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The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the
genetic architecture and biology of heart, lung, blood and sleep disorders, with the
ultimate goal of improving diagnosis, treatment and prevention of these diseases. The
initial phases of the programme focused on whole-genome sequencing of individuals
with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed
goals and design as well as the available resources and early insights obtained from

the sequence data. The resources include a variant browser, agenotype imputation
server, and genomic and phenotypic data that are available through dbGaP (Database
of Genotypes and Phenotypes)™. In the first 53,831 TOPMed samples, we detected
more than 400 million single-nucleotide and insertion or deletion variants after
alignment with the reference genome. Additional previously undescribed variants
were detected through assembly of unmapped reads and customized analysisin
highly variable loci. Among the more than 400 million detected variants, 97% have
frequencies of less than 1% and 46% are singletons that are present in only one
individual (53% among unrelated individuals). These rare variants provide insights
into mutational processes and recent human evolutionary history. The extensive
catalogue of genetic variation in TOPMed studies provides unique opportunities for
exploring the contributions of rare and noncoding sequence variants to phenotypic
variation. Furthermore, combining TOPMed haplotypes with modernimputation
methods improves the power and reach of genome-wide association studies to
include variants down to a frequency of approximately 0.01%.

Advancing DNA-sequencing technologies and decreasing costs are
enablingresearchers to explore human genetic variation at an unprec-
edented scale?*. For these advances to improve our understanding of
human health, they must be deployed in well-phenotyped human sam-
plesand used to build resources such as variation catalogues**, control
collections>® and imputation reference panels’®. Here we describe
high-coverage whole-genome sequencing (WGS) analyses of the first
53,831 TOPMed samples (Box 1and Extended Data Tables 1, 2); addi-
tional data are being made available as quality control, variant calling
and dbGaP curation are completed (altogether more than 130,000
TOPMed samples are now available in dbGaP).

Akey goal of the TOPMed programme is to understand risk factors
for heart, lung, blood and sleep disorders by adding WGS and other
‘omics’ datato existing studies with deep phenotyping (Supplementary
Information 1.1and Supplementary Fig. 1). The programme currently
consists of more than 80 participating studies, around 1,000 investi-
gators and more than 30 working groups (https://www.nhlbiwgs.org/
working-groups-public). TOPMed participants are ethnically and ances-
trally diverse (Extended Data Fig. 1, Supplementary Information 1.1.4
and Supplementary Fig. 2). Through acombination of race and ethnicity
information (from participant questionnaires and/or study inclusion
criteria), we classified study participants into ‘population groups’,
which varied in composition according to the goals of each analysis.
In some analyses, these groups were further refined using genetic
ancestry (see Methods and Supplementary Information for details).

Our study extends previous efforts by identifying and character-
izing the rare variants that comprise the majority of human genomic
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variation”°?, Rare variants represent recent and potentially deleteri-
ous changes that can affect protein function, gene expression or other
biologically important elements™*,

TOPMed WGS quality assessment

WGS of the TOPMed samples was performed over multiple studies,
years and sequencing centres. To minimize batch effects, we stand-
ardized laboratory methods, mapped and processed sequence data
centrally using a single pipeline, and performed variant calling and
genotypingjointly across all samples (see Methods). We annotated each
variant site with multiple sequence quality metrics and trained machine
learningfilterstoidentify and exclude inconsistencies that are revealed
when the same individual was sequenced repeatedly. Available WGS
data were processed periodically to produce genotype data ‘freezes’.
The 53,831 samples described here are drawn from TOPMed freeze 5.

Stringent variant and sample quality filters were applied and the
resulting genotype call sets were evaluated in several ways (Supple-
mentary Information 1.2.2, 1.3, 1.4). First, we compared genotypes
for samples sequenced in duplicate (the mean alternative allele
concordance was 0.9995 for single-nucleotide variants (SNVs) and
0.9930 for insertions or deletions (indels)). Second, we compared
genotypes to those from previous whole-exome sequencing datasets
(protein-coding regions from GENCODE®; 80% of variants were found
with both approaches and overlapping variant callshad aconcordance
0f0.9993 for SNVs and 0.9974 for indels) (Supplementary Tables1-3).
Third, we compared genotypes to those obtained using alternative
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Box 1

TOPMed participant consents
and data access

The TOPMed programme comprises more than 80 participating
studies, of which 32 are represented in the 53,831 whole genomes
described here. TOPMed has leveraged existing studies with deep
phenotyping and longitudinal follow-up data and with varied
informed consent procedures and options. Consent groups

range from broad ‘general research use’ and ‘health, medical

and biomedical’ categories to disease-specific categories for
heart, lung, blood and/or sleep disorders. Many studies have
further consent modifiers, such as limiting use to not-for-profit
organizations or requiring documentation of local IRB approval.
Participant consents guide the appropriate use of data by TOPMed
investigators as well; therefore, the set of study-consent groups
used varies across different analyses reported in this paper
(Extended Data Table 3).

TOPMed data have been deposited in dbGaP and access is
adjudicated by a staff committee of the National Institutes of
Health. The committee verifies that applications are consistent
with data use limitations and consent groups for each sample.
Study investigators have no role in the decision, exceptina
small subset of studies that require a letter of collaboration.

A summary of currently available data and any use restrictions
is available at https://www.ncbi.nlm.nih.gov/gap/advanced_
search/?TERM=topmed.

Although TOPMed studies have separate dbGaP accessions,
formats are standardized to facilitate combining data, with all
variants from the joint genotype call set included in the variant
call format (VCF) files, unique sample identifiers across all of
TOPMed and sample attributes with TOPMed-specific variables.
Notably, cross-study analyses require the identification of a set of
compatible study-consent groups. In addition to genotype calls,
CRAM files with aligned sequence reads are also available, hosted
in commercial clouds and with access managed by dbGaP. The
dbGaP accession numbers for all TOPMed studies referenced in
this paper are listed in Extended Data Tables 2, 3.

The TOPMed imputation reference panel is available to users for
imputation into their own samples via an imputation server. The
server performs imputation into these samples, while the reference
panel data themselves are not exposed to the user because they
derive from multiple studies with variable consent types and other
data use limitations (Extended Data Table 3).

informatics tools (compared to GATK v.4.1.3, TOPMed has lower Mende-
lianinconsistency rates and minimizes batch effects) (Supplementary
Table 4). These reproducibility estimates indicate the high quality
of the genotype calls and effectiveness of machine-learning-based
quality filters.

Batch effects were evaluated by (1) comparing distributions of
genetic principal components among sequencing centres, which
are very similar between European American and African American
individuals (Supplementary Figs. 3-5); (2) comparing alternative
allele concordance between duplicates among centres, which is high
(the largest difference being 4 x 107*), and the patterns of between-
versus within-centre differences, whichindicaterandomerrorsrather
than systematic centre differences (Supplementary Figs. 6-8); and (3)
performing tests of association between variants and batches, which
show a very small fraction of variants with genome-wide significance

(0.004%, Supplementary Figs. 9,10) (Supplementary Information1.2).
We conclude that batch effects appear to be minor, thus enabling
multi-study association testing.

410 million genetic variantsin 53,831 samples

A total of 7.0 x 10" bases of DNA-sequencing data were generated,
consisting of an average 0f 129.6 x 10° bases of sequence distributed
across 864.2 million paired reads (each 100-151 base pairs (bp) long)
perindividual. Foratypicalindividual, 99.65% of the basesin the refer-
ence genome were covered, to a mean read depth of 38.2x.

Sequence analysis identified 410,323,831 genetic variants
(381,343,078 SNVs and 28,980,753 indels), corresponding to an aver-
age of one variant per 7 bp (Extended Data Table 4). Overall, 78.7% of
these variants had not been described in dbSNP build 149; TOPMed
variants now account for the majority of variantsin dbSNP. Among all
variant alleles, 46.0% were singletons, observed once across all 53,831
participants. Among 40,722 unrelated participants (see Methods), the
proportion of singleton variants was higher at 53.1% (Table 1). Down-
sampling analyses show that the proportion of singletons increases
until around 15,000 unrelated individuals are sequenced and then
decreases very gradually (Supplementary Fig. 11). The fraction of
singletons in each region or class of sites closely tracks functional
constraints. For example, amongall 4,651,453 protein-coding variants
inunrelated individuals, the proportion of singletons was the highest
for the 104,704 frameshift variants (68.4%), high among the 97,217
putative splice and truncation variants (62.1%), intermediate among
the 2,965,093 nonsynonymous variants (55.6%) and lowest among
the 1,435,058 synonymous variants (49.8%). Beyond protein-coding
sequences, we found increased proportions of singletons in promoters
(55.0%), 5’ untranslated regions (54.7%), regions of open chromatin
(53.4%) and 3’ untranslated regions (53.3%); we found lower propor-
tions of singletons in intergenic regions (53.0%) (Supplementary
Table 5). Although putative transcription factor binding sites initially
appeared to show fewer singletons (52.7%) than the remainder of the
genome (53.1%), this pattern did not hold when we analysed highly
mutable CpGsites separately. Infact, transcription factor binding sites
were enriched for singletons in both CpG sites and non-CpG sites, an
example of Simpson’s paradox™.

We identified an average of 3.78 million variants in each genome.
Among these, an average 0f 30,207 (0.8%) were novel and 3,510 (0.1%)
were singletons. Among all variants, we observed 3.17 million non-
synonymous and 1.53 million synonymous variants (a 2.1:1ratio), but
individual genomes contained similar numbers of nonsynonymous and
synonymous variants (11,743 nonsynonymous and 11,768 synonymous,
onaverage) (Extended Data Table 4). The difference can be explained
if more than half of the nonsynonymous variants are removed from
the population by natural selection before they become common.

Putative loss-of-function variants

A notable class of variants is the 228,966 putative loss-of-function
(pLOF) variants that we observed in 18,493 (95.0%) GENCODE" genes
(Extended Data Table 5 and Supplementary Fig.12). This class includes
the highest proportion of singletons among all of the variant classes
that we examined. Anaverage individual carried 2.5 unique pLOF vari-
ants. We identified more pLOF variants per individual than in previ-
ous surveys based on exome sequencing—anincrease that was mainly
driven by the identification of additional frameshift variants (Sup-
plementary Table 6) and by a more uniform and complete coverage
of protein-coding regions (Supplementary Figs. 13, 14).

