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M Check for updates

Detailed knowledge of how diversity in the sequence of the human genome affects
phenotypicdiversity depends on a comprehensive and reliable characterization of
both sequences and phenotypic variation. Over the past decade, insights into this
relationship have been obtained from whole-exome sequencing or whole-genome
sequencing of large cohorts with rich phenotypic data'?. Here we describe the analysis
of whole-genome sequencing 0f 150,119 individuals from the UK Biobank>. This
constitutes a set of high-quality variants, including 585,040,410 single-nucleotide
polymorphisms, representing 7.0% of all possible human single-nucleotide
polymorphisms, and 58,707,036 indels. This large set of variants allows us to
characterize selection based on sequence variation within a population through a
depletion rank score of windows along the genome. Depletion rank analysis shows
that coding exons represent a small fraction of regions in the genome subject to
strong sequence conservation. We define three cohorts within the UK Biobank: alarge
British Irish cohort, asmaller African cohort and a South Asian cohort. A haplotype
reference panelis provided that allows reliable imputation of most variants carried by
three or more sequenced individuals. We identified 895,055 structural variants and
2,536,688 microsatellites, groups of variants typically excluded from large-scale
whole-genome sequencing studies. Using this formidable new resource, we provide
several examples of trait associations for rare variants with large effects not found
previously through studies based on whole-exome sequencing and/or imputation.

The UK Biobank (UKB)* documents phenotypic variation of 500,000  based on WGS 0f 150,119 individuals. All variant calls were performed
participants across the UK, with a healthy volunteer bias*. The UKB  jointly acrossindividuals, allowing for consistent comparison of results.
whole-genome sequencing (WGS) consortiumis sequencingthewhole  The resulting dataset provides an unparalleled opportunity to study
genomes of all the participantsto an average depthof atleast23.5x.Here  sequence diversity in humans and its effect on phenotype variation.

we report on the first data release consisting of a vast set of sequence Previous studies of the UKB have produced genome-wide SNP
variants, includingsingle-nucleotide polymorphisms (SNPs), shortinser-  array data’ and whole-exome sequencing (WES) data®’. Although SNP
tions or deletions (indels), microsatellitesand structural variants (SVs),  arrays typically only capture a small fraction of common variants in
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Fig.1|Mutation classes of sequence variants inthe UKB. a, Fraction of SNPs
ineach mutation class, for all SNPs in our dataset, singletonsin our dataset and
inanlcelandicset of de novo mutations (DNMs). b, Saturation levels of
mutationsin eachclass, splitinto singleton variants (blue) and more common
variants (red). ¢, Saturation levels of transitions at methylated CpGsites across
genomicannotations and predicted consequence categories. The horizontal
lineisthe average across all methylated CpGsites. The error barsare 95%Cls,
which were computed using anormal approximation, treating each CpGsite as
anindependent observation The number of CpGsitesusedin care: stop gained
n=46,670, missense n= 669,526, codingn=1,067,847, splicen=26,797,5 UTR
n=60,885,3'UTRn=508,981, proximal n=17,722,875and intergenic
n=15,266,391.

the genome, when combined with a reference panel of WGS individu-
als®, amuch larger set of variants in these individuals can be surveyed
through imputation. Imputation, however, misses variants private to
theindividuals only typed on SNP arrays and provides unreliable results
for variants withinsufficient haplotype sharing between carriersin the
reference and imputation sets. Poorly imputed variants are typically
rare, highly mutable or in genomic regions with complicated haplotype
structure, often due to structural variation.

Table 1| Overlap of WES and WGS data

WES is mainly limited to regions known to be translated and conse-
quently reveals only asmall proportion (2-3%) of sequence variationin
the human genome. Itis relatively straightforward to assign functionto
variantsinside protein-coding regions, but there is abundant evidence
that variants outside coding exons are also functionally important®,
explaining a large fraction of the heritability of traits™.

Large-scale sequencing efforts have typically focused onidentifying
SNPs and shortindels. Although these are the most abundant types of
variants inthe human genome, other types, including SVs and micros-
atellites, affect agreater number of base pairs each and consequently
are more likely to have afunctionalimpact™2. Even the SVs that overlap
exons are difficult to ascertain with WES owing to the much greater
variability in the depth of sequence coverage in WES studies than in
WGS studies becasue of the capture step of targeted sequencing. Micro-
satellites, polymorphic tandem repeats of 1-6 bp, are also commonly
not examined in large-scale sequence analysis studies.

Here we highlight some of the insights gained from this vast new
resource of WGS data that would be challenging orimpossible to ascer-
tain from WES and SNP array datasets.

SNPs andindels

The whole genomes 0f 150,119 UKB participants were sequenced toan
average coverage of 32.5x (at least 23.5% per individual; Supplemen-
tary Fig. 1) using Illumina NovaSeq sequencing machines at deCODE
Genetics (90,667 individuals) and the Wellcome Trust Sanger Institute
(59,452 individuals). Individuals were pseudorandomly selected from
the set of UKB participants and divided between the two sequencing
centres. All 150,119 individuals were used in variant discovery, 13 indi-
viduals were sequenced in duplicate, 11individuals withdrew consent
from time of sequencing to time of analysis and microarray data were
not available to us for 135 individuals, leaving 149,960 individuals for
subsequent analysis.

Sequence reads were mapped to human reference genome GRCh38"
using BWA™, SNPs and shortindels were jointly called over all individu-
als using both GraphTyper® and GATK HaplotypeCaller', resulting in
655,928,639 and 710,913,648 variants, respectively. We used several
approachesto compare the accuracy of the two variant callers, includ-
ing comparisonto curated datasets” (Supplementary Table 1and Sup-
plementary Fig. 2), transmission of alleles in trios (Supplementary
Tables 2 and 3), comparison of imputation accuracy (Supplementary
Table 4) and comparisonto WES data (Supplementary Table 5). These
comparisons suggested that GraphTyper provided more accurate
genotype calls. For example, despite 7.7% fewer GraphTyper variants,
we estimated that GraphTyper called 4.5% more true-positive vari-
antsintrios and had 9.4% more reliably imputing variants than GATK.
We therefore restricted subsequent analyses of short variants to the

Annotation WGS WES Intersectionof WGS  Unique to Present WES Missing WES PresentWGS  Missing WGS
and WES WES (%) (%) (%) (%)

Coding 6,380,795 5,781,829 5,686,934 94,895 89.29 1071 98.53 1.47

Splice 445,499 397,226 388,961 8,265 87.54 12.46 9818 1.82

5'UTR 2,125,413 590,484 572,996 17,488 2756 72.44 9918 0.82

3'UTR 7,214,427 764,864 743,790 21,074 10.57 89.43 99.7 0.29

Proximal 249,702,570 6,189,465 5,952,145 237,320 248 97.52 99.91 0.09
Intergenic 292,259,782 91,836 83,360 8,476 0.03 99.97 More than Less than 0.01

99.99

Results are computed for the 109,618 samples present in both datasets and are limited to those variants that are present in at least one individual in either dataset. Numbers refer to the number
of variants found in the dataset. WGS refers to the GraphTyperHQ dataset and WES refers to a set of 200,000 WES-sequenced indivdiduals®. Missing and present percentages are computed

from the number of variants in the union of the two datasets.
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Fig.2|Functionallyimportantregions. a, Fraction of regions falling into
functional annotation classes, as defined by Ensembl gene map, as a function of
DR.b,DRscore asafunction of distance from exon and LOEUF decile. Error
barsrepresent 95% Cl, computed using anormal approximation, treating each
gene (nrangesbetween1,206and1,848) asanindependent observation.c,
Fractionof rare (with four or fewer carriers) variantsasafunction of DR.d,
Average GERP scorein 500-bp windows as afunction of DR. RS, rejected

GraphTyper genotypes, although further insights might be gained
from exploring these call sets jointly. To contain the number of false
positives, GraphTyper uses a logistic regression model that assigns
each variant ascore (AAscore), predicting the probability that it is a
true positive. We focused on the 643,747,446 (98.14%) high-quality
GraphTyper variants, indicated by an AAscore above 0.5, hereafter
referred to as GraphTyperHQ.

