-depth were calculated using BEDTools' ', and genome-wide depth (med,)
calculated as the median med, (ref. 7). For a [, bp scaffold, the extra sequence that
would be gained by ‘uncollapsing’ repeats was estimated as e,= (m,—med,) X I/
med, (Supplementary Table 5).

WSI gene prediction. Our pipeline''! had four steps (Supplementary Fig. 27a). First,
repeats were masked. Second, preliminary gene predictions, to use as input for
MAKER v2.2.28""* were generated using Augustus 2.5.5'", SNAP 2013-02-16'",
GeneMark-ES 2.3a'", genBlastG''® and RATT'". Third, species-specific ESTs and
complementary DNAs from INSDC'", and proteins from related species, were
aligned to the genome using BLAST'”". Last, EST/protein alignments and gene
models were used by MAKER to produce a gene set.

McDonnell Genome Institute (MGI) data production. The genomes of six
species were sequenced at MGI (Supplementary Tables 1 and 2).

MGI sequencing, assembly and quality control. Genome sequencing was carried out
on Illumina and 454 instruments (see ref. ''*). The workflow for each assembly is in
Supplementary Table 1.

Three kilobase, 8 kb and fragment 454 reads (or Illumina reads) were subject to
adapter removal, quality trimming and length filtering (Supplementary Fig. 26b).
Cleaned 454 reads were assembled using Newbler'”’ before being scaffolded with
an in-house tool CIGA, which links contigs based on cDNA evidence. Cleaned
Tllumina reads were assembled using AllPaths-LG"'. The assembly was scaffolded
further using an in-house tool Pygap, using Illumina short paired-end sequences;
and L_RNA_scaffolder'?, using 454 cDNA data.

An assisted assembly approach was used for Trichinella nativa, whereby
‘cleaned’ Illumina 3 kb paired-end sequence data were mapped against the
T. spiralis genome using bwa'* (Supplementary Fig. 26b), and the T. nativa residues
were substituted at aligned positions (see ref. ''%).

Adaptor sequences and contaminants were identified by comparison to a
database of vectors and contaminants, using Megablast'*".

MGI transcriptome sequencing and gene prediction. Transcriptome libraries
(Supplementary Table 22) were generated with the Illumina TS stranded protocol,
and reads assembled using Trinity'* (see ref. ''*).

Genes were predicted using MAKER'", based on input gene models from
SNAP'", FGENESH (Softberry), Augustus'”, and aligned messenger RNA, EST,
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transcriptome and protein data from the same or related species (Supplementary
Fig. 27b; see ref. '"?).

Blaxter Nematode and Neglected Genomics (BaNG) data production. The
genomes of three species were sequenced by BaNG (Supplementary Tables 1 and 2).

Sequencing was performed on Illumina HiSeq 2000 and HiSeq 2500
instruments, using 100 or 125 base, paired-end protocols. Paired-end libraries were
generated using the Illumina TruSeq protocol.

Sequence data were filtered of contaminating host reads using blobtools'**.
Cleaned reads were normalized with the khmer software'*’ using a k-mer of 41,
and then assembled with ABySS (v1.3.3)'*, with a minimum of three pairs needed
to connect contigs during scaffolding (n=3) (Supplementary Fig. 26¢). Assemblies
were assessed using blobtools and CEGMA'”.

Augustus'"” was used to predict gene models, trained using annotations from
MAKER'”. As hints for MAKER, we used Litomosoides sigmodontis 454 RNA
sequencing data assembled with MIRA'* and Newbler'*’, and Onchocerca ochengi
Tllumina RNA sequencing data'* assembled using Trinity'*' (Supplementary Fig. 27c).

Defining high-quality ‘tier 1’ species. A subset of nematode and platyhelminth
genomes, termed ‘tier 1, was selected that had better-quality assemblies and

spanned the major clades (Supplementary Table 4). To choose these, species were
selected that (1) had contiguous assemblies (usually N50/scaffold-count >5), and
complete proteomes (usually CEGMA partial >85%), or (2) that helped to ensure
~50% of the genera in each species group (‘Analysis group’ in Supplementary Table 4)
were represented.

