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SARS-CoV-2 is transmitted via contact and via
the air between ferrets
Mathilde Richard 1, Adinda Kok 1, Dennis de Meulder1, Theo M. Bestebroer1, Mart M. Lamers 1,

Nisreen M. A. Okba 1, Martje Fentener van Vlissingen 2, Barry Rockx 1, Bart L. Haagmans 1,

Marion P. G. Koopmans 1, Ron A. M. Fouchier 1 & Sander Herfst 1✉

SARS-CoV-2, a coronavirus that emerged in late 2019, has spread rapidly worldwide, and

information about the modes of transmission of SARS-CoV-2 among humans is critical to

apply appropriate infection control measures and to slow its spread. Here we show that

SARS-CoV-2 is transmitted efficiently via direct contact and via the air (via respiratory

droplets and/or aerosols) between ferrets, 1 to 3 days and 3 to 7 days after exposure

respectively. The pattern of virus shedding in the direct contact and indirect recipient ferrets

is similar to that of the inoculated ferrets and infectious virus is isolated from all positive

animals, showing that ferrets are productively infected via either route. This study provides

experimental evidence of robust transmission of SARS-CoV-2 via the air, supporting the

implementation of community-level social distancing measures currently applied in many

countries in the world and informing decisions on infection control measures in healthcare

settings.
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I
n late December 2019, clusters of patients in China presenting
with pneumonia of unknown etiology were reported to the
World Health Organization (WHO)1. The causative agent was

rapidly identified as being a virus from the Coronaviridae family,
closely related to the severe acute respiratory syndrome cor-
onavirus (SARS-CoV)2–4. The SARS-CoV epidemic affected 26
countries and resulted in more than 8000 cases in 2003. The
newly emerging coronavirus, named SARS-CoV-25, rapidly
spread worldwide and was declared pandemic by the WHO on
March 11, 20206. The first evidence suggesting human-to-human
transmission came from the descriptions of clusters among the
early cases7,8. Based on epidemiological data from China before
measures were taken to control the spread of the virus, the
reproductive number R0 (the number of secondary cases directly
generated from each case) was estimated to be between 2 and
39–11. In order to apply appropriate infection control measures to
reduce the R0, the modes of transmission of SARS-CoV-2 need to
be elucidated. Respiratory viruses can be transmitted via direct
and indirect contact (via fomites), and through the air via
respiratory droplets and/or aerosols. Transmission via respiratory
droplets (>5 μm) is mediated by expelled particles that have a
propensity to settle quickly and is therefore reliant on close
proximity between infected and susceptible individuals, usually
within 1 m of the site of expulsion. Transmission via aerosols
(<5 μm) is mediated by expelled particles that are smaller in size
than respiratory droplets and can remain suspended in the air for
prolonged periods of time, allowing infection of susceptible
individuals at a greater distance from the site of expulsion12.
Current epidemiological data suggest that SARS-CoV-2 is trans-
mitted primarily via respiratory droplets and contact7–9,13,14,
which is used as the basis for mitigation of spread through
physical and social distancing measures. However, scientific evi-
dence that SARS-CoV-2 can be efficiently transmitted via the air
is weak.

Previous studies have shown that ferrets were susceptible to
infection with SARS-CoV15–19, and that SARS-CoV was effi-
ciently transmitted to co-housed ferrets via direct contact15. Here,
we use a ferret transmission model to show that SARS-CoV-2
spreads through direct contact and through the air (via respira-
tory droplets and/or aerosols).

Results
Transmission of SARS-CoV-2 between ferrets. Individually
housed donor ferrets were inoculated intranasally with a strain of
SARS-CoV-2 isolated from a German traveller returning from
China. Six hours post-inoculation (hpi), a direct contact ferret
was added to each of the cages. The next day, indirect recipient
ferrets were placed in adjacent cages, separated from the donor
cages by two steel grids, 10 cm apart, allowing viruses to be
transmitted only via the air (Fig. 1). On alternating days to pre-
vent cross-contamination, throat, nasal and rectal swabs were
collected from each ferret in the inoculated and direct contact
groups and from the indirect recipient group, followed by SARS-
CoV-2 detection by RT-qPCR and virus titration.

