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Over the past few decades, neuroimaging has become a ubiquitous tool in basic
research and clinical studies of the human brain. However, no reference standards
currently exist to quantify individual differences in neuroimaging metrics over time,
in contrast to growth charts for anthropometric traits such as height and weight'.
Here we assemble an interactive open resource to benchmark brain morphology
derived from any current or future sample of MRI data (http://www.brainchart.io/).
With the goal of basing these reference charts on the largest and most inclusive
dataset available, acknowledging limitations due to known biases of MRI studies
relative to the diversity of the global population, we aggregated 123,984 MRI scans,
across more than 100 primary studies, from 101,457 human participants between 115
days post-conception to 100 years of age. MRI metrics were quantified by centile
scores, relative to non-linear trajectories® of brain structural changes, and rates of
change, over thelifespan. Brain charts identified previously unreported neurodevelo-
pmental milestones®, showed high stability of individuals across longitudinal
assessments, and demonstrated robustness to technical and methodological
differences between primary studies. Centile scores showed increased heritability
compared with non-centiled MRI phenotypes, and provided a standardized measure
of atypical brain structure that revealed patterns of neuroanatomical variation across
neurological and psychiatric disorders. In summary, brain charts are an essential step

towards robust quantification of individual variation benchmarked to normative
trajectories in multiple, commonly used neuroimaging phenotypes.

The simple framework of growth charts to quantify age-related change
wasfirst published inthe late eighteenth century’ and remains a corner-
stone of paediatric healthcare—an enduring example of the utility of
standardized norms tobenchmarkindividual trajectories of develop-
ment. However, growth charts are currently available only for a small
set of anthropometric variables, such as height, weight and head cir-
cumference, and only for the first decade of life. There are no analogous
charts available for quantification of age-related changesin the human
brain, although it is known to go through a prolonged and complex
maturational program from pregnancy to the third decade*, followed
by progressive senescence from approximately the sixth decade’. The
lack of tools for standardized assessment of brain development and age-
ingis particularly relevant toresearch studies of psychiatric disorders,
which areincreasingly recognized as a consequence of atypical brain
development®, and neurodegenerative diseases that cause pathological
brain changes in the context of normative senescence’. Preterm birth
and neurogenetic disorders are also associated with marked abnormali-
ties of brain structure®’ that persist into adult life*'° and are associated
with learning disabilities and mental health disorders. Mental illness
and dementia collectively represent the single biggest global health
burden”, highlighting the urgent need for normative brain charts as
an anchor point for standardized quantification of brain structure
over thelifespan™.

Such standards for humanbrain measurement have not yet material-
ized from decades of neuroimaging research, probably owing to the
challenges of integrating MRI data across multiple, methodologically
diverse studies targeting distinct developmental epochs and clinical
conditions®. For example, the perinatal period is rarely incorporated
in analysis of age-related brain changes, despite evidence that early

biophysical and molecular processes powerfully influence life-long
neurodevelopmental trajectories' " and vulnerability to psychiatric
disorders®. Primary case-control studies are usually focused on asingle
disorder despite evidence of trans-diagnostically shared risk factors
and pathogenic mechanisms, especially in psychiatry'®”. Harmoniza-
tion of MRI data across primary studies to address these and other
deficiencies in the extant literature is challenged by methodological
andtechnical heterogeneity. Compared with relatively simple anthro-
pometric measurements such as height or weight, brain morphomet-
rics are known to be highly sensitive to variation in scanner platforms
and sequences, data quality control, pre-processing and statistical
analysis’®, thus severely limiting the generalizability of trajectories
estimated from any individual study®. Collaborative initiatives spurring
collection of large-scale datasets**?, recent advances in neuroimaging
data processing®?® and proven statistical frameworks for modelling
biological growth curves®>*? provide the building blocks for amore
comprehensive and generalizable approach to age-normed quantifica-
tion of MRI phenotypes over the entire lifespan (see Supplementary
Information 1for details and consideration of previous work focused on
therelated but distinct objective of inferring brain age from MRI data).
Here, we demonstrate that these convergent advances now enable the
generation of brain charts that (1) robustly define normative processes
of sex-stratified, age-related change in multiple MRI-derived pheno-
types; (2) identify previously unreported brain growth milestones;
(3) increase sensitivity to detect genetic and early life environmental
effectsonbrainstructure; and (4) provide standardized effect sizes to
quantify neuroanatomical atypicality of brain scans collected across
multiple clinical disorders. We do not claim to have yet reached the
ultimate goal of quantitatively precise diagnosis of MRI scans from
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Fig.1|Humanbraincharts.a, MRl datawere aggregated from over 100 primary
studies comprising 123,984 scans that collectively spanned the age range from
mid-gestationto 100 postnatal years. Box-violin plots show the age distribution
foreach study coloured by itsrelative sample size (log-scaled using the natural
logarithm for visualization purposes). b, Non-centiled, ‘raw’ bilateral cerebrum
tissue volumes for grey matter, white matter, subcortical grey matter and
ventricles are plotted for each cross-sectional control scanas afunction of age
(log-scaled); points are coloured by sex. ¢, Normative brain-volume trajectories
were estimated using GAMLSS, accounting for site-and study-specific batch
effects, and stratified by sex (female, red; male, blue). All four cerebrum tissue
volumes demonstrated distinct, non-linear trajectories of their medians (with
2.5%and 97.5% centiles denoted as dotted lines) as afunction of age over the
lifespan. Demographics for each cross-sectional sample of healthy controls

individual patients in clinical practice. However, the present work
proves the principle that building normative charts to benchmark
individual differencesinbrainstructureis already achievable at global
scale and over the entire life-course; and provides a suite of open sci-
ence resources for the neuroimaging research community to accelerate
further progress in the direction of standardized quantitative assess-
ment of MRI data.
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includedinthereference dataset for normative GAMLSS modelling of each MRI
phenotypearedetailedin Supplementary Table1.2-1.8.d, Trajectories of
median between-subject variability and 95% confidence intervals for four
cerebrumtissue volumes were estimated by sex-stratified bootstrapping (see
Supplementary Information 3 for details). e, Rates of volumetric change across
thelifespanforeachtissue volume, stratified by sex, were estimated by the first
derivatives of the median volumetric trajectories. For solid (parenchymal) tissue
volumes, the horizontal line (y = 0) indicates when the volume at which each
tissue stops growing and starts shrinking and the solid vertical line indicates the
age of maximum growth of each tissue. See Supplementary Table 2.1for all
neurodevelopmental milestones and their confidence intervals. Note that y axes
inb-earescaled inunits 0f10,000 mm? (10 ml).

