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Sequencing of 53,831 diverse genomes from 
the NHLBI TOPMed Program

 

The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the 

genetic architecture and biology of heart, lung, blood and sleep disorders, with the 

ultimate goal of improving diagnosis, treatment and prevention of these diseases. The 

initial phases of the programme focused on whole-genome sequencing of individuals 

with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed 

goals and design as well as the available resources and early insights obtained from 

the sequence data. The resources include a variant browser, a genotype imputation 

server, and genomic and phenotypic data that are available through dbGaP (Database 

of Genotypes and Phenotypes)1. In the frst 53,831 TOPMed samples, we detected 

more than 400 million single-nucleotide and insertion or deletion variants after 

alignment with the reference genome. Additional previously undescribed variants 

were detected through assembly of unmapped reads and customized analysis in 

highly variable loci. Among the more than 400 million detected variants, 97% have 

frequencies of less than 1% and 46% are singletons that are present in only one 

individual (53% among unrelated individuals). These rare variants provide insights 

into mutational processes and recent human evolutionary history. The extensive 

catalogue of genetic variation in TOPMed studies provides unique opportunities for 

exploring the contributions of rare and noncoding sequence variants to phenotypic 

variation. Furthermore, combining TOPMed haplotypes with modern imputation 

methods improves the power and reach of genome-wide association studies to 

include variants down to a frequency of approximately 0.01%.

Advancing DNA-sequencing technologies and decreasing costs are 

enabling researchers to explore human genetic variation at an unprec-

edented scale2,3. For these advances to improve our understanding of 

human health, they must be deployed in well-phenotyped human sam-

ples and used to build resources such as variation catalogues3,4, control 

collections5,6 and imputation reference panels739. Here we describe 

high-coverage whole-genome sequencing (WGS) analyses of the first 

53,831 TOPMed samples (Box 1 and Extended Data Tables 1, 2); addi-

tional data are being made available as quality control, variant calling 

and dbGaP curation are completed (altogether more than 130,000 

TOPMed samples are now available in dbGaP).

A key goal of the TOPMed programme is to understand risk factors 

for heart, lung, blood and sleep disorders by adding WGS and other 

8omics9 data to existing studies with deep phenotyping (Supplementary 

Information 1.1 and Supplementary Fig. 1). The programme currently 

consists of more than 80 participating studies, around 1,000 investi-

gators and more than 30 working groups (https://www.nhlbiwgs.org/

working-groups-public). TOPMed participants are ethnically and ances-

trally diverse (Extended Data Fig. 1, Supplementary Information 1.1.4 

and Supplementary Fig. 2). Through a combination of race and ethnicity 

information (from participant questionnaires and/or study inclusion 

criteria), we classified study participants into 8population groups9, 

which varied in composition according to the goals of each analysis. 

In some analyses, these groups were further refined using genetic 

ancestry (see Methods and Supplementary Information for details).

Our study extends previous efforts by identifying and character-

izing the rare variants that comprise the majority of human genomic 

variation7,10312. Rare variants represent recent and potentially deleteri-

ous changes that can affect protein function, gene expression or other 

biologically important elements11,13,14.

TOPMed WGS quality assessment

WGS of the TOPMed samples was performed over multiple studies, 

years and sequencing centres. To minimize batch effects, we stand-

ardized laboratory methods, mapped and processed sequence data 

centrally using a single pipeline, and performed variant calling and 

genotyping jointly across all samples (see Methods). We annotated each 

variant site with multiple sequence quality metrics and trained machine 

learning filters to identify and exclude inconsistencies that are revealed 

when the same individual was sequenced repeatedly. Available WGS 

data were processed periodically to produce genotype data 8freezes9. 

The 53,831 samples described here are drawn from TOPMed freeze 5.

Stringent variant and sample quality filters were applied and the 

resulting genotype call sets were evaluated in several ways (Supple-

mentary Information 1.2.2, 1.3, 1.4). First, we compared genotypes 

for samples sequenced in duplicate (the mean alternative allele 

concordance was 0.9995 for single-nucleotide variants (SNVs) and 

0.9930 for insertions or deletions (indels)). Second, we compared 

genotypes to those from previous whole-exome sequencing datasets 

(protein-coding regions from GENCODE15; 80% of variants were found 

with both approaches and overlapping variant calls had a concordance 

of 0.9993 for SNVs and 0.9974 for indels) (Supplementary Tables 133). 

Third, we compared genotypes to those obtained using alternative 
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informatics tools (compared to GATK v.4.1.3, TOPMed has lower Mende-

lian inconsistency rates and minimizes batch effects) (Supplementary 

Table 4). These reproducibility estimates indicate the high quality 

of the genotype calls and effectiveness of machine-learning-based 

quality filters.

Batch effects were evaluated by (1) comparing distributions of 

genetic principal components among sequencing centres, which 

are very similar between European American and African American 

individuals (Supplementary Figs. 335); (2) comparing alternative 

allele concordance between duplicates among centres, which is high 

(the largest difference being 4 × 1024), and the patterns of between-  

versus within-centre differences, which indicate random errors rather 

than systematic centre differences (Supplementary Figs. 638); and (3) 

performing tests of association between variants and batches, which 

show a very small fraction of variants with genome-wide significance 

(0.004%, Supplementary Figs. 9, 10) (Supplementary Information 1.2). 

We conclude that batch effects appear to be minor, thus enabling 

multi-study association testing.

410 million genetic variants in 53,831 samples

A total of 7.0 × 1015 bases of DNA-sequencing data were generated, 

consisting of an average of 129.6 × 109 bases of sequence distributed 

across 864.2 million paired reads (each 1003151 base pairs (bp) long) 

per individual. For a typical individual, 99.65% of the bases in the refer-

ence genome were covered, to a mean read depth of 38.2×.

Sequence analysis identified 410,323,831 genetic variants 

(381,343,078 SNVs and 28,980,753 indels), corresponding to an aver-

age of one variant per 7 bp (Extended Data Table 4). Overall, 78.7% of 

these variants had not been described in dbSNP build 149; TOPMed 

variants now account for the majority of variants in dbSNP. Among all 

variant alleles, 46.0% were singletons, observed once across all 53,831 

participants. Among 40,722 unrelated participants (see Methods), the 

proportion of singleton variants was higher at 53.1% (Table 1). Down-

sampling analyses show that the proportion of singletons increases 

until around 15,000 unrelated individuals are sequenced and then 

decreases very gradually (Supplementary Fig. 11). The fraction of 

singletons in each region or class of sites closely tracks functional 

constraints. For example, among all 4,651,453 protein-coding variants 

in unrelated individuals, the proportion of singletons was the highest 

for the 104,704 frameshift variants (68.4%), high among the 97,217 

putative splice and truncation variants (62.1%), intermediate among 

the 2,965,093 nonsynonymous variants (55.6%) and lowest among 

the 1,435,058 synonymous variants (49.8%). Beyond protein-coding 

sequences, we found increased proportions of singletons in promoters 

(55.0%), 52 untranslated regions (54.7%), regions of open chromatin 

(53.4%) and 32 untranslated regions (53.3%); we found lower propor-

tions of singletons in intergenic regions (53.0%) (Supplementary 

Table 5). Although putative transcription factor binding sites initially 

appeared to show fewer singletons (52.7%) than the remainder of the 

genome (53.1%), this pattern did not hold when we analysed highly 

mutable CpG sites separately. In fact, transcription factor binding sites 

were enriched for singletons in both CpG sites and non-CpG sites, an 

example of Simpson9s paradox16.

We identified an average of 3.78 million variants in each genome. 

Among these, an average of 30,207 (0.8%) were novel and 3,510 (0.1%) 

were singletons. Among all variants, we observed 3.17 million non-

synonymous and 1.53 million synonymous variants (a 2.1:1 ratio), but 

individual genomes contained similar numbers of nonsynonymous and 

synonymous variants (11,743 nonsynonymous and 11,768 synonymous, 

on average) (Extended Data Table 4). The difference can be explained 

if more than half of the nonsynonymous variants are removed from 

the population by natural selection before they become common.

Putative loss-of-function variants

A notable class of variants is the 228,966 putative loss-of-function 

(pLOF) variants that we observed in 18,493 (95.0%) GENCODE15 genes 

(Extended Data Table 5 and Supplementary Fig. 12). This class includes 

the highest proportion of singletons among all of the variant classes 

that we examined. An average individual carried 2.5 unique pLOF vari-

ants. We identified more pLOF variants per individual than in previ-

ous surveys based on exome sequencing4an increase that was mainly 

driven by the identification of additional frameshift variants (Sup-

plementary Table 6) and by a more uniform and complete coverage 

of protein-coding regions (Supplementary Figs. 13, 14).

