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No evidence for increased transmissibility from
recurrent mutations in SARS-CoV-2
Lucy van Dorp 1,5✉, Damien Richard2,3,5, Cedric C. S. Tan 1, Liam P. Shaw 4, Mislav Acman1 &

François Balloux 1✉

COVID-19 is caused by the coronavirus SARS-CoV-2, which jumped into the human popu-

lation in late 2019 from a currently uncharacterised animal reservoir. Due to this recent

association with humans, SARS-CoV-2 may not yet be fully adapted to its human host. This

has led to speculations that SARS-CoV-2 may be evolving towards higher transmissibility.

The most plausible mutations under putative natural selection are those which have emerged

repeatedly and independently (homoplasies). Here, we formally test whether any homo-

plasies observed in SARS-CoV-2 to date are significantly associated with increased viral

transmission. To do so, we develop a phylogenetic index to quantify the relative number of

descendants in sister clades with and without a specific allele. We apply this index to a

curated set of recurrent mutations identified within a dataset of 46,723 SARS-CoV-2 gen-

omes isolated from patients worldwide. We do not identify a single recurrent mutation in this

set convincingly associated with increased viral transmission. Instead, recurrent mutations

currently in circulation appear to be evolutionary neutral and primarily induced by the human

immune system via RNA editing, rather than being signatures of adaptation. At this stage we

find no evidence for significantly more transmissible lineages of SARS-CoV-2 due to recur-

rent mutations.
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S
evere acute respiratory coronavirus syndrome 2 (SARS-CoV-
2), the causative agent of coronavirus disease 2019 (COVID-
19), is a positive single-stranded RNA virus that jumped into

the human population towards the end of 20191–4 from a yet
uncharacterised zoonotic reservoir5. Since then, the virus has gra-
dually accumulated mutations leading to patterns of genomic
diversity. These mutations can be used both to track the spread of the
pandemic and to identify sites putatively under selection as SARS-
CoV-2 potentially adapts to its new human host. Large-scale efforts
from the research community during the ongoing COVID-19 pan-
demic have resulted in an unprecedented number of SARS-CoV-2
genome assemblies available for downstream analysis. To date
(21 September 2020), the Global Initiative on Sharing All Influenza
Data (GISAID)6,7 repository has >70,000 complete high-quality
genome assemblies available. This is being supplemented by
increasing raw sequencing data available through the European
Bioinformatics Institute and NCBI Short Read Archive, together with
data released by specific genome consortiums, including COVID-19
Genomics UK (https://www.cogconsortium.uk/data/). Research
groups around the world are continuously monitoring the genomic
diversity of SARS-CoV-2, with a focus on the distribution and
characterisation of emerging mutations.

Mutations within coronaviruses, and indeed all RNA viruses,
can arrive as a result of three processes. First, mutations arise
intrinsically as copying errors during viral replication, a process
which may be reduced in SARS-CoV-2 relative to other RNA
viruses, due to the fact that coronavirus polymerases include a
proof-reading mechanism8,9. Second, genomic variability might
arise as the result of recombination between two viral lineages co-
infecting the same host10. Third, mutations can be induced by
host RNA-editing systems, which form part of natural host
immunity11–13. While population genetics theory states that the
majority of mutations are expected to be neutral14, some may be
advantageous or deleterious to the virus. Mutations that are
highly deleterious, such as those preventing virus host invasion,
will be rapidly purged from the population; mutations that are
only slightly deleterious may be retained, if only transiently.
Conversely, neutral and in particular advantageous mutations can
reach higher frequencies.

Mutations in SARS-CoV-2 have already been scored as putatively
adaptive using a range of population genetics methods1,15–21, and
there have been suggestions that specific mutations are associated
with increased transmission and/or virulence15,18,21. Early flagging
of such adaptive mutations could arguably be useful to control the
COVID-19 pandemic. However, distinguishing neutral mutations
(whose frequencies have increased through demographic processes)
from adaptive mutations (which directly increase the virus’ trans-
mission) can be difficult22. For this reason, the current most
plausible candidate mutations under putative natural selection are
those that have emerged repeatedly and independently within the
global viral phylogeny. Such homoplasic sites may arise con-
vergently as a result of the virus responding to adaptive pressures.

