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Somatic mutations in cancer genomes are caused by multiple mutational processes,
each of which generates a characteristic mutational signature’. Here, as part of the
Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium? of the International
Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we
characterized mutational signatures using 84,729,690 somatic mutations from
4,645 whole-genome and 19,184 exome sequences that encompass most types of
cancer. We identified 49 single-base-substitution, 11 doublet-base-substitution,

4 clustered-base-substitution and 17 small insertion-and-deletion signatures. The
substantial size of our dataset, compared with previous analyses®* %, enabled the
discovery of new signatures, the separation of overlapping signatures and the
decomposition of signatures into components that may represent associated—but
distinct—DNA damage, repair and/or replication mechanisms. By estimating the
contribution of each signature to the mutational catalogues of individual cancer
genomes, we revealed associations of signatures to exogenous or endogenous
exposures, as well as to defective DNA-maintenance processes. However, many
signatures are of unknown cause. This analysis provides a systematic perspective on
the repertoire of mutational processes that contribute to the development of human
cancer.

Somatic mutations in cancer genomes are caused by mutational pro-
cesses of both exogenous and endogenous origin that operate dur-
ing the cell lineage between the fertilized egg and the cancer cell®.
Each mutational process may involve components of DNA damage or
modification, DNA repair and DNA replication (which may be normal
orabnormal), and generates a characteristic mutational signature that
potentially includes base substitutions, smallinsertions and deletions
(indels), genome rearrangements and chromosome copy-number
changes'. The mutations in an individual cancer genome may have
been generated by multiple mutational processes, and thus incor-
porate multiple superimposed mutational signatures. Therefore, to
systematically characterize the mutational processes that contribute to

cancer, mathematical methods have previously been used to decipher
mutational signatures from somatic mutation catalogues, estimate
the number of mutations that are attributable to each signature in
individual samples and annotate each mutation class in each tumour
with the probability that it arose from each signature®”” 7,

Previous studies of multiple types of cancer have identified more
than 30 single-base substitution (SBS) signatures, some of known—
but many of unknown—aetiologies, some ubiquitous and othersrare,
some part of normal cell biology and others associated with abnormal
exposures or neoplastic progression®>7%5, Genome rearrangement
signatures have also previously been described™*?-*, However, the
analysis of other classes of mutation has been relatively limited>"%,
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Mutational signature analysis has predominantly used cancer exome
sequences. However, the many-fold-greater numbers of somatic muta-
tions in whole genomes provide substantially increased power for
signature decomposition, enabling the better separation of partially cor-
related signatures and the extraction of signatures that contribute rela-
tively small numbers of mutations. Furthermore, technical artefacts and
differencesinsequencing technologies and mutation-calling algorithms
can themselves generate mutational signatures. Therefore, the uni-
formly processed and highly curated sets of all classes of somatic muta-
tions from the 2,780 cancer genomes of the PCAWG project?, combined
with most other suitable cancer genomes (accession code syn11801889,
available at https://www.synapse.org/#!Synapse:syn11801889), present
anotable opportunity to establish the repertoire of mutational signa-
tures and determine their activities across different types of cancer. The
timing of these signatures during the evolution of individual cancers and
therepertoire of signatures of structural variation have been explored
in other PCAWG analyses*>*,

Mutational signature analysis

The 23,829 samples—which include most types of cancer, and comprise
the2,780 PCAWG whole genomes?, 1,865 additional whole genomes and
19,184 exomes—yielded 79,793,266 somatic SBSs, 814,191 doublet-base
substitutions (DBSs) and 4,122,233 small indels that were analysed for
mutational signatures, about 10-fold-more mutations than any previ-
ous study of which we are aware (syn11801889)°.

We developed classifications for each type of mutation. For SBSs, the
primary classification comprised 96 classes (available at https://cancer.
sanger.ac.uk/cosmic/signatures/SBS) constituted by the 6 base substi-
tutions C>A, C>G, C>T, T>A, T>C and T>G (in which the mutated base is
represented by the pyrimidine of the base pair), plus the flanking 5’ and
3’bases. In some analyses, two flanking bases 5’ and 3’ to the mutated
base were considered (producing 1,536 classes) or mutations within
transcribed genome regions were selected and classified according to
whether the mutated pyrimidine fell onthe transcribed or untranscribed
strand (producing 192 classes). We also derived a classification for DBSs
(78 classes; available at https://cancer.sanger.ac.uk/cosmic/signatures/
DBS).Indels were classified as deletions or insertions and—when of asingle
base—as Cor T,and according to the length of the mononucleotide repeat
tractin which they occurred. Longer indels were classified as occurring
at repeats or with overlapping microhomology at deletion boundaries,
andaccordingtothesize of indel, repeat and microhomology (83 classes;
available at https://cancer.sanger.ac.uk/cosmic/signatures/ID).

The PCAWG whole-genome sequences, the additional whole-genome
sequences and the exome sequences were each analysed separately
(synl11801889)2. Signatures were extracted from each type of cancer
individually, from all cancer types together, as separate SBS, DBS and
indel signatures, and as composite signatures of all three types of muta-
tion (Supplementary Note 2).

We used two methods based on nonnegative matrix factorization
(NMF): SigProfiler, an elaborated version of the framework used for
the previous ‘Catalogue Of Somatic Mutations In Cancer’ (COSMIC)
compendium of mutational signatures (COSMICv.2, available at https://
cancer.sanger.ac.uk/cosmic/signatures_v2)""", and SignatureAnalyzer,
which is based on a Bayesian variant of NMF**35, NMF determines the
signature profiles and contributions of each signature to each cancer
genome as part of its factorization of the input matrix of mutation
spectra. However, with many signatures and/or heterogeneous muta-
tion burdens across samples, the mutations observed in a particular
sample can bereconstructed in multiple ways—often with small and/or
biologically implausible contributions from many signatures. There-
fore,each method has developed aseparate procedure for estimating
the contributions of signatures to each sample (Methods).

We tested SignatureAnalyzer and SigProfiler on 11 sets of synthetic
data (including 64,400 synthetic samples), generated from known

signature profiles (Methods, Supplementary Note 2). Both methods
performed well in re-extracting known signatures from realistically
complex data. Extracted signatures that were discordant from the
known input usually arose from difficulties in selecting the correct
number of signatures. The results confirm that use of NMF-based
approaches for extracting mutational signatures is not a purely algo-
rithmic process, but also requires consideration of evidence from
experimentally determined mutational signatures and the DNA dam-
age and repair literature, prior evidence of biological plausibility and
human-guided sensitivity analysis confirming that extractions from
different groupings of tumoursyield consistent results. We used these
types of evidence and approaches in determining the signature pro-
files reported here. The findings are consistent with results regard-
ing NMF, and the related areas of probabilistic topic modelling and
latent Dirichlet allocation, inmultiple problem domains®**. It is widely
understood that the choice of the number of latent variables (for our
purposes, the number of mutational signatures) is rarely amenable to
complete automation.

The results from our SigProfiler and SignatureAnalyzer analyses
of cancer data exhibited many similarities, and we assigned the same
identifiers to similar signatures extracted using the two methods
(syn12016215). However, there were also noteworthy differences.
The numbers of SBS signatures found in PCAWG tumours with a low
mutation burden (94.4% of cases that contain 47% of mutations) were
similar: 31using SigProfiler and 35 using SignatureAnalyzer. However,
the numbers of additional SBS signatures extracted from hypermutated
PCAWG samples (5.6% of cases, containing 53% of mutations) were dif-
ferent: 13 using SigProfiler and 25 using SignatureAnalyzer. There were
also differences in SBS signature profiles, including among signatures
foundincases withalow mutation burden. Thelatter primarily involved
relatively featureless (‘flat’) signatures, which are mathematically chal-
lenging to deconvolute. Finally, there were differences in signature
attributions to individual samples. SignatureAnalyzer used more sig-
natures to reconstruct the mutational profiles (Extended Data Fig. 1)
(syn12169204 and syn12177011) and attributions to flat signatures were
different (Extended Data Fig. 2a, b) (syn12169204). The DBS and indel
signatures were generally similar between the two methods (Extended
DataFig.2c, d).

The final reference mutational signatures were determined from
the PCAWG set, supplemented by additional signatures fromthe other
datasets (COSMIC, available at https://cancer.sanger.ac.uk/cosmic/
signatures). Each signature was allocated anidentifier consistent with,
and extending, the COSMICv.2 annotation. Some previous signatures
splitinto multiple constituent signatures: these were numbered as in
the previous annotation, but with additional letter suffixes (for exam-
ple, SBS17 was split into SBS17a and SBS17b). DNA sequencing and
analysis artefacts also generate mutational signatures. We indicate
which signatures are possible artefacts but do not present them below
(fullinformation is available at https://cancer.sanger.ac.uk/cosmic/
signatures). The results of both SignatureAnalyzer and SigProfiler were
used throughout the study. However, for brevity and for continuity
with the signature set previously displayed in COSMIC v.2—which has
beenwidely used as areference—SigProfiler results are outlined here,
and SignatureAnalyzer results are provided in Extended Data Figs. 3,
4 and at syn11738307.