We searched for gene sets with fewer rare pLOF variants than
expected based on gene size. The gene sets with strong functional
constraint included genes that encode DNA- and RNA-binding pro-
teins, spliceosomal complexes, translation initiation machinery and
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Table 1| Number of variants in 40,722 unrelated individuals in TOPMed

Allunrelated individuals (n = 40,722)

Per individual

Total Singletons (%) Average 5th percentile Median 95th percentile
Total variants 384,127,954 203,994,740 (53) 3,748,599 3,516,166 3,563,978 4,359,661
SNVs 357,043,141 189,429,596 (53) 3,653,423 3,335,442 3,380,462 4,125,740
Indels 27,084,813 14,565,144 (54) 195,176 180,616 183,503 233,928
Novel variants 298,373,330 191,557,469 (64) 29,202 20,312 24106 44,336
SNVs 275141134 177,410,620 (64) 25,027 17,520 20,975 36,861
Indels 23,232,196 14,146,849 (61) 4,175 2,747 3,145 7,359
Coding variation 4,651,453 2,523,257 (54) 23,909 22,158 22,557 27,716
Synonymous 1,435,058 715,254 (50) 11,651 10,841 11,056 13,678
Nonsynonymous 2,965,093 1,648,672 (56) 11,384 10,632 10,856 13,221
Stop/essential splice 97,217 60,347 (62) 474 425 454 566
Frameshift 104,704 71,577 (68) 132 12 127 165
In-frame 51,997 29,110 (56) 102 85 99 128

Novel variants are taken as variants that were not present in dbSNP build 149, the most recent dbSNP version without TOPMed submissions.

RNA splicing and processing proteins (Supplementary Table 7). Genes
associated with human diseasein COSMICY (31% depletion), the GWAS
catalogue™ (around 8% depletion), OMIM® (4% depletion) and Clinvar®
(4% depletion) all contained fewer rare pLOF variants than expected
(each comparison P<107™).

Thedistribution of genetic variation

We examined the distribution of variant sites across the genome by
counting variants across ordered 1-megabase (Mb) concatenations
of contiguous sequence with a similar conservation level (indicated
by combined annotation-dependent depletion (CADD score?), and
in segments categorized by coding versus noncoding status (Fig. 1
and Extended Data Fig. 2). As expected, the vast majority of human
genomic variationisrare (minor allele frequency (MAF) < 0.5%)'*" and
located in putatively neutral, noncoding regions of the genome (Fig. 1).
Although coding regions have lower average levels of both common
(MAF > 0.5%) and rare variation, we identified some ultra-conserved
noncoding regions with even lower levels of genetic variation® (Fig. 1
and Supplementary Fig. 15).

Segments with notably high or low levels of variation do exist. For
example, oneregion on chromosome 8p (GRC 38 positions1,000,001-
7,000,000 bp) has the highest overall levels of variation (Extended
Data Fig. 2). This is consistent with previous findings, as this region
has been shown to have one of the highest mutation rates across the
human genome?®.

Although levels of common and rare variation within segments
are significantly correlated (R*=0.462, P<2 x107'¢) (Supplementary
Fig.16), there are outliers. For example, segments overlapping the
major histocompatibility complex (MHC) have the highest levels of
common variation but no notable increase in levels of rare variation,
consistent with balancing selection* 2, A detailed examination of the
MHC shows peaks of increased variation and nucleotide diversity con-
sistent with assembly-based analyses of the region” (Supplementary
Fig.17). Segments with a high proportion of coding bases feature a
strong depletioninthe number of common variants but only amodest
depletioninrare variants (Supplementary Fig. 18).

Insights into mutation processes

A hallmark of human genetic variation is that SNVs tend to cluster
together throughout the genome>?, Such patterns of clustering con-
tain important information about demographic history?, signals of
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natural selection®*® and processes that generate mutations®. To dissect
the spatial clustering of SNVs, we analysed a collection of 50,264,223
singleton SNVs ascertained in a subset of 3,000 unrelated individuals
selected to have low levels of genetically estimated admixture—1,000
each of African, East Asian and European ancestry* (see Methods).

In these data, we observed that 1.9% of singletons in a given indi-
vidual occur at distances of less than100 bp apart®?* (Supplementary
Figs.19,20).In coalescent simulations (see Methods), only 0.16% of the
simulated singletons within anindividual were less than 100 bp apart
(Supplementary Figs. 19, 20). Although demographic history contrib-
utes to singleton clustering (Supplementary Information 1.6), popu-
lation genetic processes alone do not fully account for the observed
clustering patterns, particularly for the most closely spaced singletons.
Tobetter understand the latent factors that contribute to the observed
clustering, we modelled the inter-singleton distance distribution as
a mixture of exponential processes (see Methods). The best-fitting
version of this model consisted of four mixture components
(Fig.2).

Component 1represents singletons that occurred an average of
around 2-8 bp apart and accounted for approximately 1.5% of single-
tonsineachsample. These singletons are substantially enriched for A>T
and C>Atransversions (Extended DataFig. 3a), consistent with the sig-
natures of trans-lesion synthesis that causes multiple non-independent
point mutations within very short spans®. The density of component1
singletonsisalso associated with CpGisland density (Supplementary
Fig.21). Component 2 represents singletons occurring 500-5,000 bp
apart, accounting for around 12-24% of singletons. These singletons
areenriched for C>Gtransversions and show prominent subtelomeric
concentrations on chromosomes 8p, 9p, 16p and 16q***’ (Extended
Data Fig. 3 and Supplementary Fig. 22), consistent with the recently
described maternally derived C>G mutation clusters®*?. The exact
mechanism that underlies this distinctive clustering pattern is
unknown, but may involve either hypermutability of single-stranded
DNA intermediates during the repair of double-stranded breaks*** or
transcription-associated mutagenesis, with increased damage onthe
non-transcribed strand>®. Our results are compatible with both these
mechanisms: component 2 singletons are enriched near regions of
H3K4 trimethylation, a mark associated with double-stranded break
response®, and depleted in exon-dense regions (Supplementary
Fig.21). Component 3 singletons (occurring approximately 30-50 kilo-
bases (kb) apart) accounted for around 43-49% of all singletons, and
component 4 singletons (occurring approximately 125-170 kb apart)
accounted foraround 31-37% of all singletons. These latter components
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Fig.1|Distribution of genetic variants across the genome. Common (allele
frequency > 0.5%) and rare (allele frequency < 0.5%) variant counts are shown
above and below the x axis, respectively, within 1-Mb concatenated segments
(see Methods). Segments are stratified by CADD functionality score, and
sorted based on their number of rare variants according to the functionality
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noncoding segments. Noncoding regions of the genome withlow CADD scores
(<10, reflecting lower predicted function) have the largestlevels of common
andrare variation (noncoding plotregion, dark and light blue, respectively),
followed by low CADD coding regions (coding plotregion, dark and light blue,
respectively). Overall, the vast majority of human genomic variation comprises
rare variation.

have nearly identical mutational spectra (Extended Data Fig. 3a) and
are distributed about uniformly in the genome.

Beyond SNVs and indels

To evaluate the potential of our data to generate even more com-
prehensive variation datasets, we developed and applied a method
based on de novo assembly of unmapped and mismapped read pairs,
enabling us to assemble sequences that are present in a sample but
absent, orimproperly represented, in the reference. As the majority of
non-reference human sequence is present in the assembled genomes
of other primates*®*, we leveraged available hominid references
(see Methods) to specifically discover retained ancestral sequences
that have been deleted in some human lineages, including on the ref-
erence haplotype.

In total, we placed 1,017 ancestral sequences, of which we were able
tofully resolve 713, ranginginlength from 100 bp to39 kb (N50=1,183),
andaccounting for atotal of 528,233 bp (Fig. 3a). We partially resolved
304 events, for which we assembled part of the ancestral sequence but
could place only one breakpoint on the reference sequence (see Sup-
plementary Information1.7). Out of all 1,017 events, 551 (54.18%) occur
within GENCODE v.29% genes (a proportion that is not significantly
different from 54.80% of the current reference genome GRCh38 thatis
within genes). The assembled sequences contain repetitive motifs ata
significantly higher rate than the genome asawhole (58.2% versus 50.1%)
(Supplementary Tables 8-10). There is a strong overrepresentation of
simpleand low complexity sequences bothinthe reference breakpoints
and within the bodies of the non-reference sequences, which could be
indicative of theinstability of these motifs and/or errorsin the reference.

Considering only fully resolved events with genotyping rates above
95% (n=541), weidentified between 232 kb and 418 kb of retained ances-
tral sequence per diploid individual. Allele frequencies of assembled
retained sequences are greater than those observed for SNVs and
indels, with 76.7% of the assembled sequences present at allele fre-
quency of more than 5% and only 12% of assembled sequences with
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component. AFR, Africanancestry; EAS, East Asian ancestry; EUR, European
ancestry.

allele frequency of less than 0.5% (Supplementary Fig. 23). This could
reflect difficulty inassembling rare haplotypes. Consistent with obser-
vations for SNVs and indels, individuals of African ancestry had, on
average, more non-reference alleles (Fig. 3b, Supplementary Fig. 24
and Supplementary Table 11). The overwhelming majority of assem-
bled events are shared by multiple continental groups. We found 58
genic (5 of which are exonic) and 48 intergenic sequences presentin
ahomozygous state in all individuals in the cohort, suggesting that
the reference sequence may be incomplete at particular loci, directly
affecting the annotation of common forms of genes, suchas UBE2QL1,
FOX06 and FURIN (Supplementary Fig. 25).

Comparing our findings to two previous short-read studies on dif-
ferent smaller datasets*®*, 356 sequences (251kb) are unique to our
call set. Additionally, we resolved the length and both breakpoints for
94 events (104 kb) for which only one breakpoint had been reported
(Fig. 3c). Further investigation of the overlap with insertions called
using long reads on 15 genomes*?, showed that—with a single excep-
tion—all previously described events with an allele frequency of more
than 12% could be confirmed (Supplementary Fig. 26).

Variation in CYP2Dé6

A complementary approachto de novo genome assembly is to develop
approaches that combine multiple types of information—including
previously observed haplotype variation, SNVs, indels, copy number
and homology information—to identify and classify haplotypesininter-
esting regions of the genome. One such region is around the CYP2D6
gene, whichencodes an enzyme that metabolizes approximately 25% of
prescriptiondrugs and the activity of which varies substantiallyamong
individuals**. More than 150 CYP2Dé6 haplotypes have been described,
some involving a gene conversion with its nearby non-functional but
highly similar paralogue CYP2D7.