Previously, we identified and catalogued homoplasic sites across
SARS-CoV-2 assemblies, of which approximately 200 could be
considered as warranting further inspection following stringent fil-
tering1. A logical next step is to test the potential impact of these and
other more recently emerged homoplasies on transmission. For a
virus, transmission can be considered as a proxy for overall
fitness23,24. Any difference in transmissibility between variants can be
estimated using the relative fraction of descendants produced by an
ancestral genotype. While sampling biases could affect this estimate,
we believe such an approach is warranted here for two reasons. First,
the unprecedented and growing number of SARS-CoV-2 assemblies
calls for the development of computationally fast methods that scale
effectively with data sets. Second, and more importantly, the current
genetic diversity of the SARS-CoV-2 population lacks strong

structure at a global level due to the large number of independent
introductions of the virus in most densely sampled countries1. This
leads to the worldwide distribution of SARS-CoV-2 genetic diversity
being fairly homogenous, thus minimising the risk that a homoplasic
mutation could be deemed to provide a fitness advantage to its viral
carrier simply because it is overrepresented, by chance, in regions of
the world more conducive to transmission.

In this work, we make use of curated alignment comprising
46,723 SARS-CoV-2 assemblies to formally test whether any iden-
tified recurrent mutation is involved in altering viral fitness. We find
that none of the recurrent SARS-CoV-2 mutations tested are asso-
ciated with significantly increased viral transmission. Instead,
recurrent mutations seem to be primarily induced by host immunity
through RNA-editing mechanisms, and likely tend to be selectively
neutral, with no or only negligible effects on virus transmissibility.

Results
Global diversity of SARS-CoV-2. The global genetic diversity of
46,723 SARS-CoV-2 genome assemblies is presented as a max-
imum likelihood phylogenetic tree (Fig. 1a). No assemblies were
found to deviate by >32 single-nucleotide polymorphisms (SNPs)
from the reference genome, Wuhan-Hu-1, which is consistent
with the relatively recent emergence of SARS-CoV-2 towards the
latter portion of 20191–5. We informally estimated the mutation
rate over our alignment as 9.8 × 10−4 substitutions per site per
year, which is consistent with previous rates estimated for SARS-
CoV-21–4 (Figs. S1 and S2). This rate also falls in line with those
observed in other coronaviruses25,26 and is fairly unremarkable
relative to other positive single-stranded RNA viruses, which do
not have a viral proof-reading mechanism27,28.

Genetic diversity in the SARS-CoV-2 population remains
moderate with an mean pairwise SNP difference across isolates of
8.4 (4.7–13.5, 95% confidence interval). This low number of
mutations between any two viruses currently in circulation means
that, to date, we believe SARS-CoV-2 can be considered as a
single lineage, notwithstanding taxonomic efforts to categorise
extant diversity into sublineages29. Our data set includes viruses
sequenced from 99 countries (Fig. 1b and Supplementary Data 1),
with a good temporal coverage (Supplementary Fig. 1b). While
some countries are far more densely sampled than others
(Fig. 1b), the emerging picture is that fairly limited geographic
structure is observed in the viruses in circulation in any one
region. All major clades in the global diversity of SARS-CoV-2 are
represented in various regions of the world (Fig. 1a and
Supplementary Fig. 3), and the genomic diversity of SARS-
CoV-2 in circulation in different continents is fairly uniform
(Fig. 1c and Supplementary Fig. 3).

Distribution of recurrent mutations. Across the alignment, we
detected 12,706 variable positions, with an observed genome-wide
ratio of non-synonymous to synonymous substitutions of 1.88
(calculated from Supplementary Data 2). Following masking of
putatively artefactual sites and phylogeny reconstruction, we
detected >5000 homoplasic positions (5710 and 5793, respectively
using two different masking criteria), see ‘Methods’ and Supple-
mentary Figs. 4 and 5 and Supplementary Data 3. Recurrent
mutations may be detected as a result of recombination, for which
we find no strong evidence in SARS-CoV-2 (Supplementary Fig. 6
and 7), or sequencing or genome assembly artefacts30. In line
with our previous work (ref. 1; see ‘Methods’), we therefore
applied two stringent filtering approaches to delineate sets of
well-supported homoplasic sites, which present strong candidates
to test for ongoing selection. This resulted in 398 and 411
homoplasic sites in the alignments, respectively (Supplementary
Figs. 4 and 5 and Supplementary Data 3). The current
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distribution of genomic diversity across the alignment, together
with identified homoplasic positions, is available as an open
access and interactive web resource at: https://macman123.
shinyapps.io/ugi-scov2-alignment-screen/.