Single-base substitution signatures

There were substantial differences in the numbers of SBSs between
samples (ranging from hundreds to millions) and between cancer
types*® (Fig. 1). In total, 67 SBS mutational signatures were extracted,
of which 49 were considered likely to be of biological origin (Fig. 2,
Methods; available at https://cancer.sanger.ac.uk/cosmic/signatures/
SBS/). Except for signature SBS25, all signatures reported in COSMIC v.2
(ref.®) were confirmed; the median cosine similarity between the newly
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derived signatures and those on COSMIC v.2 was 0.95, excluding the
‘split’ signatures (discussed below). SBS25 was previously foundin cell
lines derived from Hodgkin lymphomas treated with chemotherapy,
and no primary cancers of this type were available. The newly derived
signatures showed much improved separation from each other and
more-distinct signature profiles, as compared with COSMIC v.2 sig-
natures (see ‘Better separation compared to COSMIC v.2 signatures’
inSupplementary Note 2 for more information).

Thirteen of the SBS signatures we extracted (excluding those due
to signature splitting) represent newly identified and probably real
signatures, not presentin COSMIC v.2. Some were rare (SBS31, SBS32,
SBS35,SBS36,SBS42 and SBS44). Others were more common, but con-
tributed relatively few mutations and/or were similar to previously
discovered signatures (SBS38, SBS39 and SBS40). Notably, SBS40is a
flat signature similar to SBSS5. It contributes to multiple types of can-
cer, but its similarity to SBS5 renders the extent of this contribution
uncertain. For some of the newly identified signatures, there were
plausible underlying aetiologies (Fig. 3, Extended Data Figs. 4, 5): for
SBS31 and SBS35, platinum compound chemotherapy?; for SBS32,
azathioprine therapy; for SBS36, inactivating germline or somatic
mutations in MUTYH (which encodes acomponent of the base excision
repair machinery)***; for SBS38, additional effects of exposure to ultra-
violet (UV) light; for SBS42, occupational exposure to haloalkanes';
and for SBS44, defective DNA mismatch repair®.

Three previously characterized base substitution signatures (SBS7,
SBS10 and SBS17) split into multiple constituent signatures (Fig. 2).
Signature splitting probably reflects the existence of multiple distinct
mutational processes initiated by the same exposure that have closely—
but not perfectly—correlated activities. We previously regarded SBS7
asasingle signature composed predominantly of C>T at CCNand TCN
trinucleotides (the mutated base is underlined) together with many
fewer T>N mutations. It was found in malignant melanomas and squa-
mous skin carcinomas, and is probably due to the UV-light-induced
formation of pyrimidine dimers, followed by translesion DNA synthesis
by error-prone polymerases predominantly inserting A opposite to
damaged cytosines. SBS7 has now been decomposed into four con-
stituent signatures. SBS7aand SBS7b (consisting mainly of C>T at TCN
and C>T at CCN, respectively) may reflect different pyrimidine-dimer
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photoproducts. SBS7c and SBS7d (consisting predominantly of T>A
atNTT and T>C at NTT, respectively*’) may be due to low frequencies
ofthe misincorporation of Tand G opposite to thyminesin pyrimidine
dimers. The splitting of SBS10 and SBS17 is described at https://cancer.
sanger.ac.uk/cosmic/signatures/SBS/.

Several base substitution signatures showed transcriptional strand
bias, which may be attributable to transcription-coupled nucleotide
excision repair acting on DNA damage and/or to an excess of DNA dam-
age on untranscribed strands of genes**. Both mechanisms result in
more mutations of damaged bases on untranscribed than on tran-
scribed strands of genes. Assuming that either mechanism is respon-
sible for the observed transcriptional strand biases, DNA damage to
cytosine (SBS7aand SBS7b), guanine (SBS4, SBS8, SBS19, SBS23, SBS24,
SBS31,SBS32, SBS35 and SBS42), thymine (SBS7c, SBS7d, SBS21, SBS26
and SBS33) and adenine (SBSS5, SBS12, SBS16, SBS22 and SBS25) may
underlie these mutational signatures (plots of strand bias are available
at https://cancer.sanger.ac.uk/cosmic/signatures/SBS/). The likely
DNA-damaging agents are known for SBS4 (tobacco mutagens), SBS7a,
SBS7b, SBS7c and SBS7d (UV light), SBS22 (aristolochic acid), SBS24
(aflatoxin), SBS25 (chemotherapy), SBS31 and SBS35 (platinum com-
pounds), SBS32 (azathioprine) and SBS42 (haloalkanes).

Using the SBS classification of 1,536 mutation types, which uses the
sequence context two bases 5’ and two bases 3’ to each mutated base,
yielded signatures that are largely consistent with those based on sub-
stitutions in trinucleotide contexts. Notably, however, two forms of
bothSBS2 and SBS13 were extracted, one with mainly a pyrimidine and
the other with mainly a purine at the -2 base (the second base 5’ to the
mutated cytosine). These may represent the activities of the cytidine
deaminases APOBEC3A and APOBEC3B, respectively®.1fso, APOBEC3A
accounts for many more mutations than APOBEC3B in cancers with
high APOBEC activity. Other signatures showed nonrandom sequence
contexts at +2and -2 positions (for example, SBS17a, SBS17b and SBS9),
but sequence context effects were generally much stronger for bases
immediately 5’ and 3’ to mutated bases.

SBS signatures showed substantial variationin the numbers of can-
cer types and cancer samples in which they were found, and in the
mutations attributed per cancer sample (Fig. 3). Almost all individual
cancer samples exhibited multiple signatures, withamode of threein
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Fig.2|Profiles of SBS, DBS and smallindel mutational signatures. The
classifications of each mutation type (SBS, 96 classes; DBS, 78 classes; and
indels, 83 classes) are described in the main text. Magnified versions of
signatures SBS4, DBS2 and ID3 (all of which are associated with tobacco

the PCAWG set (syn12169204). The assigned signatures reconstruct
well the mutational spectraof the cancer samples (in PCAWG samples,
the median cosine similarity was 0.97; 96.3% of samples with cosine
similarity >0.90): Fig. 4 shows illustrative examples.

smoking) are shown toillustrate the positions of each mutation subtype on
eachplot. The plotted data are available in digital form (along with the x axis
labels) at syn12025148.

Some mutational processes generate base substitutions that cluster
insmall genomic regions. The limited numbers of such mutations may
resultinafailure to detect their signatures using standard methods. We
thereforeidentified clustered mutationsin each genome and analysed
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them separately (Methods). Four main clustered mutational signatures
wereidentified (Fig.2),as previously reported*?*2, Two, whichare found
inmultiple types of cancer, were similar to SBS2 and SBS13 (which have
beenattributed to APOBEC enzyme activity) and represent foci of katae-
gis>*>*, Two further clustered signatures, one characterized by C>T and
C>G mutations at (A or G)C(C or T) trinucleotides* and the other T>A
and T>C mutations at (A or T)T(A or T), were found in lymphoid neo-
plasms; they probably represent the direct and indirect consequences of
activation-induced cytidine deaminase mutagenesis and translesion DNA
synthesis by error-prone polymerases (SBS84 and SBS8S5, respectively)?.

Doublet-base substitution signatures

Tandem doublet, triplet, quadruplet, quintuplet and sextuplet base
substitutions (syn11801938 and syn11726620) were observed at about
1% the prevalence of SBSs. In most cancer genomes, the number of DBSs
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was considerably higher than would be expected from the random
adjacency of SBSs (syn12177057), indicating the existence of com-
monly occurring, single mutagenic events that cause substitutions
atneighbouring bases. There was substantial variationin the number
of DBSs, ranging from O to 20,818 in a sample. The numbers of DBSs
were generally proportional to the numbers of SBSs (Fig. 1), although
colorectaladenocarcinomas had fewer thanexpected, and lung cancers
and melanomas had more (Extended Data Table 1). We extracted eleven
DBSsignatures (Fig. 2, of which three have previously been reported®*%,

Signature DBS1was characterized by CC>TT mutations (Fig. 2), con-
tributed hundreds to tens of thousands of mutations in malignant mela-
nomas with SBS7aand SBS7b (Fig. 3), exhibited transcriptional strand
bias consistent with damage to cytosines (syn12177063) and is aknown
consequence of DNA damage induced by UV light®**, Excluding cancers
associated with exposure to UV light also yielded a signature (DBS11)
that was characterized predominantly by CC>TT mutations, but only
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contributing tens of mutations in many samples from multiple types
of cancer (Figs. 2, 3). DBS11 was associated with SBS2, which is due to
APOBEC activity: APOBEC activity may, therefore, also generate DBS11.

