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The evolutionary history of 2,658 cancers
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Cancer develops through a process of somatic evolution'?. Sequencing datafroma
single biopsy represent a snapshot of this process that can reveal the timing of specific
genomic aberrations and the changing influence of mutational processes®. Here,

by whole-genome sequencing analysis of 2,658 cancers as part of the Pan-Cancer
Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer
Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)*, we reconstruct
the life history and evolution of mutational processes and driver mutation sequences
of 38 types of cancer. Early oncogenesis is characterized by mutations in a constrained
set of driver genes, and specific copy number gains, such as trisomy 7 in glioblastoma
and isochromosome 17qin medulloblastoma. The mutational spectrum changes
significantly throughout tumour evolution in 40% of samples. A nearly fourfold
diversification of driver genes and increased genomic instability are features of

later stages. Copy number alterations often occur in mitotic crises, and lead to
simultaneous gains of chromosomal segments. Timing analyses suggest that driver
mutations often precede diagnosis by many years, if not decades. Together, these
results determine the evolutionary trajectories of cancer, and highlight opportunities
for early cancer detection.

Similar to the evolution in species, the approximately 10" cells in the
humanbody are subject to the forces of mutation and selection’. This
process of somatic evolution begins in the zygote and only comes to
rest at death, as cells are constantly exposed to mutagenic stresses,
introducing1-10 mutations per cell division®. These mutagenic forces
lead to a gradual accumulation of point mutations throughout life,
observed inarange of healthy tissues® " and cancers®. Although these
mutations are predominantly selectively neutral passenger mutations,

aboutthetimes whenthese lesions arise during somatic evolution and
where the boundary between normal evolution and cancer progression
should be drawn.

Sequencing of bulk tumour samples enables partial reconstruction of
the evolutionary history of individual tumours, based on the catalogue
of somatic mutations they have accumulated**", These inferences
include timing of chromosomal gains during early somatic evolution’s,
phylogenetic analysis of late cancer evolution using matched primary

and metastatic tumour samples fromindividual patients” %, and tem-
poral ordering of driver mutations across many samples??,

some are proliferatively advantageous driver mutations®. The types
of mutation in cancer genomes are well studied, but little is known
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Fig.1| Timing clonal copy number gains usingallele frequencies of point
mutations. a, Principles of timing mutations and copy number gains based on
whole-genome sequencing. The number of sequencing reads reporting point
mutations canbe used to discriminate variants as early or late clonal (green or
purple, respectively) in cases of specific copy number gains, as well as clonal
(blue) or subclonal (red) in cases without. b, Annotated point mutationsin one
sample based on VAF (top), copy number (CN) state and structural variants
(middle), and resulting timing estimates (bottom). LOH, loss of heterozygosity.
¢, Overview of the molecular timing distribution of copy number gains across
cancertypes. Pie charts depict the distribution of the inferred mutation time
foragiven copy number gaininacancertype. Green denotes early clonal gains,
withagradientto purple forlate gains. The size of each chartis proportional to
therecurrence of this event. Abbreviations for each cancer type are defined

The PCAWG Consortium has aggregated whole-genome sequenc-
ing data from 2,658 cancers*, generated by the ICGC and TCGA, and
produced high-accuracy somatic variant calls, driver mutations, and
mutational signatures*** (Methods and Supplementary Information).

Here, weleverage the PCAWG dataset to characterize the evolution-
ary history of 2,778 cancer samples from 2,658 unique donors across
38 cancer types. We infer timing and patterns of chromosomal evolu-
tion and learn typical sequences of mutations across samples of each
cancer type. We then define broad periods of tumour evolution and
examine how drivers and mutational signatures vary between these
epochs. Using clock-like mutational processes, we map mutation timing
estimatesintoapproximatereal time. Combined, these analyses allow
usto sketchout thetypical evolutionary trajectories of cancer, and map
themin real time relative to the point of diagnosis.

Reconstructing the life history of tumours

The genome of a cancer cellis shaped by the cumulative somatic aber-
rations that have arisen during its evolutionary past, and part of this
history can be reconstructed from whole-genome sequencing data®
(Fig.1a).Initially, each point mutation occurs on a single chromosome

inSupplementary Table1.d, Heat maps representing molecular timing
estimates of gains on different chromosome arms (x axis) for individual
samples (yaxis) for selected tumour types. e, Temporal patterns of two
near-diploid casesillustrating synchronous gains (top) and asynchronous
gains (bottom). f, Left, distribution of synchronous and asynchronous gain
patternsacross samples, split by WGD status. Uninformative samples

have too few or too small gains for accurate timing. Right, the enrichment

of synchronous gains in near-diploid samplesis shown by systematic
permutation tests. g, Proportion of copy number segments (n=90,387) with
secondary gains. Error bars denote 95% credible intervals.ND, near diploid.
h, Distribution of the relative latency of n=824 secondary gains with available
timinginformation, scaled to the time after the first gain and aggregated per
chromosome.

inasingle cell, which gives rise to a lineage of cells bearing the same
mutation. If that chromosomallocus is subsequently duplicated, any
point mutation on this allele preceding the gain will subsequently be
presenton the two resulting allelic copies, unlike mutations succeeding
the gain, or mutations on the other allele. As sequencing data enable the
measurement of the number of allelic copies, one can define categories
of early and late clonal variants, preceding or succeeding copy number
gains, as well as unspecified clonal variants, which are common to all
cancer cells, but cannot be timed further. Lastly, we identify subclonal
mutations, which are presentin only asubset of cellsand have occurred
after the most recent common ancestor (MRCA) of all cancer cells in
the tumour sample (Supplementary Information).