As identified by previous studies31–36, we find evidence of
strong mutational biases across the SARS-CoV-2 genome, with a
remarkably high proportion of C→U changes relative to other
types of SNPs. This pattern was observed at both non-homoplasic
and homoplasic sites (Supplementary Figs. 8–10). Additionally,
mutations involving cytosines were almost exclusively C→U
mutations (98%) and the distributions of k-mers for homoplasic
sites appeared markedly different compared to that across all
variable positions (Supplementary Figs. 11 and 12). In particular,
we observed an enrichment in CCA and TCT 3-mers containing
a variable base in their central position, which are known targets
for the human APOBEC RNA-editing enzyme family37.

Signatures of transmission. In order to test for an association
between individual homoplasies and transmission, we defined a
phylogenetic index designed to quantify the fraction of descen-
dant progeny produced by any ancestral virion having acquired a
particular mutation. We term this index the Ratio of Homoplasic
Offspring (RoHO)38. In short, the RoHO index computes the
ratio of the number of descendants in sister clades with and
without a specific mutation over all independent emergences of a
homoplasic allele (shown in red in Fig. 2). We confirmed that our
approach is unbiased (i.e. produced symmetrically distributed
RoHO index scores around the log10(RoHO)= 0 expectation for

recurrent mutations not associated with transmission) both by
analysing simulated nucleotide alignments and discrete traits
randomly assigned onto the global SARS-CoV-2 phylogeny (see
‘Methods’, Supplementary Fig. 13).

We restricted the analysis of the global SARS-CoV-2 phylogeny
to homoplasies determined to have arisen at least n= 3 times
independently. We observed 185 and 199 homoplasies passing all
the RoHO score criteria under the more and less stringent
masking procedures, respectively, and report in the main text the
results obtained with the more stringent masking. We ignored all
homoplasic events where the parent node led to fewer than two
descendant tips carrying the ancestral allele and two with the
derived allele (Fig. 2). In order to avoid pseudoreplication (i.e.
scoring any genome more than once), we also discarded from the
RoHO index calculations for any homoplasic parent node
embedding a secondary homoplasic event involving the same
site in the alignment (Fig. 2). Ignoring embedding homoplasic
parent nodes led to only a marginal loss of statistical power and
inclusion of homoplasies carried on embedded nodes yielded
similar results (Supplementary Fig. 13b). Results were consistent
for the alternative, less stringent, masking strategy (Supplemen-
tary Fig. 13c and Supplementary Data 4).

None of the 185 detected recurrent mutations having emerged
independently a minimum of three times were statistically
significantly associated with an increase in viral transmission for
either tested alignment (paired t test; Fig. 3, Supplementary Data 4
and Supplementary Fig. 13). We also did not identify any recurrent
mutations statistically significantly associated with reduced viral
transmissibility for the more stringently masked alignment. Instead,
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Fig. 1 Overview of the global genomic diversity across 46,723 SARS-CoV-2 assemblies (sourced 30 July 2020) coloured as per continental regions.

a Maximum likelihood phylogeny for complete SARS-CoV-2 genomes. Tips are coloured by the continental region of sampling. D614G haplotype status is

annotated by the presence/absence coloured columns (positions 241, 3037, 14,408 and 23,403, respectively). b Viral assemblies available from 99

countries displayed on a world map. cWithin-continent pairwise genetic distance on a random subsample of 300 assemblies from each continental region.

Colours in all three panels represent continents where isolates were collected. Magenta: Africa; Turquoise: Asia; Blue: Europe; Purple: North America;

Yellow: Oceania; Dark Orange: South America according to metadata annotations available on GISAID (https://www.gisaid.org) and provided in

Supplementary Data 1. The map in Fig. 1b was created using the R package rworldmap using the public domain Natural Earth data set.
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the entire set of 185 recurrent mutations seem to fit the expectation
for neutral evolution with respect to transmissibility, with a mean
and median overall log10RoHO score of −0.001 and −0.02,
respectively. Moreover, the distribution of individual site-specific
RoHO scores is symmetrically distributed around 0 with 97/185
mean positive values and 88/185 negative ones. To summarise, we
would expect that recurrent mutations should be the best candidates
for putative adaptation of SARS-CoV-2 to its novel human host.

However, none of the recurrent mutations in circulation to date
shows evidence of being associated with viral transmissibility.