The American College of Medical Genetics and Genomics (ACMG) rec-
ommendsreporting actionable genotypesinalist of genes associated
with diseases that are highly penetrant and for which a well-established
intervention is available'®, We found that 4.1% of the 149,960 individuals
carry an actionable genotype in one of 73 genes according to ACMG'®
v3.0. Using WES® and ACMG v2.0 (59 genes), 2.0% were reported to
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substitution. e,f, LOUEF (e) and LOEUF|GERP (f) asafunction of DR.Ineandf,
middlebarindicates the average, hinges are the 25th and the 75th quantiles,
black dotsindicate outliers, and the whiskers extend to 1.5 interquartile range
fromthe hingesto the largest or smallest value. The number of genes or
observationsinthe DRrangesare the following: no_,)=1,234, 19, =3,202,
N2-03=4474,N0304=3,888,N0.405=2,476,N0506=1,384,n0407 =863,
N 7-08=522,N0s09=374and Ny =427.

carry an actionable genotype, when restricting our analysis to ACMG
v2.0 and the same criteria, we found 2.5% based on WGS, increasing
thenumber of actionable genotypes detected inalarge cohort, tothe
extent that it could have a notable effect on societal disease burden.
The number of variants identified per individual is 40 times larger
than the number of variants identified through the WES studies of
the same UKB individuals (Table 1; Methods). Although referred to
as ‘WES’, we found that WES primarily captures coding exons and
misses most variants in exons that are transcribed but not translated,
missing 72.2% and 89.4%, of the 5" and 3’ untranslated region (UTR)
variants, respectively. Even inside of coding exons currently curated
by ENCODE", we estimate that 10.7% of variants are missed by WES
(Table 1). Manual inspection of the missing variants in WES suggests
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Fig.3|Cohortcharacteristics.a, The number of WGS samples analysed for
phenotypesinourstudy.b, UMAP plot generated from the first 40 principal
components of allUKB participants, coloured by self-reported ethnicity:
blue shades for ethniclabels under the white category (XBI), red shades for
Blackindividuals (XAF) and green shades for South Asianindividuals (XSA);
for the full colourlegend, see Supplementary Fig.17. ¢, Joint frequency
spectrum of variants on chromosome 20 between all pairs of populations.
d-f, Characteristics of the XBl cohortacross Great Britain and Ireland are

that these are missing due to both missing coverage in some regions
and genotypingfilters. Conversely, almost all variants identified with
WES are found by WGS (Table 1).

Functionally importantregions

The number of SNPs discovered in our study corresponds to an average
of one every 4.8 bp, in the regions of the genome that are mappable
with short sequence reads. This amounts to detection of 7.0% of all
theoretically possible SNPs in these regions (a measure of saturation).
We observed 81.5% of all possible autosomal CpG>TpG variants, 11.8%
of other transitions and only 4.0% of transversions (Supplementary
Table 6). Restricting the analysis to 17,345,777 autosomal CpG dinucleo-
tides methylated in the germ line®, we observed transition variants at

Table 2 | Overrepresentation and underrepresentation of
GWAS variants in low and high DR regions

DR of non-coding Enrichment 95% CI Pvalue
regions (%)

1 3.22 2.44-4.07 <0.0004
99 0.45 0.23-0.70 <0.0004
5 2.25 1.86-2.69 <0.0004
95 0.61 0.47-0.70 <0.0004

Windows overlapping coding exons were removed. Lower DR scores indicate greater
sequence conservation.

06 0.025
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shown: the number of singletons carried by individualsin the XBl cohortasa
function of place of birth (d); the mean number of third-degree relatives by
administrative division (e); and thelocation of UKB assessment centres and
estimated fraction of the surrounding population recruited to the UKB (f).
Differencesinsingleton countsand the number of third-degree relatives are
probably aresult of denser sampling of individuals living near UKB assessment
centres. Fig.3d-fby K.H.S.M.

89.1% of all methylated CpGs. As CpG mutations are so heavily saturated
(Fig.1), theratio of transitions to transversions (1.66) is lower than found
in smaller WGS sets' and de novo mutation studies®.

The vast majority of all variants identified are rare (Supplementary
Table 7), 46.0% and 40.6% of all SNPs and short indels, respectively,
are singletons (carried by a single sequenced individual), and 96.6%
and 91.7% have a frequency below 0.1%. Inference of haplotypes and
imputation typically involvesidentifying variants that are shared due
to acommon ancestor (are identical by descent). Owing to the scale
of the UKB WGS data, an observation of the same allele in unrelated
individuals does not alwaysimply identity by descent. A clear indication
of this is that only 14% of the highly saturated CpG>TpG variants are
singletons, in contrastto47% for other SNPs (Fig.1b). Theserecurrence
phenomenahave been described in other sample sets using sharing of
rare variants between different subsets>*. We used a de novo mutation
setfrom 2,976 triosin Iceland® to assess recurrence directly, as variants
presentinboth that set and the UKB must be derived from at least two
mutational events. Out of the 194,687 Icelandic de novo mutations, we
found 53,859 (27.7%) in the UKB set, providing a direct observation
of sequence variants derived from at least two mutational events. As
expected, we found that CpG>TpG mutations are the most enriched
mutation class in the overlap, owing to their high mutation rate*? and
saturation in the UKB set (Fig. 1b).

Therate and pattern of variants in the genome is informative about
the mutation and selection processes that have shaped the genome?.
The number of sequence variants in the exome has been used to rank
genesaccordingto their tolerance of loss of function (LoF) and missense
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variation®?*, The focus on the exome is because of the availability of
WES datasets and the relatively straightforward functional interpreta-
tion of coding variants. Conservation across abroad range of species® is
used toinfer theimpact of selection beyond the exome, leveraging the
extensive accumulation of mutations over millions of years. However,
suchstatistics are only partially informative about sequence conserva-
tion specific to humans?. Sequence variation in humans?? can be used
to characterize human-specific conservation, but large sample sizes
arerequired for accurateinference, as much fewer mutations separate
pairs of humans than different species.

The extensive saturation of CpG>TpG variants at methylated CpGsin
large WES cohorts has been used toidentify genomic annotation or loci
where their absence could be indicative of negative selection®?. Inline
with previous reports®, we saw less saturation of stop-gain CpG>TpG
variants than those that are synonymous (Fig. 1c). Synonymous muta-
tionsare often assumed to be unaffected by selection (neutral)®; how-
ever, we found that synonymous CpG>TpG mutations are less saturated
(85.7%) than those that areintergenic (89.9%), supporting the hypoth-
esis that human codon usage is constrained*’.