Theratio of duplicated to non-duplicated mutations within agained
region can be used to estimate the time point when the gain hap-
pened during clonal evolution, referred to here as molecular time,
which measures the time of occurrence relative to the total num-
ber of (clonal) mutations. For example, there would be few, if any,
co-amplified early clonal mutations if the gain had occurred right
after fertilization, whereas a gain that happened towards the end of
clonal tumour evolution would contain many duplicated mutations™
(Fig.1a, Methods).
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Fig.2| Timing of point mutations shows thatrecurrentdriver gene
mutations occur early. a, Top, distribution of point mutations over different
mutation periodsinn=2,778 samples. Middle, timing distribution of driver
mutationsinthe 50 mostrecurrentlesionsacross n=2,583 whitelisted
samples from unique donors. Bottom, distribution of driver mutations across
cancertypes; colourasdefined intheinset. b, Relative timing of the 50 most
recurrentdriver lesions, calculated as the odds ratio of early versus late clonal
driver mutations versus background, or clonal versus subclonal. Error bars
denote 95% confidenceintervals derived frombootstrap resampling. Odds
ratiosoverlappinglinlessthan5% of bootstrap samples are considered
significant (coloured). The underlying number of samples withagiven
mutationisshownina. c, Relative timing of TP53 mutations across cancer
types, asinb. Thenumber of samplesis defined in the x-axis labels.

d, Estimated number of unique lesions (genes) contributing 50% of all driver
mutationsin different timingepochsacross n=2,583 unique samples,
containing n=5,756 driver mutations with available timinginformation. Error
barsdenote the range between 0 and 1 pseudocounts; bars denote the average
ofthe two values. NA, not applicable; NS, not significant.

These analyses are illustrated in Fig. 1b. As expected, the variant
allele frequencies (VAFs) of somatic point mutations cluster around
the values imposed by the purity of the sample, local copy number
configuration and identified subclonal populations. The depicted
clear cell renal cell carcinoma has gained chromosome arm 5q at an
early molecular time as part of an unbalanced translocation t(3p;5q),
which confirms the notion that this lesion often occursinadolescence
inthis cancer type'. At alater time point, the sample underwent awhole
genome duplication (WGD) event, duplicatingall alleles, including the
derivative chromosome, in asingle event, as evidenced by the mutation
time estimates of all copy number gains clustering around asingle time
point, independently of the exact copy number state.

Timing patterns of copy number gains

To systematically examine the mutational timing of chromosomal gains
throughout the evolution of tumoursinthe PCAWG dataset, we applied
this analysis to the 2,116 samples with copy number gains suitable for
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timing (Supplementary Information). We find that chromosomal gains
occur across awide range of molecular times (median molecular time
0.60, interquartile range (IQR) 0.10-0.87), with systematic differences
between tumour types, whereas within tumour types, different chro-
mosomes typically show similar distributions (Fig. 1c, Extended Data
Figs. 1,2, Supplementary Information). In glioblastoma and medul-
loblastoma, a substantial fraction of gains occurs early in molecular
time. By contrast, in lung cancers, melanomas and papillary kidney
cancers, gains arise towards the end of the molecular timescale. Most
tumour types, including breast, ovarian and colorectal cancers, show
relatively broad periods of chromosomalinstability, indicating a very
variable timing of gains across samples.

There are, however, certain tumour types with consistently early
or late gains of specific chromosomal regions. Most pronounced is
glioblastoma, in which 90% of tumours contain single copy gains of
chromosome 7,19 or 20 (Fig. 1c, d). Notably, these gains are consistently
timed within the first 10% of molecular time, which suggests that they
arise very earlyinapatient’s lifetime. In the case of trisomy 7, typically
less than 3 out of 600 single nucleotide variants (SNVs) on the whole
chromosome precede the gain (Extended Data Fig. 3a, b). On the basis
of amutation rate of u=4.8 x107°t0 3.0 x 10"° SNVs per base pair per
division®, this indicates that the trisomy occurs within the first 6-39
cell divisions, suggesting a possible early developmental origin, in
agreement with somatic mosaicisms observed in the healthy brain.
Similarly, the duplications leading to isochromosome 17q in medul-
loblastoma are timed exceptionally early (Extended Data Fig. 3c, d).

Notably, we observed that gains in the same tumour often appear
to occur at asimilar molecular time, pointing towards punctuated
bursts of copy number gains involving most gained segments (Fig. 1e).
Although this is expected in tumours with WGD (Fig. 1b), it may seem
surprising to observe synchronous gains in near-diploid tumours, par-
ticularly as only 6% of co-amplified chromosomal segments were linked
by a direct inter-chromosomal structural variant. Still, synchronous
gains are frequent, occurring in 57% (468 out of 815) of informative
near-diploid tumours, 61% more frequently than expected by chance
(P<0.01, permutation test; Fig. 1f). Because most arm-level gainsincre-
ment the allele-specific copy number by 1(80-90%; Fig. 1g), it seems
that these gains arise through mis-segregation of single copies during
anaphase. This notion s further supported by the observation thatin
about 85% of segments with two gains of the same allele, the second
gainappears with noticeable latency after the first (Fig.1h). Therefore,
the extensive chromosome-scale copy number aberrations observed
in many cancer genomes are seemingly caused by a limited number
of events—possibly by merotelic attachments of chromosomes to
multipolar mitotic spindles?, or as a consequence of negative selection
of individual aneuploidies®®—offering an explanation for observations
of punctuated evolution in breast and colorectal cancer®=°.

Timing of point mutations in driver genes

Asoutlined above, point mutations (SNVs and insertions and deletions
(indels)) can be qualitatively assigned to different epochs, allowing
the timing of driver mutations. Out of the 47 million point mutations
in 2,583 unique samples, 22% were early clonal, 7% late clonal, 53%
unspecified clonal and 17% subclonal (Fig. 2a). Among a panel of 453
cancer driver genes, 5,913 oncogenic point mutations were identified*,
of which 29% were early clonal, 5% late clonal, 56% unspecified clonal
and 8% subclonal. It thus emerges that commondriversareenrichedin
the early clonal and unspecified clonal categories and depleted in the
late clonal and subclonal ones, indicating a preferential early timing
(Fig. 2b). For example, driver mutations in TP53and KRASare12and 8
times enrichedin early clonal stages, respectively. For TP53, this trend
isindependent of tumour type (Fig. 2c). Mutations in PIK3CA are two
times more frequently clonal than expected, and non-coding changes
near the TERT gene are three times more frequently early clonal.
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Fig.3|Aggregatingsingle-sample orderingreveals typical timing of

driver mutations. a, Schematic representation of the ordering process.

b-d, Examples ofindividual patient trajectories (partial ordering relationships),
the constituent data for the ordering model process. e-g, Preferential ordering
diagrams for colorectaladenocarcinoma (ColoRect-AdenoCA) (e), pancreatic

Aggregating the clonal status of all driver point mutations over
time reveals an increased diversity of driver genes mutated at
later stages of tumour development: 50% of all early clonal driver
mutations occur in just 9 genes, whereas 50% of late and subclonal
mutations occur in approximately 35 different genes each, a nearly
fourfoldincrease (Fig. 2d). Consistent with previous studies of indi-
vidual tumour types® >, these results suggest that, in general, the
very early events in cancer evolution occur in a constrained set of
common drivers, and a more diverse array of drivers is involved in
late tumour development.