We searched for gene sets with fewer rare pLOF variants than 

expected based on gene size. The gene sets with strong functional 

constraint included genes that encode DNA- and RNA-binding pro-

teins, spliceosomal complexes, translation initiation machinery and 

Box 1

TOPMed participant consents 
and data access

The TOPMed programme comprises more than 80 participating 

studies, of which 32 are represented in the 53,831 whole genomes 

described here. TOPMed has leveraged existing studies with deep 

phenotyping and longitudinal follow-up data and with varied 

informed consent procedures and options. Consent groups 

range from broad 8general research use9 and 8health, medical 

and biomedical9 categories to disease-specific categories for 

heart, lung, blood and/or sleep disorders. Many studies have 

further consent modifiers, such as limiting use to not-for-profit 

organizations or requiring documentation of local IRB approval. 

Participant consents guide the appropriate use of data by TOPMed 

investigators as well; therefore, the set of study-consent groups 

used varies across different analyses reported in this paper 

(Extended Data Table 3).

TOPMed data have been deposited in dbGaP and access is 

adjudicated by a staff committee of the National Institutes of 

Health. The committee verifies that applications are consistent 

with data use limitations and consent groups for each sample. 

Study investigators have no role in the decision, except in a  

small subset of studies that require a letter of collaboration.  

A summary of currently available data and any use restrictions 

is available at https://www.ncbi.nlm.nih.gov/gap/advanced_

search/?TERM=topmed.

Although TOPMed studies have separate dbGaP accessions, 

formats are standardized to facilitate combining data, with all 

variants from the joint genotype call set included in the variant 

call format (VCF) files, unique sample identifiers across all of 

TOPMed and sample attributes with TOPMed-specific variables. 

Notably, cross-study analyses require the identification of a set of 

compatible study-consent groups. In addition to genotype calls, 

CRAM files with aligned sequence reads are also available, hosted 

in commercial clouds and with access managed by dbGaP. The 

dbGaP accession numbers for all TOPMed studies referenced in 

this paper are listed in Extended Data Tables 2, 3.

The TOPMed imputation reference panel is available to users for 

imputation into their own samples via an imputation server. The 

server performs imputation into these samples, while the reference 

panel data themselves are not exposed to the user because they 

derive from multiple studies with variable consent types and other 

data use limitations (Extended Data Table 3).

https://www.ncbi.nlm.nih.gov/gap/advanced_search/?TERM=topmed
https://www.ncbi.nlm.nih.gov/gap/advanced_search/?TERM=topmed
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RNA splicing and processing proteins (Supplementary Table 7). Genes 

associated with human disease in COSMIC17 (31% depletion), the GWAS 

catalogue18 (around 8% depletion), OMIM19 (4% depletion) and ClinVar20 

(4% depletion) all contained fewer rare pLOF variants than expected 

(each comparison P < 1024).

The distribution of genetic variation

We examined the distribution of variant sites across the genome by 

counting variants across ordered 1-megabase (Mb) concatenations 

of contiguous sequence with a similar conservation level (indicated 

by combined annotation-dependent depletion (CADD score21), and 

in segments categorized by coding versus noncoding status (Fig. 1 

and Extended Data Fig. 2). As expected, the vast majority of human 

genomic variation is rare (minor allele frequency (MAF) < 0.5%)10,11 and 

located in putatively neutral, noncoding regions of the genome (Fig. 1). 

Although coding regions have lower average levels of both common 

(MAF g 0.5%) and rare variation, we identified some ultra-conserved 

noncoding regions with even lower levels of genetic variation22 (Fig. 1 

and Supplementary Fig. 15).

Segments with notably high or low levels of variation do exist. For 

example, one region on chromosome 8p (GRC 38 positions 1,000,0013

7,000,000 bp) has the highest overall levels of variation (Extended 

Data Fig. 2). This is consistent with previous findings, as this region 

has been shown to have one of the highest mutation rates across the 

human genome23.

Although levels of common and rare variation within segments 

are significantly correlated (R2 = 0.462, P f 2 × 10216) (Supplementary 

Fig. 16), there are outliers. For example, segments overlapping the 

major histocompatibility complex (MHC) have the highest levels of 

common variation but no notable increase in levels of rare variation, 

consistent with balancing selection24326. A detailed examination of the 

MHC shows peaks of increased variation and nucleotide diversity con-

sistent with assembly-based analyses of the region27 (Supplementary 

Fig. 17). Segments with a high proportion of coding bases feature a 

strong depletion in the number of common variants but only a modest 

depletion in rare variants (Supplementary Fig. 18).

Insights into mutation processes

A hallmark of human genetic variation is that SNVs tend to cluster 

together throughout the genome3,28. Such patterns of clustering con-

tain important information about demographic history29, signals of 

natural selection30 and processes that generate mutations31. To dissect 

the spatial clustering of SNVs, we analysed a collection of 50,264,223 

singleton SNVs ascertained in a subset of 3,000 unrelated individuals 

selected to have low levels of genetically estimated admixture41,000 

each of African, East Asian and European ancestry32 (see Methods).

In these data, we observed that 1.9% of singletons in a given indi-

vidual occur at distances of less than 100 bp apart33,34 (Supplementary 

Figs. 19, 20). In coalescent simulations (see Methods), only 0.16% of the 

simulated singletons within an individual were less than 100 bp apart 

(Supplementary Figs. 19, 20). Although demographic history contrib-

utes to singleton clustering (Supplementary Information 1.6), popu-

lation genetic processes alone do not fully account for the observed 

clustering patterns, particularly for the most closely spaced singletons. 

To better understand the latent factors that contribute to the observed 

clustering, we modelled the inter-singleton distance distribution as 

a mixture of exponential processes (see Methods). The best-fitting 

version of this model consisted of four mixture components  

(Fig. 2).

Component 1 represents singletons that occurred an average of 

around 238 bp apart and accounted for approximately 1.5% of single-

tons in each sample. These singletons are substantially enriched for A>T 

and C>A transversions (Extended Data Fig. 3a), consistent with the sig-

natures of trans-lesion synthesis that causes multiple non-independent 

point mutations within very short spans35. The density of component 1 

singletons is also associated with CpG island density (Supplementary 

Fig. 21). Component 2 represents singletons occurring 50035,000 bp 

apart, accounting for around 12324% of singletons. These singletons 

are enriched for C>G transversions and show prominent subtelomeric 

concentrations on chromosomes 8p, 9p, 16p and 16q36,37 (Extended 

Data Fig. 3 and Supplementary Fig. 22), consistent with the recently 

described maternally derived C>G mutation clusters36,37. The exact 

mechanism that underlies this distinctive clustering pattern is 

unknown, but may involve either hypermutability of single-stranded 

DNA intermediates during the repair of double-stranded breaks36,37 or 

transcription-associated mutagenesis, with increased damage on the 

non-transcribed strand38. Our results are compatible with both these 

mechanisms: component 2 singletons are enriched near regions of 

H3K4 trimethylation, a mark associated with double-stranded break 

response39, and depleted in exon-dense regions (Supplementary 

Fig. 21). Component 3 singletons (occurring approximately 30350 kilo-

bases (kb) apart) accounted for around 43349% of all singletons, and 

component 4 singletons (occurring approximately 1253170 kb apart) 

accounted for around 31337% of all singletons. These latter components 

Table 1 | Number of variants in 40,722 unrelated individuals in TOPMed

All unrelated individuals (n = 40,722) Per individual

    Total     Singletons (%)    Average  5th percentile    Median 95th percentile

Total variants 384,127,954 203,994,740 (53) 3,748,599 3,516,166 3,563,978 4,359,661

SNVs 357,043,141 189,429,596 (53) 3,553,423 3,335,442 3,380,462 4,125,740

Indels 27,084,813 14,565,144 (54) 195,176 180,616 183,503 233,928

Novel variants 298,373,330 191,557,469 (64) 29,202 20,312 24,106 44,336

SNVs 275,141,134 177,410,620 (64) 25,027 17,520 20,975 36,861

Indels 23,232,196 14,146,849 (61) 4,175 2,747 3,145 7,359

Coding variation 4,651,453 2,523,257 (54) 23,909 22,158 22,557 27,716

Synonymous 1,435,058 715,254 (50) 11,651 10,841 11,056 13,678

Nonsynonymous 2,965,093 1,648,672 (56) 11,384 10,632 10,856 13,221

Stop/essential splice 97,217 60,347 (62) 474 425 454 566

Frameshift 104,704 71,577 (68) 132 112 127 165

In-frame 51,997 29,110 (56) 102 85 99 128

Novel variants are taken as variants that were not present in dbSNP build 149, the most recent dbSNP version without TOPMed submissions.
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have nearly identical mutational spectra (Extended Data Fig. 3a) and 

are distributed about uniformly in the genome.