DBS2 was composed predominantly of CC>AA mutations, with
smaller numbers of CC>AG and CC>AT mutations, and contributed
hundreds to thousands of mutations in lung adenocarcinoma, lung
squamous and head and neck squamous carcinomas, which are often
caused by tobacco smoking® (Figs. 2, 3). DBS2 showed transcriptional
strand bias indicative of guanine damage (syn12177064) and was asso-
ciated with SBS4, which is caused by exposure to tobacco smoke. It is
likely, therefore, that DBS2 can be a consequence of DNA damage by
tobacco-smoke mutagens.

A signature similar to DBS2 contributed hundreds of mutations to
liver cancers and tens of mutations to other types of cancer without
evidence of exposure to tobacco smoke. A pattern resembling DBS2
also dominates DBSs in healthy mouse cells®. The nature of the muta-
tional processes that underlie these signatures in human cancers that
areunrelated to smoking, and in healthy mice, is unknown. However, in
experimental systems, acetaldehyde exposure hasbeen shown to gen-
erate amutational signature characterized primarily by CC>AA muta-
tions, and lower burdens of CC>AG and CC>AT mutations, together
with C>A SBSs*8. Acetaldehydeis an oxidation product of alcoholand a
constituent of cigarette smoke. Therole of acetaldehyde, and perhaps
other aldehydes, in generating DBS2 merits further investigation®.

DBS3,DBS7, DBS8 and DBS10 showed hundreds to thousands of muta-
tionsinrare colorectal, stomach and oesophageal cancers, some of which
showed evidence of defective DNA mismatch repair (DBS7 and DBS10) or
polymerase epsilon exonuclease domain mutations (DBS3) that generate
hypermutator phenotypes (Figs.2,3). DBS5was foundin cancers exposed
to platinum chemotherapy, and is associated with SBS31 and SBS35.

Smallinsertion-and-deletion signatures

Indels were usually present at about 10% of the frequency of base
substitutions (Fig.1). There was substantial variation between cancer

genomes inthe number of indels, even when cancers with evidence of
defective DNA mismatch repair were excluded. Overall, the numbers of
deletions and insertions were similar, but there was variation between
cancer types: some cancers showed more deletions and others more
insertions of various subtypes (Fig. 1). We extracted 17 indel mutational
signatures (Fig. 2).

Indelsignature 1(ID1) was composed predominantly ofinsertions of
thymine and ID2 was composed predominantly of deletions of thymine,
both at long (=5) thymine mononucleotide repeats (Fig. 2). Tens to
hundreds of mutations of both signatures were found in most samples
of most types of cancer, but were particularly common in colorectal,
stomach, endometrial and oesophageal cancers and in diffuse large B
cell lymphoma (Fig. 3). Together, ID1and ID2 accounted for 97% and
45% of indelsin hypermutated and non-hypermutated cancer genomes,
respectively (Extended Data Table 2). They are probably due to slip-
page of either the nascent (ID1) or template strand (ID2) during DNA
replication of long mononucleotide tracts.

ID3 was characterized predominantly by deletions of cytosine at
short (<5-bp long) mononucleotide cytosine repeats and exhibited
hundreds of mutations in cancers of the lung, head and neck that are
associated with tobacco smoking (Figs. 2, 3). There was transcriptional
strand bias of mutations, with more guanine deletions than cytosine
deletions on the untranscribed strands of genes, which is compatible
with transcription-coupled nucleotide excision repair of damaged
guanine (syn12177065 and syn12177066). The numbers of ID3 mutations
positively correlated with the numbers of SBS4 and DBS2 mutations,
which we have shown are associated with tobacco smoking (Extended
DataFigs. 6, 7). Thus, DNA damage by components of tobacco smoke
probably underlie ID3.

ID13 was characterized predominantly by deletions of thymine at
thymine-thymine dinucleotides and exhibited large numbers of muta-
tions in malignant melanomas of the skin (Figs. 2, 3). The numbers
of ID13 mutations correlated with the numbers of SBS7a, SBS7b and
DBS1 mutations, which we have attributed to DNA damage induced
by UV light (Extended Data Figs. 6, 7). However, deletions of cytosine
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at cytosine-cytosine dinucleotides did not feature strongly in ID13,
which may reflect the predominance of thymine compared to cytosine
dimers induced by UV light®,

ID6 and ID8 were both characterized predominantly by >5-bp dele-
tions (Fig. 2). ID6 exhibited overlapping microhomology at deletion
boundaries with amode of 2 bp (and often longer stretches) and cor-
related with SBS3, which we have attributed to defective homologous-
recombination-based repair (Extended DataFigs. 6, 7). By contrast, ID8
deletions showed shorter or no microhomology at deletionboundaries
anddid not strongly correlate with SBS3. Both deletion patterns may be
characteristic of DNA double-strand-break repair by non-homologous-
recombination-based end-joining mechanisms and—if so—this suggests
that at least two distinct forms are operative in human cancer®,

A smallfraction of cancers exhibited very large numbers of ID1 and
ID2 mutations (>10,000) (Fig. 3) (shown at https://cancer.sanger.ac.uk/
cosmic/signatures/ID). These were usually accompanied by SBS6,
SBS14, SBS15,SBS20, SBS21, SBS26 and/or SBS44, which are associated
with deficiency in DNA mismatch repair—sometimes combined with
POLE or POLDI1 proofreading deficiency (SBS14 and SBS20)*. Occa-
sional cases with these signatures additionally showed large numbers
of indels attributed to ID7 (syn11738668), and rare samples showed
large numbers of ID4, ID11, ID14, ID15, ID16 or ID17 mutations but did
notshow large numbers of ID1and ID2 mutations or the SBS signatures
associated with deficiency in DNA mismatch repair.

Correlations with age

Apositive correlation between age of cancer diagnosis and the number
of mutations attributable to a signature suggests that the underlying
mutational process has been operative (atamore or less constant rate)
throughout the celllineage fromfertilized egg to cancer cell, and thus in
the normal cells from which that type of cancer develops®**. Confirming
previous reports®**, the numbers of SBS1and SBS5 mutations correlate
with age, and exhibit different rates in different types of tissue (g val-
ues provided in syn12030687, syn20317940 and syn12217988). SBS40
also correlated with age in multiple types of cancer, although—given
its similarity to SBS5—misattribution cannot be excluded. DBS2 and
DBS4 correlated with age; consistent with activity innormal cells and,
when combined their profiles closely resemble the spectrum of DBS
mutations found in normal mouse cells*. ID1, ID2, ID5 and ID8 showed
correlations with age in multiple tissues. ID1and ID2indels are probably
duetoslippage at poly T repeats during DNA replication and correlated
with the numbers of SBS1 substitutions, which have previously been
proposed to reflect the number of mitoses a cell has experienced®.
Thus, SBS1, ID1 and ID2 may all be generated during DNA replication
at mitosis. The number of ID5 mutations correlated with the number
of SBS40 mutations, and the mutational processes that underlie these
two age-correlated signatures may therefore contain common compo-
nents. ID8, whichis predominantly composed of >5-bp deletions with
no or 1bp of microhomology at their boundaries, is probably due to
DNA double-strand breaks repaired by anon-homologous-end-joining
mechanism. The results indicate that multiple mutational processes
operate innormal cells.

Discussion

There are important constraints, limitations and assumptions in the
analytic frameworks used here to characterize mutational signatures.
Signatures extracted from sample sets in which multiple processes
are operative remain mathematical approximations, with profiles
that are potentially influenced by the mathematical approach used
and other factors. For conceptual and practical simplicity, we assume
thatasingle signatureis associated with each mutational process and
provide an average reference signature to represent it. However, we
do not discount the possibility that further nuances and variations
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of signature profiles exist. We have estimated the contributions from
eachsignature to the mutation burdenin each sample. However, with
increasing numbers of signatures and differences of multiple orders
of magnitude in mutation burdens between some signatures, prior
knowledge has helped to avoid biologically implausible results. Thus,
the further development of methods for deciphering and attributing
mutational signatures is warranted, ideally supported by signatures
derived from experimental systems in which the causes are known.
Nevertheless, signatures with many similarities and some differences
can be found by different mathematical approaches, and these can
be confirmed in several ways, including experimentally elucidated
signatures®>*¥42435462 and tumours dominated by a single signature
(syn12016215).