Extending this approach, we used sequence variant counts in the
UKB to seek conserved regions in 500-bp windows across the human
genome. We build on the methodology behind the context-dependent
tolerance score (CDTS)%, applying it to a larger dataset. More spe-
cifically, we tabulated the number of variants in each window and
compared this number to an expected number given the heptamer
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nucleotide composition of the window and the fraction of heptamers
with asequence variant across the genome and their mutational classes.
We then assigned a rank (depletion rank (DR)) from O (most deple-
tion) to 100 (least depletion) for each 500-bp window. As expected,
coding exons have alow DR (mean DR = 28.4), but a large number of
non-coding regions show even lower DR (more depletion), including
non-coding regulatory elements. Among the 1% of regions with the
lowest DR, 13.0% are coding and 87.0% are non-coding, with an over-
representation of splice, UTR, gene upstream and downstreamregions
(Fig.2a). DRincreases with distance from coding exons (Fig. 2b). After
removing coding exons, among the 1% of regions with lowest and high-
est DR score, we saw a 3.2-fold and 0.4-fold overrepresentation of GWAS
variants, respectively (Table 2), suggesting that the DR score could be a
useful prior in GWAS analysis®. ENCODE’ candidate cis-regulatory ele-
ments are more likely than expected by chance to be foundin depleted
(lowDR) regions (Table 3). Of note, candidate cis-regulatory elements
locatedin close proximity to transcription start sites, that is, proximal
enhancer-like and promoter-like sequences, are more enriched among
depleted regions than distal enhancer-like sequences.

Regions under strong negative selection are expected to have a
greater fraction of rare variants (FRV; defined here as variants carried
by at most four WGS individuals) than the rest of the genome?. We
observed a greater FRV in the most depleted regions (DR < 5) thanin
theleast depleted regions (DR > 95): 74.8% versus 69.1% (Fig. 2c and Sup-
plementaryFig. 3). Thiswas also seen when limiting to only non-coding
regions (74.6% versus 69.2%). Using the FRV of annotated coding vari-
ants as a reference (Fig. 2c), we found that the most depleted regions
(DR <1) had a FRV comparable to missense mutations (75.5%).

Overall, thereisaweak correlationbetween DR and interspecies con-
servation as measured by genomic evolutionary rate profiling (GERP)*
(linear regression r>= 0.0050, two-sided P < 2.2 x 107%; Fig. 2d). We
found astronger correlation between DR and GERP within coding exons
(linear regression r* = 0.0498, two-sided P < 2.2 x 107%) than outside
them (linear regression r? = 0.0012, two-sided P < 2.2 x 10%), indicat-
ing that the correlation between DR and GERP is mostly due to the most
highly conserved elements, such as coding exons, inthe 36 mammalian
species used to calculate GERP, with much weaker correlation in less
conserved regions.

Todetermine whether DR reflects human-specific negative selection
thatis not captured by GERP, we aggregated DR across the exons and
compared it to the LOEUF metric from Gnomad® (Fig. 2e). LOEUF meas-
urestheintolerance to LoF mutations of genes, but it does not measure
intolerance outside coding exons. We found that DRis correlated with
LOEUF (linear regression r* = 0.085, two-sided P< 2.2 x107¢). LOEUF
correlates with genes demonstrating autosomal dominant inherit-
ance?; in line with this, we found that DR is correlated (linear regres-
sion #=0.0027, two-sided P= 6.6 x 10™"?) with autosomal dominant
genes as reported by OMIM* (Supplementary Table 8). Modelling the
LOEUF metric as afunction of GERP and extracting the residuals from
alinear fit, we obtained a measure of human-specific LoF intolerance
(LOEUF|GERP). Wefound that DRis correlated with LOEUF|GERP (linear
regression = 0.024, two-sided P < 2.2 x 107'; Fig. 2f), indicating that
DR measures human-specific sequence constraint not captured by
GERP. We compared DR with CDTS¥, which is a measure of sequence
constraint analogous to the one presented here, and CADD*, Eigen®*
and LINSIGHT?, which are measures of functional impact thatincorpo-
rate interspecies conservation (Extended Data Fig. 1). The constraint
metrics that use interspecies conservation form one correlation block
(GERP, CADD, Eigen and LINSIGHT) that is less correlated with the DR
and CDTS correlation block (Supplementary Table 9). The regions
with the lowest DR score show similar enrichment across all metrics
(Extended Data Fig. 1). Overall, our results show that DR can be used
to help identify genomic regions under constraint across the entire
genome and as such provides a valuable resource for identifying
non-coding sequence of functional importance.



Table 3 | Enrichment of cCREs from ENCODE among low DR
regions defined at the 1% and 5% percentiles

cCREs? Genome Enrichment (OR (95% Cl))
%) DR1% DR5%

percentile percentile
pELS, CTCF-bound 0.53 6.35(6.04-6.68) 3.49(3.37-3.61)
PLS, CTCF-bound 0.15 6.37 (6-6.75) 3.34(3.19-3.49)
PLS 0.05 277(2.53-3.03) 1.9(1.79-2.03)
PELS 053 2.49(2.39-2.63) 1.96(1.9-2.02)
DNase H3K4me3, 0.07 1.92(1.67-2.19) 1.48 (1.38-1.59)
CTCF-bound
dELS, CTCF-bound 1.86 1.65 (1.58-1.71) 1.563 (1.5-1.57)
dELS 4m 117 (113-1.2) 1.27 (1.25-1.3)
DNase H3K4me3 015 115 (1.04-1.27) 1.03 (0.974-1.08)
CTCF only 0.47 0.878(0.83- 0.96 (0.933-

0.925) 0.987)

The percentage of the genome covered by candidate cis-regulatory elements (cCREs) are
indicated for each type of cCRE.

CTCF, CCCTC-binding factor; dELS, distal enhancer-like sequence; OR, odds ratio; pELS,
proximal enhancer-like sequence; PLS, promoter-like sequence.

2Exons of protein-coding genes found in overlap with cCRE regions were removed.

Multiple cohorts within UKB

Many GWAS® using the UKB datahave been based onasubset® 0f 409,559
participants who self-identified as ‘white British’. To better leverage the
value of awider range of of UKB participants, we defined three cohorts
encompassing 450,690 individuals (Supplementary Table 10), based on
genetic clustering of microarray genotypes informed by self-described
ethnicity and supervised ancestry inference (Methods). The largest
cohort, XBI (Extended Data Fig. 3), contains 431,805 individuals, includ-
ing 99.6% of the 409,559 prescribed white British set, along with around
23,900 additional individuals previously excluded because they did
not identify as white British (thereof 13,000 who identified as ‘white
Irish’). We believe that this expanded set willincrease power in associa-
tion studies, but have not examined in detail whether this set has other
potential benefits or disadvantages. Principal components analysis of
the 132,000 XBI individuals with WGS data (Methods), based on 4.6
million loci, reveals an extraordinarily fine-scaled differentiation by
geography in the British Irish Isles gene pool (Extended Data Fig. 2).

We defined two other cohorts based on ancestry: African (XAF;
n=9,633; Extended Data Fig. 4) and South Asian (XSA; n=9,252;
Extended Data Fig. 5) (Fig. 3a-c). The 37,598 UKB individuals who do
notbelongto XBI, XAF or XSA were assigned to the cohort OTH (others).
The WGS data of the XAF cohort represent one of the most compre-
hensive surveys of African sequence variation to date, with reported
birthplaces of its members covering 31 of the 44 countries on mainland
of sub-Saharan Africa (Extended Data Fig.4). Owing to the considerable
genetic diversity of African populations, and resultant differences in
patterns of linkage disequilibrium, the XAF cohort may prove valuable
for fine-mappingassociationsignals due to multiple strongly correlated
variants identified in XBl or other non-African populations.