Beyond SNVs and indels

To evaluate the potential of our data to generate even more com-

prehensive variation datasets, we developed and applied a method 

based on de novo assembly of unmapped and mismapped read pairs, 

enabling us to assemble sequences that are present in a sample but 

absent, or improperly represented, in the reference. As the majority of 

non-reference human sequence is present in the assembled genomes 

of other primates40,41, we leveraged available hominid references 

(see Methods) to specifically discover retained ancestral sequences 

that have been deleted in some human lineages, including on the ref-

erence haplotype.

In total, we placed 1,017 ancestral sequences, of which we were able 

to fully resolve 713, ranging in length from 100 bp to 39 kb (N50 = 1,183), 

and accounting for a total of 528,233 bp (Fig. 3a). We partially resolved 

304 events, for which we assembled part of the ancestral sequence but 

could place only one breakpoint on the reference sequence (see Sup-

plementary Information 1.7). Out of all 1,017 events, 551 (54.18%) occur 

within GENCODE v.2915 genes (a proportion that is not significantly 

different from 54.80% of the current reference genome GRCh38 that is 

within genes). The assembled sequences contain repetitive motifs at a 

significantly higher rate than the genome as a whole (58.2% versus 50.1%) 

(Supplementary Tables 8310). There is a strong overrepresentation of 

simple and low complexity sequences both in the reference breakpoints 

and within the bodies of the non-reference sequences, which could be 

indicative of the instability of these motifs and/or errors in the reference.

Considering only fully resolved events with genotyping rates above 

95% (n = 541), we identified between 232 kb and 418 kb of retained ances-

tral sequence per diploid individual. Allele frequencies of assembled 

retained sequences are greater than those observed for SNVs and 

indels, with 76.7% of the assembled sequences present at allele fre-

quency of more than 5% and only 12% of assembled sequences with 

allele frequency of less than 0.5% (Supplementary Fig. 23). This could 

reflect difficulty in assembling rare haplotypes. Consistent with obser-

vations for SNVs and indels, individuals of African ancestry had, on 

average, more non-reference alleles (Fig. 3b, Supplementary Fig. 24 

and Supplementary Table 11). The overwhelming majority of assem-

bled events are shared by multiple continental groups. We found 58 

genic (5 of which are exonic) and 48 intergenic sequences present in 

a homozygous state in all individuals in the cohort, suggesting that 

the reference sequence may be incomplete at particular loci, directly 

affecting the annotation of common forms of genes, such as UBE2QL1, 

FOXO6 and FURIN (Supplementary Fig. 25).

Comparing our findings to two previous short-read studies on dif-

ferent smaller datasets40,41, 356 sequences (251 kb) are unique to our 

call set. Additionally, we resolved the length and both breakpoints for 

94 events (104 kb) for which only one breakpoint had been reported 

(Fig. 3c). Further investigation of the overlap with insertions called 

using long reads on 15 genomes42, showed that4with a single excep-

tion4all previously described events with an allele frequency of more 

than 12% could be confirmed (Supplementary Fig. 26).

Variation in CYP2D6

A complementary approach to de novo genome assembly is to develop 

approaches that combine multiple types of information4including 

previously observed haplotype variation, SNVs, indels, copy number 

and homology information4to identify and classify haplotypes in inter-

esting regions of the genome. One such region is around the CYP2D6 

gene, which encodes an enzyme that metabolizes approximately 25% of 

prescription drugs and the activity of which varies substantially among 

individuals43345. More than 150 CYP2D6 haplotypes have been described, 

some involving a gene conversion with its nearby non-functional but 

highly similar paralogue CYP2D7.

We performed CYP2D6 haplotype analysis for all 53,831 TOPMed 

individuals43,46. We called a total of 99 alleles (66 known and 33 novel) 
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representing increased function, decreased function and loss of func-

tion (Supplementary Table 12). Nineteen of the known alleles and all of 

the novel alleles are defined by structural variants, including complex 

CYP2D6-CYP2D7 hybrids and extensive copy number variation, which 

ranged from zero to eight gene copies (Supplementary Figs. 27, 28).

Heterozygosity and rare variant sharing

The TOPMed variation data also present an opportunity to examine 

expectations about rare variation, and to specifically investigate which 

studies show distinct patterns of variation that might be expected to 

provide unique insights. To do this, we grouped TOPMed participants 

by study and by population group, and calculated genetically deter-

mined ancestry components, heterozygosity, number of singletons 

and rare variant sharing (Fig. 4, Supplementary Table 13 and Supple-

mentary Data 1).

As expected, African American and Caribbean population groups 

have the greatest heterozygosity7,47, followed by Hispanic/Latino, 

European American, Amish, East Asian and Samoan groups. This is 

consistent with a gradual loss of heterozygosity tracking the recent 

African origin of modern humans and subsequent migration from 

Africa to the rest of the globe47,48. The Asian population groups have 

among the lowest heterozygosity in our sample (even lower than the 

Amish, a European ancestry founder population with notably low het-

erozygosity49,50), but also the greatest singleton counts (in contrast to 

the Amish, who have the lowest; see Supplementary Information 1.8).

Using rare variation, we are also able to distinguish fine-scale patterns 

of population structure (Fig. 4, Supplementary Fig. 29 and Supplemen-

tary Information 1.9). Broadly, we observe sharing between population 

groups with shared continental ancestry (whether African, European, 

Asian or American). Nevertheless, additional patterns emerge. The 

Amish are unique among the included studies: they exhibit little rare 

variant sharing with outside groups and also the greatest rare variant 

sharing within the study4consistent with a marked founder effect. 

Furthermore, we observe an approximately 4× greater rare variant 

sharing between African American and Caribbean population groups 

than between European American population groups, even after cor-

recting for sample size differences (Supplementary Fig. 30).

Haplotype sharing

A corollary to rare variant sharing is rare haplotype sharing through 

segments inherited from a recent common ancestor (Supplementary 

Figs. 31, 32). The distribution of identical-by-descent segments enables 

estimates of effective population sizes over the past 300 generations 

(Extended Data Fig. 4 and Supplementary Fig. 33). The Amish study 

shows the greatest average levels of within-study identical-by-descent 

sharing, consistent with a founder event 14 generations ago50,51. The 

demographic histories are broadly similar between population groups, 

with the exception of the Amish, who experienced a more extreme bot-

tleneck when moving from Europe to America, and Samoan individuals, 

who have had a smaller effective population size than the East Asian 

populations from which they separated around 5,000 years ago52354. 

Both non-Amish European ancestry and African ancestry populations 

appear to have experienced a bottleneck around 5310 generations ago, 

consistent with moving to America, whether through colonization 

or forced migration (82% of TOPMed participants are US residents).

Large samples alleviate the effects of linkage

The relative numbers of singletons, doubletons and other very rare vari-

ants can be used to infer human demographic history11,55,56. Although 

much of demographic inference in past studies focused on fourfold 

degenerate synonymous sites in protein sequences, these sites evolve 

under the influence of strong selection at nearby protein-coding 

sites57,58, which can affect the inferred timing and magnitude of popu-

lation size changes59. WGS enables us to access intergenic regions of 

the genome that are minimally affected by selection. We measured 

how the site frequency spectrum and demographic inference changed 

as a function of sample size and an index of selection at linked sites 

(McVicker9s B statistic60) using TOPMed individuals whose genomes 

suggested mostly European ancestry and low admixture. Estimates of 

effective population size of European individuals based on the 1% of the 

genome with the weakest effect of selection at linked sites consistently 

yielded around 1.1 million individuals (Fig. 5, Supplementary Figs. 34, 

35 and Supplementary Table 14).

Human adaptations

When adaptive mutations arise, they can quickly spread. This process 

generates distinct genomic patterns surrounding the locus, includ-

ing extended regions of low-diversity haplotypes and few singletons. 

We scanned for evidence of very recent ongoing positive selection 

by taking advantage of our WGS data and large samples. We used the 

singleton density score61 to search for regions where positive selec-

tion has occurred or is ongoing in three ancestry groups: European 

(n = 21,196), African (n = 2,117) and East Asian (n = 1,355). Broadly, each of 

these populations showed evidence for adaptation in immune system 
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genes, albeit with a variety of different gene targets, which probably 

reflects historical differences in pathogen exposure.