This analysis includes most publicly available exome and whole-
genome cancer sequences. Some rare or geographically restricted
signatures may not have been captured, signatures conferring limited
mutation burdens may have been missed and signatures of therapeutic
mutagenic exposures have not been exhaustively explored. Neverthe-
less, itis likely thata substantial proportion of the naturally occurring
mutational signatures found inhuman cancer have now been described.
This comprehensive repertoire provides afoundation for researchinto
the aetiologies of geographical and temporal differences in cancer
incidence, the mutational processes that operate in healthy tissues
and non-neoplastic disease states, clinical and public health applica-
tions of signatures and mechanistic understanding of the mutational
processes that underlie carcinogenesis.

Online content

Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-020-1943-3.

1. Alexandrov, L. B. & Stratton, M. R. Mutational signatures: the patterns of somatic
mutations hidden in cancer genomes. Curr. Opin. Genet. Dev. 24, 52-60 (2014).

2. TheICGC/TCGA Pan-Cancer Analysis of Whole Genomes Network. Pan-cancer analysis
of whole genomes. Nature https://doi.org/10.1038/s41586-020-1969-6 (2020).

3. Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell
149, 979-993 (2012).

4.  Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500,
2415-421(2013).

5. Poon, S. L. et al. Genome-wide mutational signatures of aristolochic acid and its
application as a screening tool. Sci. Transl. Med. 5, 197ra101 (2013).

6. Alexandroy, L. B. et al. Clock-like mutational processes in human somatic cells. Nat.
Genet. 47,1402-1407 (2015).

7. Poon, S. L. et al. Mutation signatures implicate aristolochic acid in bladder cancer
development. Genome Med. 7, 38 (2015).

8.  Schulze, K. et al. Exome sequencing of hepatocellular carcinomas identifies new
mutational signatures and potential therapeutic targets. Nat. Genet. 47, 505-511 (2015).

9. Kim, J. et al. Somatic ERCC2 mutations are associated with a distinct genomic signature
in urothelial tumors. Nat. Genet. 48, 600-606 (2016).

10. Merlevede, J. et al. Mutation allele burden remains unchanged in chronic
myelomonocytic leukaemia responding to hypomethylating agents. Nat. Commun. 7,
10767 (2016).

1. Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome
sequences. Nature 534, 47-54 (2016).

12.  Petljak, M. & Alexandrov, L. B. Understanding mutagenesis through delineation of
mutational signatures in human cancer. Carcinogenesis 37, 531-540 (2016).

13.  Mimaki, S. et al. Hypermutation and unique mutational signatures of occupational
cholangiocarcinoma in printing workers exposed to haloalkanes. Carcinogenesis 37,
817-826 (2016).

14.  Hayward, N. K. et al. Whole-genome landscapes of major melanoma subtypes. Nature
545, 175-180 (2017).

15.  Polak, P. et al. A mutational signature reveals alterations underlying deficient
homologous recombination repair in breast cancer. Nat. Genet. 49, 1476-1486 (2017).

16. Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719-724
(2009).

17.  Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. & Stratton, M. R. Deciphering
signatures of mutational processes operative in human cancer. Cell Rep. 3, 246-259
(2013).

18. Morganella, S. et al. The topography of mutational processes in breast cancer genomes.
Nat. Commun. 7,11383 (2016).


https://cancer.sanger.ac.uk/cosmic/signatures/ID
https://cancer.sanger.ac.uk/cosmic/signatures/ID
https://doi.org/10.1038/s41586-020-1943-3
https://doi.org/10.1038/s41586-020-1969-6

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

4.

42.

43.

44.

45.

46.

47.

48.

49.
50.

51.

52.

53.

Fischer, A., Illingworth, C. J., Campbell, P. J. & Mustonen, V. EMu: probabilistic inference of
mutational processes and their localization in the cancer genome. Genome Biol. 14, R39
(2013).

Roberts, N. hdp (hierarchical Dirichelet process) R package https://github.com/
nicolaroberts/hdp (2015).

Gehring, J. S., Fischer, B., Lawrence, M. & Huber, W. SomaticSignatures: inferring
mutational signatures from single-nucleotide variants. Bioinformatics 31, 3673-3675
(2015).

Shiraishi, Y., Tremmel, G., Miyano, S. & Stephens, M. A simple model-based approach to
inferring and visualizing cancer mutation signatures. PLoS Genet. 11, e1005657 (2015).
Rosales, R. A., Drummond, R. D., Valieris, R., Dias-Neto, E. & da Silva, I. T. signeR: an empirical
Bayesian approach to mutational signature discovery. Bioinformatics 33, 8-16 (2017).
Ardin, M. et al. MutSpec: a Galaxy toolbox for streamlined analyses of somatic mutation
spectra in human and mouse cancer genomes. BMC Bioinformatics 17,170 (2016).
Funnell, T. et al. Integrated structural variation and point mutation signatures in cancer
genomes using correlated topic models. PLoS Comput. Biol. 15, 1006799 (2019).
Blokzijl, F., Janssen, R., van Boxtel, R. & Cuppen, E. MutationalPatterns: comprehensive
genome-wide analysis of mutational processes. Genome Med. 10, 33 (2018).

Kasar, S. et al. Whole-genome sequencing reveals activation-induced cytidine deaminase
signatures during indolent chronic lymphocytic leukaemia evolution. Nat. Commun. 6,
8866 (2015).

Drier, Y. et al. Somatic rearrangements across cancer reveal classes of samples with
distinct patterns of DNA breakage and rearrangement-induced hypermutability. Genome
Res. 23, 228-235 (2013).

Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic
event during cancer development. Cell 144, 27-40 (2011).

Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature
https://doi.org/10.1038/s41586-019-1913-9 (2020).

Meier, B. et al. C. elegans whole-genome sequencing reveals mutational signatures
related to carcinogens and DNA repair deficiency. Genome Res. 24, 1624-1636 (2014).
Supek, F. & Lehner, B. Clustered mutation signatures reveal that error-prone DNA repair
targets mutations to active genes. Cell 170, 534-547 (2017).

Chen, J. M., Férec, C. & Cooper, D. N. Patterns and mutational signatures of tandem base
substitutions causing human inherited disease. Hum. Mutat. 34, 1119-1130 (2013).
Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature https://doi.org/
10.1038/541586-019-1907-7 (2020).

Haradhvala, N. J. et al. Distinct mutational signatures characterize concurrent loss of
polymerase proofreading and mismatch repair. Nat. Commun. 9, 1746 (2018).

Cichocki, A., Zdunek, R., Phan, A. H. & Amari, S.-i. Nonnegative Matrix and Tensor
Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source
Separation (John Wiley & Sons, 2009).

Blei, D., Carin, L. & Dunson, D. Probabilistic topic models: a focus on graphical model
design and applications to document and image analysis. IEEE Signal Process. Mag. 27,
55-65 (2010).

Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-
associated genes. Nature 499, 214-218 (2013).

Boot, A. et al. In-depth characterization of the cisplatin mutational signature in human
cell lines and in esophageal and liver tumors. Genome Res. 28, 654-665 (2018).

Viel, A. et al. A specific mutational signature associated with DNA 8-oxoguanine
persistence in MUTYH-defective colorectal cancer. EBioMedicine 20, 39-49 (2017).
Pilati, C. et al. Mutational signature analysis identifies MUTYH deficiency in colorectal
cancers and adrenocortical carcinomas. J. Pathol. 242, 10-15 (2017).

Drost, J. et al. Use of CRISPR-modified human stem cell organoids to study the origin of
mutational signatures in cancer. Science 358, 234-238 (2017).

Saini, N. et al. The impact of environmental and endogenous damage on somatic
mutation load in human skin fibroblasts. PLoS Genet. 12, 1006385 (2016).

Haradhvala, N. J. et al. Mutational strand asymmetries in cancer genomes reveal
mechanisms of DNA damage and repair. Cell 164, 538-549 (2016).

Chan, K. et al. An APOBEC3A hypermutation signature is distinguishable from the
signature of background mutagenesis by APOBEC3B in human cancers. Nat. Genet. 47,
1067-1072 (2015).

Roberts, S. A. et al. Clustered mutations in yeast and in human cancers can arise from
damaged long single-strand DNA regions. Mol. Cell 46, 424-435 (2012).

Kasar, S. & Brown, J. R. Mutational landscape and underlying mutational processes in
chronic lymphocytic leukemia. Mol. Cell. Oncol. 3, e1157667 (2016).

Matsuda, T., Kawanishi, M., Yagi, T., Matsui, S. & Takebe, H. Specific tandem GG to TT base
substitutions induced by acetaldehyde are due to intra-strand crosslinks between
adjacent guanine bases. Nucleic Acids Res. 26, 1769-1774 (1998).