Relative timing of somatic driver events

Although timing estimates of individual events reflect evolutionary
periods that differ from one sample to another, they define in part
the order in which driver mutations and copy number alterations have
occurred in each sample (Fig. 3a-d). As confirmed by simulations,
aggregating these orderings across samples defines a probabilistic
ranking of lesions (Fig. 3a), recapitulating whether each mutation
occurs preferentially early or late during tumour evolution (Extended
DataFigs. 4, 5, Supplementary Information).

In colorectal adenocarcinoma, for example, we find APC mutations
to have the highest odds of occurring early, followed by KRAS, loss
of 17p and TP53, and SMAD4 (Fig. 3b, e). Whole-genome duplications

m Copy number loss

m Homozygous copy number loss

neuroendocrine cancer (Panc-Endocrine) (f) and glioblastoma (CNS-GBM) (g).
Probability distributions show the uncertainty of timing for specific
eventsinthe cohort. Events with odds above 10 (either earlier or later) are
highlighted. The prevalence of the event typein the cohortis displayed as abar
plotontheright.

occur after tumours have accumulated several driver mutations,
and many chromosomal gains and losses are typically late. These
results are in agreement with the classical APC-KRAS-TP53 pro-
gression model of Fearon and Vogelstein®, but add considerable
detail.

Inmany cancer types, the sequence of events during cancer progres-
sion has not previously been determined in detail. For example, in
pancreatic neuroendocrine cancers, we find that many chromosomal
losses, including those of chromosomes 2, 6,11 and 16, are among
the earliest events, followed by driver mutations in MENI and DAXX
(Fig.3c, f). WGD events occur later, after many of these tumours have
reached a pseudo-haploid state due to widespread chromosomal
losses. In glioblastoma, we find that the loss of chromosome 10, and
driver mutations in TP53 and EGFR are very early, often preceding
early gains of chromosomes 7,19 and 20 (Fig. 3d, g). Mutations in the
TERT promoter tend to occur at early to intermediate time points,
whereas other driver mutations and copy number changes tend to
be later events.

Across cancer types, we typically find 7P53 mutations among the
earliest events, as well as losses of chromosome 17 (Supplementary
Information). WGD events usually have an intermediate ranking, and
most copy number changes occur later. Losses typically precede gains,
and consistent with the results above, common drivers typically occur
before rare drivers.
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Fig. 4| Dynamic mutational processes during early and late clonal tumour
evolution. a, Example of tumours with substantial changes between mutation
spectra of early (left) and late (right) clonal time points. The attribution of
mutations to the most characteristic signatures are shown. b, Example of clonal-
to-subclonal mutation spectrum change. ¢, Fold changes between relative
proportions of early and late clonal mutations attributed to individual
mutational signatures. Points are coloured by tissue type. Data are shown for
samples (n=530) with measurable changes in their overall mutation spectra and
restricted to signatures active in at least 10 samples. Box plots demarcate the first
and third quartiles of the distribution, with the median shown in the centre and
whiskers covering data within 1.5x the IQR from the box. d, Fold changes between
clonal and subclonal periods in samples (n =729) with measurable changesin
their mutation spectra, analogousto c.

Timing of mutational signatures
The cancer genome is shaped by various mutational processes over
its lifetime, stemming from exogenous and cell-intrinsic DNA dam-
age, and error-prone DNA replication, leaving behind characteristic
mutational spectra, termed mutational signatures®*>¢, Stratifying
mutations by their clonal allelic status, we find evidence for achanging
mutational spectrum between early and late clonal time pointsin 29%
(530 0ut of1,852) of informative samples (P< 0.05, Bonferroni-adjusted
likelihood-ratio test), typically changing the spectrum by 19% (median
absolute difference; range 4-66%) (Fig. 4a, b, Extended Data Fig. 6).
Similarly, 30% of informative samples (729 out of 2,387) displayed
changes of their mutation spectrum between the clonal and subclonal
state, with median difference of 21% (range 3-72%). Combined, the
mutation spectrum changes throughout tumour evolution in 40% of
samples (1,069 out of 2,688).

To quantify whether the observed temporal changes can be attrib-
uted to known and suspected mutational processes, we decom-
posed the mutational spectra at each time point into a catalogue of
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57 mutational signatures, including double base substitution and indel
signatures® (Methods).

In general, these mutational signatures display a predominantly
undirected temporal variability over several orders of magnitude
(Fig.4c,d, Extended DataFig. 7). In addition, several signatures dem-
onstrate distinct temporal trends. As one may expect, signatures of
exogenous mutagens are predominantly active in the early clonal
stages of tumorigenesis. Theseinclude tobacco smokinginlungadeno-
carcinoma (signature SBS4, median fold change 0.43,1QR 0.31-0.72),
consistent with previous reports®?#, and ultraviolet light exposure in
melanoma (SBS7; median fold change 0.16, IQR 0.09-0.43). Another
strong decrease over time is found for asignature of unknown aetiol-
ogy, SBS12, which acts mostlyin liver cancers (median fold change 0.22,
IQR 0.06-0.41). In chronic lymphoid leukaemia, there was a 20-fold
relative decrease in mutations associated with somatic hypermuta-
tion (SBS9; median fold change 0.05, IQR 0.02-0.43) from clonal to
subclonal stages.

Some mutational processes tend to increase throughout cancer
evolution. For example, we see that APOBEC mutagenesis (SBS2 and
SBS13) increases in many cancer types from the early to late clonal
stages (median fold change 2.0,IQR 0.8-3.6), as does anewly described
signature SBS38 (median fold 3.6, IQR 1.8-11). Signatures of defective
mismatch repair (SBS6, 14, 15, 20, 21, 26 and 44) increase from clonal
to subclonal stages (median fold 1.8, IQR 1.2-3.0).