We performed CYP2D6 haplotype analysis for all 53,831 TOPMed
individuals**. We called a total of 99 alleles (66 known and 33 novel)
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representing increased function, decreased functionand loss of func-
tion (Supplementary Table 12). Nineteen of the known alleles and all of
thenovelalleles are defined by structural variants, including complex
CYP2D6-CYP2D7 hybrids and extensive copy number variation, which
ranged from zero to eight gene copies (Supplementary Figs. 27, 28).

Heterozygosity and rare variant sharing

The TOPMed variation data also present an opportunity to examine
expectations about rare variation, and to specifically investigate which
studies show distinct patterns of variation that might be expected to
provide uniqueinsights. To do this, we grouped TOPMed participants
by study and by population group, and calculated genetically deter-
mined ancestry components, heterozygosity, number of singletons
and rare variant sharing (Fig. 4, Supplementary Table 13 and Supple-
mentary Datal).

As expected, African American and Caribbean population groups
have the greatest heterozygosity”*, followed by Hispanic/Latino,
European American, Amish, East Asian and Samoan groups. This is
consistent with a gradual loss of heterozygosity tracking the recent
African origin of modern humans and subsequent migration from
Africa to the rest of the globe*”*3, The Asian population groups have
among the lowest heterozygosity in our sample (even lower than the
Amish, aEuropean ancestry founder population with notably low het-
erozygosity*>*°), butalso the greatest singleton counts (in contrast to
the Amish, who have the lowest; see Supplementary Information 1.8).

Usingrare variation, we are also able to distinguish fine-scale patterns
of populationstructure (Fig. 4, Supplementary Fig. 29 and Supplemen-
tary Information1.9). Broadly, we observe sharing between population
groups withshared continental ancestry (whether African, European,
Asian or American). Nevertheless, additional patterns emerge. The
Amish are unique among the included studies: they exhibit little rare
variant sharing with outside groups and also the greatest rare variant
sharing within the study—consistent with a marked founder effect.
Furthermore, we observe an approximately 4x greater rare variant
sharingbetween African American and Caribbean populationgroups
than between European American population groups, even after cor-
recting for sample size differences (Supplementary Fig. 30).

Haplotype sharing

A corollary to rare variant sharing is rare haplotype sharing through
segments inherited fromarecent common ancestor (Supplementary
Figs.31,32). Thedistribution of identical-by-descent segments enables
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group.c, Venndiagram showing the positional concordance withinsertions
identified using short-read data from two previous studies***', The number of
sequences specific to each study and that have not been partially resolvedin
theotherstudiesis given between brackets.

estimates of effective population sizes over the past 300 generations
(Extended Data Fig. 4 and Supplementary Fig. 33). The Amish study
shows the greatest average levels of within-study identical-by-descent
sharing, consistent with a founder event 14 generations ago>®. The
demographic histories are broadly similar between populationgroups,
withthe exception of the Amish, who experienced amore extreme bot-
tleneck when moving from Europe to America, and Samoanindividuals,
who have had a smaller effective population size than the East Asian
populations from which they separated around 5,000 years ago®**.
Bothnon-Amish European ancestry and African ancestry populations
appear to have experienced a bottleneck around 5-10 generations ago,
consistent with moving to America, whether through colonization
or forced migration (82% of TOPMed participants are US residents).

Large samples alleviate the effects of linkage

Therelative numbers of singletons, doubletons and other very rare vari-
ants can be used to infer human demographic history™*>*¢, Although
much of demographic inference in past studies focused on fourfold
degenerate synonymoussitesin protein sequences, these sites evolve
under the influence of strong selection at nearby protein-coding
sites®”*8, which can affect the inferred timing and magnitude of popu-
lation size changes®®. WGS enables us to access intergenic regions of
the genome that are minimally affected by selection. We measured
how the site frequency spectrum and demographicinference changed
as a function of sample size and an index of selection at linked sites
(McVicker’s B statistic®®) using TOPMed individuals whose genomes
suggested mostly Europeanancestry and low admixture. Estimates of
effective populationsize of Europeanindividuals based onthe 1% of the
genome with the weakest effect of selection at linked sites consistently
yielded around 1.1 million individuals (Fig. 5, Supplementary Figs. 34,
35and Supplementary Table 14).

Human adaptations

When adaptive mutations arise, they can quickly spread. This process
generates distinct genomic patterns surrounding the locus, includ-
ing extended regions of low-diversity haplotypes and few singletons.
We scanned for evidence of very recent ongoing positive selection
by taking advantage of our WGS data and large samples. We used the
singleton density score® to search for regions where positive selec-
tion has occurred or is ongoing in three ancestry groups: European
(n=21,196), African (n=2,117) and East Asian (n =1,355). Broadly, each of
these populations showed evidence for adaptationinimmune system
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genes, albeit with a variety of different gene targets, which probably
reflects historical differences in pathogen exposure.

The European population shows selection signals (Supplementary
Fig.36a) in the vicinity of LCT and the MHClocus, reflecting well-known
signals for adaptation to lactose metabolism and immune system
function®. We further identify a strong selection signal implicating
HERC2, agene thatis associated withiris pigmentation®. The African
populationshows aselectionsignal (Supplementary Fig.36b) atalocus
situated among a cluster of antimicrobial alpha- and beta-defensin
genes®, which has an important role in innate immunity, suggest-
ing a possible adaptive response to environmental pathogens. Other
regions implicated include a locus 23 kb upstream of NRG3, a previ-
ously identified putative target of selection expressed in neural tis-
sue®*®* and the calcium sensor ST/IM1. Mutations in STIMI are known
to cause immunodeficiency®. The East Asian population shows a
selection signal (Supplementary Fig. 36¢) at GJAS5, a gap junction
protein that formsintercellular channels to allow transport between
cells, and at PRAG1, a pseudokinase that interacts with cytoplasmic
tyrosine kinase (CSK), which ultimately affects antibacterialimmune
response®. Combined with a strong signal at the MHC locus, this once
again suggests adaptation inimmune system function. We also find
evidence of positive selection at two alcohol metabolism genes at
mutations known to confer protection against alcoholism: the R48H
polymorphism (rs1229984) in ADH1B%*° and the E504K polymorphism
(rs671) in ALDH2™™,

The TOPMed imputation resource

In addition to enabling detailed analysis of TOPMed sequenced sam-
ples, TOPMed can enhance the analysis of any genotyped samples’.
To this end, we constructed a TOPMed-based imputation reference
panel that now includes 97,256 individuals (Extended Data Table 3),
including 308,107,085 SNVs and indels (Supplementary Table 15). This
is, toour knowledge, the firstimputation reference panel that is based
exclusively on deep WGS data in diverse samples and greatly exceeds
previously published alternatives”®. For example, the average impu-
tation quality /2 for variants with a frequency of 0.001 in genomes of
individuals with an African ancestry increased from around 0.17 in
previous panels to 0.96 (Supplementary Fig. 37). Similarimprovements
were observable in all ancestries that we considered except in South
Asian individuals. The minimum allele frequency at which variants
could be well-imputed (r*> 0.3) decreased to around 0.002-0.003%
(European or African ancestry in TOPMed). This means that 89% of
the approximately 80,000 rare variants with MAF < 0.5% in an aver-
age genome of African ancestry can be recovered through genotype
imputation using the TOPMed panel.

To illustrate the possibilities, we imputed TOPMed variants in
array-genotyped participants of the UK Biobank? and compared the
results to exome-sequencing data of overlapping individuals. Of the
463,182 exome-sequencing variants with MAF > 0.05% in 49,819 partici-
pants of the UK Biobank, the majority (84.86%) were also presentin the
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TOPMed-imputed data withimputation quality >0.3. This proportion
was lower (52.97%) for 3,587,193 non-singleton exome-sequencing
variants with MAF < 0.05%. The TOPMed-imputed genotypes were
highly correlated with the exome-sequencing genotypes—the aver-
age correlation ranged from 0.73 (MAF < 0.05%) to 0.98 (MAF > 25%)
(Supplementary Fig. 38).

Aninitial association analysis of 94,081 imputed rare autosomal
(allele frequency < 0.5%) pLOF variants identified, among other find-
ings, several known rare variant associations with breast cancer: a
frameshift variantin CHEK2 and a stop gain variantin PALB2 (see Meth-
ods and Supplementary Table 16). We also found that the burden of rare
pLOF variantsin BRCA2 (comprising 35 rare pLOF variants; P=1.6 x10°%;
cumulative allele frequency in cases versus controls, 0.13% versus
0.05%) was increased among cases. The individually associated pLOF
variants would not have been detected using previous reference panels
(Supplementary Table 16). Other examples of rare variant association
signalsincluded associations with the burden of rare pLOF variantsin
USH2A and retinal dystrophies (47 rare pLOF variants; allele frequency
incases versus controls, 3% versus 0.2%), /[FT140 and kidney cyst (18 rare
pLOF variants; allele frequency in cases versus controls, 0.5% versus
0.1%),and MYOC and glaucoma (14 rare pLOF variants; allele frequency
in cases versus controls, 0.5% versus 0.1%).

Conclusion and future prospects

We show that TOPMed WGS data provide arich resource for developing
and testing methods for surveying human variation, for inference of
human demography and for exploring functional constraints on the
genome”’, In addition to these uses, we expect that TOPMed data
willimprove nearly all ongoing studies of common and rare disorders
by providing both a deep catalogue of variation in healthy individu-
als and an imputation resource that enables array-based studies to
achieve a completeness that was previously attainable only through
direct sequencing.

Members of the broader scientific community are using TOPMed
resources through the WGS and phenotype data available on dbGaP,
the BRAVO variant server and the imputation reference panel on
the TOPMed imputation server. Full utilization of the programme’s
resources by the scientific community will require new approaches
for dealing with the large size of the omics data, the diversity of the
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B percentile bin
(weakest to strongest SalLS)

Sample Size (2N)

different samplesizes. b, Each point corresponds to the population size
inferred in the last generation of an exponential growth model for Europeans.
Demographicinference was conducted with different sample sizes for fourfold
degeneratesites (n=4,718,653 sites) and the highest 1% Bsites (n=10,977,437
sites). Error bars show 95% confidence intervals (see Supplementary Table 14
for parameter values). N,, effective populationsize.

phenotypic data types and structures, and the need to share dataina
manner that supports the privacy and consent preferences of partici-
pants. Theseissues are currently being addressed in partnership with
the NHLBI BioData Catalyst” cloud-computing programme.
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Methods

DNA samples

WGS for the 53,831 samples reported here was performed on samples
that had previously been collected from and consented to by research
participants from 33 NHLBI-funded research projects. All studies
were approved by the corresponding institutional review boards
(Supplementary Information 4). All sequencing was done from DNA
extracted from whole blood, with the exception of 17 Framingham
samples (lymphoblastoid cell lines) and HapMap samples NA12878
and NA19238 (lymphoblastoid cell lines) used periodically as sequenc-
ing controls. Cell lines were tested for mycoplasma contamination by
aligning sequence data to the human genome, and authenticated by
comparison with previous genetic analysis.