Mapping normative braingrowth

We created brain charts for the human lifespan using generalized addi-
tive models for location, scale and shape*** (GAMLSS), a robust and
flexible framework for modelling non-linear growth trajectories rec-
ommended by the World Health Organization®*. GAMLSS and related
statistical frameworks have previously been applied to developmental
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Fig.2|Extended global and regional cortical morphometric phenotypes.
a, Trajectories for total cerebrum volume (TCV), total surface areaand mean
cortical thickness. For each global cortical MRI phenotype, the following
sex-stratified results are shown as afunction of age over the lifespan. From top
tobottom: raw, non-centiled data; population trajectories of the median (with
2.5%and 97.5% centiles (dotted lines)); between-subject variance (with 95%
confidenceintervals); and rate of growth (the first derivatives of the median
trajectory and 95% confidence intervals). All trajectories are plottedasa
function of log-scaled age (xaxis) and yaxes are scaled in units of the
corresponding MRImetrics (10,000 mm?®for TCV, 10,000 mm?for surface area
and mm for cortical thickness). b, Regional variability of cortical volume
trajectories for 34 bilateral brainregions, as defined by the Desikan-Killiany
parcellation*, averaged across sex (see Supplementary Information 7,8 for

modelling of brain structural and functional MRI phenotypes in open
datasets?*"*', Our approach to GAMLSS modelling leveraged the
greater scale of dataavailable to optimize model selection empirically,
to estimate non-linear age-related trends (in median and variance)
stratified by sex over the entire lifespan, and to account for site- or
study-specific ‘batch effects’ on MRI phenotypes in terms of multiple
random effect parameters. Specifically, GAMLSS models were fitted
to structural MRI data from control subjects for the four main tissue
volumes of the cerebrum (total cortical grey matter volume (GMV),
total white matter volume (WMV), total subcortical grey matter volume
(sGMV) and total ventricular cerebrospinal fluid volume (ventricles or
CSF)). Supplementary Tables 1.1-1.8 present details on acquisition,
processing and demographics of the dataset; see Methods, ‘Model gen-
eration and specification’and Supplementary Information 1for further
detailsregarding GAMLSS model specification and estimation; image
quality control, which used acombination of expert visual curation and
automated metrics of image quality (Supplementary Information 2);

details). Since models were generated from bilateral averages of each cortical
region, the corticalmaps are plotted on the left hemisphere purely for
visualization purposes. Top, a cortical map of age at peak regional volume
(range 2-10years). Middle, a cortical map of age at peak regional volume
relative to age at peak GMV (5.9 years), highlighting regions that peak earlier
(blue) or later (red) than GMV. Bottom, illustrative trajectories for the earliest
peakingregion (superior parietallobe, blue line) and the latest peaking region
(insula, red line), showing the range of regional variability relative to the GMV
trajectory (grey line). Regional volume peaks are denoted as dotted vertical
lines either side of the global peak, denoted asadashed vertical line, in the
bottom panel. The left y axis on the bottom panel refers to the earliest peak
(blueline); theright yaxisrefersto the latest peak (red line).

model stability and robustness (Supplementary Information 3, 4);
phenotypic validation against non-imaging metrics (Supplementary
Information 3 and 5.2); inter-study harmonization (Supplementary
Information 5); and assessment of cohort effects (Supplementary
Information 6). See Supplementary Information 19 for details on all
primary studies contributing to the reference dataset, including mul-
tiple publicly available open MRI datasets® %,

Lifespan curves (Fig.1, Supplementary Table 2.1) showed an initial
strong increase in GMV from mid-gestation onwards, peaking at
5.9 years (95%bootstrap confidence interval (ClI) 5.8-6.1), followed
by anear-linear decrease. This peak was observed 2 to 3 years later
than previous reports relying on smaller, more age-restricted sam-
ples®* WMV also increased rapidly from mid-gestation to early
childhood, peaking at 28.7 years (95% bootstrap CI 28.1-29.2), with
subsequent accelerated decline in WMV after 50 years. Subcorti-
cal GMV showed an intermediate growth pattern compared with
GMVand WMV, peakinginadolescence at 14.4 years (95% bootstrap
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Fig.3|Neurodevelopmental milestones. Top,agraphical summary of the
normative trajectories of the median (50th centile) for each global MRI
phenotype, and key developmental milestones, as afunction of age
(log-scaled). Circles depict the peak rate of growth milestones for each
phenotype (defined by the maxima of the first derivatives of the median
trajectories (Fig. 1e)). Triangles depict the peak volume of each phenotype
(defined by the maxima of the median trajectories); the definition of
GMV:WMV differentiationis detailed in Supplementary Information 9.1.
Bottom, agraphicalsummary of additional MRIand non-MRI developmental
stages and milestones. From top to bottom: blue shaded boxes denote the age
range of incidence for each of the major clinical disorders representedin the
MRl dataset; black boxes denote the age at which these conditions are
generally diagnosed as derived from literature” (Methods); brownlines

Cl14.0-14.7). Both the WMV and sGMV peaks are consistent with
previous neuroimaging and postmortem reports***¢, By contrast,
CSF showed an increase until age 2, followed by a plateau until age
30, and then a slow linear increase that became exponential in the
sixth decade of life. Age-related variance (Fig. 1d), explicitly esti-
mated by GAMLSS, formally quantifies developmental changes
in between-subject variability. There was an early developmental
increase in GMV variability that peaked at 4 years, whereas subcorti-
cal volume variability peaked in late adolescence. WMV variability
peaked during the fourth decade of life, and CSF was maximally
variable at the end of the human lifespan.
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represent the normative intervals for developmental milestones derived from
non-MRIdata, based on previous literature and averaged across males and
females (Methods); grey bars depict age ranges for existing (World Health
Organization (WHO) and Centers for Disease Control and Prevention (CDC))
growth charts of anthropometric and ultrasonographic variables?. Across
both panels, light grey vertical lines delimit lifespan epochs (labelled above the
top panel) previously defined by neurobiological criteria®®. Tanner refers to the
Tanner scale of physical development. AD, Alzheimer’s disease; ADHD,
attention deficit hyperactivity disorder; ASD, autism spectrum disorder
(including high-risk individuals with confirmed diagnosis at a later age); ANX,
anxiety or phobicdisorders; BD, bipolar disorder; MDD, major depressive
disorder; RMR, resting metabolic rate; SCZ, schizophrenia.