Brash, D. E. UV signature mutations. Photochem. Photobiol. 91, 15-26 (2015).

Hill, K. A., Wang, J., Farwell, K. D. & Sommer, S. S. Spontaneous tandem-base mutations
(TBM) show dramatic tissue, age, pattern and spectrum specificity. Mutat. Res. 534,
173-186 (2003).

Garaycoechea, J. |. et al. Alcohol and endogenous aldehydes damage chromosomes and
mutate stem cells. Nature 553, 171-177 (2018).

Pfeifer, G. P. Formation and processing of UV photoproducts: effects of DNA sequence
and chromatin environment. Photochem. Photobiol. 65, 270-283 (1997).

Ceccaldi, R., Rondinelli, B. & D’Andrea, A. D. Repair pathway choices and consequences
at the double-strand break. Trends Cell Biol. 26, 52-64 (2016).

54. Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during
life. Nature 538, 260-264 (2016).

55. Huang, M. N. et al. Genome-scale mutational signatures of aflatoxin in cells, mice, and
human tumors. Genome Res. 27, 1475-1486 (2017).

56. Nik-Zainal, S. et al. The genome as a record of environmental exposure. Mutagenesis 30,
763-770 (2015).

57.  Olivier, M. et al. Modelling mutational landscapes of human cancers in vitro. Sci. Rep. 4,
4482 (2014).

58. Szikriszt, B. et al. A comprehensive survey of the mutagenic impact of common cancer
cytotoxics. Genome Biol. 17, 99 (2016).

59. Zhivagui, M. et al. Experimental and pan-cancer genome analyses reveal widespread
contribution of acrylamide exposure to carcinogenesis in humans. Genome Res. 29,
521-531(2019).

60. Zamborszky, J. et al. Loss of BRCA1 or BRCA2 markedly increases the rate of base
substitution mutagenesis and has distinct effects on genomic deletions. Oncogene 36,
746-755 (2017).

61.  Zou, X. et al. Validating the concept of mutational signatures with isogenic cell models.
Nat. Commun. 9, 1744 (2018).

62. Kucab, J. E. et al. Acompendium of mutational signatures of environmental agents. Cell
177, 821-836 (2019).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution

7 4.0 International License, which permits use, sharing, adaptation, distribution

and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a
credit line to the material. If material is not included in the article’s Creative Commons license
and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To view a copy of this
license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020, corrected publication 2023

PCAWG Mutational Signatures Working Group

Ludmil B. Alexandrov', Erik N. Bergstrom', Arnoud Boot*®, Paul Boutros?*?*?"?%, Kin Chan?®,
Kyle R. Covington®’, Akihiro Fujimoto®®, Gad Getz>*?'?2, Dmitry A. Gordenin®,

Nicholas J. Haradhvala??, Mi Ni Huang*®, S. M. Ashiqul Islam', Marat Kazanov®'32,

Jaegil Kim?, Leszek J. Klimczak'?, Nuria Lopez-Bigas®'®", Michael Lawrence?34%,
liigo Martincorena®, John R. McPherson*®, Sandro Morganella®™, Ville Mustonen'
Hidewaki Nakagawa®®, Alvin Wei Tian Ng*®, Paz Polak>*?, Stephenie Prokopec?,
Steven A. Roberts®*?%, Steven G. Rozen**??, Radhakrishnan Sabarinathan'**"5,
Natalie Saini®, Tatsuhiro Shibata®*°, Yuichi Shiraishi*°, Michael R. Stratton®,

Bin Tean Teh*?*4'4243 |gnacio Vazquez-Garcia™*4*°4®, David A. Wheeler®'®, Yang Wu*®,
Fouad Yousif? & Willie Yu*®

17,1819
’

Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
“University of California Los Angeles, Los Angeles, CA, USA. ?Computational Biology
Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada. *?Department

of Pharmacology, University of Toronto, Toronto, Ontario, Canada. *Department of
Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa,
Ottawa, Ontario, Canada. *°RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
3IA. A. Kharkevich Institute of Information Transmission Problems, Moscow, Russia. 32Dmitry
Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology,
Moscow, Russia. **Skolkovo Institute of Science and Technology, Moscow, Russia.
34Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical
Sciences, Yokohama, Japan. ®*Massachusetts General Hospital, Boston, MA, USA. *®School
of Molecular Biosciences, Washington State University, Pullman, WA, USA. ¥Center for
Reproductive Biology, Washington State University, Pullman, WA, USA. *®Laboratory of
Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University
of Tokyo, Tokyo, Japan. **Division of Cancer Genomics, National Cancer Center Research
Institute, Tokyo, Japan. “°The Institute of Medical Science, The University of Tokyo, Tokyo,
Japan. “'Cancer Science Institute of Singapore, National University of Singapore, Singapore,
Singapore. “Institute of Molecular and Cell Biology, Singapore, Singapore. “*Laboratory

of Cancer Epigenome, Division of Medical Science, National Cancer Centre Singapore,
Singapore, Singapore. “Department of Epidemiology and Biostatistics, Memorial Sloan
Kettering Cancer Center, New York, NY, USA. “Department of Statistics, Columbia University,
New York, NY, USA. “®Department of Applied Mathematics and Theoretical Physics, Centre for
Mathematical Sciences, University of Cambridge, Cambridge, UK.

Nature | Vol 578 | 6 February 2020 | 101


https://github.com/nicolaroberts/hdp
https://github.com/nicolaroberts/hdp
https://doi.org/10.1038/s41586-019-1913-9
https://doi.org/10.1038/s41586-019-1907-7
https://doi.org/10.1038/s41586-019-1907-7
http://creativecommons.org/licenses/by/4.0/

Article

Methods

No statistical methods were used to predetermine sample size. The
experiments were not randomized and investigators were not blinded
to allocation during experiments and outcome assessment.

These online methods containanabridged description of the meth-
odology used in the current manuscript; extensive details about the
methodology we used are provided in Supplementary Note 2. Impor-
tantly, twoindependently developed computational frameworks (Sig-
Profiler and SignatureAnalyzer) based on NMF were applied separately
to the examined sets of mutational catalogues. SigProfiler and Signa-
tureAnalyzer take different approaches for deciphering mutational
signatures and for assigning each signature to each sample. By using
two methods, we aimed to provide a perspective on the effect that dif-
ferent methodologies can have on the numbers of signatures generated,
signature profiles and attributions. Inaddition to applying SigProfiler
and SignatureAnalyzer to cancer data, the tools were also applied to
realistic synthetic data with known solutions.

Analysis of mutational signatures with SigProfiler
SigProfilerincorporates two distinct steps for identification of muta-
tionalsignatures, based on the previously described methodology®™"
(Extended Data Fig. 8). The first step (SigProfilerExtraction) encom-
passesa hierarchical de novo extraction of mutational signatures based
onsomatic mutations and theirimmediate sequence context, and the
second step (SigProfilerAttribution) focuses on accurately estimating
the number of somatic mutations associated with each extracted muta-
tional signature in each sample. SigProfilerExtraction is an extension
ofaprevious framework for the analysis of mutational signatures™".In
brief, for agiven set of mutational catalogues, the algorithm deciphers
a minimal set of mutational signatures that optimally explains the
proportion of each mutation type and estimates the contribution of
each signature to each sample. More specifically, for each NMF itera-
tion, SigProfilerExtraction minimizes a generalized Kullback-Leibler
divergence constrained for nonnegativity (Supplementary Note 2). The
algorithmuses multiple NMF iterations (in most cases 1,024) to identify
the matrix of mutational signatures and the matrix of the activities of
these signatures, as previously described”. The unknown number of
signatures is determined by human assessment of the stability and
accuracy of solutions for a range of values, as previously described”.
The framework is applied hierarchically to increase its ability to find
mutational signatures that generate few mutations or are present in
few samples.

After signatures are discovered by SigProfilerExtraction, SigPro-
filerAttribution estimates their contributions to individual samples.
For eachexamined sample, the estimation algorithminvolves finding
the minimum of the Frobenius norm of a constrained function using a
nonlinear convex optimization programming solver using the interior-
point algorithm®, See Supplementary Note 2 and Extended Data Fig.
8b for further details.

Analysis of mutational signatures with SignatureAnalyzer

SignatureAnalyzer uses a Bayesian variant of NMF thatinfers the num-
ber of signatures through the automatic relevance determination tech-
nique and delivers highly interpretable and sparse representations for
bothsignature profiles and attributions that strike a balance between
datafitting and model complexity. Further details of the actualimple-
mentation of the computational approach have previously been pub-
lished®#**. SignatureAnalyzer was applied by using a two-step signature
extraction strategy using 1,536 pentanucleotide contexts for SBSs, 83
indel features and 78 DBS features. In addition to the separate extrac-
tion of SBS, indel and DBS signatures, we performed a ‘COMPOSITE’
signature extraction based on all 1,697 features (1,536 SBS + 78 DBS +
83indel). For SBSs, the 1,536 SBS COMPOSITE signatures are preferred;
for DBSs and indels, the separately extracted signatures are preferred.