Discussion
In this work, we analysed a data set of >46,700 SARS-CoV-2
assemblies sampled across 99 different countries and all major
continental regions. Current patterns of genomic diversity highlight
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multiple introductions in all continents (Fig. 1 and Supplementary
Figs. 1–3) since the host-switch to humans in late 20191–4. Across
our data set, we identified a total of 12,706 mutations, heavily
enriched in C→U transitions, of which we identified 398 strongly
supported recurrent mutations (Supplementary Data 3 and Sup-
plementary Figs. 4 and 5). Employing a phylogenetic index (RoHO)
to test whether these recurrent mutations contribute to a change in
transmission, we found no candidate convincingly associated with a
significant increase or decrease in transmissibility (Figs. 2 and 3 and
Supplementary Data 4).

Given the importance of monitoring potential changes in virus
transmissibility, several other studies have investigated whether
particular sets of mutations in SARS-CoV-2 are associated with
changes in transmission and virulence15,21,39. We strongly caution
that efforts to determine whether any specific mutation contributes
to a change in viral phenotype, using solely genomic approaches,
rely on the ability to distinguish between changes in allele frequency
due to demographic or epidemiological processes, compared to
those driven by selection22. A convenient and powerful alternative
is to focus on sites that have emerged recurrently (homoplasies), as
we do here. While such a method is obviously restricted to such
recurrent mutations, it reduces the effect of demographic con-
founding problems, such as founder bias.

A much discussed mutation in the context of demographic
confounding is D614G (nucleotide position 23,403), a non-
synonymous change in the SARS-CoV-2 Spike protein. Korber
et al. suggested that D614G increases transmissibility but with no
measurable effect on patient infection outcome21. Other studies
have suggested associations with increased infectivity in vitro18,40

and antigenicity41. Here we conversely find that D614G does not
associate with significantly increased viral transmission (median
log10(RoHO) = 0, paired t test p= 0.28; Supplementary Data 4),
in line with our results for all other tested recurrent mutations.
Though clearly, different choices of methodology may lead to
different conclusions. A recent study on a sample of 25,000
whole-genome sequences exclusively from the UK used different
approaches to investigate D614G. Not all analyses found a con-
clusive signal for D614G, and effects on transmission, when
detected, appeared relatively moderate39.
These apparently contrasting results for D614G should be

considered carefully. What is, however, indisputable is that
D614G emerged early in the pandemic and is now found at high
frequency globally, with 36,347 assemblies in our data set (77.8%)
carrying the derived allele (Fig. 1a and Supplementary Data 3).
However, D614G is also in linkage disequilibrium (LD) with three
other derived mutations (nucleotide positions 241, 3037, and
14,408) that have experienced highly similar expansions, as 98.9%
of accessions with D614G also carry these derived alleles (35,954/
36,347). It should be noted that the D614G mutation displays
only five independent emergences that qualify for inclusion in our
analyses (fewer than the other three sites it is associated with).
While this limits our power to detect a statistically significant
association with transmissibility, the low number of independent
emergences suggests to us that the abundance of D614G is more
probably a demographic artefact: D614G went up in frequency as
the SARS-CoV-2 population expanded, largely due to a founder
effect originating from one of the deepest branches in the global
phylogeny, rather than being a driver of transmission itself.

The RoHO index developed here provides an intuitive metric
to quantify the association between a given mutation and viral
transmission. However, we acknowledge that this approach has
some limitations. We have, for example, relied on admittedly
arbitrary choices concerning the number of minimal observations
and nodes required to conduct statistical testing. While it seems
unlikely that this would change our overall conclusions, which are
highly consistent for two tested alignments, results for particular

mutations should be considered in light of this caveat and may
change as more genomes become available. Further, our approach
necessarily entails some loss of information and therefore statis-
tical power. This is because our motivation to test independent
occurrences means that we do not handle “embedded homo-
plasies” explicitly: we simply discard them (Fig. 2), although
inclusion of embedded homoplasies does not change the overall
conclusions (Supplementary Fig. 13b). Finally, while our
approach is undoubtedly more robust to demographic con-
founding (such as founder bias), it is impossible to completely
remove all the sources of bias that come with the use of available
public genomes.

In addition, it is of note that the SARS-CoV-2 population has
only acquired moderate genetic diversity since its jump into the
human population, and consequently, most branches in the
phylogenetic tree are only supported by very few mutations. As a
result of the low genetic diversity, most nodes in the tree have
only low statistical support42. We therefore apply a series of
stringent filters and masking strategies to the alignment (see
‘Methods’). Also, while our method does not account quantita-
tively for phylogenetic uncertainty, we only computed RoHO
scores for situations that should be phylogenetically robust (i.e.
mutations represented in at least three replicate nodes, each with
at least two representatives of the reference and alternate allele in
descendants).