Extended neuroimaging phenotypes

To extend the scope of brain charts beyond the four cerebrum tis-
sue volumes, we generalized the same GAMLSS modelling approach
to estimate normative trajectories for additional MRI phenotypes
including other morphometric properties at a global scale (mean
cortical thickness and total surface area) and regional volume at
each of 34 cortical areas* (Fig. 2, Supplementary Information 7-9,
Supplementary Tables 1, 2). We found, as expected, that total sur-
face area closely tracked the development of total cerebrum vol-
ume (TCV) across the lifespan (Fig. 2a), with both metrics peaking
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Fig.4|Case-control differences and heritability of centile scores. a, Centile
score distributions for each diagnostic category of clinical cases relative to the
control group median (depicted as a horizontal black line). The median
deviation of centile scoresin each diagnostic categoryisoverlaid asalollipop
plot (white lines with circles corresponding to the median centile score for each
group of cases). Pairwise tests for significance were based on Monte Carlo
resampling (10,000 permutations) and Pvalues were adjusted for multiple
comparisons using the Benjamini-Hochberg false discovery rate (FDR)
correctionacross all possible case-control differences. Only significant
differences from the control group (CN) median (with corrected P<0.001)

are highlighted withan asterisk. For acomplete overview of all pairwise
comparisons, see Supplementary Information10, Supplementary Table 3.
Groupsare ordered by their multivariate distance from the CN group (see cand
Supplementary Information10.3). b, The CMD is asummary metric that
quantifies the aggregate atypicality of anindividual scanin terms of allglobal
MRIphenotypes. The schematic shows segmentation of four cerebrum tissue

atapproximately 11-12 years of age (surface area peak at 10.97 years
(95%bootstrap C110.42-11.51); TCV peak at12.5 years (95% bootstrap
Cl12.14-12.89). By contrast, cortical thickness peaked distinctively
earlyat1.7 years (95% bootstrap CI1.3-2.1), which reconciles previous
observations that cortical thickness increases during the perinatal
period*® and declines during later development*’ (Supplementary
Information 7).

We also found evidence for regional variability in volumetric neu-
rodevelopmental trajectories. Compared with peak GMV at 5.9 years,
the age of peak regional grey matter volume varied considerably—from
approximately 2to 10 years—across 34 cortical areas. Primary sensory
regions reached peak volume earliest and showed faster post-peak
declines, whereas fronto-temporal association cortical areas peaked
later and showed slower post-peak declines (Fig. 2b, Supplementary
Information 8.2). Notably, this spatial pattern recapitulated agradient

volumes, followed by estimation of univariate centile scores, leading to the
orthogonal projection of asingle participant’s scan (Sub,) onto the
fourrespective principal components of the CN (coloured axes and arrows).
The CMD for Sub, is then the sum of its distances from the CN group mean
onallfour dimensions of the multivariate space. ¢, Probability density plots of
CMD across disorders. Vertical black line depicts the median CMD of the
controlgroup. Asterisksindicate an FDR-corrected significant difference from
the CNgroup (P<0.001).d, Heritability of raw volumetric phenotypes and
their centile scores across two twin studies (Adolescent Brain Cognitive
Development (ABCD) and Human Connectome Project (HCP)); Supplementary
Information19), see Supplementary Information 13 for a full overview of
statistics for eachindividual featureineach dataset. Dataare mean £s.e.m.
(although some confidence intervals are too narrow to be seen). MCI, mild
cognitiveimpairment. See Fig. 3 for other diagnostic abbreviations.
FDR-corrected significance: *P<0.05,**P<0.01, ***P< 0.001.

from sensory-to-association cortex that has been previously associated
with multiple aspects of brain structure and function®.

Developmental milestones

Neuroimaging milestones are defined by inflection points of the
tissue-specific volumetric trajectories (Fig. 3, Methods, ‘Defining
developmental milestones’). Among the total tissue volumes, only
GMV peaked before the typical age at onset of puberty®, with sGMV
peaking mid-puberty and WMV peaking in young adulthood (Fig. 3).
Therate of growth (velocity) peaked ininfancy and early childhood for
GMV (5.08 months (95% bootstrap Cl4.85-5.22)), sGMV (5.65 months
(95% bootstrap CI 5.75-5.83)) and WMV (2.4 years (95% bootstrap Cl
2.2-2.6)). TCV velocity peaked between the maximum velocity for GMV
and WMV at approximately 7 months. Two major milestones of TCV
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and sGMYV (peak velocity and size) (Fig. 3) coincided with the early
neonatal and adolescent peaks of height and weight velocity*>**. The
velocity of mean cortical thickness peaked even earlier, in the prena-
tal period at —0.38 years (95% bootstrap Cl -0.4 to —0.34) (relative to
birth), corresponding approximately to mid-gestation. This early peak
incortical thickness velocity has not beenreported previously—to our
knowledge—in part owing to challenges in acquiring adequate and
consistentsignal from typical MRIsequences in the perinatal period™.
Similarly, normative trajectories revealed an early period of GMV:WMV
differentiation, beginningin the first month after birth with the switch
from WMV to GMV as the proportionally dominant tissue compart-
ment, and ending when the absolute difference of GMV and WMV
peaked around 3 years (Supplementary Information 9). This epoch of
GMV:WMV differentiation, which may reflect underlying changes in
myelination and synaptic proliferation**~% has not been demarcated
in previous studies***. It was probably identified in this study owing to
the substantial amount of early developmental MRI data available for
analysisin the aggregated dataset (in total across all primary studies,
N=2,571and N=1,484 participants aged less than 2 years were avail-
able for analysis of cerebrum tissue volumes and extended global MRI
phenotypes, respectively). The period of GMV:WMYV differentiation
encompasses dynamic changes in brain metabolites®® (0-3 months),
resting metabolic rate® (RMR) (minimum = 7 months, maximum = 4.2
years), the typical period of acquisition of motor capabilities and other
early paediatric milestones®, and the most rapid change in TCV (Fig. 3).