The European population shows selection signals (Supplementary 

Fig. 36a) in the vicinity of LCT and the MHC locus, reflecting well-known 

signals for adaptation to lactose metabolism and immune system 

function61. We further identify a strong selection signal implicating 

HERC2, a gene that is associated with iris pigmentation62. The African 

population shows a selection signal (Supplementary Fig. 36b) at a locus 

situated among a cluster of antimicrobial alpha- and beta-defensin 

genes63, which has an important role in innate immunity, suggest-

ing a possible adaptive response to environmental pathogens. Other 

regions implicated include a locus 23 kb upstream of NRG3, a previ-

ously identified putative target of selection expressed in neural tis-

sue64,65 and the calcium sensor STIM1. Mutations in STIM1 are known 

to cause immunodeficiency66. The East Asian population shows a 

selection signal (Supplementary Fig. 36c) at GJA5, a gap junction 

protein that forms intercellular channels to allow transport between 

cells, and at PRAG1, a pseudokinase that interacts with cytoplasmic 

tyrosine kinase (CSK), which ultimately affects antibacterial immune 

response67. Combined with a strong signal at the MHC locus, this once 

again suggests adaptation in immune system function. We also find 

evidence of positive selection at two alcohol metabolism genes at 

mutations known to confer protection against alcoholism: the R48H 

polymorphism (rs1229984) in ADH1B68,69 and the E504K polymorphism 

(rs671) in ALDH270,71.

The TOPMed imputation resource

In addition to enabling detailed analysis of TOPMed sequenced sam-

ples, TOPMed can enhance the analysis of any genotyped samples72. 

To this end, we constructed a TOPMed-based imputation reference 

panel that now includes 97,256 individuals (Extended Data Table 3), 

including 308,107,085 SNVs and indels (Supplementary Table 15). This 

is, to our knowledge, the first imputation reference panel that is based 

exclusively on deep WGS data in diverse samples and greatly exceeds 

previously published alternatives7,8. For example, the average impu-

tation quality r2 for variants with a frequency of 0.001 in genomes of 

individuals with an African ancestry increased from around 0.17 in 

previous panels to 0.96 (Supplementary Fig. 37). Similar improvements 

were observable in all ancestries that we considered except in South 

Asian individuals. The minimum allele frequency at which variants 

could be well-imputed (r2 > 0.3) decreased to around 0.00230.003% 

(European or African ancestry in TOPMed). This means that 89% of 

the approximately 80,000 rare variants with MAF < 0.5% in an aver-

age genome of African ancestry can be recovered through genotype 

imputation using the TOPMed panel.

To illustrate the possibilities, we imputed TOPMed variants in 

array-genotyped participants of the UK Biobank2 and compared the 

results to exome-sequencing data of overlapping individuals. Of the 

463,182 exome-sequencing variants with MAF > 0.05% in 49,819 partici-

pants of the UK Biobank, the majority (84.86%) were also present in the 
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TOPMed-imputed data with imputation quality >0.3. This proportion 

was lower (52.97%) for 3,587,193 non-singleton exome-sequencing 

variants with MAF f 0.05%. The TOPMed-imputed genotypes were 

highly correlated with the exome-sequencing genotypes4the aver-

age correlation ranged from 0.73 (MAF f 0.05%) to 0.98 (MAF > 25%) 

(Supplementary Fig. 38).

An initial association analysis of 94,081 imputed rare autosomal 

(allele frequency f 0.5%) pLOF variants identified, among other find-

ings, several known rare variant associations with breast cancer: a 

frameshift variant in CHEK2 and a stop gain variant in PALB2 (see Meth-

ods and Supplementary Table 16). We also found that the burden of rare 

pLOF variants in BRCA2 (comprising 35 rare pLOF variants; P = 1.6 × 1028; 

cumulative allele frequency in cases versus controls, 0.13% versus 

0.05%) was increased among cases. The individually associated pLOF 

variants would not have been detected using previous reference panels 

(Supplementary Table 16). Other examples of rare variant association 

signals included associations with the burden of rare pLOF variants in 

USH2A and retinal dystrophies (47 rare pLOF variants; allele frequency 

in cases versus controls, 3% versus 0.2%), IFT140 and kidney cyst (18 rare 

pLOF variants; allele frequency in cases versus controls, 0.5% versus 

0.1%), and MYOC and glaucoma (14 rare pLOF variants; allele frequency 

in cases versus controls, 0.5% versus 0.1%).

Conclusion and future prospects

We show that TOPMed WGS data provide a rich resource for developing 

and testing methods for surveying human variation, for inference of 

human demography and for exploring functional constraints on the 

genome73,74. In addition to these uses, we expect that TOPMed data 

will improve nearly all ongoing studies of common and rare disorders 

by providing both a deep catalogue of variation in healthy individu-

als and an imputation resource that enables array-based studies to 

achieve a completeness that was previously attainable only through 

direct sequencing.

Members of the broader scientific community are using TOPMed 

resources through the WGS and phenotype data available on dbGaP, 

the BRAVO variant server and the imputation reference panel on 

the TOPMed imputation server. Full utilization of the programme9s 

resources by the scientific community will require new approaches 

for dealing with the large size of the omics data, the diversity of the 

phenotypic data types and structures, and the need to share data in a 

manner that supports the privacy and consent preferences of partici-

pants. These issues are currently being addressed in partnership with 

the NHLBI BioData Catalyst75 cloud-computing programme.
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Methods

DNA samples

WGS for the 53,831 samples reported here was performed on samples 

that had previously been collected from and consented to by research 

participants from 33 NHLBI-funded research projects. All studies 

were approved by the corresponding institutional review boards 

(Supplementary Information 4). All sequencing was done from DNA 

extracted from whole blood, with the exception of 17 Framingham 

samples (lymphoblastoid cell lines) and HapMap samples NA12878 

and NA19238 (lymphoblastoid cell lines) used periodically as sequenc-

ing controls. Cell lines were tested for mycoplasma contamination by 

aligning sequence data to the human genome, and authenticated by 

comparison with previous genetic analysis.

WGS

WGS targeting a mean depth of at least 30× (paired-end, 150-bp 

reads) using Illumina HiSeq X Ten instruments was carried out over 

several years at six sequencing centres (Supplementary Table 17). 

All sequencing used PCR-free library preparation kits purchased 

from KAPA Biosystems, equivalent to the protocol in the Illumina 

TruSeq PCR-Free Sample Preparation Guide (Illumina, FC-121-2001). 

Centre-specific details are available from the TOPMed website (https://

www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze

-5b-phases-1-and-2). In addition, 30× coverage WGS for 1,606 samples 

from four contributing studies were sequenced before the start of the 

TOPMed sequencing project and are included in this dataset. These 

were sequenced at Illumina using HiSeq 2000 or 2500 instruments, 

have 2 × 100-bp or 2 × 125-bp paired-end reads and sometimes used 

PCR amplification.

Sequence data processing and variant calling

Sequence data processing was performed periodically to produce 

genotype data 8freezes9 that included all samples available at the 

time. All sequences were remapped using BWA-MEM76 to the hs38DH 

1000 Genomes build 38 human genome reference including decoy 

sequences, following the protocol published previously77. Variant dis-

covery and genotype calling was performed jointly, across TOPMed 

studies, for all samples in a given freeze using the GotCloud78,79 pipeline. 

This procedure results in a single, multi-study genotype call set. A sup-

port vector machine quality filter for variant sites was trained using a 

large set of site-specific quality metrics and known variants from arrays 

and the 1000 Genomes Project as positive controls and variants with 

Mendelian inconsistencies in multiple families as negative controls (see 

online documentation80 for more details). After removing all sites with 

a minor allele count less than 2, the genotypes with a minimal depth 

of more than 10× were phased using Eagle 2.481. Sample-level quality 

control included checks for pedigree errors, discrepancies between 

self-reported and genetic sex, and concordance with previous geno-

typing array data. Any errors detected were addressed before dbGaP 

submission. Details regarding WGS data acquisition, processing and 

quality control vary among the TOPMed data freezes. Freeze-specific 

methods are described on the TOPMed website (https://www.nhlbi-

wgs.org/data-sets) and in documents included in each TOPMed acces-

sion released on dbGaP (for example, see document phd008024.1 in 

phs000956.v4.p1).

Access to sequence data

Copies of individual-level sequence data for each study participant are 

stored on both Google and Amazon clouds. Access involves an approved 

dbGaP data access request and is mediated by the NCBI Sequence Data 

Delivery Pilot mechanism. This mechanism uses fusera software82 run-

ning on the user9s cloud instance to handle authentication and authori-

zation with dbGaP. It provides read access to sequence data for one or 

more TOPMed (or other) samples as .cram files (with associated .crai 

index files) within a fuse virtual file system mounted on the cloud com-

puting instance. Samples are identified by 8SRR9 run accession numbers 

assigned in the NCBI Sequence Read Archive (SRA) database and shown 

under each study9s phs number in the SRA Run Selector (https://trace.

ncbi.nlm.nih.gov/Traces/sra/sra.cgi). The phs numbers for all TOPMed 

studies are readily found by searching dbGaP for the string 8TOPMed9. 