We further acknowledge that the number of SARS-CoV-2
genomes available at this stage of the pandemic, while extensive,
still provides us only with moderate power to detect statistically
significant associations with transmissibility for any individual
recurrent mutation. The statistical power of the RoHO score
methodology depends primarily on the number of independent
homoplasic replicates rather than the strength of selection
(Supplementary Fig. 14). The number of usable replicates per
homoplasic site ranges between 3 and 14 and between 3 and 67
for the two masking strategies we applied (Supplementary
Data 4). While the statistical power at most sites is weak, we
predict a higher number of replicates at sites under strong posi-
tive selection, due to the expected recurrent mutations to the
beneficial allelic state. We acknowledge that more sophisticated
methods for phylodynamic modelling of viral fitness do
exist24,43,44; however, these are not directly portable to SARS-
CoV-2 and would be too computationally demanding for a data
set of this size. Our approach, which is deliberately simple and
makes minimal assumptions, is conversely highly scalable as the
number of available SARS-CoV-2 genome sequences continues to
rapidly increase.

To date, the fact that none of the 185 recurrent mutations in the
SARS-CoV-2 population we identified as candidates for putative
adaptation to its novel human host are statistically significantly
associated with transmission suggests that the vast majority of
mutations segregating at reasonable frequency are largely neutral in
the context of transmission and viral fitness. This interpretation is
supported by the essentially perfect spread of individual RoHO index
scores around their expectation under neutral evolution (Fig. 3).
However, it is nonetheless interesting to consider the cause of these
mutations. Consistent with equivalent analyses (https://observablehq.
com/@spond/linkage-disequilibirum-in-sars-cov-2, accessed 21 Sep
2020), we find no signature of recombination in SARS-CoV-2
(Supplementary Figs. 6 and 7), though 65% of the detected mutations
comprise non-synonymous changes of which 38% derive from C→U
transitions. This high compositional bias, as also detected in other
studies34–36, as well as in other members of the Coronaviridae31–33,
suggests that mutations observed in the SARS-CoV-2 genome are not
solely the result of errors by the viral RNA polymerase during virus
replication35,36. One possibility is the action of human RNA-editing
systems, which have been implicated in innate and adaptive
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immunity. These include the AID/APOBEC family of cytidine dea-
minases, which catalyse deamination of cytidine to uridine in RNA or
DNA, and the ADAR family of adenosine deaminases, which catalyse
deamination of adenosine to inosine (recognised as a guanosine
during translation) in RNA45,46.

The exact targets of these host immune RNA-editing mechan-
isms are not fully characterised but comprise viral nucleotide
sequence target motifs whose editing may leave characteristic
biases in the viral genome37,47,48. For example, detectable deple-
tion of the preferred APOBEC3 target dinucleotide sequence TC
has been reported in papillomaviruses49. In the context of SARS-
CoV-2, Simmonds36 and Di Giorgio et al.35 both highlight the
potential of APOBEC-mediated cytosine deamination as an
underlying biological mechanism driving the over-representation
of C→U mutations. However, APOBEC3 was shown to result in
cytosine deamination but not hypermutation of HCoV-NL63
in vitro50, which may suggest that additional biological processes
also play a role.

In summary, our results do not point to any candidate recur-
rent mutation significantly increasing transmissibility of SARS-
CoV-2 at this stage and confirm that the genomic diversity of the
global SARS-CoV-2 population is currently still very limited. It is
to be expected that SARS-CoV-2 will diverge into phenotypically
different lineages as it establishes itself as an endemic human
pathogen. However, there is no a priori reason to believe that this
process will lead to the emergence of any lineage with increased
transmission ability in its human host.

Methods
Data acquisition. We downloaded 48,454 SARS-CoV-2 assemblies were down-
loaded from GISAID on 30/07/2020 selecting only those marked as ‘complete’, ‘low
coverage exclude’ and ‘high coverage only’. To this data set, all assemblies of total
genome length <29,700 bp were removed, as were any with a fraction of ‘N’
nucleotides >5%. In addition, all animal isolate strains were removed, including
those from bat, pangolin, mink, cat and tiger. All samples flagged by NextStrain as
‘exclude’ (https://github.com/nextstrain/ncov/blob/master/defaults/exclude.txt) as
of 30/07/2020 were also removed. Twenty one further accessions were also filtered
from our phylogenetic analyses as they appeared as major outliers following
phylogenetic inference and application of TreeShrink51 despite passing other fil-
tering checks. This left 46,723 assemblies for downstream analysis. A full metadata
table, list of acknowledgements and exclusions is provided in Supplementary
Data 1.