Analysis of repeat content and genome size. For each species, repeat libraries
were built using RepeatModeler (see URLs), TransposonPSI (see URLs) and
LTRharvest'”, and the three libraries merged (see ref. '**). The merged library was
used to mask repeats in a species’ genome using RepeatMasker (see URLS; -s).

The initial standard regression model and stepwise model fitting used Im’ and
‘step’ in R v3.2.2. The Bayesian mixed-effect model used MCMCglmm'** (v2.24).
To create a mixed-effect model, the species tree (see Methods) was transformed
into an ultrametric tree using PATHA8'*, with a small constant added to short
branches to ensure no zero-length branches were reconstructed; and outgroup
species were removed.

Compara database. An in-house Ensembl Compara* database was constructed
containing the 81 platyhelminths and nematodes, and 10 additional outgroups
(Supplementary Table 2). All parasitic nematode/platyhelminth species with gene
sets available at the time (April 2014) were included.

The species tree used to construct the initial version of our database
used an edited version of the National Center for Biotechnology Information
(NCBI) taxonomy'** with several controversial speciation nodes represented as
multifurcations. For our final database, the input species tree was derived by
building a tree based on the previous database version, based on one-to-one
orthologs present in >20 species. To do this, proteins in each ortholog group were
aligned using MAFFT v6.857'"; alignments trimmed using GBlocks v0.91b"*,
concatenated and used to build a maximum likelihood tree using a partitioned
analysis in RAXML v7.8.6'%, using the minimum Akaike’s information criterion
(minAIC) model for each ortholog group.

The database was queried to identify gene families, orthologs and paralogs.

Species tree and tree based on gene family presence. We identified 202 gene
families present in >25% of the 91 species (81 helminths and 10 outgroups) in

our Compara database (Methods) and always single-copy. For each family, amino
acid sequences were aligned using MAFFT v7.205' (-auto). Each alignment

was trimmed using GBlocks v0.91b"** (-b4=4 -b3=4 -b5=h), and its likelihood
calculated on a maximum-parsimony guide tree for all relatively simple (single-
matrix) amino acid substitution models in RAXML v8.0.24'%, and the minAIC
model identified. Alignments were concatenated and a maximum-likelihood tree
built, under a partitioned model in which sites from a gene were assigned the
minAIC model for that gene, with a discrete gamma distribution of rates across
sites. Relationships within outgroup lineages were constrained to match the
standard view of metazoan relationships (for example, Dunn et al.'*). The final tree
was the highest likelihood one from five search replicates with different random
number seeds. One hundred bootstrap resampling replicates were performed, each
based on a single rapid search.

We also constructed a maximum-likelihood phylogeny based on gene family
presence/absence for families not shared by all 81 nematode/platyhelminth species,
using RAXML v8.2.8', with a two-state model and the Lewis method to correct for
absence of constant-state observations.

Functional annotation. InterProScan'"! v5.0.7 was used to identify conserved
domains from all predicted proteins. A name was assigned to each predicted
protein based on curated information in UniProt'* for orthologs identified from
our Compara database (Methods), or based on InterPro'* domains (see ref. '**).
Gene ontology (GO) terms were assigned by transferring GO terms from
orthologs'*, and using InterProScan.
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Signal peptides and transmembrane domains were predicted using
Phobius'* v1.01 and SecretomeP'* v1.0. A protein predicted by Phobius to
have a transmembrane domain was categorized as ‘membrane-bound;, and
non-membrane-bound proteins as ‘classically secreted’ if Phobius predicted a
signal peptide within 70 amino acids of their start. Remaining proteins in which
SecretomeP predicted a signal peptide were classified as ‘non-classically secreted’
(Supplementary Table 7).

Pairwise combinations of Pfam domains were identified in proteins of the
81 nematodes and platyhelminths. After excluding those present in complete
genomes of other phyla in UniProt (June 2016), we classified a combination as
‘nematode-specific’ (or ‘flatworm-specific’) if it was present in >30% of nematodes
(platyhelminths) and no platyhelminths (nematodes) (Supplementary Table 14).