Instep1ofthe two-step extraction process, global signature extrac-
tion was performed for the samples with a low mutation burden
(n=2,624). These excluded hypermutated tumours: those with puta-
tive polymerase epsilon (POLE) defects or mismatch repair defects
(microsatellite instable tumours), skin tumours (which had intense
UV-light mutagenesis) and one tumour with temozolomide (TMZ)
exposure. Because the underlying algorithm of SignatureAnalyzer
performs a stochastic search, different runs can produce different
results. In step 1, we ran SignatureAnalyzer 10 times and selected the
solution with the highest posterior probability. In step 2, additional
signatures unique to hypermutated samples were extracted (again
selecting the highest posterior probability over ten runs) while allow-
ing all signatures found in the samples with low mutation burden, to
explainsome of the spectra of hypermutated samples. Thisapproach
was designed to minimize awell-known ‘signature bleeding’ effectora
bias of hyper- or ultramutated samples on the signature extraction. In
addition, this approach provided information about which signatures
are unique to the hypermutated samples, which was later used when
attributing signatures to samples.

Asimilar strategy was used for signature attribution: we performed a
separate attribution process for low- and hypermutated samplesin all
COMPOSITE, SBS, DBS and indel signatures. For downstream analyses,
we preferred to use the COMPOSITE attributions for SBSs and the sepa-
rately calculated attributions for DBSs and indels. Signature attribu-
tioninsamples with alow mutationburden was performed separately
in each tumour type (for example, Biliary-AdenoCA, Bladder-TCC,
Bone-Osteosarc,and so on). Attribution was also performed separately
inthe combined microsatellite instable tumours (n=39), POLE (n=9),
skin melanoma (n=107) and TMZ-exposed samples (syn11738314). In
both groups, signature availability (which signatures were active, or
not) was primarily inferred through the automatic relevance determi-
nation process applied to the activity matrix H only, while fixing the
signature matrix W. The attribution in samples with a low mutation
burden was performed using only signatures foundin thestep1ofthe
signature extraction. Two additional rules were applied in SBS signature
attributionto enforce biological plausibility and minimize a signature
bleeding: (i) allow SBS4 (smoking signature) only in lung, head and neck
cases; and (ii) allow SBS11 (TMZ signature) in a single GBM sample. This
was enforced by introducing abinary, signature-by-sample signature
indicator matrixZ (1, allowed; O, not allowed), which was multiplied by
the H matrix in every multiplication update of H. No additional rules
were applied to indel or DBS signature attributions, except that sig-
natures found in hypermutated samples were not allowed in samples
with alow mutation burden.

Application of SigProfiler and SignatureAnalyzer to synthetic
data

Our goal was to evaluate SignatureAnalyzer and SigProfiler on real-
istic synthetic data to identify any potential limitations of these two
methods. SignatureAnalyzer and SigProfiler were tested on 11 sets of
synthetic data, encompassing a total of 64,400 synthetic samples, in
which known signature profiles were used to generate catalogues of
synthetic mutational spectra. We operationally defined ‘realistic’ data
asthose based on the characteristics of either SignatureAnalyzer’s or
SigProfiler’s analysis of the PCAWG genome data. SignatureAnalyzer’s
reference signature profiles were based on COMPOSITE signatures,
consisting of 1,536 types of strand-agnostic SBSs in pentanucleotide
context, 78 types of DBSs and 83 types of small indels, for a total of
1,697 mutation types. SigProfiler’s reference analysis was based on
strand-agnostic SBSsin the context of one 5’ and one 3’ base. For each
test, we generated two sets of realistic data: SigProfiler-realistic (based
on SigProfiler’s reference signatures and attributions) and Signature-
Analyzer-realistic (based on SignatureAnalyzer’s reference signatures
and attributions), as well as two other types of data that involved using
SignatureAnalyzer profiles with SigProfiler attributions and vice versa.



A detailed description of each of the 11 sets of synthetic data and the
results fromapplying SigProfiler and SignatureAnalyzer are provided
inSupplementary Note 2.

Analysis of clustered mutational signatures

Somatic SBSs were considered clustered if they had intermutational
distances <1,000 bp. More specifically, for each sample, an SBS muta-
tional catalogue was generated for substitutions that were <1,000 bp
from another substitution. Subsequently, the set of SBS mutational
catalogues containing clustered mutations underwent de novo extrac-
tion of mutational signatures. Any novel mutational signature (one
that was not previously observed inthe complete SBS catalogues) was
reported as a clustered mutational signature.

Better separation compared to COSMICv.2 signatures

As described in the manuscript, all mutational signatures previously
reportedin COSMICv.2 were confirmed inthe new set of analyses with
median cosine similarity of 0.95. However, the separation between
the COSMIC v.2 mutational signatures (https://cancer.sanger.ac.uk/
cosmic/signatures_v2) is much worse than the separation between
the mutational signatures reported here. For example, in COSMICv.2,
signatures 5 and 16 had a cosine similarity of 0.90, making them hard
to distinguish from one another. By contrast, in the current analysis,
SBS5 and SBS16 have a cosine similarity of 0.65. This allows us to unam-
biguously assign SBSS and SBS16 to different samples. In the current
analysis, the larger number of samples has allowed the reduction of
bleeding between signatures and has given more unique and easily
distinguishable signatures. One can evaluate the overall separation of
aset of mutational signatures by examining the distribution of cosine
similarities between the signatures in the set. The signatures in COS-
MICv.2 had amedian cosine similarity of 0.238. By contrast, the current
signatures have amuch lower median cosine similarity of 0.098. This
twofold reductioninsimilarity is highly statistically significant (Pvalue
9.1x107%) and indicates abetter separation between the signaturesin
the current analysis.

Correlations of mutational signature activity with age

Before evaluating the association between age and the activity of a
mutational signature, all outliers for both age and numbers of muta-
tions attributed to a signature in a cancer type were removed from
the data. An outlier was defined as any value outside three standard
deviations from the mean value. Arobust linear regression model that
estimated the slope of the line and whether this slope was significantly
different from zero (F test; P value < 0.05) was performed using the
MATLARB function robustfit (https://www.mathworks.com/help/stats/
robustfit.html) with default parameters. The Pvalues from the Ftests
were corrected using the Benjamini-Hochberg procedure for false
discovery rates. Results are available at syn12030687 and syn20317940.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Somatic and germline variant calls, mutational signatures, sub-
clonal reconstructions, transcript abundance, splice calls and other
core data generated by the ICGC and TCGA PCAWG Consortium are
described in ref. 2, and are available for download at https://dcc.icgc.
org/releases/PCAWG. Additional information on accessing the data,
including rawreadfiles, canbe found at https://docs.icgc.org/pcawg/
data/.Inaccordance with the dataaccess policies of the ICGCand TCGA
projects, most molecular, clinical and specimen data are in an open
tier that does not require access approval. To access information that
could potentially identify participants, such as germline alleles and

the underlying sequencing data, researchers will need to apply to the
TCGA data access committee via dbGaP (https://dbgap.ncbi.nlm.nih.
gov/aa/wga.cgi?page=login) for access to the TCGA portion of the
dataset, and to the ICGC dataaccess compliance office (http://icgc.org/
daco) for the ICGC portion of the dataset. In addition, to access somatic
single nucleotide variants derived from TCGA donors, researchers
will also need to obtain dbGaP authorization. For each mutational
signature as extracted by SigProfiler, there is a ‘vignette’ that con-
sists of plots and a short textual description at COSMIC (available at
https://cancer.sanger.ac.uk/cosmic/signatures/). Beyond the core
sequence datagenerated by the ICGC and TCGA PCAWG Consortium,
other derived datasets were generated by the research reportedin this
paper. These derived datasets are available at Synapse (https:/www.
synapse.org/#!Synapse:syn11726601/wiki/513478), and are denoted by
accession numbers (synXXXXXXXX). All these datasets are mirrored
athttps://dcc.icgc.org/releases/PCAWG/mutational_signatures/ with
fulllinks, filenames, accession numbers and descriptions as detailed in
Supplementary Table 1. These datasetsinclude (1) CSV files comprising
all catalogues of observed mutational spectra that were used asinput
tosignature extraction (syn11801889), (2) CSV files and plots of signa-
tures extracted by SigProfiler (syn11738306) and SignatureAnalyzer
(syn11738307), (3) CSV files with estimates of the numbers of mutations
generated by each signature inindividual tumours (syn11804065), (4)
estimates of the probability that each signature was responsible for
each mutational type (for example, CTG>CAG) inindividual tumours
(syn11804068) and (5) synthetic test input data plus the results of
tests of signature extraction (discovery) on the synthetic test data
(syn18497223). All derived datasets are open access, and can be down-
loaded without registration or logging in.