Individualized centile scores

We computed individualized centile scores that benchmarked each
individual scan in the context of normative age-related trends (Meth-
ods, ‘Centile scores and case-control differences’and Supplementary
Information 1-6 for further details). This approach is conceptually
similar to quantile rank mapping, as previously reported®**?°, where

530 | Nature | Vol 604 | 21April 2022

corresponding epoch of the normative trajectory, using maximum likelihood
to estimate the study specific offsets (random effects) for three moments of
theunderlying statistical distributions: mean (u), variance (o), and skewness
(v)inan age- and sex-specific manner. Centile scores of each phenotype could
thenbeestimated foreachscaninthe new study, onthe samescaleasthe
reference population curve, while accounting for study-specific ‘batch effects’
ontechnical or othersources of variation (see Supplementary Information1.8
for details). MLE, maximum likelihood estimation.

the typicality or atypicality of each phenotypein each scanis quantified
byitsscoreonthedistribution of phenotypic parametersinthe norma-
tive or reference sample of scans, with more atypical phenotypes having
more extreme centile (or quantile) scores. The clinical diversity of the
aggregated dataset enabled us to comprehensively investigate case—
control differencesinindividually specific centile scoresacross arange
of conditions. Relative to the control group (CN), there were highly
significant differences in centile scores across large (N > 500) groups
of cases diagnosed with multiple disorders (Fig. 4a, Supplementary
Information 10), with effect sizes ranging from medium (0.2 < Cohen’s
d<0.8)tolarge (Cohen’sd > 0.8) (see Supplementary Tables 3, 4 for all
false discovery rate (FDR)-corrected Pvalues and effect sizes). Clinical
case-control differencesin cortical thickness and surface area gener-
ally followed the same trend as volume differences (Supplementary
Information 10). Alzheimer’s disease showed the greatest overall dif-
ference, with amaximum difference localized to grey matter volumein
biologically female patients (median centile score = 14%, 36 percentage
points difference from CN median, corresponding to Cohen’sd = 0.88;
Fig.4a).In addition, we generated a cumulative deviation metric, the
centile Mahalanobis distance (CMD), to summarize a comparative
assessment of brain morphology across all global MRI phenotypes
relative to the CN group (Fig. 4b, Supplementary Information 1.6).
Notably, schizophreniaranked third overall behind Alzheimer’s disease
and mild cognitive impairment (MCI) on the basis of CMD (Fig. 4c).
Assessment across diagnostic groups, based on profiles of the multi-
ple centile scores for each MRI phenotype and for CMD, highlighted
shared and distinct patterns across clinical conditions (Supplementary
Information 10, 11). However, when examining cross-disorder similar-
ity of multivariate centile scores, hierarchical clustering yielded three
clusters broadly comprising neurodegenerative, mood and anxiety,
and neurodevelopmental disorders (Supplementary Information11).

Across all major epochs of the lifespan®, the CMD was consistently
greaterin cases relative to controls, irrespective of diagnostic category.



The largest case-control differences across epochs occurred in late
adulthood whenrisk for dementiaincreases and inadolescence, which
is well-recognized as a period of increased incidence of mental health
disorders (Supplementary Information 10.3). In five primary stud-
ies covering the lifespan, average centile scores across global tissues
were related to two metrics of premature birth (gestational age at birth:
t=13.164,P<2x107%; birth weight: t =36.395, P < 2 x107*; Supplemen-
tary Information12), such that greater gestational age and birth weight
were associated with higher average centile scores. Centile scores also
showed increased twin-based heritability in two independent stud-
ies (total N =913 twin pairs) compared with non-centiled phenotypes
(averageincrease of 11.8 percentage points in narrow sense heritability
(h?) across phenotypes; Fig. 4d, Supplementary Information 13). In
summary, centile normalization of brain metrics reproducibly detected
case-control differences and genetic effects on brainstructure, as well as
long-termsequelae of adverse birth outcomes evenin the adult brain'°.

Longitudinal centile changes

Owing to the relative paucity of longitudinal imaging data (about
10% of the reference dataset), normative models were estimated
from cross-sectional data collected at a single time point. However,
the generalizability of cross-sectional models to longitudinal assess-
ment is important for future research. Within-subject variability of
centile scores derived from longitudinally repeated scans, measured
with the interquartile range (IQR) (Methods, ‘Longitudinal stability’,
Supplementary Information 1.7), was low across both clinical and CN
groups (all median IQR < 0.05 centile points), indicating that centile
scoring of brain structure was generally stable over time, although
there was also some evidence of between-study and cross-disorder dif-
ferencesin within-subject variability (Supplementary Information 14).
Notably, individuals who changed diagnostic categories—for example,
those who progressed from mild cognitive impairment to Alzheimer’s
disease over the course of repeated scanning—showed small but sig-
nificant increases in within-subject variability of centile scores (Sup-
plementary Information 14, Supplementary Tables 5, 6). Within-subject
variability was also slightly higher in samples from younger individuals
(Supplementary Information 14), which could reflect increased noise
due to the technical or data quality challenges associated with scan-
ning younger individuals, but is also consistent with the evidence of
increased variability in earlier development observed across other
anthropometric traits®,

Centile scoring of new MRI data

A key challenge for brain charts is the accurate centile scoring of
out-of-sample MRIdata, not represented in the reference dataset used
to estimate normative trajectories. We therefore carefully evaluated the
reliability and validity of brain charts for centile scoring of such ‘new’
scans. For each new MRI study, we used maximum likelihood to esti-
mate study-specific statistical offsets from the age-appropriate epoch
ofthe normative trajectory; we then estimated centile scores foreach
individualin the new study benchmarked against the offset trajectory
(Fig.5,Methods, ‘Data-sharing and out-of-sample estimation’, Supple-
mentary Information1.8). Extensive jack-knife and leave-one-study-out
analysesindicated that a study size of N >100 scans was sufficient for
stable and unbiased estimation of out-of-sample centile scores (Sup-
plementary Information 4). This study size limitisin line with the size
of many contemporary brain MRI research studies. However, these
results do notimmediately support the use of brain charts to generate
centile scores from smaller-scale research studies, or from an indi-
vidual patient’sscanin clinical practice—this remains agoal for future
work. Out-of-sample centile scores proved highly reliable in multiple
test-retest datasets and were robust to variations inimage processing
pipelines (Supplementary Information 4).