WGS

WGS targeting a mean depth of at least 30x (paired-end, 150-bp
reads) using Illumina HiSeq X Ten instruments was carried out over
several years at six sequencing centres (Supplementary Table 17).
All sequencing used PCR-free library preparation kits purchased
from KAPA Biosystems, equivalent to the protocol in the lllumina
TruSeq PCR-Free Sample Preparation Guide (Illumina, FC-121-2001).
Centre-specific details are available from the TOPMed website (https://
www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze
-5b-phases-1-and-2). In addition, 30x coverage WGS for 1,606 samples
from four contributing studies were sequenced before the start of the
TOPMed sequencing project and are included in this dataset. These
were sequenced at [llumina using HiSeq 2000 or 2500 instruments,
have 2 x100-bp or 2 x 125-bp paired-end reads and sometimes used
PCR amplification.

Sequence data processing and variant calling

Sequence data processing was performed periodically to produce
genotype data ‘freezes’ that included all samples available at the
time. All sequences were remapped using BWA-MEM’¢ to the hs38DH
1000 Genomes build 38 human genome reference including decoy
sequences, following the protocol published previously”. Variant dis-
covery and genotype calling was performed jointly, across TOPMed
studies, for all samplesin a given freeze using the GotCloud®” pipeline.
This procedureresultsin asingle, multi-study genotype call set. A sup-
port vector machine quality filter for variant sites was trained using a
large set of site-specific quality metrics and known variants fromarrays
and the 1000 Genomes Project as positive controls and variants with
Mendelianinconsistencies in multiple families as negative controls (see
online documentation® for more details). After removing all sites with
aminor allele count less than 2, the genotypes with aminimal depth
of more than 10x were phased using Eagle 2.4%. Sample-level quality
controlincluded checks for pedigree errors, discrepancies between
self-reported and genetic sex, and concordance with previous geno-
typing array data. Any errors detected were addressed before dbGaP
submission. Details regarding WGS data acquisition, processing and
quality control vary among the TOPMed data freezes. Freeze-specific
methods are described on the TOPMed website (https://www.nhlbi-
wgs.org/data-sets) and indocumentsincluded in each TOPMed acces-
sionreleased on dbGaP (for example, see document phd008024.1in
phs000956.v4.pl).

Access to sequence data

Copies ofindividual-level sequence data for each study participant are
stored onboth Google and Amazon clouds. Access involves an approved
dbGaP dataaccessrequest and is mediated by the NCBISequence Data
Delivery Pilot mechanism. This mechanism uses fuserasoftware®? run-
ning onthe user’s cloud instance to handle authentication and authori-
zation with dbGaP. It provides read access to sequence data for one or
more TOPMed (or other) samples as .cram files (with associated .crai

index files) within a fuse virtual file system mounted on the cloud com-
puting instance. Samples are identified by ‘SRR’ run accession numbers
assignedinthe NCBISequence Read Archive (SRA) database and shown
under each study’s phs numberinthe SRA RunSelector (https://trace.
ncbi.nlm.nih.gov/Traces/sra/sra.cgi). The phs numbers for all TOPMed
studies arereadily found by searching dbGaP for the string TOPMed".
The fusera software is limited to running on Google or Amazon cloud
instances toavoid incurring data egress charges. Fusera, samtools and
othertoolsare also packagedinaDocker container for ease of use and
are available for download from Docker Hub®.

Sample sets

Several sample sets derived from three different WGS data freezes
were used inthe analyses presented here: freeze 3 (GRCh37 alignment,
around 18,000 samples jointly calledin2016), freeze 5 (GRCh38 align-
ment, approximately 65,000 samples jointly called in 2017), and freeze
8 (GRCh38 alignment, about 140,000 samples jointly called in 2019).
Extended Data Table 3 indicates which TOPMed study-consent groups
were used ineach of several different types of analyses described in this
paper. Most analyses were performed onaset of 53,831 samples derived
fromfreeze 5 (‘General variant analyses’in Extended Data Table 3) or on
asubset thereof approved for population genetic studies (‘Population
genetics’in Extended Data Table 3). The set of 53,831 was selected from
freeze Susing samples eligible for dbGaP sharing at the time of analysis,
excluding (1) duplicate samples from the same participant; (2) one
member of each monozygotic twin pair; (3) samples with questionable
identity or low read depth (<98% of variant sites at depth > 10x); and
(4) samples with consent types inconsistent with analyses presented
here. The ‘unrelated’ sample set consisting of 40,722 samples refers
toasubset of the 53,831 samples of individuals who are unrelated with
athreshold of third degree (less closely related than first cousins),
identified using the PC-AiR method®*. Exact numbers of samples used
ineach analysis are listed in Supplementary Table 18.

High-coverage whole-exome sequencing in BioMe study

Fromaround 10,000 BioMe study samples presentin TOPMed freeze 8,
werandomly selected 1,000 samples for which whole-exome sequenc-
ing (WES) data were available. These samples were whole-exome
sequenced using Illumina v4 HiSeq 2500 at an average 36.4x depth.
Genetic variants were jointly called using the GATK v.3.5.0 pipeline
across all 31,250 BioMe samples with WES data. A series of quality
controlfilters, known as the Goldilocks filter, were applied before data
delivery tothe Charles Bronfman Institute for Personalized Medicine
(IPM). First, aseries of filters was applied to particular cells comprising
combinations of sites and samples—that is, genotypic information for
oneindividual at one locus. Quality scores were normalized by depth
of coverage and used with depth of coverage itselfto filter sites, using
different thresholds for SNVs and short indels. For SNVs, cells with
depth-normalized quality scores less than 3, or depth of coverage less
than7are setto missing. Forindels, cells with depth-normalized quality
scoreslessthan 5, or depth of coverage less than10 are set to missing.
Then, variant sites were filtered, such that all samples carrying varia-
tion have heterozygous (0/1) genotype calls and all samples carrying
heterozygous variation fail the allele balance cut-off; these sites were
removed from the dataset at this stage. The allele balance cut-off, as
with the depth and quality scores used for cell filtering above, differed
depending on whether the site was a SNV or anindel: SNVs require at
least onesample to carry analternative allele balance >15%, and indels
require atleast one sample to carry an alternative allele balance >20%.
These filtersresulted in the removal of 441,406 sites, leaving 8,761,478
variants in the dataset. After subsetting to 1,000 randomly selected
individuals, we had 1,076,707 autosomal variants that passed qual-
ity control. We further removed variants with call rate <99% (that s,
missing inmore than10individuals), reducing the number of analysed
autosomal variants to 1,044,517. The comparison results of TOPMed
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WGS and BioMe WES data are described in Supplementary Informa-
tion1.3.1.

Low-coverage WGS and high-coverage WES in the Framingham
Heart Study

Investigators of the Framingham Heart Study (FHS) evaluated WGS
datafrom TOPMed in comparison with sequencing datafrom CHARGE
Consortium WGS and WES datasets. Supplementary Table 19 provides
the counts and depth of each sequencing effort. The overlap of these
three groups is 430 FHS study participants, on whom we report here.
We use a subset of 263 unrelated study participants to calculate the
numbers of singletons and doubletons, MAF, heterozygosity and all
rates, to avoid bias from the family structure. Supplementary Infor-
mation 1.3.2 provides further detail on the sequencing efforts and a
detailed description of the comparison results.

Identifying pLOF variants

pLOF variants were identified using Loss Of Function Transcript Effect
Estimator (LOFTEE) v.0.3-beta® and Variant Effect Predictor (VEP)
v.94%¢, The genomic coordinates of coding elements were based on GEN-
CODE v.29%. Only stop-gained, frameshift and splice-site-disturbing
variants annotated as high-confidence pLOF variants were used in
the analysis. The pLOF variants with allele frequency > 0.5% or within
regions masked due to poor accessibility were excluded from analysis
(see Supplementary Information 1.5 for details).

We evaluated the enrichment and depletion of pLOF variants (allele
frequency < 0.5%) in gene sets (that is, terms) from Gene Ontology
(GO)*"#8 For each gene annotated with a particular GO term, we com-
puted the number of pLOF variants per protein-coding base pair, L,
and proportion of singletons, S. We then tested for lower or higher
mean L and Sin a GO term using bootstrapping (1,000,000 samples)
with adjustment for the gene length of the protein-coding sequence
(CDS): (1) sort all genes by their CDS length in ascending order and
divide them into equal-size bins (1,000 genes each); (2) count how
many genes from a GO term are in each bin; (3) from each bin, sample
withreplacement the same number of genes and compute the average
LandsS; (4) counthow many times sampled L and Swere lower or higher
than observed values. The Pvalues were computed as the proportion
of bootstrap samples that exceeded the observed values. The fold
change of average L and S was computed as a ratio of observed values
to the average of sampled values. We tested all 12,563 GO terms that
included more than one gene. The P-value significance threshold was
thus-~2x107%. The enrichment and depletion of pLOF variantsin public
gene databases was tested in a similar way.

Sequencing depth at protein-coding regions

We compared sequencing depth at protein-coding regionsin TOPMed
WGS and EXAC WES data. The EXAC WES depth at each sequenced base
paironhumangenome build GRCh37 was downloaded from the EXAC
browser website (http://exac.broadinstitute.org). When sequencing
depth summary statistics for a base pair were missing, we assumed
depth <10x for this base pair. Only protein-coding genes from consen-
sus coding sequence were analysed and the protein-coding regions
(CDS) were extracted from GENCODE v.29. When analysing EXAC
sequencing depth, we used GENCODE v.29 lifted to human genome
build GRCh37. When comparing sequencing depth for each gene
individually in TOPMed and EXAC, we used only genes presentin both
GRCh38 and GRCh37 versions of GENCODE v.29.

Novel genetic variants inunmapped reads

Analysis of unmapped reads was performed using 53,831 samples from
TOPMed datafreeze 5. From each sample, we extracted and filtered all
read pairs withatleast one unmapped mate and used them to discover
human sequences that were absent from the reference. The pipeline
included four steps: (1) per-sample de novo assembly of unmapped

reads; (2) contig alignment to the Pan paniscus, Pan troglodytes,
Gorilla gorilla and Pongo abelii genome references and subsequent
hominid-reference-based merging and scaffolding of sequences pooled
together from all samples; (3) reference placement and breakpoint
calling; and (4) variant genotyping. The detailed description of each
stepis provided in Supplementary Information 1.7.