We crossed GraphTyperHQ variants with exon annotations and found
that, onaverage, around1in 30 individualsis homozygous for rare (minor
allele frequency of lessthan1%) LoF mutations in the homozygous state
and the median number of heterozygous rare LoF is 24 per individual.
We detected rare LoF variants in 19,105 genes, in which 2,017 genes had
homozygous carriers of rare LoFs (individuals n = 5,102). Amarked differ-
enceinthe number of homozygous LoFs carriers was found between the
cohorts, with XSA having thelargest fraction of homozygous LoF carriers
(Extended DataFig. 6b). A notable feature of the XSA cohortis elevated
genomicinbreeding, probably owing to endogamy?, particularly among
self-identified Pakistani individuals®® (Extended Data Fig. 6a).

Onaverage, individuals carried alternative alleles of 3,410,510 SNPs
andindels (Fig. 4a), per haploid genome. A greater number of variants
aregenerally foundinindividuals born outside Europe (Extended Data
Fig.7), because the human reference genomeis primarily derived from
individuals of European ancestry®. XAF individuals carry the greatest
number of alternative alleles (Fig. 4a). We constructed cohort-specific
DRs and found that XAF shows greater depletion around exons than
XBland XSA (Extended Data Fig. 8). Largely owing to variation in the
number of individuals sampled, the average number of singletons per
individual varies considerably by ancestry (Fig. 4a). Thus, individuals
from the XBI, XAF and XSA cohorts have an average of 1,330, 9,623
and 8,340 singleton variants, respectively. In XBI, singleton counts
(Fig.3d) indicate that the expected number of new variants discovered
per genome is still substantial, but varies geographically, averaging
around1,000innorthernEngland and 2,000 in southeastern England.
This pattern is largely explained by denser sampling of some regions
(Fig. 3e,f) rather than regional ancestry differences.

Imputation

We were abletoreliably impute variantsinto the entire UKB sample set
downto very low frequency (Fig. 4b). We imputed phased genotypes,
which permit analysis that depend on phase such as identification of
compound LoF heterozygotes. A single reference panel was used to
imputeinto the genomes of all participantsin UKB, but results are pre-
sented separately for the three cohorts (Supplementary Table11). This
reference panel canbe used for accurateimputationinindividuals from
the UK and many other populations. Inthe XBI cohort, 98.5% of variants
with a frequency above 0.1% and 65.8% of variants in the frequency
category of 0.001-0.002% (representing 3-5 WGS carriers) could be
reliably imputed (Fig. 4b and Supplementary Fig.13). Variants were also
imputed with high accuracy in XAF and XSA cohorts (Fig. 4b), inwhich
97.5% and 94.9% of variants in frequencies 1-5% and 56.6% and 48.9%
of variants carried by 3-5 sequenced individuals could be imputed,
respectively. A larger number of variants, particularly rare ones, are
imputed for all cohorts than when using a alternate imputation panel®
(Supplementary Table12). Itis thus likely that the UKB reference panel
provides one of the best-available option forimputing genotypesinto
population samples from Africa and South Asia.

We found a number of clinically important variants that can now
beimputed fromthe dataset. These include rs63750205 (NM_000518.5
(HBB):c.*110_*111del) in the 3’ UTR of HBB, a variant that has been
annotated in Clinvar® as likely pathogenic for B-thalassaemia.
rs63750205-TTA has 0.005% frequency in the imputed XBI cohort
(imputationinformation of 0.98) and is associated with lower mean cor-
puscularvolumeby2.88s.d.(95% CI2.43-3.33, two-sided P=1.5 x 107¢, ).

Inthe XSA cohort, we found rs563555492-G, a previously reported*°
missense variantin PIEZOI (frequency = 3.65% for XSA, 0.046% for XAF
and 0.0022% for XBI) associated with higher haemoglobin concentra-
tion, effect 0.36 s.d. (95% Cl 0.28-0.44, two-sided P=8.9 x 107, x?).
The variant can be imputed into the XSA population with imputation
information of 0.99.

In the XAF cohort, we found the stop-gain variant rs28362286-C
(p.Cys679Ter) in PCSK9 (frequency = 0.93%in XAF,0.00016%in XBland
0.0070% in XSA) imputed in the XAF cohort with imputationinforma-
tion of 0.93. The variant lowers non-HDL cholesterol by 0.92s.d. (95% Cl
0.75-1.09, two-sided P= 2.3 x 107, *). We found a single homozygous
carrier of this variant, who has a 2.5 s.d. lower non-HDL cholesterol
thanthe population mean, is 61 years of age and appears to be healthy.

SNP and indel associations notin WES

Wetested imputed GraphTyper SNP/indel, microsatellite and SV data-
sets for association with a total of 8,180, 1,291 and 459 phenotypes in
the XBI, XAF and XSA cohorts, respectively. We highlight examples of

Nature | Vol 607 | 28 July 2022 | 737



Article

associations with traits that could not be easily identified in WES or SNP
array data, starting with three examples of SNP and indel associations
in the XBI cohort.

Thefirstisanassociation in the XBl cohort between arare variant—
rs117919628-A (frequency = 0.32%; imputation information of
0.90), in the promoter region of GHRH, which encodes growth
hormone-releasing hormone, close to one of its transcription start
sites—and less height (effect =-0.32s.d. (95% C10.27-0.36), two-sided
P=1.6 10", x%). GHRH is a neuropeptide secreted by the hypothala-
mus to stimulate the synthesis of growth hormone (GH). We note that
the effect (—0.32s.d. or -3 cm) of rs117919628 is greater than any vari-
antreportedinlarge height genome-wide association studies (GWAS;
approximately 1,200 associated variants)* . In addition to reducing
height, rs117919628-A is associated with lower serum levels of insulin
growth factor 1(IGF1; effect =-0.36 s.d. (95% C10.32-0.40), two-sided
P=3.2x107%,x%). The production of IGF1is stimulated by GH and medi-
ates the effect of GH on childhood growth, further supporting the
hypothesis that GHRH mediates the effects of rs117919628-A. Owing
toits location around 50 bp upstream of the GHRH 5’ UTR, this vari-
antis not targeted by the UKB WES, and neither is the only strongly
correlated variant rs372043631 (intronic). rs117919628-A is not cor-
related with rs763014119-C (no individuals carry the minor allele of
bothvariants), apreviously reported* very rare frameshift deletionin
GHRH (Phe7Leufster2; frequency = 0.0092%), associated with reduced
height and IGF1levels (height effect =-0.63 s.d (95% C1 0.36-0.89),
two-sided P=4.6 x 107%; IGF1 effect = -0.74 s.d. (95% C1 0.49-0.99),
two-sided P=4.9 x107%, x?).

The second example is rs939016030-A, a rare 3’ UTR essential
splice acceptor variant in the gene encoding tachykinin 3 (TAC3; fre-
quency = 0.033%; c.*2-1G>T in NM_001178054.1 and NM_013251.3).
This variant is not found in WES of the UKB* and neither are the two
highly correlated variants: one intronic (rs34711498) and one intergenic
(rs368268673). The minor allele of this 3’ UTR essential splice variant,
rs939016030-A, is associated with later age of menarche, with an effect
0f0.57s.d. (95% C10.41-0.74) or 11 months (two-sided P=1.0 x 10, y?).
Rare coding variantsin TAC3anditsreceptor TACR3have beenreported
to cause hypogonadotropic hypogonadism* under autosomal reces-
sive inheritance. However, in the UKB, the association of the 3’ UTR
spliceacceptor variantis only driven by heterozygotes (approximately
1in 1,500 individuals) with no homozygotes detected. We replicated
thisfindinginaset of 39,360 Danish individuals, with an effect of 0.70
s.d. (95% C10.34-1.06, frequency = 0.05%, two-sided P= 0.00014, x°).