Multiple sequence alignment and maximum likelihood tree. All 46,723
assemblies were aligned against the Wuhan-Hu-1 reference genome (GenBank
NC_045512.2, GISAID EPI_ISL_402125) using MAFFT v7.47152 implemented in
the rapid phylodynamic alignment pipeline provided by Augur 6.3.0 (github.com/
nextstrain/augur). This resulted in a 29,903 nucleotide alignment. As certain sites
in the alignment have been flagged as putative sequencing errors (http://virological.
org/t/issues-with-sars-cov-2-sequencing-data/473), we followed two separate
masking strategies. The first masking strategy is designed to test the impact of the
inclusion of putative sequencing errors in phylogenetic inference, masking several
sites within the genome (n= 68) together with the first 55 and last 100 sites of the
alignment (the list of sites flagged as ‘mask’ is available at https://github.com/W-L/
ProblematicSites_SARS-CoV2/blob/master/problematic_sites_sarsCov2.vcf, acces-
sed 30 Jul 2020)30. We also employed a less stringent approach, following the
masking strategy employed by NextStrain, which masks only positions 18,529,
29,849, 29,851 and 29,853 as well as the first 130 and last 50 sites of the alignment.
A complete list of masked positions is provided in Supplementary Data 5. This
resulted in two masked alignments of 46,723 and 46,745 assemblies with 12,706
and 12,807 SNPs, respectively.

Subsequently, for both alignments, a maximum likelihood phylogenetic tree was
built using IQ-TREE 2.1.0 COVID release (https://github.com/iqtree/iqtree2/
releases/tag/v2.1.0) as the tree-building method53. The resulting phylogenies were
viewed and annotated using ggtree v1.16.654 (Fig. 1 and Supplementary Fig. 1). Site
numbering and genome structure are provided for available annotations (non-
overlapping open reading frames (ORFs)) using Wuhan-Hu-1 (NC_045512.2) as
reference.

Recombination analysis. In order to test for the presence of recombination, we
performed a LD analysis considering whether the correlation between SNPs tends
to disappear with an increase in the distance separating them on the genome. A
classical approach to do so is the use of LD decay curves, which represent LD as a

function of the distance separating each SNP pair. We calculated metrics of LD
(r2 and D’) across all pair-wise combinations of variant sites using Tomahawk 0.7.0
(https://github.com/mklarqvist/tomahawk). The relationship between LD and
distance yielded a regression coefficient of 3.56e−7 and a proportion of explained
variance of 4.52e−4 (Supplementary Fig. 6). Following the approach presented at
https://observablehq.com/@spond/linkage-disequilibirum-in-sars-cov-2 (accessed
21 Sep 2020), we tested the significance of the fitted r2 by performing 1000 per-
mutations of the genome coordinates, recomputing the regression each time. In all
cases, the observed values fell within the null distribution providing no evidence of
recombination in the SARS-CoV-2 alignment (Supplementary Fig. 7).

Phylogenetic dating. We informally estimated the substitution rate and time to
the most recent common ancestor of both masked alignments by computing the
root-to-tip temporal regression implemented in BactDating v1.0.155. Both align-
ments exhibit a significant correlation between the genetic distance from the root
and the time of sample collection following 10,000 random permutations of
sampling date (Supplementary Fig. 2).

Homoplasy screen. The resulting maximum likelihood trees were used, together
with the input alignments, to rapidly identify recurrent mutations (homoplasies)
using HomoplasyFinder v0.0.0.91,56. HomoplasyFinder employs the method first
described by Fitch57, providing, for each site, the site-specific consistency index and
the minimum number of changes invoked on the phylogenetic tree. All ambiguous
sites in the alignment were set to ‘N’. HomoplasyFinder identified a total of 5710
homoplasies, which were distributed over the SARS-CoV-2 genome (Supplemen-
tary Fig. 4). For the less stringent masking of the alignment, HomoplasyFinder
identified a total of 5793 homoplasies (Supplementary Fig. 5).

As previously described, we filtered both sets of identified homoplasies using a
set of thresholds attempting to circumvent potential assembly/sequencing errors
(filtering scripts are available at https://github.com/liampshaw/CoV-homoplasy-
filtering and see ref. 1). Here we only considered homoplasies present in >46
isolates (0.1% of isolates in the data set), where the number of submitting and
originating laboratories of isolates with the homoplasy was >1 and displaying a
third allele frequency <0.2 of that of the second allele frequency. This avoids us
taking forward homoplasies that have only been identified in a single location as
well as those putatively arising from low levels of recombination. This resulted in
398 filtered sites (411 following a less stringent masking procedure) of which 397
overlap. A full list of sites is provided for both alignments in Supplementary Data 3.