The fusera software is limited to running on Google or Amazon cloud 

instances to avoid incurring data egress charges. Fusera, samtools and 

other tools are also packaged in a Docker container for ease of use and 

are available for download from Docker Hub83.

Sample sets

Several sample sets derived from three different WGS data freezes 

were used in the analyses presented here: freeze 3 (GRCh37 alignment, 

around 18,000 samples jointly called in 2016), freeze 5 (GRCh38 align-

ment, approximately 65,000 samples jointly called in 2017), and freeze 

8 (GRCh38 alignment, about 140,000 samples jointly called in 2019). 

Extended Data Table 3 indicates which TOPMed study-consent groups 

were used in each of several different types of analyses described in this 

paper. Most analyses were performed on a set of 53,831 samples derived 

from freeze 5 (8General variant analyses9 in Extended Data Table 3) or on 

a subset thereof approved for population genetic studies (8Population 

genetics9 in Extended Data Table 3). The set of 53,831 was selected from 

freeze 5 using samples eligible for dbGaP sharing at the time of analysis, 

excluding (1) duplicate samples from the same participant; (2) one 

member of each monozygotic twin pair; (3) samples with questionable 

identity or low read depth (<98% of variant sites at depth g 10×); and 

(4) samples with consent types inconsistent with analyses presented 

here. The 8unrelated9 sample set consisting of 40,722 samples refers 

to a subset of the 53,831 samples of individuals who are unrelated with 

a threshold of third degree (less closely related than first cousins), 

identified using the PC-AiR method84. Exact numbers of samples used 

in each analysis are listed in Supplementary Table 18.

High-coverage whole-exome sequencing in BioMe study

From around 10,000 BioMe study samples present in TOPMed freeze 8, 

we randomly selected 1,000 samples for which whole-exome sequenc-

ing (WES) data were available. These samples were whole-exome 

sequenced using Illumina v4 HiSeq 2500 at an average 36.4× depth. 

Genetic variants were jointly called using the GATK v.3.5.0 pipeline 

across all 31,250 BioMe samples with WES data. A series of quality 

control filters, known as the Goldilocks filter, were applied before data 

delivery to the Charles Bronfman Institute for Personalized Medicine 

(IPM). First, a series of filters was applied to particular cells comprising 

combinations of sites and samples4that is, genotypic information for 

one individual at one locus. Quality scores were normalized by depth 

of coverage and used with depth of coverage itself to filter sites, using 

different thresholds for SNVs and short indels. For SNVs, cells with 

depth-normalized quality scores less than 3, or depth of coverage less 

than 7 are set to missing. For indels, cells with depth-normalized quality 

scores less than 5, or depth of coverage less than 10 are set to missing. 

Then, variant sites were filtered, such that all samples carrying varia-

tion have heterozygous (0/1) genotype calls and all samples carrying 

heterozygous variation fail the allele balance cut-off; these sites were 

removed from the dataset at this stage. The allele balance cut-off, as 

with the depth and quality scores used for cell filtering above, differed 

depending on whether the site was a SNV or an indel: SNVs require at 

least one sample to carry an alternative allele balance g 15%, and indels 

require at least one sample to carry an alternative allele balance g 20%. 

These filters resulted in the removal of 441,406 sites, leaving 8,761,478 

variants in the dataset. After subsetting to 1,000 randomly selected 

individuals, we had 1,076,707 autosomal variants that passed qual-

ity control. We further removed variants with call rate <99% (that is,  

missing in more than 10 individuals), reducing the number of analysed 

autosomal variants to 1,044,517. The comparison results of TOPMed 

https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-2
https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-2
https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-2
https://www.nhlbiwgs.org/data-sets
https://www.nhlbiwgs.org/data-sets
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/document.cgi?study_id=phs000956.v4.p1&phv=252986&phd=8024&pha=&pht=5002&phvf=&phdf=&phaf=&phtf=&dssp=1&consent=&temp=1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000956.v4.p1
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi
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WGS and BioMe WES data are described in Supplementary Informa-

tion 1.3.1.

Low-coverage WGS and high-coverage WES in the Framingham 

Heart Study

Investigators of the Framingham Heart Study (FHS) evaluated WGS 

data from TOPMed in comparison with sequencing data from CHARGE 

Consortium WGS and WES datasets. Supplementary Table 19 provides 

the counts and depth of each sequencing effort. The overlap of these 

three groups is 430 FHS study participants, on whom we report here. 

We use a subset of 263 unrelated study participants to calculate the 

numbers of singletons and doubletons, MAF, heterozygosity and all 

rates, to avoid bias from the family structure. Supplementary Infor-

mation 1.3.2 provides further detail on the sequencing efforts and a 

detailed description of the comparison results.

Identifying pLOF variants

pLOF variants were identified using Loss Of Function Transcript Effect 

Estimator (LOFTEE) v.0.3-beta85 and Variant Effect Predictor (VEP) 

v.9486. The genomic coordinates of coding elements were based on GEN-

CODE v.2915. Only stop-gained, frameshift and splice-site-disturbing 

variants annotated as high-confidence pLOF variants were used in 

the analysis. The pLOF variants with allele frequency > 0.5% or within 

regions masked due to poor accessibility were excluded from analysis 

(see Supplementary Information 1.5 for details).

We evaluated the enrichment and depletion of pLOF variants (allele 

frequency < 0.5%) in gene sets (that is, terms) from Gene Ontology 

(GO)87,88. For each gene annotated with a particular GO term, we com-

puted the number of pLOF variants per protein-coding base pair, L, 

and proportion of singletons, S. We then tested for lower or higher 

mean L and S in a GO term using bootstrapping (1,000,000 samples) 

with adjustment for the gene length of the protein-coding sequence 

(CDS): (1) sort all genes by their CDS length in ascending order and 

divide them into equal-size bins (1,000 genes each); (2) count how 

many genes from a GO term are in each bin; (3) from each bin, sample 

with replacement the same number of genes and compute the average 

L and S; (4) count how many times sampled L and S were lower or higher 

than observed values. The P values were computed as the proportion 

of bootstrap samples that exceeded the observed values. The fold 

change of average L and S was computed as a ratio of observed values 

to the average of sampled values. We tested all 12,563 GO terms that 

included more than one gene. The P-value significance threshold was 

thus ~2 × 1026. The enrichment and depletion of pLOF variants in public 

gene databases was tested in a similar way.

Sequencing depth at protein-coding regions

We compared sequencing depth at protein-coding regions in TOPMed 

WGS and ExAC WES data. The ExAC WES depth at each sequenced base 

pair on human genome build GRCh37 was downloaded from the ExAC 

browser website (http://exac.broadinstitute.org). When sequencing 

depth summary statistics for a base pair were missing, we assumed 

depth <10× for this base pair. Only protein-coding genes from consen-

sus coding sequence were analysed and the protein-coding regions 

(CDS) were extracted from GENCODE v.29. When analysing ExAC 

sequencing depth, we used GENCODE v.29 lifted to human genome 

build GRCh37. When comparing sequencing depth for each gene 

individually in TOPMed and ExAC, we used only genes present in both 

GRCh38 and GRCh37 versions of GENCODE v.29.

Novel genetic variants in unmapped reads

Analysis of unmapped reads was performed using 53,831 samples from 

TOPMed data freeze 5. From each sample, we extracted and filtered all 

read pairs with at least one unmapped mate and used them to discover 

human sequences that were absent from the reference. The pipeline 

included four steps: (1) per-sample de novo assembly of unmapped 

reads; (2) contig alignment to the Pan paniscus, Pan troglodytes, 

Gorilla gorilla and Pongo abelii genome references and subsequent 

hominid-reference-based merging and scaffolding of sequences pooled 

together from all samples; (3) reference placement and breakpoint 

calling; and (4) variant genotyping. The detailed description of each 

step is provided in Supplementary Information 1.7.

Identification of CYP2D6 alleles using Stargazer’s genotyping 

pipeline

Details of the Stargazer genotyping pipeline have been described previ-

ously43. In brief, SNVs and indels in CYP2D6 were assessed from a VCF 

file generated using GATK-HaplotypeCaller89. The VCF file was phased 

using the program Beagle90 and the 1000 Genomes Project haplotype 

reference panel. Phased SNVs and indels were then matched to star 

alleles. In parallel, read depth was calculated from BAM files using 

GATK-DepthOfCoverage89. Read depth was converted to copy number 

by performing intra-sample normalization43. After normalization, struc-

tural variants were assessed by testing all possible pairwise combina-

tions of pre-defined copy number profiles against the observed copy 

number profile of the sample. For new SVs, breakpoints were statisti-

cally inferred using changepoint91. Information regarding new SVs was 

stored and used to identify subsequent SVs in copy number profiles. 