The third example is a rare variant (rs1383914144-A; frequency =
0.40%) near the centromere of chromosome 1 (start of 1q) thatassoci-
ates with lower levels of uricacid (effect =-0.43 s.d. (95% C10.40-0.46)
or-0.58 mg dI™ (95% C1 0.54-0.62), two-sided P=8.1x107, ¥*) and
protection against gout (OR =0.36 (95% CI 0.28-0.46), two-sided
P=4.2x107", x). A second variant, rs1189542743, 4 Mb downstream
attheend of chromosome 1pis strongly correlated with rs1383914144
(r*=0.68) and yields a similar association with uric acid. No associa-
tion was reported in this region in the uric acid GWASY. The effect of
rs1383914144-Aonuricacidis larger than of any variant reportedinthe
latest GWAS meta-analysis of this trait. Wereplicated these findingsin
Icelandic individuals (rs1383914144-A, frequency = 0.47%; uric acid:
two-sided P=8.0 x 107, ¥, effect = - 0.51s.d. (95% C10.43-0.59); gout:
two-sided P=0.0018, x*, OR = 0.31(95% C1 0.15-0.64)).

Structural variants

Weidentified SVsin each individual using Manta*® and combined these
with variants from a long-read study* and the assemblies of seven
individuals®. We genotyped the resulting 895,055 SVs (Fig. 4c) with
GraphTyper®, of which 637,321 were considered reliable.

Onaverage, weidentified 7,963 reliable SVs perindividual, 4,185 dele-
tions and 3,778 insertion (Fig. 4a). These numbers are comparable to
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the 7,439 SVs per individual found by Gnomad-SV*, another short-read
study, but considerably smaller than the 22,636 high-quality SVs found
inalong-read sequencing study*’, mostly owing to an underrepresen-
tation of insertions and SVs in repetitive regions. SVs show a similar
frequency distribution as SNPs and indels and a similar distribution
of variants across cohorts (Fig. 4a).

We present four examples of phenotype associations with SVs, not
easily found in WES data. First, a rare (frequency = 0.037%) 14,154-bp
deletion that removes the first exon in PCSK9, previously discovered
using long-read sequencing in the Icelandic population and is associ-
ated with lower levels of non-HDL cholesterol*. There were 32 WGS
carriers in the XBI cohort (frequency = 0.012%) and 72 carriers in
the XBl imputed set (frequency = 0.0087%) who had 1.22 s.d. (95% CI
0.90-1.55) lower levels of non-HDL cholesterol than non-carriers
(two-sided P=1.2x107%, x2).

The second example is a 4,160-bp deletion (frequency = 0.037% in
XBI) that removes the promoter region from 4,300 to 140 bp upstream
of the ALB gene, which encodes albumin. Not surprisingly, carriers of
this deletion have markedly lower levels of serum albumin (effect =1.50
s.d. (95% CI1.35-1.62), two-sided P= 9.5 x 10, x*). The variant is also
associated with traits correlated with albumin levels; carriers had
lower levels of calcium and cholesterol: 0.62 s.d. (95% CI 0.50-0.75,
two-sided P=2.9 x 10, x*) and 0.45s.d. (95% C10.30-0.59, two-sided
P=11x107x%), respectively.

Thethird SVexampleisal6,411-bp deletion (frequency = 0.0090%in
XBI) that removes the last two exons (4 and 5) of GCSH, which encodes
glycine cleavage system H protein. Carriers of this deletion have
markedly higher levels of glycine in the UKB metabolomics dataset
(effect =1.45s.d. (95% C11.01-1.86), two-sided P=1.2 x 107, x?).

The final example is a rare (frequency = 0.892% in XBI) 754-bp dele-
tion overlapping exon 6 of NMRK2, which encodes nicotinamide
riboside kinase 2, that removes 72 bp from the transcribed RNA that
corresponds to a 24 amino acid in-frame deletion in the translated
protein. Carriers of this deletion have a 0.22 s.d. (95% CI 0.18-0.27)
earlier age at menopause (two-sided P=1.1x107%, x*). Nearby is the
variant rs147068659, which has been reported to be associated with
this trait®?, with an effect of 0.20 s.d. (95% C1 0.16-0.24) earlier age at
menopause (two-sided P=2.0 x 1072, ¥?) in the XBl cohort. The deletion
and rs147068659 are correlated (2 = 0.67); after conditional analysis
the deletion remains significant (two-sided P= 6.4 x 108, ?), whereas
rs147068659 does not (two-sided P= 0.39, x%), indicating that the dele-
tionis the lead variant for the locus. NMRK2 is primarily expressed in
heart and muscle tissue®. In our dataset of right atrium heart tissue,
one individual out of a set of 169 RNA-sequenced individuals is a car-
rier of this deletion. As expected, we observed decreased expression
ofexon 6inthisindividualand anincreasein the fraction of transcript
fragments skipping exon 6 (Extended Data Fig. 9).

Microsatellites are commonly overlooked

We identified 14,321,152 alleles at 2,536,688 microsatellite loci using
popSTR*inthe150,119 WGS individuals who carry, on average, 810,606
non-reference microsatellite alleles. The number of non-reference
alleles carried per individual shows a similar distribution across the
UKB cohorts as other variant types characterized in this study (Fig. 4a).
Microsatellites are among the most rapidly mutating variants in the
human genome and a source of genetic variation that is usually over-
looked in GWAS. Repeat expansions are known to associate with a
number of phenotypes, including fragile X syndrome®. We were able
toimpute microsatellites downto a very low frequency (Supplementary
Fig.4)inallthree cohorts, providing one of the first large-scale datasets
ofimputed microsatellites.

We genotyped a microsatellite within the CACNAIA gene, which
encodes voltage-gated calcium channel subunit-a 1A. Individuals who
have 20 or more repeats of this microsatellite generally suffer from



lifelong conditions that affect the brain, including familial hemiplegic
migraine type 1, epilepsy, episodic ataxia type 2 and spinocerebel-
lar ataxia type 6 (ref. ). Carriers in the XBI cohort of 22 copies of the
microsattelite repeat were at greater risk for hereditary ataxia (fre-
quency =0.0071%, OR =304, two-sided P=1.1x107%, y?).

We also confirmed an association between a microsatellite within
the 3’ UTR of DMPK, which encodes DM1 protein kinase, and myotonic
dystrophy in the XBI cohort. Expression of DMPK has been shown to
benegatively correlated with the number of repeats of the microsatel-
lite"”. The risk of myotonic dystrophy increases with copy number of
the repeats, rising rapidly with the number of repeats carried by an
individual up toan OR of 161 for individuals carrying 39 or more repeats
(Extended DataFig. 10 and Supplementary Table 13).

Discussion

The dataset provided by sequencing the whole genomes of approxi-
mately 150,000 UKB participantsis unparalleled inits size and provides
the most extensive characterization of the sequence diversity in the
germline genomes of asingle population to date. We characterized an
extensive set of sequence variantsinthe WGSindividuals, providing two
setsof SNPandindel data, as well as microsatellite and SV data, variant
classes that are frequently not interrogated in GWAS. The number of
SNPs andindels are 40-fold greater than from WES of the same individu-
als. Even within annotated coding exons, WES misses 10.7% of variants,
found through WGS. WES misses most of the remainder of the genome,
including functionally important UTRs, promoter regions and exons
yettobeannotated. Theimportance of these regionsis exemplified by
the discovery of rare non-coding sequence variants with larger effects
on height and menarche than any variants described in GWAS to date.