Chronological time estimates

The molecular timing data presented above do not measure the
occurrence of events in chronological time. If the rate at which
mutations are acquired per year in each sample was constant, the
chronological time would simply be the product of the estimated
molecular timing and age at diagnosis. However, this relation will be
nonlinear if the mutation rate changes over time, and is inflated by
acquired mutational processes, as suggested by the analysis in the
previous section. Some of these issues can be mitigated by count-
ing only mutations contributed by endogenous and less variable
mutational processes, such as CpG-to-TpG mutations (hereafter
CpG>TpG) caused by spontaneous deamination of 5-methyl-cytosine
to thymine at CpG dinucleotides, which have been proposed as
a molecular clock®. Our supplementary analysis suggests that,
although the baseline CpG>TpG mutation rate in cancers is very
close tothatinnormal cells, there appears to be amoderate increase
(1-10 times, adding between 20 and 40% of mutations) in cancers
(Extended Data Fig. 8). As this shifts chronological timing estimates,
we model different scenarios of the evolution of the CpG>TpG muta-
tionrate (Fig. 5a).

Applyingthislogic to time WGDs, whichyield sufficient numbers of
CpG>TpG mutations, demonstrates that they occur several years and
possibly even a decade or more before diagnosis in some cancer types,
under arange of scenarios of mutationrate increase (Fig. 5b, Extended
Data Fig. 9). A notable example is ovarian adenocarcinoma, which
appears to have a median latency of more than 10 years. This holds
true evenunder ascenario of aCpG>TpGrateincrease of 20-fold, which
would be far beyond the 7.5-fold rate increase observed in matched
primary and relapse samples® (Extended DataFig. 8f). Notably, these
results suggest WGD may occur throughout the entire female repro-
ductive life (Extended Data Fig. 9b). The latency between the MRCA
and the last detectable subclone is shorter, typically several months
toyears (Fig. 5c).

These timescales of cancer evolution are further supported by the
fact that progression of most known precancerous lesions to carcino-
mas usually spans many years, if not decades*®*, Our data corroborate
these timescales and extend them to cancer types without detectable
premalignant conditions, raising the hope that these tumours could
also be detected in less malignant stages.
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Fig.5|Approximate chronological timinginference suggests atimescale
of cancer evolution of several years. a, Mapping of molecular timing
estimates to chronological time under different scenarios of increasesinthe
CpG>TpG mutationrate. A greater increase before diagnosis indicates an
inflation of the mutation timescale. b, Median latency between WGDs and the
last detectable subclone before diagnosis under different scenarios of
CpG>TpG mutationrate increases for n=569 non-hypermutant cancers withat
least100 informative SNVs, low tumour in normal contamination and at least
five samples per tumour histology. ¢, Median latency between the MRCA and
thelastdetectable subclone before diagnosis for different CpG>TpG mutation
rate changesinn=1,921non-hypermutant samples with low tumour in normal
contamination and atleast 5 cases per cancer type.

Discussion

Toourknowledge, our study presents the first large-scale genome-wide
reconstruction of the evolutionary history of cancers, reconstructing
bothearly (pre-cancer) and later stages of 38 cancer types. This is facili-
tated by the timing of copy number gains relative to all other events
inthe genome, through multiplicity and clonal status of co-amplified
point mutations. However, several limitations exist (Supplementary
Information). Perhaps most importantly, molecular timing is based
on point mutations and is therefore subject to changes in mutation
rate. Notably, healthy tissues acquire point mutations at rates not too
dissimilar from those seen in cancers, particularly when considering
only endogenous mutational processes, and furthermore, some tissues
are riddled with microscopic clonal expansions of driver gene
mutations® ", This is direct evidence that the life history of almost
every cellinthe humanbody, including those that develop into cancer,
is driven by somatic evolution.

Together, the data presented here enable us to draw approximate
timelines summarizing the typical evolutionary history of each cancer
type (Fig. 6, Supplementary Information for all other cancer types).
These make use of the qualitative timing of point mutations and copy
number alterations, as well as signature activities, which canbe inter-
leaved with the chronological estimates of WGD and the appearance
ofthe MRCA.

Itisremarkable that the evolution of practically all cancers displays
some level of order, which agrees very well with, and adds much detail
to, established models of cancer progression®*¢, For example, TP53
with accompanying17p deletion is one of the most frequent initiating
mutationsinavariety of cancers, including ovarian cancer, inwhichit
is the hallmark of its precancerous precursor lesions*. Furthermore,
thelist of typically early drivers includes most other highly recurrent
cancer genes, suchas KRAS, TERT and CDKN2A, indicating a preferred
rolein early and possibly even pre-cancer evolution. This initially con-
strained set of genes broadens at later stages of cancer development,

a Colorectal adenocarcinoma

Preferentially early Variable/constant Late Subclonal
Drivers: APC*, Drivers: CTNNB1, PCBP1, CNA: -15q, -21q, -5q, CNA:
KRAS*, PIK3CA, ACVR2A, B2M, SOX9, TCF7L2, —22q, -6p, -14q11.2 —20p
TP53*, FBXW7 SMAD2, SMAD4, PTEN CNA: -8p, Sigs:
CNA: -17p, +8q, -18 +20q, +7p, +20q11.21, -4g35.1,  Signatures: DBS: 3
Sigs: +13q, +2q, —14q, Sigs: DBS: 8, DBS: 4 SBS:
ID:1,2,SBS: 1,5,18 1ID: 1,2, SBS: 1, 5, 6-44, 10, 18, 28 SBS: 17, 40 40
-5 years Last detectable subclone
Fertilized WGD (38% samples) MRCA  Diagnosis
egg -3.3 years (1.9, 9.7) -0.4 years (0.1, 1.8) 67 years,
(57,74)
b Lung squamous cell carcinoma
Preferentially early Variable/constant Late Subclonal
Drivers: COKN2A  Drivers: NFE2L2, TP53, KMT2D, Sigs:
CNA: -17p, -3p, NOTCH1, PIK3CA, CREBBP ID: 8
-Xp22.2, -5q, CNA: -9p, -4q, +3927.1, +2p16.1, . . SBS: 1,
~9p21.3,-3q 29q, +17, -4p, ~13q, +8p11.23,  Signatures: 2813
Sigs: +5p, -8p, +2p, +8q, -10q 251,26
. 2 . 2 SBS: 1, 2813