Identification of CYP2D6 alleles using Stargazer’s genotyping
pipeline

Details of the Stargazer genotyping pipeline have been described previ-
ously®. In brief, SNVs and indels in CYP2D6 were assessed from a VCF
file generated using GATK-HaplotypeCaller®. The VCF file was phased
using the program Beagle®® and the 1000 Genomes Project haplotype
reference panel. Phased SNVs and indels were then matched to star
alleles. In parallel, read depth was calculated from BAM files using
GATK-DepthOfCoverage®. Read depth was converted to copy number
by performingintra-sample normalization*. After normalization, struc-
tural variants were assessed by testing all possible pairwise combina-
tions of pre-defined copy number profiles against the observed copy
number profile of the sample. For new SVs, breakpoints were statisti-
cally inferred using changepoint®. Information regarding new SVs was
stored and used to identify subsequent SVs in copy number profiles.
Output dataincludedindividual diplotypes, copy number plotsand a
VCF of SNVs and indels that were not used to define star alleles.

Genome-wide distribution of genetic variation

Contiguous segment analysis. We excluded indels and multi-allelic
variants, and categorized the remaining variants as common (allele
frequency = 0.005) or rare (allele frequency < 0.005), and as coding or
noncoding based on protein-coding exons from Ensembl 942, Variant
counts were analysed across 2,739 non-empty (thatis, with at least one
variant) contiguous 1-Mb chromosomal segments, and counts in seg-
ments at the end of chromosomes with length L <10° bp were scaled
up proportionally by the factor 10° x L. For each segment, the coding
proportion, C, was calculated as the proportion of bases overlapping
protein-coding exons. The distribution of Cis fairly narrow, with 80% of
segments having C<0.0195, 99% of segments have C< 0.067 and only
3 segments having C>0.10. Owing to the significant negative correla-
tion between Cand the number of variantsin a segment, and potential
mapping effects, we use linear regression to adjust the variant counts
persegment accordingtothe model count=4x C+A+count_adj, where
Aisthe proportion of segment bases overlapping the accessibility mask
(Supplementary Information1.5). Unless otherwise noted, we present
analyses and results that use these adjusted count values.

Concatenated segment analysis. Distinct base classifications were
defined by both coding and noncoding annotations (based on En-
sembl 94°2) and CADD in silico prediction scores® (downloaded from
the CADD server for all possible SNVs). For each base, we used the
maximum possible CADD score (when using the minimum CADD score,
results were qualitatively the same). Bases beyond the final base with
a CADD score per chromosome were excluded. This resulted in six
distinct types of concatenated segments: high (CADD >20), medium
(10 < CADD < 20) and low (CADD <10) CADD scores for coding and
similarly for noncoding variants. Common (allele frequency > 0.005)
andrare (allele frequency < 0.005) variant counts were then calculated
across these concatenated segments. Multi-allelic variants and those
inregions masked due to accessibility were excluded. Counts in seg-
ments at the end of chromosomes were scaled up asin the contiguous
analysis.

Singleton clustering analysis

Data. From the TOPMed freeze 5 dataset, we selected asubset of 1,000
unrelated individuals of African ancestry, 1,000 unrelated individuals
of East Asian ancestry and 1,000 unrelated individuals of European
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ancestry, with the ancestry of each individual inferred across 7 global
reference populations using RFMix®>. In each of these subsamples,
we recalculated the allele counts of each SNV and extracted SNVs that
were singletons within that sample, then calculated the distance to
the nearest singleton (either upstream or downstream from the focal
singleton) occurring within the same individual. Note that asingleton
defined here is not necessarily asingletonin the entire TOPMed freeze
5 dataset. We chose to limit the size of each population subsample to
n=1,000 for three reasons: first, to ensure the different population
subsamples carried roughly a similar number of singletons; second,
to ensure homogeneous ancestry within each subsample so that our
analysis of singleton clustering patterns was not an artefact of admixed
haplotypes; third, to limit the incidence of recurrent mutations at hy-
permutablesites, which canalter the underlying mutational spectrum
of singleton SNVsin large samples®. Although the TOPMed Consortium
sequenced individuals from several other diverse population groups
(for example, Samoan, Hispanic/Latino individuals), the majority of
these individuals were of admixed ancestry and the singletons from
these smaller samples reflected mutations that have accumulated
over alonger period of time, so the mutation spectraand genome-wide
distributions of these samples would be more susceptible to distortion
by other evolutionary processes such as selection and biased gene
conversion®.

Simulations. To quantify the effects of external branch length het-
erogeneity on singleton clustering patterns, we used the stdpopsim
library® to simulate variants across chromosome 1 for 2,000 Euro-
peanand 2,000 African haploid samples, using a previously reported
demographic model™. Simulations were performed using a per-site,
per-generation mutation rate® 0f1.29 x 1078, and using recombination
rates derived from the HapMap genetic map?. Because our aim was to
compare these simulated singletons to unphased singletons observed
inthe TOPMed data, we randomly assigned each of the 2,000 haploid
samples from each population into one of 1,000 diploid pairs, and
calculated the inter-singleton distances per diploid sample, ignoring
the haplotype on which each simulated singleton originated.

Mixture model parameter estimation. The distribution of singletons
suggest an underlying nonhomogeneous Poisson process, where the
rate of incidence varies across the genome. In other areas of research,
it has been shown that the waiting times between events arising from
other nonhomogeneous Poisson processes, such as volcano eruptions
or extreme weather events, can be accurately modelled as a mixture
of exponential distributions®®*°. Taking a similar approach, we model
the distribution of inter-singleton distances across all §; singletons in
individual i as a mixture of K exponential component distributions
(fi(d;6:1)), given by:

K
f(di;A, 6)=) Aixc S (di36,0)
k=1

where 6;,<0,,<...<0,,and A;; = S;,/S;is the proportion of singletons
arising from component k, such that Y5_, A =L

We estimate the parameters of this mixture (4;,, ..., 4;x, 0,5, ..., 0,4
using the expectation-maximizationalgorithmasimplementedin the
mixtools R package'®. Code for this analysis is available for download
fromthe GitHub repository'®. Toidentify an optimal number of mixture
components, we iteratively fit mixture models for increasing values
of Kand calculated the log-likelihood of the observed data Dgiven the
parameter estimates (/fl-ll, ...,/f,-,,(, 0,1 HA,-,K) , stopping at K compo-
nentsifthe Pvalue of thelikelihood ratio testbetween K—1and K com-
ponents was >0.01 (x? test with two degrees of freedom). The
goodness-of-fit plateaued at four components for the majority of
individuals, so we used the four-component parameter estimates from
eachindividual in all subsequent analyses.

Now let k;;indicate which of the four processes generated singleton
Jjinindividual i. We calculated the probability of being generated by
process k as:

i A i S (d;3 6;
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We then classified the process-of-origin for each singletonaccording
to the following optimal decisionrule:

Identification of mixture component hotspots. After assigning sin-
gletons to the most likely mixture component, we pooled singletons
across individuals of agiven ancestry group and counted the number
of occurrencesin each componentin non-overlapping 1-Mb windows
throughout the genome. We defined hotspots as the top 5% of 1-Mb bins
containing the most singletonsinacomponentineach ancestry group.

Modelling the relationship between clustering patterns and genom-
ic features. Ineach 1-Mb window, we calculated the average signal for
12 genomic features (H3K27ac, H3K27me3, H3K36me3, H3K4mel,
H3K4me3, H3K9ac, H3K9me3, exon density, DNase hypersensitivity,
CpGisland density, lamin-associated domain density and recombina-
tion rate), using the previously described source datasets™. For each
mixture component, we then applied the following negative binomial
regression model to estimate the effects of each feature on the density
of that componentin 1-Mb windows:

lOg(Ya,k,w) :ﬁo +ﬂ1X1,w t.. +ﬂ12X12,w

Where Y, , is the number of singletons in ancestry subsample a of
mixture component k in window w and X, ,, ..., Xy, , are the signals of
each of the 12 genomic features in corresponding window w.

Evolutionary genetics of individuals with diverse ancestry
Rare variant sharing. In these analyses, we used 39,722 unrelated in-
dividuals that had provided consent for population genetics research.
Each individual was grouped into their TOPMed study, except for in-
dividuals from the AFGen project, which were treated as one study
(Extended Data Tables1, 2). Individuals from the FHS and ARIC projects
individuals, which overlapped with the AFGen project, remained in
their respective studies and were not grouped into the AFGen pro-
ject. Individuals for whom the population group was either missing
or ‘other’ were removed from the analysis. We then removed all indels,
multi-allelic variants and singletons from the remaining 39,168 individu-
als. Each study was then split by population group. We excluded studies
that had fewer than 19 samples from the analysis; however all 39,168
samples were used to define singleton filtering. We used the Jaccard
index'?, /, to determine the intersection of rare variants (2 < sample
count<100) between two individuals divided by the union of the rare
variants of that pair, where the sample count indicates the number
of individuals with either a heterozygote or homozygote variant. We
then determined the average/value between and within each study.
To confirmthat/is not biased by sample size, we randomly sampled
500 individuals from each of two studies with European (AFGen and
FHS) and African (COPDGene andJHS) population groupsin TOPMed
freeze 3, without replacement. We then recalculated/between and
withinthese randomly sampled studies, considering alternative allele
counts between 2 and 100 within these 2,000 individuals.

Haplotype sharing. We used the RefinedIBD program'® to call seg-
ments of identical-by-descent (IBD) sharing of length =2 cM on the
autosomes using passing SNVs with MAF >5%. Al 53,831 samples were
included in this analysis, and we used genotype data phased with
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Eagle2®. As IBD logarithm of odds (LOD) scores are often deflated in
populations with strong founding bottlenecks, such as the Amish, we
used aLOD score threshold of 1.0 instead of the default 3.0. To account
for possible phasing and genotyping errors, we filled gaps between
IBD segments for the same pair of individuals if the gap had alength
of at most 0.5 cM and at most one discordant genotype. As a result of
the lower LOD threshold, regions with a low variant density can have
an excess of apparent IBD segments. We therefore identified regions
with highly elevated levels of detected IBD using a previously described
procedure'®* and removed any IBD segments that fell wholly within
theseregions.