Output data included individual diplotypes, copy number plots and a 

VCF of SNVs and indels that were not used to define star alleles.

Genome-wide distribution of genetic variation

Contiguous segment analysis. We excluded indels and multi-allelic 

variants, and categorized the remaining variants as common (allele 

frequency g 0.005) or rare (allele frequency < 0.005), and as coding or 

noncoding based on protein-coding exons from Ensembl 9492. Variant 

counts were analysed across 2,739 non-empty (that is, with at least one 

variant) contiguous 1-Mb chromosomal segments, and counts in seg-

ments at the end of chromosomes with length L < 106 bp were scaled 

up proportionally by the factor 106 × L21. For each segment, the coding 

proportion, C, was calculated as the proportion of bases overlapping 

protein-coding exons. The distribution of C is fairly narrow, with 80% of 

segments having C f 0.0195, 99% of segments have C f 0.067 and only 

3 segments having C g 0.10. Owing to the significant negative correla-

tion between C and the number of variants in a segment, and potential 

mapping effects, we use linear regression to adjust the variant counts 

per segment according to the model count = β × C + A + count_adj, where 

A is the proportion of segment bases overlapping the accessibility mask 

(Supplementary Information 1.5). Unless otherwise noted, we present 

analyses and results that use these adjusted count values.

Concatenated segment analysis. Distinct base classifications were 

defined by both coding and noncoding annotations (based on En-

sembl 9492) and CADD in silico prediction scores21 (downloaded from 

the CADD server for all possible SNVs). For each base, we used the 

maximum possible CADD score (when using the minimum CADD score, 

results were qualitatively the same). Bases beyond the final base with 

a CADD score per chromosome were excluded. This resulted in six 

distinct types of concatenated segments: high (CADD g 20), medium 

(10 f CADD < 20) and low (CADD < 10) CADD scores for coding and 

similarly for noncoding variants. Common (allele frequency g 0.005) 

and rare (allele frequency < 0.005) variant counts were then calculated 

across these concatenated segments. Multi-allelic variants and those 

in regions masked due to accessibility were excluded. Counts in seg-

ments at the end of chromosomes were scaled up as in the contiguous 

analysis.

Singleton clustering analysis

Data. From the TOPMed freeze 5 dataset, we selected a subset of 1,000 

unrelated individuals of African ancestry, 1,000 unrelated individuals 

of East Asian ancestry and 1,000 unrelated individuals of European 

http://exac.broadinstitute.org


ancestry, with the ancestry of each individual inferred across 7 global 

reference populations using RFMix93. In each of these subsamples, 

we recalculated the allele counts of each SNV and extracted SNVs that 

were singletons within that sample, then calculated the distance to 

the nearest singleton (either upstream or downstream from the focal 

singleton) occurring within the same individual. Note that a singleton 

defined here is not necessarily a singleton in the entire TOPMed freeze 

5 dataset. We chose to limit the size of each population subsample to 

n = 1,000 for three reasons: first, to ensure the different population 

subsamples carried roughly a similar number of singletons; second, 

to ensure homogeneous ancestry within each subsample so that our 

analysis of singleton clustering patterns was not an artefact of admixed 

haplotypes; third, to limit the incidence of recurrent mutations at hy-

permutable sites, which can alter the underlying mutational spectrum 

of singleton SNVs in large samples94. Although the TOPMed Consortium 

sequenced individuals from several other diverse population groups 

(for example, Samoan, Hispanic/Latino individuals), the majority of 

these individuals were of admixed ancestry and the singletons from 

these smaller samples reflected mutations that have accumulated 

over a longer period of time, so the mutation spectra and genome-wide 

distributions of these samples would be more susceptible to distortion 

by other evolutionary processes such as selection and biased gene 

conversion31.

Simulations. To quantify the effects of external branch length het-

erogeneity on singleton clustering patterns, we used the stdpopsim 

library95 to simulate variants across chromosome 1 for 2,000 Euro-

pean and 2,000 African haploid samples, using a previously reported 

demographic model10. Simulations were performed using a per-site, 

per-generation mutation rate96 of 1.29 × 1028, and using recombination 

rates derived from the HapMap genetic map97. Because our aim was to 

compare these simulated singletons to unphased singletons observed 

in the TOPMed data, we randomly assigned each of the 2,000 haploid 

samples from each population into one of 1,000 diploid pairs, and 

calculated the inter-singleton distances per diploid sample, ignoring 

the haplotype on which each simulated singleton originated.

Mixture model parameter estimation. The distribution of singletons 

suggest an underlying nonhomogeneous Poisson process, where the 

rate of incidence varies across the genome. In other areas of research, 

it has been shown that the waiting times between events arising from 

other nonhomogeneous Poisson processes, such as volcano eruptions 

or extreme weather events, can be accurately modelled as a mixture 

of exponential distributions98,99. Taking a similar approach, we model 

the distribution of inter-singleton distances across all Si singletons in 

individual i as a mixture of K exponential component distributions  

(fk(di;θi,k)), given by:

3f d λ θ λ f d θ( ; , ) = ( ; )i i i
k

K

i k k i i k
=1

, ,

where θi,1 < θi,2 < … < θi,K and λi,k = Si,k/Si is the proportion of singletons 

arising from component k, such that λ3 = 1k
K

i k=1 , .

We estimate the parameters of this mixture (λi,1, …, λi,K, θi,1, …, θi,K) 

using the expectation3maximization algorithm as implemented in the 

mixtools R package100. Code for this analysis is available for download 

from the GitHub repository101. To identify an optimal number of mixture 

components, we iteratively fit mixture models for increasing values 

of K and calculated the log-likelihood of the observed data D given the 

parameter estimates λ λ θ θ( ˆ , ..., ˆ , ˆ , ..., ˆ )i i K i i K,1 , ,1 , , stopping at K compo-

nents if the P value of the likelihood ratio test between K 2 1 and K com-

ponents was >0.01 (Ç2 test with two degrees of freedom). The 

goodness-of-fit plateaued at four components for the majority of 

individuals, so we used the four-component parameter estimates from 

each individual in all subsequent analyses.

Now let ki,j indicate which of the four processes generated singleton 

j in individual i. We calculated the probability of being generated by 

process k as:
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We then classified the process-of-origin for each singleton according 

to the following optimal decision rule:

k p k dˆ = arg max ( | ).i j k i j, *{1,...,4} ,

Identification of mixture component hotspots. After assigning sin-

gletons to the most likely mixture component, we pooled singletons 

across individuals of a given ancestry group and counted the number 

of occurrences in each component in non-overlapping 1-Mb windows 

throughout the genome. We defined hotspots as the top 5% of 1-Mb bins 

containing the most singletons in a component in each ancestry group.

Modelling the relationship between clustering patterns and genom-

ic features. In each 1-Mb window, we calculated the average signal for 

12 genomic features (H3K27ac, H3K27me3, H3K36me3, H3K4me1, 

H3K4me3, H3K9ac, H3K9me3, exon density, DNase hypersensitivity, 

CpG island density, lamin-associated domain density and recombina-

tion rate), using the previously described source datasets31. For each 

mixture component, we then applied the following negative binomial 

regression model to estimate the effects of each feature on the density 

of that component in 1-Mb windows:

Y β β X β Xlog( ) = + + ... +a k w w w, , 0 1 1, 12 12,

Where Ya,k,w is the number of singletons in ancestry subsample a of 

mixture component k in window w and X1,w, …, X12,w are the signals of 

each of the 12 genomic features in corresponding window w.

Evolutionary genetics of individuals with diverse ancestry

Rare variant sharing. In these analyses, we used 39,722 unrelated in-

dividuals that had provided consent for population genetics research. 

Each individual was grouped into their TOPMed study, except for in-

dividuals from the AFGen project, which were treated as one study 

(Extended Data Tables 1, 2). Individuals from the FHS and ARIC projects 

individuals, which overlapped with the AFGen project, remained in 

their respective studies and were not grouped into the AFGen pro-

ject. Individuals for whom the population group was either missing 

or 8other9 were removed from the analysis. We then removed all indels, 

multi-allelic variants and singletons from the remaining 39,168 individu-

als. Each study was then split by population group. We excluded studies 

that had fewer than 19 samples from the analysis; however all 39,168 

samples were used to define singleton filtering. We used the Jaccard 

index102, J, to determine the intersection of rare variants (2 f sample 

count f 100) between two individuals divided by the union of the rare 

variants of that pair, where the sample count indicates the number 

of individuals with either a heterozygote or homozygote variant. We 

then determined the average J value between and within each study.