DBS: 2, SBS: 4 Sigs: DBS: 2, SBS: 4, 5

-5 years Last detectable subclone
Fertilized WGD (69% samples) MRCA
egg -4.5 years (2.6, 13) -0.3 years (0.1, 1.5)
Diagnosis
68 years,
€ Ovarian adenocarcinoma (60, 73)
Preferentially early Variable/constant Late Subclonal
Drivers: TP53* CNA: +7q, +3926.2, -11p15.5, CNA: -6q, +17q, -14q, Sigs:
CNA: -17p, +3q, +20q, +5p, +8924.21, -16q, +5p15.33 DBS: 5
-19p13.3, -22q, -13q, -8p, -18q, -5q ID: 8
—4q Sigs: Signatures:
Sigs: ID: 1 SBS: 1, 3,5, 8, 18,40 DBS: 5, ID: 8
SBS: 1, 5,840 SBS: 2&13
-15 years Last detectable subclone
Fertilized WGD (60% samples) MRCA
egg —14 years (9, 35) -0.3 years (0.1, 1.8)
Diagnosis
d  Pancreatic adenocarcinoma 60 years,
(54, 69)
Preferentially early Variable/constant Late Subclonal
Drivers: KRAS*, Drivers: ARID1A, CDKN2At, CNA: -21q Sigs:
TP53*%, CNA: -17p, SMADA4t,CNA: -1p36.23, -6p25.3, DBS: 9
-9p, -ARID1A, -18q, -8p, +1q, -9q, +13q, -6q, -229, -3p, SBS:
-9p213, -SMAD4 +8q, -6p, +7p, +18p Signatures: 17,
Sigs: DBS: 4, Sigs: ID: 1,2, SBS: 1,3,5,18,40 SBS: 2&13, 6-44, 17, 18, 2&13,
ID:1,2,SBS: 1,5 40 6-44
-5 years Last detectable subclone
Diagnosis
Fertilized WGD (40% samples) 67 years,
egg -4 years (2.3, 11) MRCA (55 74)

-0.6 years (0.1, 2.8)

Fig. 6| Typical timelines of tumour development.a-d, Timelines
representing the lengthoftime, inyears, between the fertilized egg and the
medianage of diagnosis for colorectal adenocarcinoma (a), squamous cell lung
cancer (b), ovarianadenocarcinoma (c) and pancreaticadenocarcinoma (d).
Real-time estimates for major events, suchas WGD and the emergence of the
MRCA, are used to define early, variable, late and subclonal stages of tumour
evolutionapproximately in chronological time. The range of chronological
time estimates according to varying clock mutation acceleration rates is shown
aswell, withtick marks corresponding to 1x,2.5%, 5x,7.5x,10x and 20x. Driver
mutations and copy number alterations (CNA) are shownin each stage
accordingto their preferential timing, as defined by relative ordering.
Mutational signatures (Sigs) that, on average, change over the course of tumour
evolution, or are substantially active but not changing, are showninthe epochin
which theiractivity is greatest. DBS, double base substitution; SBS, single base
substitutions. Where applicable, lesions with aknown timing from the literature
areannotated; dagger symbols denotes events that were found to have a
different timing; asterisk symbol denotes events that agree with our timing.

suggesting an epistatic fitness landscape canalizing the first steps of
cancer evolution. Over time, as tumours evolve, they follow increasingly
diverse paths driven by individually rare driver mutations, and by copy
number alternations. However, none of these trends is absolute, and
the evolutionary paths of individual tumours are highly variable, show-
ingthat cancer evolution follows trends, but is far from deterministic.

Our study sheds light on the typical timescales of in vivo tumour
development, with initial driver events seemingly occurring up to
decades before diagnosis, demonstrating how cancer genomes are
shaped by a lifelong process of somatic evolution, with fluid bound-
aries between normal ageing processes® ™ and cancer evolution.

Nature | Vol 578 | 6 February 2020 | 127



Article

Nevertheless, the presence of genetic aberrations with such long
latency raises hopes that aberrant clones could be detected early,
before reaching their full malignant potential.
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Methods

Dataset

The PCAWG series consists of 2,778 tumour samples (2,703 white listed,
75grey listed) from 2,658 donors. All samplesin this dataset underwent
whole-genome sequencing (minimum average coverage 30x in the
tumour, 25% in the matched normal samples), and were processed
with a set of project-specific pipelines for alignment, variant calling,
and quality control*. Copy number calls were established by combin-
ing the output of six individual callers into a consensus using a multi-
tier approach, resulting in a copy number profile, a purity and ploidy
value and whether the tumour has undergone a WGD (Supplementary
Information). Consensus subclonal architectures have been obtained
by integrating the output of 11 subclonal reconstruction callers, after
which all SNVs, indels and structural variants are assigned to a muta-
tion cluster using the MutationTimer.R approach (Supplementary
Information). Driver calls have been defined by the PCAWG Driver
Working Group*, and mutational signatures are defined by the PCAWG
Signatures Working Group®*. Amore detailed description can be found
inSupplementary Information, section 1.

Data accrual was based on sequencing experiments performed by
individual member groups of the ICGC and TCGA, as described in an
associated study*. As this is a meta-analysis of existing data, power
calculations were not performed and the investigators were not blinded
to cancer diagnoses.

Timing of gains
We used three related approachesto calculate the timing of copy num-
ber gains (see Supplementary Information, section 2). In brief, the
common feature is that the expected VAF of amutation (£) isrelated to
the underlying number of alleles carrying amutation according to the
formula: E[X]=nmfp/[N (1-p) + Cp], in which Xis the number of reads,
ndenotes the coverage of the locus, the mutation copy number m s
the number of alleles carrying the mutation (whichis usually inferred),
fisthe frequency of the clone carrying the given mutation (f=1for
clonal mutations). Nis the normal copy number (2 on autosomes, 1or
2 for chromosome X and O or 1for chromosome Y), Cis the total copy
number of the tumour, and p is the purity of the sample.

The number of mutations n,,at each allelic copy number m then
informs about the time when the gainhas occurred. The basic formulae
fortiming eachgainare, depending on the copy number configuration:

Copy number 2+1:T7=3n,/(2n,+ n,;)
Copy number 2+2:T=2n,/(2n,+n,;)

Copy number 2+0:T=2n,/(2n,+ n,;)

inwhich2 +1refers to major and minor copy number of 2and 1, respec-
tively. Methods differ slightly in how the number of mutations present
on each allele are calculated and how uncertainty is handled (Supple-
mentary Information).