We divided the data by study and by population group within each
study. In the analyses of IBD sharing levels and recent effective size,
we did notinclude studies without appropriate consent or population
groups with fewer than 80 individuals within a study. We calculated the
total length of IBD segments for each pair of individuals, and we aver-
aged these totals within each population groupinastudy and between
each pair of population-by-study groups. We also estimated recent
effective population sizes for each group using IBDNe'*.

Demographic estimation under selection at linked sites. We se-
lected 2,416 samples fromthe TOPMed data freeze 3 that (1) had ahigh
percentage of European ancestry; (2) were unrelated; and (3) gave
consent for population genetics research. More detailed information
about ancestry estimation and filters is provided in Supplementary
Information1.10.

We performed several steps to filter the genome for high-quality
neutralsites, which were based ona previously described ascertainment
scheme® (Supplementary Information 1.10). After filtering, positions
inthe genome were annotated for how strongly affected they were by
selection at linked sites using the background selection coefficient,
McVicker’s B statistic®®. We used all sites annotated with a B value for
performing general analyses. However, when performing demographic
inferences, we limited our analyses to regions of the genome within the
top 1% of the genome-wide distribution of B (B = 0.994). These sites
correspond toregions of the genomeinferred to be under the weakest
amount of background selection (that is, under the weakest effects of
selection at linked sites). Sites in the genome were also polarized to
ancestral and derived states using ancestral annotations called with
high-confidence fromthe GRCh37 e71ancestral sequence. After keep-
ing only polymorphicbi-allelic sites, we had 20,324,704 sites, of which
191,631 had B > 0.994. We also identified 91,177 fourfold degenerate
synonymous sites (irrespective of B) that were polymorphic (bi-allelic)
and had high-confidence ancestral and derived states.

We performed demographic inference with the moments'® pro-
gram by fitting a model of exponential growth with three parame-
ters (Neyror Veur Trur) to the site-frequency spectrum. This included
two free parameters: the starting time of exponential growth (7¢,,)
and the ending population size after growth (Ng,). The ancestral
size parameter (that is, the population size when growth begins),
Neuro, Was kept constant in our model such that the relative starting size
of the population was always 1. We applied the inference procedure
to either fourfold degenerate sites or sites with B > 0.994. The site
frequency spectrum used for inference was unfolded and based on
the polarization step described above. The inference procedure was
fit using sample sizes (2NV) 0f 1,000, 2,000, 3,000, 4,000 and 4,832
chromosomes. To convert the scaled genetic parameters output by the
inference procedure to physical units, we used the resulting theta (also
inferred by moments) and a mutation rate’® of 1.66 x 10 8 to generate
corresponding effective populationsizes (N,). To convert generations
toyears, we assumed a generation time of 25 years. The 95% confidence
intervals were generated by resampling the site frequency spectrum
1,000 times and using the Godambe information matrix to generate
parameter uncertainties'”’. A more detailed description is available
in Supplementary Information 1.10.
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Selection. We started with 39,649 unrelated individuals selected from
the TOPMed data freeze 5 for which we had consent for population
genetic analyses (Extended Data Table 3). As the singleton density
score (SDS) requires thousands of samples and a baseline demographic
history, we subset our data by population group and limited our popula-
tionanalysis to those population groups for which we had well-studied
demographic histories: broadly European, broadly Africanand broadly
East Asian. To avoid potential problems introduced by admixture, we
required that our samples had more than 90% inferred European,
African or East Asian ancestry as inferred by a seven-way ancestry in-
ference pipeline (Supplementary Information 1.11). This left n=21,196
European samples, n=2,117 African samples and n =1,355 East Asian
samples. We specifically excluded Amish samples from the European
group as they are aunique founder population. We analysed each popu-
lation separately. Only bi-allelic sites with an unambiguous ancestral
state, inferred using the WGSA pipeline!®®, were used. Sites near chro-
mosomeboundaries, near centromeres and in regions with poor acces-
sibility were excluded. We used the previously published R scripts® to
perform all demographic history simulations and SDS computations
in each population. We then normalized raw SDS scores within 1% fre-
quency bins and treated the normalized scores as Z-scores to convert
them to Pvalues as described previously®’. Raw and normalized SDS
scores areincluded in Supplementary Data 2.

TOPMed imputation panel

Construction. We divided each autosomal chromosome and the
Xchromosome into overlapping chunks (with chunk size of 1Mb each
and with 0.1Mb overlap between consecutive chunks), and then phased
eachof the chunks using Eagle v.2.4%, We removed all singleton sites and
compressed the haplotype chunks into m3vcf format'®. Afterwards,
we ligated the compressed haplotype chunks for each chromosome
to generate the final reference panel.

Evaluation of imputation accuracy. For all TOPMed individuals, ge-
netic ancestries were estimated using the top four principal compo-
nents projected onto the principal component space of 938 Human
Genome Diversity Project (HGDP) individuals using verifyBamID2'"°,
For each TOPMed individual, we identified the 10 closest individuals
from2,504 individuals from the 1000 Genomes Project phase 3 based
on Euclidean distances in the principal component space estimated
by verifyBamlID2. If all of the 10 closest individuals from the 1000 Ge-
nomes Project phase 3 belonged to the same super-population—among
African,admixed American, East Asian, European and South Asian pop-
ulations—we estimated that the TOPMed individual also belonged to
that super-population. Among the 97,256 reference panelindividuals,
90,339 (93%) were assigned to a super-population, with the following
breakdown: African, 24,267 individuals; admixed American,17,085in-
dividuals; European, 47,159 individuals; East Asian, 1,184 individuals;
South Asian, 644 individuals. We randomly selected 100 individuals
fromeach super-populationinthe BioMe TOPMed study, and selected
markers on chromosome 20 present on the lllumina HumanOmniEx-
press (8v1-2_A) array. The selected genotypes were phased with Eagle
2.4.1%, using the 1000 Genomes Project phase 3 (n=2,504), Haplotype
Reference Consortium (HRC,n=32,470) and TOPMed (n=96,756) refer-
ence panels, excluding the 500 individuals from the TOPMed reference
panel. The phased genotypes were imputed using Minimac4™ from
eachreference panel, and the imputation accuracy was estimated as
the squared correlation coefficient (r?) between the imputed dosages
and the genotypes calls fromthe sequence data. The allele frequencies
were estimated among all TOPMed individuals estimated to belong
to the same super-population, and the r* values were averaged across
variants in each MAF category. Variants present in 100 sequenced in-
dividuals but absent from the reference panels were assumed to have
r*=0for the purposes of computing the average r>. The minimum MAF



toachieve r* > 0.3 was calculated from the average r? in each MAF cat-
egory by finding the MAF that crosses = 0.3 using linear interpolation.
The average number of rare variants (MAF < 0.5%) and the fraction of
imputable rare variants (2> 0.3) were calculated based on the number
of non-reference alleles inimputed samples above and below the mini-
mum MAF, assuming Hardy—-Weinberg equilibrium.

Imputation of the UK Biobank to the TOPMed panel and associa-
tion analyses. After phasing the UK Biobank genetic data (carried out
on 81 chromosomal chunks using Eagle v.2.4), the phased data were
converted from GRCh37 to GRCh38 using LiftOver2 Imputation was
performed using Minimac4™.

We compared the correlation of genotypes between the
exome-sequencing data released by the UK Biobank (following their
SPB pipeline™) and the TOPMed-imputed genotypes. The comparison
assessed 49,819 individuals and 3,052,260 autosomal variants that were
found in both the exome-sequencing and TOPMed-imputed datasets
(matched by chromosome, position and alleles, and with an imputa-
tion quality of at least 0.3 in the TOPMed-imputed data). We split the
variants into MAF bins for which the MAF from the exome data was
used to define the bins, and computed Pearson correlations averaged
within each bin.

We tested single pLOF, nonsense, frameshift and essential splice-site
variants®® for association with 1,419 PheCodes constructed from com-
posites of ICD-10 (International Classification of Diseases 10th revision)
codes to define cases and controls. Construction of the PheCodes has
been previously described™. We performed the association analysisin
the ‘white British” individuals, which resulted in 408,008 individuals
after the following quality control metrics were applied: (1) samples
did not withdraw consent from the UK Biobank study as of the end of
2019; (2) ‘submitted gender’ matches ‘inferred sex’; (3) phased autoso-
mal dataavailable; (4) outliers for the number of missing genotypes or
heterozygosity removed; (5) no putative sex chromosome aneuploidy;
(6) no excess of relatives; (7) not excluded from kinship inference;
and (8) in the UK Biobank defined the ‘white British’ ancestry subset.
To perform the association analyses, we used a logistic mixed model
testimplemented in SAIGE™ with birth year and the top four principal
components (computed from the white British subset) as covariates.
For the pLOF burden tests, for each autosomal gene with at least two
rare pLOF variants (n=12,052 genes), aburden variable was created in
which dosages of rare pLOF variants were summed for eachindividual.
This sum of dosages was tested for association with the 1,419 traits
using SAIGE. The same covariates used in the single-variant tests were
included. For both the single-variant and the burden tests, we used
5x1078as the genome-wide significance threshold.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

A detailed description of the TOPMed participant consents and data
access is provided in Box 1. TOPMed data used in this manuscript are
available through dbGaP. The dbGaP accession numbers for all TOPMed
studies referenced inthis paper arelisted in Extended Data Tables 2, 3.
A complete list of TOPMed genetic variants with summary level infor-
mation used in this manuscriptis available through the BRAVO variant
browser (bravo.sph.umich.edu). The TOPMed imputation reference
panel described in this manuscript can be used freely for imputation
through the NHLBIBioData Catalyst at the TOPMed Imputation Server
(https://imputation.biodatacatalyst.nhlbi.nih.gov/). DNA sequence
and reference placement of assembled insertions are available in VCF
format (without individual genotypes) on dbGaP under the TOPMed
GSR accession phs001974.