Discussion

We have aggregated the largest neuroimaging dataset to date to mod-
ernize the concept of growth charts for mapping typical and atypical
human brain development and ageing. The approximately 100-year
agerange enabled the delineation of milestones and critical periodsin
maturation of the human brain, revealing an early growth epoch across
its constituent tissue classes—beginning before 17 post-conception
weeks, when the brain is at approximately 10% of its maximum size,
and ending by age 3, when the brain is at approximately 80% of the
maximum size. Individual centile scores benchmarked by normative
neurodevelopmental trajectories were significantly associated with
neuropsychiatric disorders as well as with dimensional phenotypes
(Supplementary Information 5.2,12). Furthermore, imaging-genetics
studies® may benefit from the increased heritability of centile scores
compared with raw volumetric data (Supplementary Information13).
Perhaps mostimportantly, GAMLSS modelling enabled harmonization
across technically diverse studies (Supplementary Information 5), and
thus unlocked the potential value of combining primary MRI studies
atscale to generate normative, sex-stratified brain growth charts, and
individual centile scores of typicality and atypicality.

The analogy to paediatric growth charts is not meant to imply that
brain charts are immediately suitable for benchmarking or quantita-
tive diagnosis of individual patients in clinical practice. Even for tradi-
tional anthropometric growth charts (height, weight and BMI), there
are still important caveats and nuances concerning their diagnostic
interpretation in individual children®; similarly, it is expected that
considerable further research will be required to validate the clinical
diagnostic utility of brain charts. However, the current results bode
well for future progress towards digital diagnosis of atypical brain
structure and development®. By providing an age- and sex-normalized
metric, centile scores enable trans-diagnostic comparisons between
disorders that emerge at different stages of the lifespan (Supplemen-
tary Information 10, 11). The generally high stability of centile scores
across longitudinal measurements also enabled assessment of brain
changes related to diagnostic transition from mild cognitive impair-
ment to Alzheimer’s disease (Supplementary Information 14), which
provides one example of how centile scoring could be clinically useful
inquantitatively predicting or diagnosing progressive neurodegenera-
tive disorders in the future. Our provision of appropriate normative
growth charts and online tools also creates an immediate opportu-
nity to quantify atypical brain structure in clinical research samples,
to leverage available legacy neuroimaging datasets, and to enhance
ongoing studies.

Severalimportant caveats are worth highlighting. Even thislarge MRI
dataset was biased towards European and North American populations
and European ancestry groups within those populations. This bias is
unfortunately commoninmany clinical and scientific references, includ-
ing anthropometric growth charts and benchmark genetic datasets,
representing aninequity that must be addressed by the global scientific
community®®. Inthe particular case of brain charts, further increasing
ethnic, socioeconomic and demographic diversity in MRIresearch will
enable more population-representative normative trajectories®’® that
canbe expected toimprove the accuracy and strengthenthe interpreta-
tion of centile scores in relation to appropriate norms?. The available
reference data were also not equally distributed across all ages—for
example, foetal, neonatal and mid-adulthood (30-40 years of age)
epochswere under-represented (Supplementary Information17-19).
Furthermore, although our statistical modelling approach was
designed to mitigate study- or site-specific effects on centile scores,
itcannot entirely correct for limitations of primary study design, such
asascertainmentbias or variability in diagnostic criteria. Our decision
to stratify the lifespan models by sex followed the analogous logic
of sex-stratified anthropometric growth charts. Males have larger
brain-tissue volumes than females in absolute terms (Supplementary
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Information16), but thisis notindicative of any difference in clinical or
cognitive outcomes. Future work would benefit from more detailed and
dimensional self-report variables relating to sex and gender”. The use
ofbrain charts also does not circumvent the fundamental requirement
for quality control of MRI data. We have shown that GAMLSS modelling
of global structural MRI phenotypes is in fact remarkably robust to
inclusion of poor-quality scans (Supplementary Information 2), but it
should notbe assumed that this level of robustness will apply to future
brain charts of regional MRI or functional MRI phenotypes; therefore,
the importance of quality control remains paramount.

We have focused primarily on global brain phenotypes, whichwere
measurableinthelargestachievable sample, aggregated over the widest
agerange, with the fewest methodological, theoretical and data-sharing
constraints. However, we have also provided proof-of-concept brain
chartsfor regional grey matter volumetrics, demonstrating plausible
heterochronicity of cortical patterning, and illustrating the potential
generalizability of this approach to adiverse range of fine-grained MRI
phenotypes (Fig. 2, Supplementary Information 8). As ongoing and
future efforts provide increasing amounts of high-quality MRl data, we
predictaniterative process ofimproved brain charts for anincreasing
number of multimodal” neuroimaging phenotypes. Such diversifica-
tionwill require the development, implementation and standardization
ofadditional data quality control procedures® to underpin robust brain
chart modelling. To facilitate further research using our reference
charts, we have provided interactive tools to explore these statistical
models and to derive normalized centile scores for new datasets across
the lifespan at www.brainchart.io.
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Methods

Ethics

The research was reviewed by the Cambridge Psychology Research
Ethics Committee (PRE.2020.104) and The Children’s Hospital of Phila-
delphia’s Institutional Review Board (IRB20-017874) and deemed not
torequire PRE or IRB oversight as it consists of secondary analysis of
de-identified primary datasets. Informed consent of participants (or
their guardians) in primary studies is referenced in Supplementary
Information 19 and Supplementary Table 1.

Model generation and specification

To accurately and comprehensively establish standardized brain
reference charts across the lifespan, it is crucial to leverage multi-
pleindependent and diverse datasets, especially those spanning
prenatal and early postnatal life. Here we sought to chart norma-
tive brain development and ageing across the largest age-span and
largest aggregated neuroimaging dataset to date using a robust
and scalable methodological framework***. We used GAMLSS? to
estimate cross-sectional normative age-related trends from 100
studies, comprising a reference dataset of more than 100,000 scans
(see Supplementary Tables 1.1-1.7 for full demographic informa-
tion and Supplementary Information 19 for dataset descriptions).
We optimised GAMLSS model specification and parameterization
to estimate non-linear normative growth curves, their confidence
intervals and first derivatives, separately for males and females,
allowing for random effects on the mean and higher order moments
of the outcome distributions.