Timing of mutations

The mutation copy number m and the clonal frequency fis calculated
accordingtothe principlesindicated above. Details can be foundin Sup-
plementary Information, section 2. Mutations with f=1are denoted
as ‘clonal’, and mutations with f<1as ‘subclonal’. Mutations with f=1
and m>1aredenoted as ‘early clonal’ (co-amplified). In cases withf=1,
m=1and C>2, mutations were annotated as ‘late clonal’, if the minor
copy number was 0, otherwise ‘clonal’ (unspecified).

Timing of driver mutations
A catalogue of driver point mutations (SNVs and indels) was provided
by the PCAWG Drivers and Functional Interpretation Group*. The timing

category was calculated as above. From the four timing categories, the
odds ratios of early/late clonal and clonal (early, late or unspecified
clonal)/subclonal were calculated for driver mutations against the
distribution of all other mutations presentin fragments with the same
copy number composition in the samples with each particular driver.
The background distribution of these odds ratios was assessed with
1,000 bootstraps (Supplementary Information, section 4.1).

Integrative timing

For each pair of driver point mutations and recurrent copy number
alterations, an ordering was established (earlier, later or unspecified).
Theinformation underlying this decision was derived from the timing
ofeachdriver point mutation, as well as from the timing status of clonal
and subclonal copy number segments. These tables were aggregated
across allsamples and a sports statistics model was employed to calcu-
late the overall ranking of driver mutations. A full description is given
inSupplementary Information, section 4.2.

Timing of mutational signatures

Mutational trinucleotide substitution signatures, as defined by the
PCAWG Mutational Signatures Working Group®, were fit to samples
with observed signature activity, after splitting point mutations into
either of the four epochs. A likelihood ratio test based on the multi-
nomial distribution was used to test for differences in the mutation
spectra between time points. Time-resolved exposures were calcu-
lated using non-negative linear least squares. Full details are given in
Supplementary Information, section 5.

Real-time estimation of WGD and MRCA

CpG>TpG mutations were counted in an NpCpG context, except for
skin-melanoma, in which CpCpG and TpCpG were excluded owing to
the overlapping UV mutation spectrum. For visual comparison, the
number of mutations was scaled to the effective genome size, defined as
the1/mean(m;/C), inwhich m;is the estimated number of allelic copies
ofeach mutation, and C;is the total copy number at that locus, thereby
scaling to the final copy number and the time of change.

A hierarchical Bayesian linear regression was fit to relate the age at
diagnosis to the scaled number of mutations, ensuring positive slope
andinterceptthroughashared gammadistributionacross cancer types.

For tumours with several time points, the set of mutations shared
between diagnosis and relapse (n,,) and those specific to the relapse (ng)
was calculated. Therateacceleration was calculated as: a=ny/np x t,/t;.
This analysis was performed separately for all substitutions and for
CpG>TpG mutations.

Onthebasis of these analyses, atypical increase of 5x for most cancer
types was chosen, with a lower value of 2.5x for brain cancers and a
value of 7.5x for ovarian cancer.

The correction for transforming an estimate of acopy number gain
inmutationtimeinto chronological time depends notonly onthe rate
acceleration, but also on the time at which thisacceleration occurred.
As this is generally unknown, we performed Monte Carlo simulations
of rateaccelerations spanning aninterval of 15years before diagnosis,
corresponding roughly to 25% of time for a diagnosis at 60 years of age,
notingthataSxrateincrease over this durationyields an offset of about
33% of mutations, compatible with our data. Subclonal mutations were
assumed to occur at full acceleration. The proportion of subclonal
mutations was divided by the number of identified subclones, thus
conservatively assuming branching evolution. Full details are given
in Supplementary Information, section 6.

Cancer timelines

Theresults from each of the different timing analyses are combinedin
timelines of cancer evolution for each tumour type (Fig. 6 and Supple-
mentary Information). Each timeline begins at the fertilized egg, and
spans up to the median age of diagnosis within each cohort. Real-time
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estimates for WGD and the MRCA act as anchor points, allowing us
to roughly map the four broadly defined time periods (early clonal,
intermediate, late clonal and subclonal) to chronological time during a
patient’s lifespan. Specific driver mutations or copy number alterations
canbeplaced withineach of these time frames based on their ordering
from the league model analysis. Signatures are shown if they typically
change over time (95% confidence intervals of mean change not over-
lapping 0), and if they are strongly active (contributing at least 10%
mutations to one time point). Signatures are shown on the timelinein
theepochoftheir greatestactivity. Where an event found in our study
has a known timing in the literature, the agreement is annotated on
the timeline; with an asterisk denoting an agreed timing, and dagger
symbol denoting a timing that is different to our results. Full details
aregivenin Supplementary Information, section 7.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Somatic and germline variant calls, mutational signatures, subclonal
reconstructions, transcript abundance, splice calls and other core
datagenerated by the ICGC/TCGA PCAWG Consortium are described
elsewhere*and available for download at https://dcc.icgc.org/releases/
PCAWG. Furtherinformation on accessing the data, including raw read
files, can be found at https://docs.icgc.org/pcawg/data/. In accord-
ance withthe dataaccess policies of the ICGC and TCGA projects, most
molecular, clinical and specimen data are in an open tier that does
not require access approval. To access information that could poten-
tially identify participants, such as germline alleles and underlying
sequencing data, researchers willneed to apply to the TCGA Data Access
Committee (DAC) viadbGaP (https://dbgap.ncbi.nlm.nih.gov/aa/wga.
cgi?page=login) for access to the TCGA portion of the dataset, and to
the ICGC Data Access Compliance Office (DACO; http://icgc.org/daco)
forthe ICGC portion.Inaddition, to access somatic SNVs derived from
TCGA donors, researchers will also need to obtain dbGaP authorization.
Datasets used and results presented in this study, including timing
estimates for copy number gains, chronological estimates of WGD and
MRCA, as well as mutation signature changes, are described in Sup-
plementary Note 3 and are available at https://dcc.icgc.org/releases/
PCAWG/evolution-heterogeneity.