To confirm that J is not biased by sample size, we randomly sampled 

500 individuals from each of two studies with European (AFGen and 

FHS) and African (COPDGene and JHS) population groups in TOPMed 

freeze 3, without replacement. We then recalculated J between and 

within these randomly sampled studies, considering alternative allele 

counts between 2 and 100 within these 2,000 individuals.

Haplotype sharing. We used the RefinedIBD program103 to call seg-

ments of identical-by-descent (IBD) sharing of length g 2 cM on the 

autosomes using passing SNVs with MAF > 5%. All 53,831 samples were 

included in this analysis, and we used genotype data phased with 
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Eagle281. As IBD logarithm of odds (LOD) scores are often deflated in 

populations with strong founding bottlenecks, such as the Amish, we 

used a LOD score threshold of 1.0 instead of the default 3.0. To account 

for possible phasing and genotyping errors, we filled gaps between 

IBD segments for the same pair of individuals if the gap had a length 

of at most 0.5 cM and at most one discordant genotype. As a result of 

the lower LOD threshold, regions with a low variant density can have 

an excess of apparent IBD segments. We therefore identified regions 

with highly elevated levels of detected IBD using a previously described 

procedure104 and removed any IBD segments that fell wholly within 

these regions.

We divided the data by study and by population group within each 

study. In the analyses of IBD sharing levels and recent effective size, 

we did not include studies without appropriate consent or population 

groups with fewer than 80 individuals within a study. We calculated the 

total length of IBD segments for each pair of individuals, and we aver-

aged these totals within each population group in a study and between 

each pair of population-by-study groups. We also estimated recent 

effective population sizes for each group using IBDNe104.

Demographic estimation under selection at linked sites. We se-

lected 2,416 samples from the TOPMed data freeze 3 that (1) had a high 

percentage of European ancestry; (2) were unrelated; and (3) gave 

consent for population genetics research. More detailed information 

about ancestry estimation and filters is provided in Supplementary 

Information 1.10.

We performed several steps to filter the genome for high-quality 

neutral sites, which were based on a previously described ascertainment 

scheme30 (Supplementary Information 1.10). After filtering, positions 

in the genome were annotated for how strongly affected they were by 

selection at linked sites using the background selection coefficient, 

McVicker9s B statistic60. We used all sites annotated with a B value for 

performing general analyses. However, when performing demographic 

inferences, we limited our analyses to regions of the genome within the 

top 1% of the genome-wide distribution of B (B g 0.994). These sites 

correspond to regions of the genome inferred to be under the weakest 

amount of background selection (that is, under the weakest effects of 

selection at linked sites). Sites in the genome were also polarized to 

ancestral and derived states using ancestral annotations called with 

high-confidence from the GRCh37 e71 ancestral sequence. After keep-

ing only polymorphic bi-allelic sites, we had 20,324,704 sites, of which 

191,631 had B g 0.994. We also identified 91,177 fourfold degenerate 

synonymous sites (irrespective of B) that were polymorphic (bi-allelic) 

and had high-confidence ancestral and derived states.

We performed demographic inference with the moments105 pro-

gram by fitting a model of exponential growth with three parame-

ters (NEur0, NEur, TEur) to the site-frequency spectrum. This included 

two free parameters: the starting time of exponential growth (TEur) 

and the ending population size after growth (NEur). The ancestral 

size parameter (that is, the population size when growth begins),  

NEur0, was kept constant in our model such that the relative starting size 

of the population was always 1. We applied the inference procedure 

to either fourfold degenerate sites or sites with B g 0.994. The site 

frequency spectrum used for inference was unfolded and based on 

the polarization step described above. The inference procedure was 

fit using sample sizes (2N) of 1,000, 2,000, 3,000, 4,000 and 4,832 

chromosomes. To convert the scaled genetic parameters output by the 

inference procedure to physical units, we used the resulting theta (also 

inferred by moments) and a mutation rate106 of 1.66 × 1028 to generate 

corresponding effective population sizes (Ne). To convert generations 

to years, we assumed a generation time of 25 years. The 95% confidence 

intervals were generated by resampling the site frequency spectrum 

1,000 times and using the Godambe information matrix to generate 

parameter uncertainties107. A more detailed description is available 

in Supplementary Information 1.10.

Selection. We started with 39,649 unrelated individuals selected from 

the TOPMed data freeze 5 for which we had consent for population 

genetic analyses (Extended Data Table 3). As the singleton density 

score (SDS) requires thousands of samples and a baseline demographic 

history, we subset our data by population group and limited our popula-

tion analysis to those population groups for which we had well-studied 

demographic histories: broadly European, broadly African and broadly 

East Asian. To avoid potential problems introduced by admixture, we 

required that our samples had more than 90% inferred European,  

African or East Asian ancestry as inferred by a seven-way ancestry in-

ference pipeline (Supplementary Information 1.11). This left n = 21,196  

European samples, n = 2,117 African samples and n = 1,355 East Asian 

samples. We specifically excluded Amish samples from the European 

group as they are a unique founder population. We analysed each popu-

lation separately. Only bi-allelic sites with an unambiguous ancestral 

state, inferred using the WGSA pipeline108, were used. Sites near chro-

mosome boundaries, near centromeres and in regions with poor acces-

sibility were excluded. We used the previously published R scripts61 to 

perform all demographic history simulations and SDS computations 

in each population. We then normalized raw SDS scores within 1% fre-

quency bins and treated the normalized scores as Z-scores to convert 

them to P values as described previously61. Raw and normalized SDS 

scores are included in Supplementary Data 2.

TOPMed imputation panel

Construction. We divided each autosomal chromosome and the  

X chromosome into overlapping chunks (with chunk size of 1 Mb each 

and with 0.1 Mb overlap between consecutive chunks), and then phased 

each of the chunks using Eagle v.2.481. We removed all singleton sites and 

compressed the haplotype chunks into m3vcf format109. Afterwards, 

we ligated the compressed haplotype chunks for each chromosome 

to generate the final reference panel.

Evaluation of imputation accuracy. For all TOPMed individuals, ge-

netic ancestries were estimated using the top four principal compo-

nents projected onto the principal component space of 938 Human 

Genome Diversity Project (HGDP) individuals using verifyBamID2110. 

For each TOPMed individual, we identified the 10 closest individuals 

from 2,504 individuals from the 1000 Genomes Project phase 3 based 

on Euclidean distances in the principal component space estimated 

by verifyBamID2. If all of the 10 closest individuals from the 1000 Ge-

nomes Project phase 3 belonged to the same super-population4among  

African, admixed American, East Asian, European and South Asian pop-

ulations4we estimated that the TOPMed individual also belonged to 

that super-population. Among the 97,256 reference panel individuals, 

90,339 (93%) were assigned to a super-population, with the following 

breakdown: African, 24,267 individuals; admixed American, 17,085 in-

dividuals; European, 47,159 individuals; East Asian, 1,184 individuals; 

South Asian, 644 individuals. We randomly selected 100 individuals 

from each super-population in the BioMe TOPMed study, and selected 

markers on chromosome 20 present on the Illumina HumanOmniEx-

press (8v1-2_A) array. The selected genotypes were phased with Eagle 

2.4.181, using the 1000 Genomes Project phase 3 (n = 2,504), Haplotype 

Reference Consortium (HRC, n = 32,470) and TOPMed (n = 96,756) refer-

ence panels, excluding the 500 individuals from the TOPMed reference 

panel. The phased genotypes were imputed using Minimac4111 from 

each reference panel, and the imputation accuracy was estimated as 

the squared correlation coefficient (r2) between the imputed dosages 

and the genotypes calls from the sequence data. The allele frequencies 

were estimated among all TOPMed individuals estimated to belong 

to the same super-population, and the r2 values were averaged across 

variants in each MAF category. Variants present in 100 sequenced in-

dividuals but absent from the reference panels were assumed to have 

r2 = 0 for the purposes of computing the average r2. The minimum MAF 



to achieve r2 > 0.3 was calculated from the average r2 in each MAF cat-

egory by finding the MAF that crosses r2 = 0.3 using linear interpolation. 

The average number of rare variants (MAF < 0.5%) and the fraction of 

imputable rare variants (r2 > 0.3) were calculated based on the number 

of non-reference alleles in imputed samples above and below the mini-

mum MAF, assuming Hardy3-Weinberg equilibrium.

Imputation of the UK Biobank to the TOPMed panel and associa-

tion analyses. After phasing the UK Biobank genetic data (carried out 

on 81 chromosomal chunks using Eagle v.2.4), the phased data were 

converted from GRCh37 to GRCh38 using LiftOver112. Imputation was 

performed using Minimac4111.