Code availability

All code for TOPMed data quality checks and variant calling is avail-
able at https://github.com/statgen/topmed_variant_calling. Code
for the WGS and WES data comparisons is available at https://github.
com/statgen/sequencing_comparison. Code for modelling the sin-
gletondistance distributionis available at https://github.com/carjed/
topmed_singleton_clusters. Code for identifying novel genetic vari-
antsinunmapped readsisavailable at https://github.com/nygenome/
topmed_unmapped. Code for gene-burden association tests using
rare pLOF variants is available at https://github.com/sgagliano/Gen-
eBurden. Code for the imputed and genotype UK Biobank WES data
comparisons is available at https://github.com/sgagliano/UKB_WES_
vs_ TOPMed_IMP.
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freeze 5 pooled across studies. a, Three-dimensional plot of principal study inclusion criteria. Individuals with missing values for ancestry or
components (PC)1,2and 3. b, Parallel coordinate plot colour-coded by ethnicity are excluded.
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Extended DataFig.2|Distribution of genetic variantsacross the genome.
After filtering to focus onregions of the genome that are accessible through
short-read sequencing, most contiguous 1-Mb segments show similar levels of
common (5,141 +1,298 variants with MAF > 0.5%) and rare variation

(120,414 19,862 variants with MAF < 0.5%). From top to bottom, panel 1shows

thelevels of variation across the genome for common coding variants, panel 2
forrare coding variants, panel 3 forcommon noncoding variants and panel 4
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Extended Data Table 1| TOPMed projects and participating parent studies included in genotype data freeze 5

Project Abbreviation Project Name Phenotype Focus ¢ Participating TOPMed Parent Studiest
AA_CAC African American Coronary Artery Calcification CAC DHS, GeneSTAR, GENOA, MESA
AFGen Atrial Fibrillation Genetics Consortium AF ARIC, CCAF, HVH, FHS, MGH_AF, Partners, VAFAR, VU_AF,
WGHS
Amish Genetics of Cardiometabolic Health in the Amish HLB Amish
BAGS Barbados Asthma Genetics Study Asthma BAGS
CFS Cleveland Family Study HLB, Sleep CFS
COPD Genetic Epidemiology of COPD COPD COPDGene, EOCOPD
CRA_CAMP The Genetic Epidemiology of Asthma in Costa Rica and the ~ Asthma CRA
Childhood Asthma Management Program
FHS Framingham Heart Study HLB FHS
GeneSTAR Genetic Studies of Atherosclerosis Risk Platelet Aggregation GeneSTAR
GenSalt Genetic Epidemiology Network of Salt Sensitivity Hypertension GenSalt
GOLDN Genetics of Lipid Lowering Drugs and Diet Network Lipids GOLDN
HyperGEN_GENOA Hypertension Genetic Epidemiology Network and Genetic Hypertension GENOA, HyperGEN
Epidemiology Network of Arteriopathy
JHS Jackson Heart Study HLB JHS
MESA Multi-Ethnic Study of Atherosclerosis HLB MESA
PGX_Asthma Pharmacogenomics of Bronchodilator Response in Minority ~ Asthma GALAIl, SAGE
Children with Asthma
SAFS San Antonio Family Studies HLB SAFS
Sarcoidosis Genetics of Sarcoidosis in African Americans Sarcoidosis Sarcoidosis
Samoan Samoan Adiposity Study Adiposity Samoan
THRV Taiwan Study of Hypertension using Rare Variants Hypertension THRV
VTE Venous Thromboembolism VTE, HLB ARIC, CHS, HVH, Mayo_VTE, WHI
WHI Women's Health Initiative HLB, Stroke, VTE WHI

See Supplementary Information 1.1.2 for definitions of TOPMed projects and parent studies. AF, atrial fibrillation; CAC, coronary artery calcification; HLB, general heart, lung and blood;
VTE, venous thromboembolism. Note, some case-only collections are included. See Extended Data Table 2 for study abbreviations and additional study information.

*Primary phenotype focus for TOPMed samples.

'Some TOPMed studies participate in more than one project.
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Extended Data Table 2 | Studies that contributed to the freeze-5 genotype call set

Study/Cohort  TOPMed . " Sample Parent Study .
Abbreviation Accession TOPMed Study Name:: ("NHLBI TOPMed:") Sizet Accession Parent Study Design
Amish phs000956 Genetics of Cardiometabolic Health in the Amish 1,111 family/population sample
ARIC phs001211 Trans-Omics for Precision Medicine Whole Genome Sequencing Project: 3,619 phs000280 prospective cohort
ARIC
BAGS phs001143 The Genetics and Epidemiology of Asthma in Barbados 1,022 family
CCAF phs001189 Cleveland Clinic Atrial Fibrillation Study 360 cross-sectional case-control
CFS phs000954 The Cleveland Family Study (WGS) 994 phs000284 family
CHS phs001368 Cardiovascular Health Study 69 phs000287 prospective cohort
COPDGene phs000951 Genetic Epidemiology of COPD (COPDGene) in the TOPMed Program 8,909 phs000179 case-control, longitudinal
follow-up
CRA phs000988 The Genetic Epidemiology of Asthma in Costa Rica 1,142 family
DHS phs001412 Diabetes Heart Study African American Coronary Artery Calcification (AA 337 family/population sample
CAC)
EOCOPD phs000946 Boston Early-Onset COPD Study in the TOPMed Program 74 phs001161 family
FHS phs000974 Whole Genome Sequencing and Related Phenotypes in the Framingham 4,166 phs000007 prospective cohort
Heart Study
GALAII phs000920 Genes-environments and Admixture in Latino Asthmatics (GALA 1l) Study 999 phs001180 pharmacogenomic
GeneSTAR phs001218 GeneSTAR (Genetic Study of Atherosclerosis Risk) 1,637 family
GENOA phs001345 Genetic Epidemiology Network of Arteriopathy (GENOA) 1,143 phs001238 family
GenSalt phs001217 Genetic Epidemiology Network of Salt Sensitivity (GenSalt) 1,689 phs000784 family
GOLDN phs001359 Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) 899 phs000741 family
HVH phs000993 Heart and Vascular Health Study (HVH) 625 phs001013 cross-sectional case-control
HyperGEN phs001293 HyperGEN - Genetics of Left Ventricular (LV) Hypertrophy 1,776 cross-sectional case-control
JHS phs000964 Jackson Heart Study 3,406 phs000286 prospective cohort
Mayo_VTE phs001402 Whole Genome Sequencing of Venous Thromboembolism (WGS of VTE) 1,251 phs000289 cross-sectional case-control
MESA phs001416 MESA and MESA Family AA-CAC 4,875 phs000209 prospective cohort
MGH_AF phs001062 MGH Atrial Fibrillation Study 984 phs001001  family
Partners phs001024 Partners HealthCare Biobank 128 cross-sectional case-control
SAFS phs001215 San Antonio Family Heart Study (WGS) 1,508 family
SAGE phs000921 Study of African Americans, Asthma, Genes and Environment (SAGE) 499 pharmacogenomic
Study
Sarcoidosis ~ phs001207 African American Sarcoidosis Genetics Resource 606 family and cross-sectional
Samoan phs000972 Genome-wide Association Study of Adiposity in Samoans 1,282 phs000914 population sample
THRV phs001387 Rare Variants for Hypertension in Taiwan Chinese (THRV) 1,525 case families and controls
VAFAR phs000997 The Vanderbilt AF Ablation Registry 163 cases with longitudinal
follow-up
VU_AF phs001032 The Vanderbilt Atrial Fibrillation Registry 1,110 families with longitudinal
follow-up
WGHS phs001040 Novel Risk Factors for the Development of Atrial Fibrillation in Women 115 prospective cohort
WHI phs001237 Women's Health Initiative (WHI) 10,047 phs000200 prospective cohort

Each study has a dbGaP accession for the TOPMed sequence data and genotypes, although some also have pre-existing parent study accessions. Phenotypic data are mainly in the parent
accessions, although some are in the TOPMed accessions. See also Supplementary Figs. 39 and 40 for information about the ancestral and/or ethnic and sex composition of each study.

The relationships between these studies and their TOPMed project(s) are summarized in Extended Data Table 1. All of the TOPMed and parent study accessions in this table have been released
on dbGaP (see https://www.ncbi.nlm.nih.gov/gap/?term=TOPMed and https://www.nhlbiwgs.org/group/project-studies?field_is_this_a_value=sub).

*Study name as it appears in dbGaP, with ‘NHLBI TOPMed:’ prepended.

'Approximate sample size for freeze-4 and freeze-5 releases combined.
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Extended Data Table 3 | TOPMed study-consent groups used in analyses and tools

Study/Cohort TOPMed Consent Group Freeze 5 VCF Freeze 8 VCF Freeze 3 VCF Freeze 5 BAM
Abbreviation Accession o ] 0 >
fs288%580388_ 8358 % o2
S5 s5S5Ze R8RS % g 3 g
¥ e232%838Igs5s§55323 4 S
<828 8g2gEs2gia8gcE £ 82
0°sad?8% TEZ EwsOg o ©
o > = =]
Amish phs000956 HMB-IRB-MDS X X X X X X
ARIC phs001211 DS-CVD-IRB X X X X X X X X
HMB-IRB X X X X X X X X
AustralianFamilialAF phs001435 HMB-NPU-MDS X X
BAGS phs001143 GRU-IRB X X X X X X X
BioMe phs001644 HMB-NPU X X X
CARDIA phs001612 HMB-IRB X
HMB-IRB-NPU X
CCAF phs001189 GRU-IRB X X X X X X X
CFS phs000954 DS-HLBS-IRB-NPU X X X X X X X X
CHS phs001368 HMB-MDS X X X X X X X
HMB-NPU-MDS X X X X X X X
COPDGene phs000951 HMB X X X X X X X X
DS-CS-RD X X X
CRA phs000988 DS-ASTHMA-IRB-MDS-RD X X X X
DECAF phs001546 GRU X
DHS phs001412 DS-DHD-IRB-COL-NPU X X X X X
HMB-IRB-COL-NPU X X X X X
EOCOPD phs000946 DS-CS-RD X X X
FHS phs000974 HMB-IRB-MDS X X X X X X X X
HMB-IRB-NPU-MDS X X X X X X X X
GALAI phs001542 DS-LD-IRB-COL X
GALAII phs000920 DS-LD-IRB-COL X X X X X X X
GeneSTAR phs001218 DS-CVD-IRB-NPU-MDS X X X X X X X
GENOA phs001345 DS-ASC-RF-NPU X X X X X X
GenSalt phs001217 DS-HCR-IRB X X X X X X
GOLDN phs001359 DS-CVD-IRB X X X X X X X
HCHS_SOL phs001395 HMB X
HMB-NPU X
HVH phs000993 DS-CVD-IRB-MDS X X X X X X X X
HMB-IRB-MDS X X X X X X X X
HyperGEN phs001293 DS-CVD-IRB-RD X X X X X X X
GRU-IRB X X X X X X X
IPF phs001607 DS-ILD-IRB-NPU X
DS-LD-IRB-NPU X
DS-PFIB-IRB-NPU X
DS-PUL-ILD-IRB-NPU X
HMB-IRB-NPU X
JHS phs000964 DS-FDO-IRB X X X X X X X X
DS-FDO-IRB-NPU X X X X X X X X
HMB-IRB X X X X X X X X
HMB-IRB-NPU X X X X X X X X
LTRC phs001662 HMB-MDS X
Mayo_VTE phs001402 GRU X X X X X X
MESA phs001416 HMB X X X X X X X
HMB-NPU X X X X X X X
MGH_AF phs001062 DS-AF-IRB-RD X X X X X X X
HMB-IRB X X X X X X X
miRhythm phs001434 GRU X
MLOF phs001515 HMB-PUB X X
OMG_SCD phs001608 DS-SCD-IRB-PUB-COL-MDS-RD X X
Partners phs001024 HMB X X X X X X X
PharmHU phs001466 HMB X
REDS-II_Brazil phs001468 GRU-IRB-PUB-COL-NPU X
SAFS phs001215 DS-DHD-IRB-PUB-MDS-RD X X X X X X
SAGE phs000921 DS-LD-IRB-COL X X X X X X X X
Sarcoidosis phs001207 DS-SAR-IRB X X X X X X X
Samoan phs000972 GRU-IRB-PUB-COL-NPU-GSO X X X X
SARP phs001446 GRU X
THRV phs001387 DS-CVD-IRB-COL-NPU-RD X X
VAFAR phs000997 HMB-IRB X X X X X X X
VU_AF phs001032 GRU-IRB X X X X X X X X
walk_PHaSST phs001514 DS-SCD-IRB-PUB-COL-NPU-MDS-RD X X
HMB-IRB-PUB-COL-NPU-MDS-GSO X X
WGHS phs001040 HMB X X X X X X
WHI phs001237 HMB-IRB X X X X X X X
HMB-IRB-NPU X X X X X X X