Code availability

The core computational pipelines used by the PCAWG Consortium for
alignment, quality control and variant calling are available to the public
athttps://dockstore.org/search?search=pcawg under the GNU General
Public License v3.0, which allows for reuse and distribution. Analysis
code presented in this study is available through the GitHub reposi-
tory https://github.com/PCAWG-11/Evolution. This archive contains

relevant software and analysis workflows as submodules, whichinclude
code for timing copy number gains, point mutations and mutation
signatures, real-time timing and evolutionary league model analysis,
as well as scripts to generate the figures presented: CancerTiming
(v.3.1.8), MutationTimeR (v.0.1), PhylogicNDT (v.1.1) and a series of
custom scripts (v.1.0), with detailed versions of other packages used.
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Extended DataFig.1|Summary of all results obtained for colorectal
adenocarcinoma (n=60) as an example. a, Clustered heat maps of mutational
timing estimates for gained segments, per patient. Colours asindicatedin
main text: greenrepresents early clonal events, purple represents late clonal.
b, Relative ordering of copy number events and driver mutations across all
samples. ¢, Distribution of mutations across early clonal, late clonaland
subclonal stages, for the most common driver genes. A maximum of 10 driver
genesareshown.d, Clustered mutational signature fold changes between early

clonaland late clonal stages, per patient. Greenand purpleindicate,
respectively, asignature decrease and increasein late clonal from early clonal
mutations. Inactive signatures are coloured white. e, Asind but for clonal
versus subclonal stages. Blueindicates asignature decreaseandred an
increase insubclonal from clonal mutations. f, Typical timeline of tumour
development. Similar result summaries for all other cancer types canbe found
inthe Supplementary Information (pages 46-77).
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Extended DataFig. 4 |Validation of relative ordering model reconstruction
based onsimulated cohorts of whole-genome samples. a, Relative ordering
model (PhylogicNDT LeagueModel) results for asimulated cohort of samples
(n=100) from asingle generalized relative order of events (with varied
prevalence) showing high concordance with the true trajectory. Probability
distributions show the uncertainty of timing for specific events in the cohort.
b, Relative ordering model results on asimulated cohort of samples (n=95)
from acomplex mixture of trajectories with different order of events showing
high concordance with the expected average trajectory. ¢, Estimation of
accuracy of therelative ordering model reconstruction by simulation of a

set of 100 cohorts (n(samples) =100) withrandom trajectory mixtures and
quantifying the distance inlog odds early/late from perfect ordering. For the
vast majority of events (even with low number of occurrencesin the cohort),

thelogoddserror does notexceed1, confirming that very few events would
switchbetween timing categories. Theinset box corresponds to the first and
third quartiles of the distribution, the horizontal lineindicates the median and
whiskersinclude data within1.5x the IQR from the box. d, Simulated data show
concordant timingin cohorts with WGD (n=245). Exclusion of samples with
WGD (right, n=242) introduces only amild dropinaccuracy, indicating that
WGDisbeneficial but not necessary for the reconstruction. Red dot =true rank.
e, Estimatedlog oddsin observed dataincluding WGD (left, n=245) and
without (right, n=242), across different mutation types. Theinset box
correspondsto the first and third quartiles of the distribution, the horizontal
lineindicates the median and whiskers include datawithin1.5x the IQR from
thebox.
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Extended DataFig.7|Overview of early-to-late clonal and clonal-to-
subclonal signature changes across tumourtypes.a, b, Pie charts
representing signature changes per cancer type for early-to-late clonal
signature changes (a) and clonal-to-subclonal signature changes (b).
Signatures that decrease between early and late are coloured green; signatures
thatincrease are purple. The size of each pie chartrepresents the frequency of

each signature. Signatures aresplitinto three categories: (1) clock-like,
comprising the putative clock signatures1and 5; (2) frequent, which are
signatures presentinten or more cancer types; and (3) cancer-type specific,
which areinfewer thanten cancer typesand are often limited to specific
cohorts.
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Extended DataFig.8|Age-dependent mutationburdenandrelapse
samplesindicate near-normal CpG>TpG mutationratein cancer, with
moderate acceleration during carcinogenesis. a, Across all cancer samples,
apredominantly linear accumulation of CpG>TpG mutations (scaled to copy
number) is observed over time, as measured by the age at diagnosis. b, Cancer-
specificanalysis of the CpG>TpG mutation burden as afunction of age at
diagnosis for n=1,978 samples of 34 informative cancer types. The dotted line
denotes the median mutations per year (thatis, not offset), and shading
denotesthe 95% credibleinterval of a hierarchical Bayesianlinear regression
modelacross all data points. Slope and intercepts are drawn for each cancer
type fromagamma distribution, respectively; inference was done by
Hamiltonian Monte Carlo sampling. ¢, Maximum a posteriori estimates of
rate and offset for 34 cancer types with 95% credible intervalsas defined inb.

d, Mutationrateinferred from cancer asinb and fromselected normal tissue
sequencingstudies of n=140 normal haematopoietic stem cells, n=1normal
skinsample, n=182 samples from normal endometrium, and n=445normal
coloniccrypts; error bars denote the 95% confidence interval. e, Median
fraction of mutations attributed to linear age-dependent accumulation, based
onestimates from b and the age at diagnosis for each sample. Error bars denote
the 95% credibleinterval.f, g, CpG>TpG mutations per gigabase for ovarian
cancer (f) and breast cancer (g) samples with matched primary and relapse
samples. h, Increase in CpG>TpG mutationrate inferred from paired primary
andrelapse samplesforsix cancer types. Bars denote the range of the rate
increase for different scenarios of copy number evolution, assuming ploidy
changes have occurred prior (upper value) or posterior (lower value) to the
branching between primary andrelapse sample.
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Extended DataFig. 9 |Real-time estimatesindicate longlatencies for some
samples caused by the absence of early mutations. a, Time of WGD for n=571
individual patients, split by tumour type with an estimated mutation rate
increase of 5%, except for ovary-adenocarcinoma (7.5x) and CNS (2.5x). Error
barsrepresent 80% confidenceintervals, reflecting uncertainty stemming
from the number of mutations per segment and onset of the rateincrease. Box
plots demarcate the quartiles and median of the distribution with whiskers
indicating 5% and 95% quantiles. b, Scatter plots showing the time of diagnosis
(xaxis) and inferred time of WGD (y axis) witherrorbarsasina. c,Scatter plot of
early (co-amplified) CpG>TpG mutations (y axis) as afunction of the mutational
time estimate of WGD (x axis). The black line denotes anonlinear loess fit with
95% confidenceinterval. Colours define the cancertypeasina.d, Total

CpG>TpG mutations (yaxis) asa function of the mutation time estimate of
WGD (xaxis). Colours and fitasin c. Early molecular timing is thus caused by a
depletion of early CpG>TpG mutations, rather than aninflation of late
CpG>TpG mutations. e, Estimated median WGD latency of n=571patientsasin
afor fixed (xaxis) versus patient specific rate increases, dependingon the
observed CpG>TpG mutation burden, allowing for a higher (up to10x)
mutationrateincreaseinsamples with more mutations (yaxis). Error bars
denote the IQR. f, Timing of subclonal diversification using CpG>TpG
mutationsinn=1,953individual patients. Box plots and error bars for data
pointsasina.g, Comparisonofthe median duration of subclonal
diversification per cancer type assuming branching and linear phylogenies.
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Data collection Data and metadata were collected from International Cancer Genome Consortium (ICGC) consortium members using custom software
packages designed by the ICGC Data Coordinating Centre. The general-purpose core libraries and utilities underlying this software have
been released under the GPLv3 open source license as the "Overture" package and are available at https://www.overture.bio. Other data
collection software used in this effort, such as ICGC-specific portal user interfaces, are available upon request to contact@overture.bio.