The reliability of the models was assessed and endorsed by
cross-validationand bootstrap resampling procedures (Supplementary
Information 3). We leveraged these normative trajectories to bench-
markindividual scans by centile scores, which were theninvestigated as
age-normed and sex-stratifed measures of diagnostic and longitudinal
atypicalities of brain structure across the lifespan.

The GAMLSS approach allowed not only modelling of age-related
changesinbrain phenotypesbut also age related-changes in the vari-
ability of phenotypes, and in the form of both linear and nonlinear
changes over time, thereby overcoming potential limitations of
conventional additive models that only allow additive means to be
modelled? In addition, study-specific offsets (mean and variance)
for each brain phenotype were also modelled as random effects.
These modelling criteria are particularly important in the context of
establishing growth reference charts as recommended by the World
Health Organization®, asitis reasonable to assume the distribution
of higher order moments (for example, variance) changes with age,
sex, site/study and pre-processing pipeline, and it is impossible to
circumvent some of these issues by collecting standardized data
longitudinally for individuals spanning the approximately 100-year
age range. Furthermore, recent studies suggest that changes in
between-subject variability might intersect with vulnerability for
developing a mental health condition’™. The use of data spanning
theentireagerangeisalso critical, as data from partial age-windows
can bias estimation of growth charts when extrapolated to the whole
lifespan. Inshort, using a sex-stratified approach®, age, preprocess-
ing pipeline and study were each included in the GAMLSS model
estimation of first order (u) and second order (o) distribution param-
eters of ageneralized gamma distribution using fractional polynomi-
als tomodel nonlinear trends. See Supplementary Information for
more details regarding GAMLSS model specification and estimation
(Supplementary Information 1), image quality control (Supplemen-
tary Information 2), model stability and robustness (Supplementary
Information 3, 4), phenotypic validation against non-imaging met-
rics (Supplementary Information 3, 5.2), inter-study harmonization
(Supplementary Information 5) and assessment of cohort effects
(Supplementary Information 6).

More formally, the GAMLSS framework can be specified in the fol-
lowing way:

Y~F(u,0,v,7) (6]

8 =XB,+Z,y,+ Y 5,,6)
8,(0) =X, + ZyY,+ 3. 55,16
8,V =XB,+Z,y,+} 5, (x)

gT(T) =Xrﬂr +ZTVT+ Z Sr,i(xi)

Here, the outcome vector, Y, follows a probability distribution F
parameterized by up to four parameters, (i, o, v, 7). The four param-
eters, depending on the parameterization of the probability density
function, may correspond to the mean, variance, skewness, and kur-
tosis—thatis, the first four moments. However, for many distributions
thereisnotadirect one-to-one correspondence. Each componentis
linked to a linear equation through a link-function, g (), and each
component equation may include three types of terms: fixed effects,
B (with design matrix X); random effects, y (with design matrix 2);
and non-parametric smoothing functions, s ;applied to the ith covar-
iate for each parameter. The nature of the outcome distribution
determines the appropriate link functions and which components
are used. In principle any outcome distribution can be used, from
well-behaved continuous and discrete outcomes, through to mixtures
and truncations.

Here we have used fractional polynomials asaflexible, but not unduly
complex, approach to modelling age-related changesin MRI phenotypes.
Although non-parametric smoothers are more flexible, they canbecome
unstable and infeasible, especially in the presence of random effects.
Hence, the fractional polynomials enter the model within the X terms,
with associated coefficients in 8. The GAMLSS framework includes the
ability to estimate the most appropriate powers of fractional polynomial
expansion within the iterative fitting algorithm, searching across
the standard set of powers, p € {-2,-1,-0.5,0,0.5,1, 2, 3}, where the
design matrix includes the covariate (in this case, age) raised to the
power, namely, x”. Fractional polynomials naturally extend to
higher-orders, for example a second-order fractional polynomial of the
form, xP1 +xP2(see Supplementary Information 1.3 for further details).

There are several options for including random effects within the
GAMLSS framework depending on the desired covariance structures.
We consider the simplest case, including a factor-level (or group-level)
random intercept, where the observations are grouped by the study
covariate. The random effects are drawn from a normal distribu-
tion with zero mean and variance to be estimated, y ~ N(0,5%). The
ability to include random effects is fundamental to accounting for
co-dependence between observations. Itis therefore possible to take
advantage of the flexibility of ‘standard’ GAMLSS, as typically used
to develop growth charts**%7, while accounting for co-dependence
between observations using random effects. The typical applica-
tions of GAMLSS assume independent and identically distributed
outcomes; however, in this context it is essential to account for
within-study covariance implying the observations are no longer
independent.

The resulting models were evaluated using several sensitivity anal-
yses and validation approaches. These models of whole-brain and
regional morphometric development were robust to variations in
image quality, and cross-validated by non-imaging metrics. However,
we expect that several sources of variance, including but not limited to
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MRI data quality and variability of acquisition protocols, may become
increasingly important as brain charting methods are applied to more
innovative and/or anatomically fine-grained MRI phenotypes. It will
be important for future work to remain vigilant about the potential
impact of data quality and other sources of noise on robustness and
generalizability of both normative trajectories and the centile scores
derived from them.

Based on the model selection criteria, detailed in Supplementary
Information 1, the final models for normative trajectories of all MRI
phenotypes were specified asillustrated below for GMV:

GMV ~ Generalizsed Gamma(y, o, v) with
108 (1) =, + &ty ex(5€X) + @ yerlVer) + B, (age) >+, ,(age)
+B, 5(age)*log(age)> +, quay 2)

10g(0) =05+ g sex(5€X) + B, 1 (age) 2+ B, ,(age)* + Yy,
v=a,

Foreach componentof the generalized gamma distribution, a terms
correspond to fixed effects of the intercept, sex (female or male), and
software version used for pre-processing (five categories); 5 terms
correspond to the fixed effects of age, modelled as fractional polyno-
mial functions with the number of terms reflecting the order of the
fractional polynomials; and y terms correspond to the study-level
random effects. Note that we have explicitly included the link-functions
for each component of the generalized gamma, namely the natural
logarithm for pand o (since these parameters must be positive) and
theidentity forv.