In addition, we considered an additional filtering criterion to identify
homoplasic sites falling close to homopolymer regions, which may be more prone
to sequencing error. We defined homopolymer regions as positions on the Wuhan-
Hu-1 reference with at least four repeated nucleotides. While homopolymer
regions can arise through meaningful biological mechanisms, for example
polymerase slippage, such regions have also been implicated in increased error
rates for both nanopore58 and Illumina sequencing59. As such, homoplasies
detected near these regions (±1 nt) could have arisen due to sequencing error
rather than solely as a result of underlying biological mechanisms. If this were true,
we would expect the proportion of homoplasic sites near these regions to be greater
than that of homopolymeric positions across the entire genome. We tested this by
identifying homopolymer regions using a custom python script (https://github.
com/cednotsed/genome_homopolymer_counter) and performing a binomial test
on the said proportions. A list of homopolymer regions across the genome is
provided in Supplementary Data 6. Twenty five of the 398 (6.3%) filtered
homoplasies were within ±1 nt of homopolymer regions and this proportion was
significantly lower as compared to that of homopolymeric positions across the
reference (9.7%; p= 0.0095). As such, we did not exclude homopolymer-associated
homoplasies and suggest that these sites are likely to be biologically meaningful.

To determine whether systematic biases were introduced in our filtering steps,
we performed a principal component analysis (PCA) on the unfiltered list of
homoplasies obtained from HomoplasyFinder (n= 5710). The input space of the
PCA included 11 variables, of which 8 were dummy-coded reference/variant
nucleotides and a further 3 corresponded to the minimum number of changes on
tree, SNP count and consistency index output by HomoplasyFinder. Visualisation
of PCA projections (Supplementary Fig. 10a) suggested that there was no hidden
structure introduced by our homoplasy filtering steps. The first two PCs accounted
for 56% of the variance and were mostly loaded by the variables encoding the
reference and variant nucleotides (Supplementary Fig. 10b).

Annotation and characterisation of homoplasic sites. All variable sites across
the coding regions of the genomes were identified as synonymous or non-
synonymous. This was done by retrieving the amino acid changes corresponding to
all SNPs at these positions using a custom Biopython (v.1.76) script (https://github.
com/cednotsed/nucleotide_to_AA_parser.git). The ORF coordinates used
(including the ORF1ab ribosomal frameshift site) were obtained from the asso-
ciated metadata according to Wuhan-Hu-1 (NC_045512.2).

To determine whether certain types of SNPs are overrepresented in homoplasic
sites, we computed the base count ratios and cumulative frequencies of the
different types of SNPs across all SARS-CoV-2 genomes at homoplasic and/or
non-homoplasic sites (Supplementary Figs. 8 and 9). In addition, we identified the
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sequence context of all variable positions in the genome (±1 and ±2 neighbouring
bases from these positions) and computed the frequencies of the resultant 3-mers
(Supplementary Fig. 11) and 5-mers (Supplementary Fig. 12).

Quantifying pathogen fitness (transmission). Under random sampling, we
expect that any mutation, irrespective of how it arrives, that positively affects a
pathogen’s transmission fitness will be represented in proportionally more des-
cendant nodes. As such, a pathogen’s fitness can be expressed simply as the number
of descendant nodes from the direct ancestor of the strain having acquired the
mutation, relative to the number of descendants without the mutation (schematic
Fig. 2). We define this as the RoHO index (full associated code available at https://
github.com/DamienFr/RoHO)38.

HomoplasyFinder56 flags all nodes of a phylogeny corresponding to an ancestor
that acquired a homoplasy. We only considered nodes with at least two descending
tips carrying either allele and with no children node embedded carrying a
subsequent mutation at the same site (see Fig. 2). For each such node in the tree, we
counted the number of isolates of each allele and computed the RoHO index. We
finally restricted our analysis to homoplasies having at least n= 3 individual RoHO
indices (i.e. for which three independent lineages acquired the mutation). The latter
allows us to consider only nodes for which we have multiple supported
observations within the phylogeny, conveniently accounting for phylogenetic
uncertainty. Paired t tests were computed for each homoplasy to test whether
RoHO indices were significantly different from zero. To validate the methodology,
this analysis was carried out on data analysed using two different masking
strategies (Fig. 3, Supplementary Fig. 13 and masked sites available in
Supplementary Data 5). Full metadata associated with each tested site, including
the number and associated countries of descendant offsprings, are provided in
Supplementary Data 4.