Synapomorphic gene families. Families in our Compara database (Methods) were
analyzed using KinFin v0.8.3'", by providing InterPro IDs (Methods) and a species
tree that had clades IIL, IV and V as a polytomy (Fig. 2). Synapomorphic families
were identified at 25 nodes of interest (Supplementary Table 8), by using Dollo
parsimony and requiring a family must contain genes from >1 descendant species
from each child node of the node of interest, and must not contain other species.
Families were filtered to retain those that (1) contained >90% of descendant
species of the node of interest, and (2) in which >90% of species contained >1 gene
with a particular InterPro domain.

Candidate lateral gene transfers. Ferrochelatase families in our Compara
database (Methods) were extracted by screening for a Ferrochelatase (IPR001015)
domain. Additional ferrochelatases were retrieved from NCBI for 17 bacterial taxa
(Supplementary Table 8c). Sequences were aligned using MAFFT v7.267 (E-INS-i
algorithm)'*” and the alignment trimmed using trimAl v1.4". Phylogenetic
analysis was carried out using RAXML"” under the PROTGAMMAGTR model,
and 20 alternative runs on distinct starting trees. Non-parametric bootstrap
analysis was carried out for 100 replicates.

For cobyric acid synthase and acetate/succinate transporter, the top BLAST
hits from GenBank, and representative sequences from other taxonomic groups,
were aligned with MAFFT v7.205'*" (-auto), and alignments trimmed with trimal
v1.4'*. Phylogenetic analyses were performed using RAXML v8.2.8"* under the
model that minimized the AIC (LG4X for cobyric acid synthase, LG4M for acetate
transporter), based on 5 random-addition-sequence replicates, and 100 non-
parametric bootstrap replicates.

Gene family expansions. We used three metrics to identify families in our
Compara database (Methods) that varied greatly in gene count across species (see
ref. '*). To control for fragmented assemblies, we used summed protein length per
species (in a family) as a proxy for gene count in these metrics:

1. Coefficient of variation:

c.v.=s /X

where s is the standard deviation in summed protein length per species, and X its
mean.
2. Maximum Z-score:

Zx=maxceT

Xijec™* ]

Sijigte

where T'is the set of non-overlapping species groups (‘Analysis group’ in
Supplementary Table 4), c a group in T, index i refers to a particular species, ¥ ;.
the mean of the summed protein length (per species) in ¢, and s; ;.. the standard
deviation in summed protein length per species in species outside c.

3. Maximum enrichment coefficient:
xi,ie:
Xiigc

To increase reliability, these metrics were calculated by only considering tier
1 species (those with high-quality assemblies; Methods). Our code for calculating
metrics is available (see URLs).

E . =maxceT

max’

SCP/TAPS. SCP/TAPS genes were identified as having Pfam PF00188, or being

in a SCP/TAPS family in our Compara database (Methods). Those between 146 aa
(shortest C. elegans SCP/TAPS) and 1,000 aa were included in the phylogenetic
analysis (Supplementary Table 10). Clusters were detected among sequences from

a species group (‘analysis group’ in Supplementary Table 4) using USEARCH"*
(UCLUST, aa identity cut-off=0.70), and a consensus sequence generated for each
cluster. The consensus sequences were aligned using MAFFT"*’ (v7.271, -localpair -
maxiterate 2 —retree 1 —bl 45); the alignment trimmed with trimAlI'** (-gt 0.006); and
a maximum likelihood tree built using FastTreeMP"*' (v2.1.7 SSE3, -wag -gamma).

Proteins historically targeted for drug development. Each nematode/
platyhelminth proteome was searched against candidate proteases using MEROPS

batch-BLAST"** (E<0.001), and PfamScan'** was used to identify additional
homologues in some species (Supplementary Table 11).