Code availability

SigProfiler is available both as a MATLAB framework and as a Python
package. Inboth cases, SigProfiler is a fully functional, free and open-
source tool distributed under the permissive 2-Clause BSD License.
SigProfiler in MATLAB can be downloaded from: https://www.math-
works.com/matlabcentral/fileexchange/38724-sigprofiler. SigProfiler
in Python can be downloaded from: https://github.com/Alexandrov-
Lab/SigProfilerExtractor. SignatureAnalyzer code is available at https://
github.com/broadinstitute/getzlab-SignatureAnalyzer (github.com).
The code used to generate the synthetic dataand summarize Signatu-
reAnalyzer and SigProfiler resultsisopen source and freely available as
the SynSig package: https://github.com/steverozen/SynSig/tree/v0.2.0
under the GNU General Public License v.3.0. The core computational
pipelines used by the PCAWG Consortium for alignment, quality control
and variant calling are available to the public at https://dockstore.org/
search?search=pcawg under the GNU General Public License v.3.0,
which allows for reuse and distribution.

63. Byrd, R. H., Hribar, M. E. & Nocedal, J. An interior point algorithm for large-scale nonlinear
programming. SIAM J. Optim. 9, 877-900 (1999).

64. Tan, V.Y.&Févotte, C. Automatic relevance determination in nonnegative matrix
factorization with the B-divergence. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1592-1605
(2013).
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Extended DataFig.1|Histogram of the number of signatures attributed ineach of2,780 PCAWG samples by SigProfiler and SignatureAnalyzer.
Hypermutated tumours and melanomas (156) are listed at syn11738314.
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Extended DataFig. 8| SigProfiler signature extraction and attribution.
Afull descriptionis providedin Supplementary Note 2. a, Procedure for

extracting (discovering) mutational signatures. Step A, apply theapproachtoa

setof samples D; initially D contains all samples (thatis, D=M). This step has
previously been described in detail”. Step B, solution evaluation and re-
iteration. Extracted mutational signatures and their activitiesinindividual
samplesaresavedintoaset(S). The activity of any signature that does not
increase the cosine similarity ofasample by > 0.01 was removed from the

sample (assigned avalue of 0). Step Aisrepeated for all samples for which the
identified signatures do not explain their patterns (cosine similarity <0.95).
Thealgorithm continues to step Cwhenstep A cannot find any stable
signatures. Step C, clustering of mutational signatures. Hierarchical consensus
clustering was applied to the set S to derive the consensus mutational
signatures across the set of samples M. b, Attribution of activities of mutational
signaturesinsamples.



Extended Data Table 1| The number of DBSs is proportional to the number of SBSs, with few exceptions

Covariate (including Coefficient Coefficient Tumour
. tvalue Pr(>|t])
cancer type) estimate std. error count

(Intercept) 5.60E+00 8.80E+01 0.1 0.9 NA
SBS.count 3.70E-03 1.30E-04 29.8 <2e-16 NA
Biliary-AdenoCA (reference) 35
Bladder-TCC 1.30E+01 1.40E+02 0.1 0.9 23
Bone-Benign -6.30E+00 1.60E+02 0 1 16
Bone-Epith 2.20E+00 1.80E+02 0 1 11
Bone-Osteosarc 2.20E+00 1.20E+02 0 1 38
Breast-AdenoCA 6.20E+00 9.50E+01 0.1 0.9 198
Breast-DCIS 4.20E+00 3.10E+02 0 1 3
Breast-LobularCA -8.20E+00 1.70E+02 0 1 13
Cervix-AdenoCA -7.90E+00 3.80E+02 0 1 2
Cervix-SCC -1.10E+01 1.50E+02 -0.1 0.9 18
CNS-GBM -2.80E+01 1.20E+02 -0.2 0.8 41
CNS-Medullo -7.00E+00 9.80E+01 -0.1 0.9 146
CNS-Oligo -1.00E+01 1.50E+02 -0.1 0.9 18
CNS-PiloAstro -5.90E+00 1.00E+02 -0.1 1 89
ColoRect-AdenoCA -4.10E+02 1.10E+02 -3.7 3.00E-04 60
Eso-AdenoCA -1.60E+01 1.00E+02 -0.2 0.9 98
Head-SCC 5.30E+01 1.10E+02 0.5 0.6 57
Kidney-ChRCC -3.10E+00 1.20E+02 0 1 45
Kidney-RCC 5.60E+01 9.80E+01 0.6 0.6 144
Liver-HCC 7.80E+01 9.20E+01 0.8 0.4 326
Lung-AdenoCA 5.00E+02 1.20E+02 4.1 4.00E-05 38
Lung-SCC 5.80E+02 1.20E+02 5.1 4.00E-07 48
Lymph-BNHL 1.00E+01 1.00E+02 0.1 0.9 107
Lymph-CLL -4.30E+00 1.00E+02 0 1 95
Myeloid-AML -1.90E+00 1.80E+02 0 1 11
Myeloid-MDS -8.00E+00 2.70E+02 0 1 4
Myeloid-MPN -7.40E+00 1.10E+02 -0.1 0.9 56
Ovary-AdenoCA 3.60E+01 1.00E+02 0.4 0.7 113
Panc-AdenoCA -8.30E-01 9.40E+01 0 1 241
Panc-Endocrine -5.70E+00 1.00E+02 -0.1 1 85
Prost-AdenoCA 2.50E+00 9.30E+01 0 286
Skin-Melanoma 1.70E+03 1.00E+02 16.5 <2e-16 107
SoftTissue-Leiomyo 6.00E+00 1.60E+02 0 1 15
SoftTissue-Liposarc 7.80E+00 1.50E+02 0.1 1 19
Stomach-AdenoCA -3.00E+01 1.10E+02 -0.3 0.8 75
Thy-AdenoCA -4.80E+00 1.20E+02 0 1 48
Uterus-AdenoCA -1.20E+02 1.10E+02 -1.1 0.3 51

The exceptions are colorectal adenocarcinoma (Colorect-AdenoCA), lung adenocarcinoma (Lung-AdenoCA), lung squamous cell carcinoma (Lung-SCC) and skin-melanoma, as analysed by
the following linear regression (computed by an R function call): glm(DBS.count ~ SBS.count + Cancer.Type). This function call fits a model in which the number of DBSs depends linearly on the
number of SBSs and on the cancer type. P values associated with the coefficients are two-sided.
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Extended Data Table 2 | Numbers of insertion and deletion mutations due to ID1, ID2 and all other indel signatures in
hypermuted and non-hypermutated tumours

Non-
Hypermutators All Tumours
hypermutators
Signature Count Fraction Count Fraction Count Fraction
ID1 593,935 0.236 399,633 0.276 993,568 0.250

ID2 1,838,867 0.730 252,893 0.174 2,091,760 0.527

ID1+ID2 2,432,802 0.966 652,526 0.450 3,085,328 0.777

Other ID

. 85,038 0.034 797,964 0.550 883,002 0.223
signatures

Total 2,517,840 1 1,450,490 1 3,968,330 1
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
n/a | Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

X O O OO0 0O 0
XOX X X XX X XX

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection The data in this study were those reported in https://www.biorxiv.org/content/early/2017/07/12/162784.full.pdf+html (the PCAWG
marker paper) and in the publications cited at https://www.synapse.org/#!Synapse:syn11801788.

For the larger PCAWG Consortium, data and metadata were collected from International Cancer Genome Consortium (ICGC) consortium
members using custom software packages designed by the ICGC Data Coordinating Centre. The general-purpose core libraries and
utilities underlying this software have been released under the GPLv3 open source license as the "Overture" package and are available at
https://www.overture.bio. Other data collection software used in this effort, such as ICGC-specific portal user interfaces, are available
upon request to contact@overture.bio.

Data analysis SigProfiler is available both as a MATLAB framework and as a Python package. In both cases, SigProfiler is fully functional, free, and open-
source tool distributed under the permissive 2-Clause BSD License. SigProfiler in MATLAB can be downloaded from: https://
www.mathworks.com/matlabcentral/fileexchange/38724-sigprofiler SigProfiler in Python can be downloaded from: https://github.com/
AlexandrovLab/SigProfilerExtractor. SignatureAnalyzer code is available at https://www.synapse.org/#!Synapse:syn11801492. The code
used to generate the synthetic data and summarize SignatureAnalyzer and SigProfiler results is open-source and freely available as the
SynSig package: https://github.com/steverozen/ SynSig/tree/v0.2.0 under the GPL3 license.