Assessing RoHO performance. To assess the performance of our RoHO index,
we performed a set of simulations designed to test the distribution of RoHO values
under a neutral model.

We simulated a 10,000 nucleotide alignment comprising 1000 accessions using
the rtree() simulator available in Ape v5.360 and genSeq from the R package
PhyTools v0.7-2.061 using a single rate transition matrix multiplied by a rate of 6 ×
10−4 to approximately match that estimated in ref. 1. This generated a 8236-SNP
alignment, which was run through the tree-building and homoplasy detection
algorithms described for the true data, identifying 3097 homoplasies (pre-filtering).
Specifying a minimum of three replicates and at least two descendant tips of each
allele, we obtained a set of RoHO scores none of which differed significantly from
zero (Supplementary Fig. 13e).

In parallel, we tested for any bias in the RoHO scores when a set of randomly
generated discrete traits were simulated onto the true maximum likelihood
phylogeny. To do so, we employed the discrete character simulator rTraitDisc()
available through Ape v5.360 specifying an equilibrium frequency of 1 (i.e.
neutrality) and a normalised rate of 0.002 (after dividing branch lengths by the
mean edge length). This rate value was manually chosen to approximately
reproduce patterns of homoplasies similar to those observed for homoplasies of the
actual phylogeny. Simulations were repeated for 100 random traits. Considering
the discrete simulated traits as variant (putative homoplasic) sites, we again
evaluated the RoHO indices (applying filters mentioned previously) for these 100
neutral traits. Following Bonferroni correction, no sites were deemed statistically
significant (Supplementary Fig. 13d).

In all cases, to mitigate the introduction of bias we only considered homoplasies
with nodes with at least two tips carrying either allele, in order to avoid 1/n and n/1
comparisons (see node 3 in Fig. 2). We further enforced a minimum number of
three replicates (Fig. 3, Supplementary Fig. 13 and Supplementary Data 4). While
we discarded homoplasies located on ‘embedded nodes’ to avoid pseudoreplication
(see node 1 in Fig. 2), we note that including such sites has no impact on our results
(Supplementary Fig. 11b).

In addition, we assessed the statistical power to detect significant deviations
from neutrality of the RoHO index according to (i) the number of independent
emergences of a homoplasy in the phylogeny and (ii) the imbalance between
offspring number for each allele (i.e. fitness differential conferred by the carriage of
the derived allele). To do so, we generated 1000 replicates for each combination of
independent emergences (counts) of a homoplasy and corresponding fitness
differential values using results from both masked alignments. For each replicate,
we drew values for the number of descended tips from the actual homoplasic
parent nodes at our 185 candidate mutations sites under putative selection (all 185
pooled). We then probabilistically assigned a state to each tip according to an
offspring imbalance (e.g. 10%). We drew replicates until we obtained 1000 for each
combination comprising at least two alleles of each type. The proportion of
significant paired t tests for each combination of independent homoplasic parent
nodes and fitness differential (10–80%) is presented as a heatmap (Supplementary
Fig. 14).

The statistical power depends primarily on the number of independent
emergences (i.e. homoplasic parent nodes) rather than the fitness differential
(Supplementary Fig. 14, see ‘Discussion’). Beneficial alleles have a far higher chance
to increase their allele frequency upon introduction than deleterious ones, which
are expected to be readily weeded out from the population. Thus we expect to

observe a disproportionally higher number of independent homoplasic parent
nodes for beneficial alleles. As such, the RoHO score index is inherently better
suited to identify mutations associated with increased transmissibility relative to
deleterious ones.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
All genomic data analysed are available, on registration, from GISAID (https://www.

gisaid.org). A full list of accessions used is provided in Supplementary Data 1 together

with acknowledgement of all originating and submitting laboratories.

Code availability
All codes used to generate the RoHO method presented in this manuscript are available

at https://github.com/DamienFr/RoHO38. In addition, we provide links to the code used

to conduct homoplasy filtering (https://github.com/liampshaw/CoV-homoplasy-

filtering), per site annotations (https://github.com/cednotsed/nucleotide_to_AA_parser.

git) and to assess the number of homopolymer regions in the SARS-CoV-2 genome

(https://github.com/cednotsed/genome_homopolymer_counter).
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