Putative GPCRs, identified from the literature and GO:0004930 annotations in
WormBase'*, were used to identify families in our Compara database (Methods).
For each family, HHSuite'** was used to search Uniprot, SCOPUS, Pfam, and PDB;
200 families hitting >2 databases were deemed actual GPCR families (see ref. '*°).
Additional families were identified from synapomorphies (Methods) and curation,
giving 230 GPCR families (Supplementary Table 15).

To build a phylogenetic tree of ion channels, known genes from C. elegans'”’,
Brugia malayi'**, Haemonchus contortus'”, Oesophagostomum dentatum'>
and S. mansoni** were gathered, and their homologues in Compara families in
WormBase ParaSite'®’. Genes with <3 or >8 transmembrane domains (predicted
by HMMTOP'®') were discarded. Genes were aligned with MAFFT'”, and the
alignment trimmed with trimAl'**. The phylogeny was inferred with MrBayes3.2'*%
Posterior probabilities were calculated from eight reversible jump Markov chain
Monte Carlo chains over 20,000,000 generations.

Kinase models were taken from Kinomer'*, and thresholds optimized to detect
known C. elegans kinases (see ref. '**). The final thresholds were used to filter
HMMER search results (against Kinomer) for nematode and platyhelminth species
(Supplementary Table 23).

C. elegans ABC transporter and cys-loop receptor subunit genes were collated
from WormBase'*, to which we added H. contortus acr-26 and acr-27 (absent from
C. elegans™). Homologs in nematodes and platyhelminths were identified using
BLASTP (Supplementary Tables 16 and 17).

GO and InterPro/Pfam annotation enrichment. Counts of proteins annotated
with each GO term (or InterPro/Pfam domain) per species were normalized by
dividing by the total GO annotations in a particular species. To test for enrichment
of a particular GO term in a species group (‘analysis group’ in Supplementary
Table 4), we used a Mann-Whitney U test to compare normalized counts in that
species group, to those in all other species (Supplementary Table 24).

Metabolism. EC (Enzyme Commission number) predictions for nematodes and
platyhelminths were derived by combining DETECT v2.0'®*, PRIAM'®*, KAAS'*"
and BRENDA'** (see ref. ', Supplementary Fig. 28 and Supplementary Table 18),
and supplemented for the 33 tier 1 species (Methods) by pathway hole-filling
using Pathway Tools'” (v18.5). Comparisons of all 81 species (Supplementary
Fig. 20a and Supplementary Table 20) did not include ECs from hole-filling.
Lower confidence ECs were inferred using families from our Compara database
(Methods). Auxotrophies were predicted using Pathway Tools and BioCyc'”". To
predict carbohydrate-active enzymes, HMMER3 was used to search dbCAN'”
(Supplementary Table 25).

Pathway coverage was the fraction of ECs in a reference pathway that were
annotated in a species (see ref. '”*). We included pathways for which KEGG had
a reference pathway for a nematode/platyhelminth (Supplementary Table 18e).
Presence of KEGG modules was predicted using modDFS'"*, and species clustered
based on module presence using Ward-linkage, based on Jaccard similarity index'”.

Chokepoint enzymes were predicted following Taylor et al."”®, using
subnetworks of KEGG networks formed by just the enzymes (ECs) we had
annotated in each particular species.

Potential anthelmintic drug targets and drugs. Potential drug targets. Nematode

and platyhelminth proteins from tier 1 species (with high-quality assemblies;

Methods) were searched against single-protein targets from ChEMBL v21'” using

BLASTP (E<1x107"). After collapsing by gene family, 1,925 worm genes remained.
To assign a ‘target score’ to each worm gene, the main factors considered were

similarity to known drug targets; lack of human homologues; and whether

C. elegans/Drosophila melanogaster homologues had lethal phenotypes (see ref. '”%).

Potential new anthelmintic drugs. ChREMBL v21'” was used to identify 827,889
compounds with activities against ChEMBL targets to which worm proteins had
BLAST matches. To calculate ‘compound scores, we prioritized compounds in
high clinical development phases, oral/topical administration, crystal structures,
properties consistent with oral drugs and lacking toxicity (see ref. '”*).