For the larger PCAWG Consortium, the workflows executing core WGS alignment, QC and variant-calling software are packaged as
executable Dockstore images and available at: https://dockstore.org/search?labels.value keyword=pcawg&searchMode=files. Individual
software components are as follows: BWA-MEM v0.78.8-r455; DELLY v0.6.6; ACEseq v1.0.189; DKFZ somatic SNV workflow v1.0.132-1;
Platypus v0.7.4; ascatNgs v1.5.2; BRASS v4.012; grass v1.1.6; CaVEMan v1.50; Pindel v1.5.7; ABSOLUTE/JaBbA v1.5; SVABA 2015-05-20;
dRanger 2016-03-13; BreakPointer 2015-12-22; MuTect v1.1.4; MuSE v1.0rc; SMuFIN 2014-10-26; OxoG 2016-4-28; VAGrENT v2.1.2;
ANNOVAR v2014Nov12; VariantBAM v2017Dec12; SNV-Merge v2017May26; SV-MERGE v2017Dec12; DKFZ v2016Dec15

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Derived data are available at https://www.synapse.org/#!Synapse:syn11726601/wiki/513478. All figures and extended data figures have associated raw data at that
site.

For the larger PCAWG Consortium, WGS somatic and germline variant calls, mutational signatures, subclonal reconstructions, transcript abundance, splice calls and
other core data generated by the ICGC/TCGA Pan-cancer Analysis of Whole Genomes Consortium are available for download at https://dcc.icgc.org/releases/
PCAWG. Additional information on accessing the data, including raw read files, can be found at https://docs.icgc.org/pcawg/data/. In accordance with the data
access policies of the ICGC and TCGA projects, most molecular, clinical and specimen data are in an open tier which does not require access approval. To access
potentially identification information, such as germline alleles and underlying sequencing data, researchers will need to apply to the TCGA Data Access Committee
(DAC) via dbGaP (https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login) for access to the TCGA portion of the dataset, and to the ICGC Data Access Compliance
Office (DACO; http://icgc.org/daco) for the ICGC portion. In addition, to access somatic single nucleotide variants derived from TCGA donors, researchers will also
need to obtain dbGaP authorization.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

X Life sciences [ ] Behavioural & social sciences | | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size From a statistical perspective this was an exploratory study, and there were no pre-defined hypothesis tests for which sample-size power
calculations would have been appropriate. The sample size was determined by numbers of tumour genomes and exomes represented by
publicly available somatic mutation data. These data consisted of the ICGC Pan Cancer whole genome mutation data, the TCGA MC3 whole
exome mutation data, and additional mutation data as described in https://www.synapse.org/#!Synapse:syn11801788. This was an
unsupervised analysis, and therefore we extracted as many signatures as possible from all the available data. This enabled a substantial
increment over previously available sets of mutational signatures, especially with respect to double base substitution (DBS) signatures and
insertion/deletion (ID) signatures.

For the larger PCAWG Consortium, the Consortium compiled an inventory of matched tumour/normal whole cancer genomes in the ICGC
Data Coordinating Centre. Most samples came from treatment-naive, primary cancers, but there were a small number of donors with multiple
samples of primary, metastatic and/or recurrent tumours. Our inclusion criteria were: (i) matched tumour and normal specimen pair; (ii) a
minimal set of clinical fields; and (iii) characterisation of tumour and normal whole genomes using Illumina HiSeq paired-end sequencing
reads.

We collected genome data from 2,834 donors, representing all ICGC and TCGA donors that met these criteria at the time of the final data
freeze in autumn 2014.

Data exclusions  From a statistical perspective this was an exploratory study, and there were no pre-defined hypothesis tests for which pre-defined data
exclusion criteria would have been appropriate. Therefore, no data were excluded from analysis by our algorithms.

For the larger PCAWG Consortium, after quality assurance, data from 176 donors were excluded as unusable. Reasons for data exclusions
included inadequate coverage, extreme bias in coverage across the genome, evidence for contamination in samples and excessive sequencing
errors (for example, through 8-oxoguanine).

Replication This was not an experimental study, and there were no experimental replicates.

For the larger PCAWG Consortium, in order to evaluate the performance of each of the mutation-calling pipelines and determine an
integration strategy, we performed a large-scale deep sequencing validation experiment. We selected a pilot set of 63 representative tumour/
normal pairs, on which we ran the three core pipelines, together with a set of 10 additional somatic variant-calling pipelines contributed by
members of the SNV Calling Working Group. Overall, the sensitivity and precision of the consensus somatic variant calls were 95% (CI90%:
88-98%) and 95% (CI90%: 71-99%) respectively for SNVs. For somatic indels, sensitivity and precision were 60% (34-72%) and 91% (73-96%)
respectively. Regarding SVs, we estimate the sensitivity of the merging algorithm to be 90% for true calls generated by any one caller;
precision was estimated as 97.5% - that is, 97.5% of SVs in the merged SV call-set have an associated copy number change or balanced
partner rearrangement.

Randomization  There were no experimental groups in this study; the question of allocation to experimental groups is not applicable.

For the larger PCAWG Consortium, no randomisation was performed.
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Blinding There was no allocation to experimental groups; the question of whether investigators were blinded to allocation is not applicable.

For larger PCAWG Consortium, no blinding was undertaken.

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic information
(e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For studies involving
existing datasets, please describe the dataset and source.
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Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale
for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and what criteria
were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and whether
the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample cohort.

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the rationale
behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale |/ndicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which
the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.

Did the study involve field work? [ ]Yes [ ]No




Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).
Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water
depth).

Access and import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and
in compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing
authority, the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|:| Antibodies |:| ChlIP-seq
D Eukaryotic cell lines |Z| D Flow cytometry
D Palaeontology |Z| D MRI-based neuroimaging

D Animals and other organisms

|Z| Human research participants

XNOXXNXKX &

D Clinical data
Antibodies
Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.
Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the

manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) State the source of each cell line used.
Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.
Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for

mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines  pgme any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement),
where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new
dates are provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.
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Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals
were caught and transported and what happened to captive animals after the study (if killed, explain why and describe method, if
released, say where and when) OR state that the study did not involve wild animals.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or
guidance was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics For the PCAWG Consortium data, patient-by-patient clinical data are provided in the marker paper for the PCAWG consortium
(Extended Data Table 1 of that manuscript). Demographically, the cohort included 1,469 males (55%) and 1,189 females (45%),
with a mean age of 56 years (range, 1-90 years). Using population ancestry-differentiated single nucleotide polymorphisms
(SNPs), the ancestry distribution was heavily weighted towards donors of European descent (77% of total) followed by East
Asians (16%), as expected for large contributions from European, North American and Australian projects. We consolidated
histopathology descriptions of the tumour samples, using the ICD-0-3 tumour site controlled vocabulary. Overall, the PCAWG
data set comprises 38 distinct tumour types. While the most common tumour types are included in the dataset, their
distribution does not match the relative population incidences, largely due to differences among contributing ICGC/TCGA groups
in numbers sequenced. The non-PCAWG analyses used previously published data.

Recruitment For the PCAWG Consortium data, patients were recruited by the participating centres following local protocols.
Ethics oversight For the PCAWG Consortium data, the Ethics oversight for the PCAWG protocol was undertaken by the TCGA Program Office and

the Ethics and Governance Committee of the ICGC. Each individual ICGC and TCGA project that contributed data to PCAWG had
their own local arrangements for ethics oversight and regulatory alignment.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

ChlP-seq

Data deposition
|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. provide a link to the deposited data.
Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
y g Y,
(e.g. UCSC)

enable peer review. Write "no longer applicable" for "Final submission" documents.
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Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of
reads and whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone
name, and lot number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and
index files used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold
enrichment.
Software Describe the software used to collect and analyze the ChlP-seq data. For custom code that has been deposited into a
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community repository, provide accession details.

Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
[ ] All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology
Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.
Instrument Identify the instrument used for data collection, specifying make and model number.
Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a

community repository, provide accession details.

Cell population abundance | Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples
and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures  State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across
subjects).




Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.
Field strength Specify in Tesla
Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,

slice thickness, orientation and TE/TR/flip angle.
Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ]Used [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).
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Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types
used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.qg.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first
and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | Whole brain [ | ROI-based [ ] Both

Statistic type for inference

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.
(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte
Carlo).

Models & analysis

n/a | Involved in the study
|:| D Functional and/or effective connectivity

|:| D Graph analysis

D D Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial
correlation, mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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