We expect the DR score presented here to be animportant resource
for identifying genomic regions of functional importance, although
further evaluations should be taken to understand its properties and
implicationsand howit compares to other measures of conservationand
sequence constraint. Although coding exons are clearly under strong
purifying selection, as represented by a low DR score, they represent
only asmallfraction of the regions withalow DR score. The large-scale
sequencing described here, as well as the continued effort in sequenc-
ing the entire UKB, promises to vastly increase our understanding of
the function and impact of the non-coding genome. When combined
with the extensive characterization of phenotypic diversity in the UKB,
these datashould greatly improve our understanding of the relationship
between human genome variation and phenotype diversity.
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Methods

Datasets

UKB data. The UKB phenotype and genotype data were collected fol-
lowing informed consent obtained from all participants. The North
West Research Ethics Committee reviewed and approved the scien-
tific protocol and operational procedures (REC reference number:
06/MREO08/65) of the UKB. Data for this study were obtained and
research conducted under the UKB applications license numbers
24898, 52293, 68574 and 69804. Sequence data were processed as
described in Supplementary Notes 1-4, Supplementary Figs. 5-8 and
Supplementary Tables16 and 17.

Phenotypes were downloaded from the UKB. A total of 8,180, 1,291
and 459 phenotypeswere constructed for the XBI, XAF and XSA cohorts,
respectively. The examples presented here were selected as noteworthy
representative examples of association. The processing of phenotypes
presented here, with reference to the field identity in the UKB data
showcase, is provided in Supplementary Table 15.

Icelandic data. The gout sample set®, a total of 1,740 Icelandic indi-
viduals, was recruited through multiple sources. A subset of these in-
dividuals were regular users of anti-gout medication corresponding
to the Anatomical Therapeutic Chemical Classification System class
MO04 (ATC-MO04). Individuals using ATC-M04 were identified through
questionnaires at the time of entry into genetics projects at deCODE and
provided by the Directorate of Heahth from entry in the Prescription
Medicines Register (2005-2020) or the Register of RAI Assessments
and Minimum Data Set (MDS) for residents and applicants of nursing
homes (1993-2018). Furthermore, about one-halfhad received a clinical
diagnosis of gout (International Classification of Disease: ICD-9 code 274
orICD-10 code M10) between1984 and 2019 at Landspitali, the National
University Hospital of Iceland, or at two rheumatology clinics, or sucha
diagnosis was determined by examining RAland MDS medical records.

Serum levels of uric acid in blood samples from 95,086 Icelandic
individuals were obtained from Landspitali, the National University
Hospital of Iceland, and the Icelandic Medical Center (Laeknasetrid)
Laboratory in Mjodd (RAM) between 1990 and 2020. Serum levels of
uricacid were normalized to astandard normal distribution using quan-
tile-quantile normalization and then adjusted for sex, year of birth and
age at measurement. For individuals for whom more than one measure-
mentwas available, we used the average of the normalized value. Serum
levels of uricacid were determined from an enzymaticreactioninwhich
uricase oxidizes urate to allantoin and hydrogen peroxide, which, with
theaid of peroxidase and adye, forms a coloured complex that canbe
measured ina photometer at a wavelength of 670 nm.

Allparticipating individuals who donated blood signed informed con-
sent. Theidentities of participants were encrypted using a third-party
system approved and monitored by the Icelandic Data Protection
Authority. The study was approved by the National Bioethics Com-
mittee of Iceland (approval no. VSN-15-023) following evaluation of the
Icelandic Data Protection Authority. All data processing complies with
theinstructions of the Data Protection Authority (PV_2017060950bS).

RNA sequence data analysis was approved by the Icelandic Data Pro-
tection Authority and the National Bioethics Committee of Iceland
(no.VSNb2015030021).

Danish data. Data were provided from the Danish Blood Donor Study
(DBDS)®'. The DBDS genetic study has been approved by the Danish
National Committee on Health Research Ethics (NVK-1700407) and by
the Danish Capital Region Data Protection Office (P-2019-99).

SNP and indel calling with GraphTyper

Before running GraphTyper, we preprocessed all input compressed
reference-oriented alignment map (CRAM) index (CRAI) indices by
extracting a large single file containing all CRAl index entries with

sample ID for a 50-kb window (with 1-kb padding at each side of the
region) for all samples. For each region, we then created a chopped
CRAIforeachsample by processing the large file for the corresponding
region, substantially reducing the amount of CRAlindex entries read.

Furthermore, we created asequence cache of the reference FASTA file
using the ‘seq_cache_populate.pl’script distributed with samtools1.9.In
eachregion, we copied the corresponding sequence cacheto thelocal
diskand usedit for reading the CRAM files by setting the ‘REF_CACHE’
environment variable.

We ran GraphTyper (v2.7.1) using the ‘genotype’ subcommand.
The full command that we ran was in the format:

graphtyper genotype ${UKBIO_REFERENCE} --sams=${SAMS} --sams_
index=${CRAI_TMP}/crai filelist.txt--avg_cov_by readlen=${COVERAGES}
--region=${REGION} --threads=${THREADS} --verbose

Where UKBIO_REFERENCE is the GRCh38_full_analysis_set_plus_
decoy_hla FASTA sequence file, SAMS is a list of all input BAM/CRAM
files, CRALTMP is a path to the chopped CRAl files on the local disk,
COVERAGES is the coverage divided by the read length for each input
file, REGION is the genotyping region and THREADS is the number of
threads to use.

SNP and indel calling with GATK is given in Supplementary Note 5.
Detailed comparisons of GraphTyper and GATK call sets are provided
in Supplementary Notes 6 and 7, Supplementary Figs. 9-12 and Sup-
plementary Tables 18-21.

Running time. All jobs were run using 12 cores with 60 GB of reserved
RAM. Approximately 1% of jobs were rerun using 24 cores with120 GB
reserved RAM. A few jobs requiring more cores and memory, with a
singlejob finishing with48 cores and 1,000 GB of RAM. Total reserved
CPU time on cluster was 5.8 million CPU hours and total effective com-
pute time of 5.0 million CPU hours. The difference in these numbersis
explained by the fact that not all cores reserved for the program may
not utilize all at the same time.

SV calling with Manta and GraphTyper

We ran a SV genotyping pipeline similar to the one that we had previ-
ously applied to 49,962 Icelandic individuals®. In summary, we ran
Manta*®v1.6 to discover SVs on all 150,119 individuals in the genotyping
set. We also created aset of highly confident common SVs (imputation
information above 0.95, with frequency above 0.1%) from our previ-
ous studies using both Illumina short reads* and Oxford Nanopore
long-read data®. Finally, we inferred a set of SVs from six publicly avail-
able assembly datasets using dipcall®, as previously described*’. We
used svimmer® to merge these different SV datasets and we called the
resulting SVs using GraphTyper*® version 2.7.1. By incorporating data
fromlong-read data and high-quality assemblies, we were able to call
moretrue SVsthanusing shortreads only, particularly forcommon SVs.

A total of 895,054 variants were called, of which 637,321 variants
were annotated as "Pass". Variant counts are presented for variants
annotated by GraphTyper as "Pass", unless otherwise noted.