Our top 15% (249) of highest-scoring worm targets had 292,499 compounds.
These were filtered by selecting compounds that (1) co-appeared in a PDBe'”
(Protein Data Bank in Europe) structure with the ChREMBL target; or (2) had
median pChEMBL > 5; leaving 131,452 ‘top drug candidates.

A diverse screening set’. The 131,452 candidates were placed into 27,944 chemical
classes, based on ECFP4 fingerprints (see ref. '’). They were filtered by (1)
discarding medicinal chemistry compounds that did not co-appear in a PDBe
structure with the ChEMBL target, or have median pPCHEMBL > 7; (2) checking
availability for purchase in ZINC 15'*’; and (3) for each worm target, taking the
highest-scoring compound from each class; this gave 5,046 compounds.

Self-organizing map. We constructed a self-organizing map of our diverse screening
set plus known anthelmintic compounds (Supplementary Table 21a; see ref. '”*),

using Kohonen v3.02'*" in R v3.3.0, using a 20 X 20 cell hexagonal, non-toroidal
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grid. The self-organizing map was trained for 4,000 steps, where training optimized

Tanimoto distances between ECFP4 fingerprints.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Sequence data have been deposited in the European Nucleotide Archive (ENA).
Assemblies and annotation are available at WormBase and WormBase-ParaSite
(https://parasite.wormbase.org/). All have been submitted to GenBank under the
BioProject IDs listed in Supplementary Table 1.
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Statistical parameters

When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main
text, or Methods section).
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars
State explicitly what error bars represent (e.g. SD, SE, Cl)
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Our web collection on statistics for biologists may be useful.

Software and code

Policy information about availability of computer code

Data collection No software was used to collect the data in the study.
Data analysis A large number of software applications were used in this study. All software used (custom and commercial/publicly available) are listed
in the Methods. All custom scripts are available on request from the corresponding authors.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Sequence data have been deposited in the European Nucleotide Archive (ENA). Assemblies and annotation are available at WormBase and WormBase-ParaSite. All
have been submitted to GenBank under BioProjects listed in Supplementary Table 1.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was determined by the availability of parasite material. All samples were surplus material from other ongoing research projects,
and due to the difficulties involved with obtaining parasite material, sample size was determined primarily by sample availability, rather than a
predetermined number.
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Data exclusions  Some samples provided for this study were of poor quality, and thus the resulting data was of insufficient quality to warrant inclusion in the
data set. Exclusion criteria were not predetermined.

Replication Experimental findings were not reproduced due to the scale of the study, in terms of time and cost, combined with the issue associated with
obtaining parasite material.

Randomization  Allocation of samples into experimental groups was done so based on taxonomic classification.

Blinding Blinding was not relevant to this study as analysis were explicitly comparative.

Reporting for specific materials, systems and methods

Materials & experimental systems Methods
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/a | Involved in the study n/a | Involved in the study

Unique biological materials
|:| Antibodies
D Eukaryotic cell lines

g |:| ChlIP-seq
g |:| Flow cytometry

IXI D MRI-based neuroimaging

D Palaeontology
|Z| Animals and other organisms
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D Human research participants

Unigue biological materials

Policy information about availability of materials

Obtaining unique materials  Not all unique materials used in this study are available due to a number of them being from wild or livestock animals, rather
than laboratory maintained animals. They are either unique samples that could not easily be obtained again, or all the
available sample has been used up in this experiment. In some cases, material from laboratory maintained populations may be
available on request where feasible.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Samples obtained were parasite materials that were surplus to other existing ongoing projects, either from wild animals,
laboratory animals or already dead animals (e.g. from an abattoir). Further details on the samples are given in Supplementary -
Table 1. 2
N
Wild animals Samples obtained were parasite materials that were surplus to other existing ongoing projects, either from wild animals, &
laboratory animals or already dead animals (e.g. from an abattoir). Further details on the samples are given in Supplementary
Table 1.

Field-collected samples Samples obtained were parasite materials that were surplus to other existing ongoing projects, either from wild animals,




Field-collected samples laboratory animals or already dead animals (e.g. from an abattoir). Further details on the samples are given in Supplementary
Table 1.
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