We compared the correlation of genotypes between the 

exome-sequencing data released by the UK Biobank (following their 

SPB pipeline113) and the TOPMed-imputed genotypes. The comparison 

assessed 49,819 individuals and 3,052,260 autosomal variants that were 

found in both the exome-sequencing and TOPMed-imputed datasets 

(matched by chromosome, position and alleles, and with an imputa-

tion quality of at least 0.3 in the TOPMed-imputed data). We split the 

variants into MAF bins for which the MAF from the exome data was 

used to define the bins, and computed Pearson correlations averaged 

within each bin.

We tested single pLOF, nonsense, frameshift and essential splice-site 

variants85,86 for association with 1,419 PheCodes constructed from com-

posites of ICD-10 (International Classification of Diseases 10th revision) 

codes to define cases and controls. Construction of the PheCodes has 

been previously described114. We performed the association analysis in 

the 8white British9 individuals, which resulted in 408,008 individuals 

after the following quality control metrics were applied: (1) samples 

did not withdraw consent from the UK Biobank study as of the end of 

2019; (2) 8submitted gender9 matches 8inferred sex9; (3) phased autoso-

mal data available; (4) outliers for the number of missing genotypes or 

heterozygosity removed; (5) no putative sex chromosome aneuploidy; 

(6) no excess of relatives; (7) not excluded from kinship inference; 

and (8) in the UK Biobank defined the 8white British9 ancestry subset. 

To perform the association analyses, we used a logistic mixed model 

test implemented in SAIGE114 with birth year and the top four principal 

components (computed from the white British subset) as covariates. 

For the pLOF burden tests, for each autosomal gene with at least two 

rare pLOF variants (n = 12,052 genes), a burden variable was created in 

which dosages of rare pLOF variants were summed for each individual. 

This sum of dosages was tested for association with the 1,419 traits 

using SAIGE. The same covariates used in the single-variant tests were 

included. For both the single-variant and the burden tests, we used 

5 × 1028 as the genome-wide significance threshold.

Reporting summary

Further information on research design is available in the Nature 

Research Reporting Summary linked to this paper.

Data availability

A detailed description of the TOPMed participant consents and data 

access is provided in Box 1. TOPMed data used in this manuscript are 

available through dbGaP. The dbGaP accession numbers for all TOPMed 

studies referenced in this paper are listed in Extended Data Tables 2, 3. 

A complete list of TOPMed genetic variants with summary level infor-

mation used in this manuscript is available through the BRAVO variant 

browser (bravo.sph.umich.edu). The TOPMed imputation reference 

panel described in this manuscript can be used freely for imputation 

through the NHLBI BioData Catalyst at the TOPMed Imputation Server 

(https://imputation.biodatacatalyst.nhlbi.nih.gov/). DNA sequence 

and reference placement of assembled insertions are available in VCF 

format (without individual genotypes) on dbGaP under the TOPMed 

GSR accession phs001974.

Code availability

All code for TOPMed data quality checks and variant calling is avail-

able at https://github.com/statgen/topmed_variant_calling. Code 

for the WGS and WES data comparisons is available at https://github.

com/statgen/sequencing_comparison. Code for modelling the sin-

gleton distance distribution is available at https://github.com/carjed/

topmed_singleton_clusters. Code for identifying novel genetic vari-

ants in unmapped reads is available at https://github.com/nygenome/

topmed_unmapped. Code for gene-burden association tests using 

rare pLOF variants is available at https://github.com/sgagliano/Gen-

eBurden. Code for the imputed and genotype UK Biobank WES data 

comparisons is available at https://github.com/sgagliano/UKB_WES_

vs_TOPMed_IMP.
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Extended Data Fig. 1 | Principal components of the genotypic data from 

freeze 5 pooled across studies. a, Three-dimensional plot of principal 

components (PC) 1, 2 and 3. b, Parallel coordinate plot colour-coded by 

categories defined according to race, ancestry and/or ethnic information 

provided by the study participants and/or by study investigators according to 

study inclusion criteria. Individuals with missing values for ancestry or 

ethnicity are excluded.
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Extended Data Fig. 2 | Distribution of genetic variants across the genome. 

After filtering to focus on regions of the genome that are accessible through 

short-read sequencing, most contiguous 1-Mb segments show similar levels of 

common (5,141 ± 1,298 variants with MAF g 0.5%) and rare variation 

(120,414 ± 19,862 variants with MAF < 0.5%). From top to bottom, panel 1 shows 

the levels of variation across the genome for common coding variants, panel 2 

for rare coding variants, panel 3 for common noncoding variants and panel 4 

for rare noncoding variants. Variation levels are represented by the Z-score 

(X-mean/s.d.) of the adjusted variant counts per 1-Mb contiguous segment for 

each variant category.



Extended Data Fig. 3 | Characteristics of singleton clustering patterns.  

a, Mutational spectra of singletons assigned to each of the four mixture 

components, separated by population. b, Density of mixture component 2 

singletons in 1-Mb windows across the genome. Windows with mixture 

component 2 singleton counts above the 95th percentile (calculated 

genome-wide per population subsample) are classified as hotspots and are 

highlighted in green.
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Extended Data Fig. 4 | Estimates of recent effective population size by 

population group. Each line represents the estimate from a single study, 

considering only individuals with an annotated population group. The 

included studies are the same as those in Supplementary Fig. 31. The Amish and 

Samoan results are individually identified due to their distinct recent 

population size trajectories. Ne, effective population size. The overlay view is 

shown in Supplementary Fig. 33.



Extended Data Table 1 | TOPMed projects and participating parent studies included in genotype data freeze 5

See Supplementary Information 1.1.2 for definitions of TOPMed projects and parent studies. AF, atrial fibrillation; CAC, coronary artery calcification; HLB, general heart, lung and blood;  

VTE, venous thromboembolism. Note, some case-only collections are included. See Extended Data Table 2 for study abbreviations and additional study information. 

*Primary phenotype focus for TOPMed samples. 
†Some TOPMed studies participate in more than one project.
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Extended Data Table 2 | Studies that contributed to the freeze-5 genotype call set

Each study has a dbGaP accession for the TOPMed sequence data and genotypes, although some also have pre-existing parent study accessions. Phenotypic data are mainly in the parent 

accessions, although some are in the TOPMed accessions. See also Supplementary Figs. 39 and 40 for information about the ancestral and/or ethnic and sex composition of each study.  

The relationships between these studies and their TOPMed project(s) are summarized in Extended Data Table 1. All of the TOPMed and parent study accessions in this table have been released 

on dbGaP (see https://www.ncbi.nlm.nih.gov/gap/?term=TOPMed and https://www.nhlbiwgs.org/group/project-studies?field_is_this_a_value=sub). 

*Study name as it appears in dbGaP, with 8NHLBI TOPMed:9 prepended. 
†Approximate sample size for freeze-4 and freeze-5 releases combined.

https://www.ncbi.nlm.nih.gov/gap/?term=TOPMed
https://www.nhlbiwgs.org/group/project-studies?field_is_this_a_value=sub


Extended Data Table 3 | TOPMed study-consent groups used in analyses and tools

Consent group data use limitations are defined as follows: GRU, general research use; HMB, limited to health, medical and/or biomedical purposes; DS, use of the data must be related to 

specified disease. Consent group data use limitation modifiers include the following: IRB, requestor must provide documentation of local IRB approval; PUB, requestor agrees to make results 

of studies using the data available to the larger scientific community; COL, requestor must provide a letter of collaboration with the primary study investigator(s); NPU, use of the data are 

limited to not-for-profit organizations; MDS, use of the data includes methods development research; GSO, use of the data are limited to genetic studies only. AF, atrial fibrillation; ASC-RF, 

arteriosclerosis and its risk factors; CVD, cardiovascular disease; CS, chronic obstructive pulmonary disease (COPD) and smoking; DHD, diabetes and heart disease; FDO, focus disease only (in 

JHS, FDO is blood pressure, heart/CVD, obesity, diabetes, kidney disease, or lung disease and risk factors); HCR, high blood pressure and related cardiovascular-renal disease; HLBS, heart, lung, 

blood and sleep disorders; ILD, interstitial lung disease; LD, lung disease; PFIB, pulmonary fibrosis; PUL, pulmonary, interstitial lung disease; RD, related disorders; SAR, sarcoidosis; SCD, sickle 

cell disease.



Article

Extended Data Table 4 | Coverage, sequencing depth and number of variants

*Variant was not present in dbSNP build 149, the most recent dbSNP version without TOPMed submissions.



Extended Data Table 5 | pLOF variants in 53,831 individuals
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