Consent group data use limitations are defined as follows: GRU, general research use; HMB, limited to health, medical and/or biomedical purposes; DS, use of the data must be related to
specified disease. Consent group data use limitation modifiers include the following: IRB, requestor must provide documentation of local IRB approval; PUB, requestor agrees to make results

of studies using the data available to the larger scientific community; COL, requestor must provide a letter of collaboration with the primary study investigator(s); NPU, use of the data are
limited to not-for-profit organizations; MDS, use of the data includes methods development research; GSO, use of the data are limited to genetic studies only. AF, atrial fibrillation; ASC-RF,
arteriosclerosis and its risk factors; CVD, cardiovascular disease; CS, chronic obstructive pulmonary disease (COPD) and smoking; DHD, diabetes and heart disease; FDO, focus disease only (in
JHS, FDO is blood pressure, heart/CVD, obesity, diabetes, kidney disease, or lung disease and risk factors); HCR, high blood pressure and related cardiovascular-renal disease; HLBS, heart, lung,
blood and sleep disorders; ILD, interstitial lung disease; LD, lung disease; PFIB, pulmonary fibrosis; PUL, pulmonary, interstitial lung disease; RD, related disorders; SAR, sarcoidosis; SCD, sickle
cell disease.
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Extended Data Table 4 | Coverage, sequencing depth and number of variants

All Individuals

Per Individual

Total Singletons (%) Average 5™ 9%tile Median 95" otile

Samples 53,831 - - - - -
Bases (Gb) 6,973,670 - 130 107 128 157
Depth (x) - - 38 31 38 46
Genome Covered (%) - - 98.5 96.2 99.2 99.9
Depth >10x - - 97.9 95.4 98.7 99.6
Total Variants 410,323,831 188,947,391 46) 3,776,362 3,515,416 3,567,439 4,364,075
SNVs 381,343,078 175,419,690 (46) 3,579,423 3,334,782 3,383,710 4,129,868
Indels 28,980,753 13,527,701 (47) 196,940 180,567 183,759 234,245
Novel:: Variants 323,113,479 178,243,307 (55) 30,207 20,363 26,347 44,379
SNVs 298,028,808 165,082,153 (55) 25,861 17,568 22,909 36,897
Indels 25,084,671 13,161,154 (52) 4,345 2,752 3,378 7,392
Coding Variation 4,970,331 2,334,217 (47) 23,916 22,156 22,591 27,744
Synonymous 1,525,971 656,746 (43) 11,743 10,840 11,073 13,693
Non-synonymous 3,172,551 1,527,247 (48) 11,468 10,633 10,875 13,237
Stop/Essential Splice 105,042 56,801 (54) 478 426 456 568
Frameshift 113,805 67,903 (60) 133 112 127 167
Inframe 55,806 27,118 (49) 103 85 99 129

*Variant was not present in doSNP build 149, the most recent dbSNP version without TOPMed submissions.



Extended Data Table 5 | pLOF variants in 53,831 individuals

All Individuals

Per Individual

Total Singletons (%)  Average 5™ oitile Median 95" otile

pLoF 228,966 58.5 209 182 202 251
Stop gained 79,766 55.6 72 60 72 87
Frameshift 100,393 60.3 92 77 90 115
Splice 48,807 59.6 44 34 43 57
pLOF (AF < 0.5%) 217,795 58.8 20.7 10 19 35
Stop gained (AF < 0.5%) 75,904 55.8 7.9 3 7 15
Frameshift (AF < 0.5%) 95,064 60.6 8.3 3 8 15
Splice (AF < 0.5%) 46,827 59.9 45 1 4 9
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Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Complete description of data collection and used tools/software is available at https://www.nhlbiwgs.org/data-sets. We also provide a
detailed description of TOPMed program's organization and data collection in Supplementary Information 1.1.

Data analysis All code for TOPMed data quality checks and variant calling is available at https://github.com/statgen/topmed_variant_calling. Code for the
WGS and WES data comparisons is available at https://github.com/statgen/sequencing_comparison. Code for modeling singleton distance
distribution is available at https://github.com/carjed/topmed_singleton_clusters. Code for identifying novel genetic variants in unmapped
reads is available at https://github.com/nygenome/topmed_unmapped. Code for gene burden association tests using rare pLoF variants is
available at https://github.com/sgagliano/GeneBurden. Code for the imputed and genotype UK Biobank WES data comparisons is available at
https://github.com/sgagliano/UKB_WES_vs_TOPMed_IMP.

All programs used are open-source software developed by the academic community and published in scientific literature. For each used
program we provide a version number and/or corresponding reference in main and supplementary texts, and methods. These programs
include: ADMIXTURE v1.3.0, ANNOVAR, bcftools, Eagle 2.4, EPACTS, Fusera, GATK v4, GENESIS (R package), GotCloud, IBDNe, LiftOver, LOFTEE
v0.3-beta, Minimac4, RefinelBD, RFMix, samtools, SeqVarTools (R package), Stargazer, VEP v94, verifyBamID2, WGSA.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

TOPMed data used in this manuscript are available through dbGaP. The detailed description of the TOPMed participant consents and data access is provided in Box
1. The dbGaP accession numbers for all TOPMed studies referenced in this paper are listed in Extended Data Tables 2 and 3. Complete list of TOPMed genetic
variants with summary level information used in this manuscript is available through the BRAVO variant browser (bravo.sph.umich.edu). TOPMed imputation
reference panel described in this manuscript can be used freely for imputation through the NHLBI BioData Catalyst at TOPMed Imputation Server
(imputation.biodatacatalyst.nhlbi.nih.gov). The insertion callset (no genotypes) is available on dbGaP under the TOPMed GSR accession phs001974.

The following publicly available databases/datasets were used in the analysis: 1000 Genomes Project (https://www.internationalgenome.org), CADD (https://
cadd.gs.washington.edu), ClinVar (https://www.ncbi.nIm.nih.gov/clinvar/), COSMIC (https://cancer.sanger.ac.uk/cosmic), dbSNP (https://www.ncbi.nlm.nih.gov/
snp/), Ensembl (https://uswest.ensembl.org/index.html), EXAC (https://gnomad.broadinstitute.org), GENCODE (https://www.gencodegenes.org), GWAS Catalog
(https://www.ebi.ac.uk/gwas/), HGDP (https://www.hagsc.org/hgdp/), OMIM (https://omim.org), UK Biobank (https://www.ukbiobank.ac.uk).

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

E] Life sciences D Behavioural & social sciences D Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample-size calculation was performed. We used all whole genome sequencing data available at the moment at the TOPMed program.

Data exclusions Sample level QC and variant level QC for TOPMed are extensively described in the methods and supplementary text. There were no exclusions
based on participants disease status.

Replication We did not attempt to reproduce any findings in a separate dataset, because no high depth whole genome sequencing datasets of
comparable size were available at the moment of writing.

Randomization Randomization was not performed, because this is a population-based study aggregating whole-genome sequencing data from >80 different
established studies with varying designs.

Blinding Blinding was not performed, because this is a population-based study aggregating whole-genome sequencing data from >80 different
established studies with varying designs.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies D ChlIP-seq
Eukaryotic cell lines D Flow cytometry
Palaeontology and archaeology D MRI-based neuroimaging
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) Lymphoblastoid cell lines were used for a small number of samples.
Authentication Compared to previous genetic analysis.
Mycoplasma contamination Mycoplasma sequence data was aligned to human genome which should avoid any mycoplasma originating reads.

Commonly misidentified lines | Name any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Human research participants

Policy information about studies involving human research participants

Population characteristics A primary goal of the TOPMed program is to improve scientific understanding of the fundamental biological processes that
underlie heart, lung, blood, and sleep (HLBS) disorders. 37% of all participants come from studies with focus on heart
disorders, 33% - on lung disorders, 11% - on blood disorders, 1% - on sleep disorders, and 18% - on multiple phenotypes
(Supplementary Figure 1). 41% of all participants have European ancestry, 31% - African ancestry, 15% - Hispanic/Latino, 9% -
Asian ancestry, 4% - others/unknown (Supplementary Figures 2 and 39). 60% of individuals are females (Supplementary
Figure 40).

Recruitment TOPMed consists of ~155k participants from >80 different studies with varying designs: prospective cohorts, case-control
studies, extended family structures and population isolates. Studies were biased towards individuals with heart, lung, blood,
and sleep disorders, and who are willing to participate in research. More details are available at https://www.nhlbiwgs.org.

Ethics oversight Informed consent was obtained from all participants, and the recruiting institutions for the >80 different TOPMed studies
provided ethical oversight (see Box 1 and Supplementary Information 1.1.1-1.1.2). See Supplementary Information 4 for per
study ethics statements.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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