Similarly for the other global MRI phenotypes:

WMV ~ Generalised Gamma(y, o, v) with
108 (1) =, + @ sex(SEX) + 0ty yer(ver) +ﬁ”'l(age)’2 +,B‘u,2(age)3
+B, 5(age)*10g(age) +V, 4y (3)

10(0) =5+ g sex(5€X) + B, (age) > + B, ,(age)’ + ¥o,study
v=a,,

sGMV ~ Generalised Gamma(y, o, v) with

108 (1) = ) + €y ex(5€X) + 1y yer(ver) + B, (age) > + B, ,(age) ™
log(age) +ﬁu,3(age)3+yu,study @

108(0) = @y + g ex(sex) + B, (age) >+, ,(age) > log(age)

+ ya,study
V=a,,

Ventricles ~ Generalized Gamma(y, o, v) with

log(u) = a+ aursex(sex) + a,‘,ve,(ver) +,B”'1(age)3 + M(age)3
log(age) +, 5(age)’ 10g(age)* +V, suqy .

108(0) = g+ (g sex(seX) + B, (age) > + B, ,(age) *log(age)

+B, s(age) > log(age)*
v=a,,

TCV ~ Generalized Gamma(y, o, v) with
log(u) = a,+ ay sex(s€X) + ay yor(ver) + ,B#’I(age)'z
+B, ,(age) * log(age) + B, 5(age)’ +V, (q ©

l0g(0) = &, + Ay sex(seX) + B, (age) > + 5 ,(age)™

log(age) + B, ,(age) * log(age)* +V, (qy
v=a,

SA ~ Generalised Gamma(u, o, v) with
log(p) = a, + a sex(s€X) + ay yer(Ver) +/3”'1(age)'2

+B, ,(age)* log(age) + B, ;(age) ? log(age)® +¥, (, q )

Iog(O) = (Xa+ au,sex(sex) +/}u'1(age)’2 +ﬂ0'2(ag3)72 log(agE)
+ a,3(age)_2 log(age)2 + Vs study
v=a,,

CT ~ Generalized Gamma(y, o, v) with
log(p) = a, + &y sex(8€X) + @y yer(ver) +,Bu'1(alge)'2
+ u’z(age)’zlog(age)+yy'smdy (8)

108(0) = t,+ 5 sex(s€X) + 5, (age) ' + 5, ,(age) >+ ¥o,study
v=a,.

No smoothing terms were used inany GAMLSS modelsimplemented
in this study, although the fractional polynomials can be regarded as
effectively aparametric form of smoothing. Reliably estimating higher
order moments requires increasing amounts of data, hence none of
our models specified any age-related fixed-effects or random effects
inthe vterm.However, a,was found to beimportantin terms of model
fit and hence we have used a generalized gamma distribution (Sup-
plementary Information 1).

Defining developmental milestones

GAMLSS modelling also allowed us to leverage the aggregated
life-spanning neuroimaging dataset to derive developmental mile-
stones (thatis, peaks of trajectories) and compare them to existing
literature. The cerebrum tissue classes from 100 studies (Fig. 1, Sup-
plementary Tables 1.1-1.7, Supplementary Information 18) showed
clear, predominantly age-related trends, even prior to any modelling.
Comparing these models with multiple non-MRI metrics of brain size
demonstrated high correspondence across the lifespan (Supplemen-
tary Information 3). Peaks were determined based on the GAMLSS
model output (50th centile) for each of the tissue classes and TCV,
for bothtotal tissue volumes and rates of change or growth (velocity).
A similar series of methodological steps was performed for the set
of extended global and regional cortical morphometric phenotypes
(Fig. 2, Supplementary Information 7, 8). To further contextualize
the neuroimaging trajectories, diagnostic age ranges from previous
literature”’® (blue boxes in Fig. 3) were compared with empirical age
ranges of patients with a given diagnosis across the aggregated neu-
roimaging dataset (black boxes in Fig. 3). Note that age of diagnosis
is significantly later than age of symptom onset for many disorders”.
Developmental milestones were also compared to published work
for brain resting metabolic rate®, from its minimum in infancy to its
maximum in early childhood; anthropometric variables (height and
weight), which reach afirst peak in velocity during infancy and a sec-
ond peak in velocity in adolescence’; typical acquisition of the six
gross motor capabilities®?; and pubertal age ranges as defined based
on previous reports™*2,

Centile scores and case-control differences

These normative trajectories of brain development and aging also
enabled each individual scan to be quantified in terms of its relative
distance from the median of the age-normed and sex-stratified distri-
butions provided by the reference model®””” (Fig. 4, Supplementary
Information 10, 11). Individual centile scores were estimated relative to
thereference curves, inaway thatis conceptually similar to traditional
anthropometric growth charts (Supplementary Information1). These
centiles represent a novel set of population- and age-standardized
clinical phenotypes, providing the capacity for cross-phenotype,
cross-study and cross-disorder comparison. Asingle multivariate met-
ric (CMD, Supplementary Information1.6) was estimated by combining



centilescores onmultiple MRI phenotypes for eachindividual (Fig. 4c).
Case-control differences in centile scores were analysed with aboot-
strapped (500 bootstraps) non-parametric generalization of Welch’s
one-way ANOVA. Pairwise, sex stratified, post-hoc comparisons were
conducted using non-parametric Monte Carlo permutation tests
(10,000 permutations) and thresholded at a Benjamini-Hochberg
FDR of ¢ <0.05.

Longitudinal stability

To use centile scores ina diagnostically meaningful or predictive way,
they need to be stable across multiple measuring points. To assess this
intra-individual stability, we calculated the subject-specific IQR of
centilesacross timepoints for the datasets thatincluded longitudinal
scans (N=9,306, 41unique studies). Exploratory longitudinal clinical
analyses were restricted to clinical groups that had atleast 50 subjects
with longitudinal data to allow for robust group-wise estimates of lon-
gitudinal variability. Inaddition, there was a subset of individuals with
documented clinical progression over the course of longitudinal scans,
for instance from mild cognitive impairment to Alzheimer’s disease,
where we expected an associated change in centile scored brain struc-
ture. To test this hypothesis, we assessed whether these individuals
showed longitudinal variation of centile scores (as assessed with IQR)
with a direction of change consistent with their clinical progression.
See Supplementary Information 14 for further details about the lon-
gitudinal stability of centile scores.