The majority of the SVs are deletions (81.3%); however, we observed
onlyslightly more deletions thaninsertions and duplications on aver-
age perindividual (Fig. 4a). This is because the source for many inser-
tions are long reads and assembly data, and thus many rare insertions
are missing. Deletions are typically easier to discover in short-read
data. Individuals who belong to the XAF cohort carry more SVs than
inthe other cohorts (Fig. 4b).

Imputation and phasing

The UKB samples were SNP chip genotyped with acustom-made Affy-

metrix chip, UK BiLEVE Axiom, in the first 50,000 individuals®, and the

Affymetrix UKB Axiom array®* in the remaining participants. We used

the existing long-range phasing of the SNP chip-genotyped samples®.
We excluced SNP and indel sequence variants in which at least 50%

ofthe samples had no coverage (GQ score = 0), if the Hardy-Weinberg
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Pvalue was less than 107° or if heterozygous excess was less than 0.5
or greater than 1.5.

We used the remaining sequence variants and the long-range-phased
chip datato create a haplotype reference panel using in-house tools™®.
We then imputed the haplotype reference panel variants into the
chip-genotyped samples using in-house tools and methods previously
described".

The imputation consists of estimating, for each haplotype, haplo-
type sharing with haplotypesinthe haplotype reference panel, giving
haplotype weights for each haplotype. These weights along with allele
probabilities for each haplotype in the haplotype reference panel allow
imputation with a Li and Stephens®® model similar to the one used
in IMPUTE2 (ref. ¢). Estimation of haplotype weights was based on
long-range-phased chip haplotypes.

Sequence variant phasing consists of iteratively imputing the phase
ineach sequenced sample based onthe other sequenced samples and
the estimated phase from the last iteration. The imputed genotypes,
along with the original genotypes, are weighted together to estimate
new allele probabilites for the haplotypes. Imputation is done as
described above.

We computed a leave-one-out r? score (L10R2) as the squared cor-
relation (r* value) of the original genotype calls, with the genotypes
imputed for each sample when excluding the original genotype of the
sample from the imputation input.

Batch effects from the sequencing centre were discovered in both
raw genotype (Supplementary Table 21) and imputed data (Supple-
mentary Table 22).

Identification of functionally important regions

To identify functionally important regions, we started by estimating
whether reliable basecalls can be expected to be made at each site in
the genome. The sequence coverage at each base pair in GRCh38 was
computed foreachofthe 1,000 randomly selected individuals. At each
base pair, we then computed the mean and s.d. of coverage across the
1,000individuals. Base pairs with mean coverage of at least 20 and s.d.
coverage of at most 12 were considered reliable base pairs. Only vari-
antsin GraphTyperHQ (AAscore > 0.5) were considered in the analysis.

Recurrent mutations and spectra under saturation. Using the clas-
sification of SNP variants from above, we calculated the ratio of all SNPs
in GraphTyperHQ that fallsinto each category. Then, we did the same
restricting tosingletons, that s, calculate the proportion of singletons
falling into each mutation class. For comparison, we calculated the frac-
tions of each SNP classin all 181,258 SNPs from a curated list 0f 194,687
de novo mutations in 2,976 Icelandic trios?°. We used this distribution
on mutation classes to calculate the transition to tranversion ratio in
each case.

To get alist of recurrent mutations, we joined this list of de novo
mutations with GraphTyperHQ.

Saturation for general mutation classes. We restricted our analysis
tothereliable base pairs described above and grouped base pairs and
their complement and considered each A or T base in the genome as
amutation opportunity for T>A, T>C or T>G mutations. Similarly, we
considered each G or C base as a potential C>A, C>G or C>T mutation,
splitting C>T into two classes based on whether they occurina CpG
context. We then computed the saturation ratio as the number of ob-
served mutations in GraphTyperHQ divided by the number of mutation
opportunities at reliable base pairs. Computation was done separately
for the autosomes and chromosome X. 95% Cls were computed using a
normal approximation to the binomial distribution, treating each site
asanindependent observation.

Sites methylated in the germline. We determined sites on GRCh38
that are methylated in the germ line using ENCODE whole-genome

bisulfite sequencing’ data from samples of human testes and ovaries.
More precisely, we used sample ENCFF946UQB and ENCFF157ZPP for
testesand ENCFF561KY]J, ENCFF545XYIand ENCFF51500Q for ovaries.

We assumed that methylation is strand symmetric and computed
the methylation ratio for each CpG dinucleotide in a given tissue
type by tabulating the number of reads supporting methylation or
non-methylation in each dinucleotide, summing over all samples of
agiventissue type and then computed the fraction of reads that sup-
port methylation.

We considered asiteina CpGdinucleotide on the reference genome
methylated in the germ line if its methylation ratio was at least 0.7 in
both testes and ovaries, and the combined depth was at least 20 for
testes and 30 for ovaries, or 10 times the number of samples in each
tissue type. Thisresultedinalist 0f17,902,255 CpG (17,345,777 autoso-
mal) dinucleotides, with 35,804,510 (34,691,554 autosomal) CpG>TpG
mutation opportunities.

Saturation at methylated CpG sites. For each potential CpG>TpGata
methylated site, we assessed its most significant potential consequence
with Variant Effect Predictor®®v.100. In the case of multiple such conse-
quences, we chose the alphabetically last one. We also classified them
based onthe functional classifications described above. For each class,
we estimated the saturation as the ratio of variants of that functional
class in GraphTyperHQ divided by the number of mutation opportu-
nities. 95% Cls were computed using a normal approximation to the
binomial distribution, treating each site asanindependent observation.

Depletion rank. We followed amethodology akin to a previously pub-
lished study”. A variant depletion score was computed for an overlap-
ping set of 500-bp windows inthe genome with a 50-bp step size. A total
0f49,104,026 500-bp windows in which at least 450 bp were considered
reliable base pairs were considered for further analysis. We tallied the
number of occurrences of each possible heptamer (H) and the number
oftimes the central base pair in the heptamer was observed asaSNP (S),
acrossthe first set of non-overlapping windows. To account for regional
mutational patterns in the genome®, we dichotomized the genome
into two mutually exclusive subsets, inside and outside C>G-enriched
regions (Supplementary Table 12 in ref. ¢°). The ratio S:H was then in-
terpreted as the expected mutation rate of the heptamer, separately
for each of the two subsets. For each window, we then computed the
observed number of variants (O) and then subtracted its expected num-
berofvariants (E), givenits heptamers. This difference was divided by
thesquareroot of the expected value ((O-E)/vE). We exclued windows
fromtheanalysisinwhich the average AAscore was lower than 0.85 for
variants within the window. These ((O-E)/vE) numbers were then sorted
and the window withthe i-thlowest depletion score was assigned aDR
of100(i-0.5)/n, where nis the total number of windows.

To compute DR restricted to the cohorts, we applied the same
approach restricting to sequence variants that are present in each of
the XBI, XSA and XAF cohorts.

Association testing

We tested for association with quantitative traits based on the linear
mixed model implemented in BOLT-LMM. We used BOLT-LMM to
calculate leave-one-chromosome out residuals, which we then tested
for association using simple linear regression. We used logistic regres-
sionto test for the association between sequence variants and binary
traits. We tested variants for association under the additive model
using the expected allele counts as a covariate for quantitative traits
andintegrating over the possible genotypes for binary traits. Sequenc-
ing status (whether the individual is one of the WGS individuals) and
otheravailableindividual characteristics that correlated with the trait
were also included in the model: sex, age and principal components
(20 for XBland XAF, 45 for XSA) to adjust for population stratification.
Association analyses with XAF and XSA ethnicities have sample sizes of



less than10,000 and therefore were done with linear regression directly
instead of BOLT-LMM. The correction factor used was the intercept of
each regression analysis.