Data analysis The PCAWG workflows executing core WGS alignment, QC and variant-calling software are packaged as executable Dockstore images and
available at: https://dockstore.org/search?labels.value.keyword=pcawg&searchMode=files. Individual software components are as
follows: BWA-MEM v0.78.8-r455; DELLY v0.6.6; ACEseq v1.0.189; DKFZ somatic SNV workflow v1.0.132-1; Platypus v0.7.4; ascatNgs
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VariantBAM v2017Dec12; SNV-Merge v2017May26; SV-MERGE v2017Dec12; DKFZ v2016Dec15.

Analysis code presented in this study is available through the github repository https://github.com/PCAWG-11/Evolution. This archive
contains relevant software and analysis workflows as submodules, including code for timing copy number gains, point mutations and
mutation signatures, real-time timing, and evolutionary league model analysis, as well as scripts to generate the figures presented.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

WGS somatic and germline variant calls, mutational signatures, subclonal reconstructions, transcript abundance, splice calls and other core data generated by the
ICGC/TCGA Pan-cancer Analysis of Whole Genomes Consortium are available for download at https://dcc.icgc.org/releases/PCAWG. Additional information on
accessing the data, including raw read files, can be found at https://docs.icgc.org/pcawg/data/. In accordance with the data access policies of the ICGC and TCGA
projects, most molecular, clinical and specimen data are in an open tier which does not require access approval. To access potentially identification information,
such as germline alleles and underlying sequencing data, researchers will need to apply to the TCGA Data Access Committee (DAC) via dbGaP (https://
dbgap.ncbi.nim.nih.gov/aa/wga.cgi?page=login) for access to the TCGA portion of the dataset, and to the ICGC Data Access Compliance Office (DACO; http://
icgc.org/daco) for the ICGC portion. In addition, to access somatic single nucleotide variants derived from TCGA donors, researchers will also need to obtain dbGaP
authorization. All results presented in this study, including timing estimates for copy number gains, real time estimates of WGD and MRCA, as well as mutation
signature activities, are available at https://www.synapse.org/#!Synapse:syn14193595.
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Sample size We compiled an inventory of matched tumour/normal whole cancer genomes in the ICGC Data Coordinating Centre. Most samples came from
treatment-naive, primary cancers, but there were a small number of donors with multiple samples of primary, metastatic and/or recurrent
tumours. Our inclusion criteria were: (i) matched tumour and normal specimen pair; (i) a minimal set of clinical fields; and (iii)
characterisation of tumour and normal whole genomes using Illumina HiSeq paired-end sequencing reads. We collected genome data from
2,834 donors, representing all ICGC and TCGA donors that met these criteria at the time of the final data freeze in autumn 2014.

Data exclusions  After quality assurance, data from 176 donors were excluded as unusable. Reasons for data exclusions included inadequate coverage,
extreme bias in coverage across the genome, evidence for contamination in samples and excessive sequencing errors (for example, through 8-
oxoguanine). Hypermutated and samples with normal contamination were excluded for chronological inferences in this study, as described in
the Supplementary Methods.

Replication In order to evaluate the performance of each of the mutation-calling pipelines and determine an integration strategy, we performed a large-
scale deep sequencing validation experiment. We selected a pilot set of 63 representative tumour/normal pairs, on which we ran the three
core pipelines, together with a set of 10 additional somatic variant-calling pipelines contributed by members of the SNV Calling Working
Group. Overall, the sensitivity and precision of the consensus somatic variant calls were 95% (CI90%: 88-98%) and 95% (C190%: 71-99%)
respectively for SNVs. For somatic indels, sensitivity and precision were 60% (34-72%) and 91% (73-96%) respectively. Regarding SVs, we
estimate the sensitivity of the merging algorithm to be 90% for true calls generated by any one caller; precision was estimated as 97.5% - that
is, 97.5% of SVs in the merged SV call-set have an associated copy number change or balanced partner rearrangement.

The accuracy of inferences in this study was assessed using simulations and by applying three different algorithms for the timing of copy

number gains (Extended Data Figure 2), as well as two different algorithms for the temporal ordering of driver mutations (Extended Data
Figure 5).

Randomization  N/A - This exploratory study did not contain a randomization step

Blinding N/A - This exploratory study did not contain a blinded analysis
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Population characteristics

Recruitment

Ethics oversight

Patient-by-patient clinical data are provided in Extended Data Table 1 of the marker paper for the PCAWG consortium.
Demographically, the cohort included 1,469 males (55%) and 1,189 females (45%), with a mean age of 56 years (range, 1-90
years). Using population ancestry-differentiated single nucleotide polymorphisms (SNPs), the ancestry distribution was heavily
weighted towards donors of European descent (77% of total) followed by East Asians (16%), as expected for large contributions
from European, North American and Australian projects. We consolidated histopathology descriptions of the tumour samples,
using the ICD-0-3 tumour site controlled vocabulary. Overall, the PCAWG data set comprises 38 distinct tumour types. While the
most common tumour types are included in the dataset, their distribution does not match the relative population incidences,
largely due to differences among contributing ICGC/TCGA groups in numbers sequenced.

Patients were recruited by the participating centres following local protocols.

The Ethics oversight for the PCAWG protocol was undertaken by the TCGA Program Office and the Ethics and Governance
Committee of the ICGC. Each individual ICGC and TCGA project that contributed data to PCAWG had their own local
arrangements for ethics oversight and regulatory alignment.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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