Datasharing and out-of-sample estimation

We have provided aninteractive tool (www.brainchart.io) and made
our code and models openly available (https://github.com/brain-
chart/Lifespan). The tool allows the user to visualize the underlying
demographics of the primary studies and to explore the normative
brain charts in a much more detailed fashion than static images
allow. It also provides the opportunity for interactive exploration
of case-control differences in centile scores across many diagnostic
categories thatis beyond the scope of this paper. Perhaps most sig-
nificantly, the brain chartinteractive toolincludes an out-of-sample
estimator of model parameters for new MRI data that enables the
user to compute centile scores for their own datasets without the
computational or data-sharing hurdles involved in adding that data
to the reference dataset used to estimate normative charts (Fig. 5).
Bias and reliability of out-of-sample centile scoring was extensively
assessed and endorsed by resampling and cross-validation studies
for ‘new’ studies comprising at least 100 scans. Although already
based on the largest and most comprehensive neuroimaging data-
set to date, and supporting analyses of out-of-sample data, these
normative brain charts will continue to be updated as additional
data are made available for aggregation with the reference data-
set. See Supplementary Information 1.8, 4 for further details about
out-of-sample estimation.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Model parameters and out-of-sample centile scores are available
at www.brainchart.io and on https://github.com/brainchart/Lifes-
pan. Summary statistics are available in the Supplementary Tables
(Supplementary Tables 1-8). Links to open datasets are also listed
on https://github.com/brainchart/Lifespan. Availability of other MRI
datasets aggregated hereis throughapplication proceduresindividu-
ally managed at the discretion of each primary study, with additional
information provided in Supplementary Table1.1and Supplementary
Information 19.

Code availability
All code is available at https://github.com/brainchart/Lifespan.
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Data collection  No software was used in data collection

Data analysis Data was analysed using a combination of open source R code (v4.1.2) and custom R code made available on https://github.com/ucam-
department-of-psychiatry/Lifespan. With respect to all visualisation and statistics represented in graphical format, unless otherwise stated
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"outlying" points and are plotted individually. Density plots were generated with the ‘geom_flat_violin’ option from the “raincloudplots”
package. Estimation of densities and the resulting number of peaks were done using the default settings of the ‘density()’ function in the base
R “stats” package using a Gaussian smoothing kernel which defaults to 0.9 times the minimum of the standard deviation and the interquartile
range divided by 1.34 times the sample size to the negative one-fifth power (Silverman's ‘rule of thumb’); unless the quartiles coincide, when
a positive result will be guaranteed. Clustering heatmaps were generated using the “ComplexHeatmap” package. Crosshair plots depict the
median and standard deviations. Plots depicting linear associations were generated with ggplot's ‘geom_point()’ function and where linear
relations are reported include shaded regions indicating the 95% confidence intervals of that linear relation. Linear regression was performed
using the “Im” function in the base “stats” package, as well as the “ImerTest” package for mixed-effects modelling. Student’s T-tests were
performed using the “t.test” function in the base “stats” package (two-sided, unless otherwise reported). The “ggstatsplot” package was used
for the model generalisability analyses to report robust correlation values. Cohen’s d effect sizes were calculated using the “effsize” package.
A description of the FreeSurfer version and processing pipeline can be found in SI18 (mainly FreeSurfer 6.0.1 unless stated otherwise).
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Randomization  For our bootstrapping we used random sampling maintaining dataset ratios as described in the supplementary methods. For pairwise
comparisons between control and clinical cohorts we used permutation tests that randomly reshuffle case and control labels to generate

10,000 null distributions.

Blinding Blinding was not possible, but also not applicable for establishing growth trajectories, furthermore all analyses were conducted in a data
driven manner

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChlIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |:| |Z MRI-based neuroimaging

Animals and other organisms
Human research participants
Clinical data

Dual use research of concern
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Human research participants

Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

Population characteristics are listed in supplementary tables 1.1-1.48. For the analysis age and sex were included in our
models. Diagnosis was provided for each dataset individually and procedures for obtaining these were described in the
description of each individual dataset.

All analyses in the present manuscript were based on existing data. Recruitment for each existing dataset is described in the
supplementary description for each dataset see SI19.

The project received IRB exemption from CHOP and ethical approval from the Psychology Research Ethics Committee at the
University of Cambridge. All contributing datasets already contained their own respective ethical oversight and therefore
both committees concluded no additional ethical approval was required. The following statement has been added to the
methods section:

The research was reviewed by the Cambridge Psychology Research Ethics Committee (PRE.2020.104) and The Children’s
Hospital of Philadelphia’s Institutional Review Board (IRB 20-017874) and deemed not to require PRE or IRB oversight as it
consists of secondary analysis of de-identified primary datasets. Informed consent of participants (or their guardians) in
primary studies is referenced in supplementary information [SI] 19 and supplementary table [ST] 1.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design
Design type

Design specifications

Structural MRI

No specific experimental setup was used

Behavioral performance measures  No behavioural measures are included

Acquisition

Imaging type(s)

Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI [ ] Used
Preprocessing

Preprocessing software

Normalization

Normalization template

Noise and artifact removal

Volume censoring

Structural, mainly T1 and/or T2 weighted imaging, variations of each dataset are listed in detail in supplementary table
1.1

Varying (description in each dataset description and supplementary table 1.1 under the column "Field Strength")
Varying (description in each dataset description and supplementary table 1.1)

Whole brain

Not used

Varying (description in each dataset description) but mainly based on Freesurfer recon-all
Varying (description in each dataset description) but mainly based on Freesurfer recon-all
Varying (description in each dataset description) but mainly based on Freesurfer recon-all (e.g. fsaverage)
Varying (description in each dataset description) but mainly based on Freesurfer recon-all

None

Statistical modeling & inference

Model type and settings

Effect(s) tested

We used generalised additive models for location scale and shape (GAMLSS) to estimate cross-sectional normative age-
related trends.

We modelled growth trajectories and generated individual centile scores from these growth charts

Specify type of analysis: Whole brain [ ] ROI-based [ ] Both

Statistic type for inference
(See Eklund et al. 2016)

Correction

Not applicable

For any pairwise comparisons we used Monte-Carlo permutation tests and report all Benjamini-Hochberg FDR corrected
values in addition to Cohens d effect sizes
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Models & analysis

n/a | Involved in the study
|:| Functional and/or effective connectivity
|:| Graph analysis

|:| Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis = We used generalised additive models for location scale and shape (GAMLSS) to estimate cross-sectional
normative age-related trends. Including study, sex and processing pipeline as random effects in higher order
polynomial models.
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