We used linkage disequilibrium (LD) score regression to account for
distributioninflationinthe dataset due to crypticrelatedness and popu-
lation stratification™. Using 1.1 million variants, we regressed the x’ sta-
tistics from our GWAS against the LD score and used the intercepts as a
correctionfactor. Effect sizes based onthe leave-one-chromosome out
residuals were shrunk and we rescaled them based on the shrinkage of
the 1.1 millionvariants usedin the LD score regression. Supplementary
Table 24 lists statistics for the GWAS analysis of each of the association
signals presented here. Manhattan plots, quantile-quantile plots and
histograms of inverse-normal-transformed values after adjustment for
covariates age, sex and 40 principal components can be foundin Sup-
plementary Figs. 14 and 15 for quantitative and binary phenotypes,
respectively. Locus plots for uric acid and menarche association can
be foundin Supplementary Fig.16. OMIM* and Open Targets’?annota-
tions of the genes presented are provided in Supplementary Table 14.

No statistical methods were used to predetermine sample size for
association testing. All associations reported are for imputed geno-
types. For comparison purposes, associations were also performed
on the genotypes directly. For the association testing perfomed on
thedirectly genotyped markers, the same set of covariates were used,
apartfromsequencingstatus (as allindividuals were sequenced), and
also the sequencing centre (deCODE, Sanger main, Sanger Vanguard)
was used as a covariate. Supplementary Table 25 shows the correla-
tion between the raw and the imputed genotypes and batch effects
for sequencing centre in the XBI cohort.

Anindividual was deemed tobe a carrier of analleleif the probability
that the individual carried the allele was at least 0.9. The association
analysis was limited to markers in which at least one (XAF, XSA), two
(XBI, imputed dataset) or three (XBI, raw genotypes) individuals car-
ried the minor allele. As association tests are frequently limited to a
subset of the individuals in the dataset, the association analysis was
further limited to those markersin whichthere was at least one carrier
among the individuals in the association test. In the imputed dataset,
association tests were further limited to those markers withimputation
information > 0.5 and in the raw genotype set to those markers with
sequencing information > 0.8 (ref.?).

Defining cohorts

Most studies of UKB data to date have been conducted on a list of
409,554 ‘white British’ individuals created by the UKB on the basis of
white British self-identification and clustering on genetic principal
components derived from microarray genotypes>. Like some recent
studies**”>™, we wished to capitalize on the diversity in the UKB. To
achieve this, we defined three cohorts based on the most common
ancestries identified among the participants, using a combination of
(1) uniform manifold approximation and projection (UMAP) dimension
reduction of 40 genetic principal components provided by UKB, and
(2) ADMIXTURE analysis supervised on five reference populations and
self-reported ethnicity information.

To define the three cohorts, we followed previous work”and applied
UMAP to the 40 genetic principal components provided by the UKB.
UMAP was performed in R using umap::umap() using default param-
etersinv0.2.3, notably, n_neighbours15and min_dist 0.1. UMAP placed
the individuals in a two-dimensional latent space featuring several
clusters and filaments. These structures showed a correspondence
with self-described ethnicity (Supplementary Fig.17).

To provide a separate measure of ancestry that we could use to
inform our interpretation of the UMAP clusters, we superimposed
results fromasupervised ADMIXTURE®® analysis of the UKB microarray
genotypes (Supplementary Section ADMIXTURE), using five training
populations from the 1000 Genomes Project®: CEU (northern Europe-
ans from Utah), CHB (Han Chinese in Beijing), ITU (Indian Telugu in

the UK), PEL (Peruvians in Lima) and YRI (Yoruba in Ibadan, Nigeria).
We observed aclear correspondence between UMAP coordinates and
ancestry proportions assigned by ADMIXTURE (Supplementary Figs.18
and 19). Using this correspondence and guided by self-reported eth-
nicity information, we defined the cohorts by manually delineating
regions in the UMAP latent space that were limited to individuals
with British-Irish ancestry (XBI; n = 431,805), South Asian ancestry
(XSA; n=9,633) and African ancestry (XAF; n =9,252). This left 37,598
individuals with genotype data, who were assigned to an arbitrary
cohort that we refer to as OTH (for other). The distribution of ances-
try was estimated using ADMIXTURE in each of the four cohorts
(Supplementary Fig. 18).

The most systematic difference between the XBl cohortand the pre-
vailing UKB-defined white British set is our inclusion in XBI of around
12,500 individuals identifying as white Irish. This is clearly justified,
given the known geographical and cultural proximity of the popula-
tions of Britain and the island of Ireland. More importantly, both our
analyses (and those of previous publications) clearly reveal evidence
for extensive gene flow between them. Thus, the main Irish genetic
cluster appearsin principal components analysis as anintegrated com-
ponent of continuous variation in the UK (Extended Data Fig. 2), and
is not clearly separated from others. Another major difference of the
XBI cohortrelative to the much-used white British set, is the addition
ofaround 10,900 individuals who did not identify as white British, but
we infered to have ancestry indistinguishable from British-Irish indi-
viduals. We note that the greater size of the XBI cohort should provide
more statistical power to detect genotype-phenotype associations.
Cohort definitions are described in further detail in Supplementary
Notes16-22 and Supplementary Figs.20-22.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

WGS, genotype data, phased and imputed data canbe accessed viathe
UKB research analysis platform (RAP): https://ukbiobank.dnanexus.
com/landing. The Research Analysis Platform is open to research-
ers who are listed as collaborators on UKB-approved access applica-
tions. Summary statistics for GWAS can be downloaded, for scientific
purpose only, at https://www.decode.com/summarydata/. The DR
scoreis included as supplementary data. Summary statistics for the
Danish replication phenotype can be made available on request to
0.B.P.Summary statistics for the Icelandic replication phenotype can
be made avaliable on request to K.S. The human reference genome
GRCh38 canbe found at: http://ftp.1000genomes.ebi.ac.uk/voll/ftp/
technical/reference/GRCh38_reference_genome/. Genome in a Bot-
tle WGS samples can be found at: https://ftp-trace.ncbi.nlm.nih.gov/
ReferenceSamples/giab/data/. ENSEMBL: https://m.ensembl.org/info/
data/mysql.html.

Code availability

We used publicly available software (URLs are listed below) in con-
junction with the above described algorithms. BamQC (v 1.0.0):
https://github.com/DecodeGenetics/BamQC. GraphTyper (v2.7.1):
https://github.com/DecodeGenetics/graphtyper. GATK resource
bundle (v4.0.12): gs://genomics-public-data/resources/broad/hg38/
v0. Svimmer (v0.1): https://github.com/DecodeGenetics/svimmer.
popSTR (v2.0): https://github.com/DecodeGenetics/popSTR. Dip-
call (v0.1): https://github.com/Ih3/dipcall. RTG Tools (v3.8.4): https://
github.com/RealTimeGenomics/rtg-tools. bcl2fastq (v2.20.0.422):
https://support.illumina.com/sequencing/sequencing_software/

bcl2fastq-conversion-software.html. Samtools (v1.9): http://www.
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htslib.org/. Samblaster (v0.1.24): https://github.com/GregoryFaust/
samblaster. We used R (v3.6.0; https://www.r-project.org/) extensively
to analyse data and create plots.
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