Ferrets were productively infected by SARS-CoV-2 upon
intranasal inoculation, as demonstrated by the robust and long-
term virus shedding from the donor ferrets (Fig. 2, Supplementary
Fig. 1). SARS-CoV-2 RNA levels peaked at 3 days post-inoculation
(dpi) and were detected up to 11 dpi in two animals and up to 15
and 19 dpi in the other two animals (Fig. 2, Supplementary Fig. 1).
SARS-CoV-2 was transmitted to direct contact ferrets in four out
of four independent experiments between 1 and 3 days post-
exposure (dpe) and viral RNA was detected up to 13–15 days (i.e.
13–17 dpe) (Fig. 2, Supplementary Fig. 1). Interestingly, SARS-
CoV-2 was also transmitted via the air to three out of four indirect

recipient ferrets. SARS-CoV-2 RNA was detected from 3 to 7 dpe
onwards these indirect recipient ferrets and for 13–19 days (Fig. 2,
Supplementary Fig. 1).

Whereas donor ferrets were inoculated with a high virus dose,
direct contact and indirect recipient ferrets are likely to have
received a low infectious dose via direct contact or via the air. In
spite of this, the pattern of virus shedding from the direct contact
and indirect recipient ferrets was similar to that of the inoculated
donor ferrets, both in terms of duration and SARS-CoV-2 RNA
levels, corroborating robust replication of SARS-CoV-2 upon
transmission via direct contact and via the air, independent of the
infectious dose. In general, higher SARS-CoV-2 RNA levels were
detected in the throat swabs as compared to the nasal swabs.
SARS-CoV-2 RNA levels in the rectal swabs were overall the
lowest. From each SARS-CoV-2 RNA positive animal, infectious
virus was isolated in VeroE6 cells from throat and nasal swabs for
at least two consecutive days (Supplementary Fig. 2 and
Supplementary Table 1). In contrast, no infectious virus was
isolated from the rectal swabs. Infectious virus titers ranged from
100.75 to 102.75 TCID50/ml (median tissue culture infectious dose
per ml) in the donor ferrets, from 100.75 to 103.5 TCID50/ml in the
direct contact ferrets and from 100.75 to 104.25 TCID50/ml in the
indirect recipient ferrets. All SARS-CoV-2 positive ferrets
seroconverted 21 dpi/dpe, and the antibody levels detected using
a receptor binding domain (RBD) enzyme-linked immunosor-
bent assay (ELISA) were similar in donor, direct contact and
indirect recipient ferrets (Fig. 3a). Plaque reduction neutralization
titers (PRNT) in sera from indirect recipient ferrets were lower
than that of donor and direct contact ferrets, which is probably
due to the later onset of virus replication upon transmission via
the air and thus a relatively earlier collection of serum after
infection (Fig. 3b). The indirect recipient ferret, in which no
SARS-CoV-2 was detected, did not seroconvert as expected.

Sequence analysis of viruses isolated from ferrets. MinION
(Nanopore) sequencing was used to determine the whole genome
consensus sequences of viruses in throat swabs collected from
the four donor (all 3 dpi), the four direct contact (all 5 dpe) and
three indirect recipient ferrets (7, 9 or 11 dpe). Two substitutions
were detected in the consensus sequence of viruses collected from
all ferrets as compared to the sequence of the original virus iso-
late: N501T and S686G, both in the spike protein. Residue 501 is
part of the receptor binding motif that mediates contact with
angiotensin-converting enzyme 2 (ACE2), the receptor of SARS-
CoV-2. A threonine at position 501 (as present in the majority of
SARS-CoV viruses) was previously shown to decrease the affinity
of the spike protein with the receptor20. Perhaps this substitution
emerged in ferrets as a result of adaptation to efficient binding to
ferret ACE2. Residue 686 is the first residue after the furin clea-
vage site. The serine to glycine substitution has not been found in
human SARS-CoV-2 sequences, hence the effect of this sub-
stitution is unknown. In addition, a L260F substitution in Nsp6
was observed in the throat swab of a direct contact ferret, and two
synonymous substitutions (C2910T and C7235T) were detected
in an indirect recipient ferret and a direct contact ferret respec-
tively. In order to understand whether the N501T and S686G
substitutions were either positively selected in ferrets from
existing minority variants in the virus isolate or had mutated in
ferrets, Illumina next-generation sequencing was performed on
sequential samples from the donor ferrets and on the virus stocks
(Supplementary Table 2). Single nucleotide polymorphisms
(SNPs) which were present in >5% of the total number of reads
were called (Supplementary Table 2A). The N501T substitution
was already present in all donor ferrets at 1 dpi in 14.7%–49.6% of
the reads and percentages rapidly increased to 86.4%–98,7% on
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3 dpi. At 7 dpi, the percentages of reads with the N501T sub-
stitution were still high, albeit lower in donor ferret 4 (66.2%). A
similar trend was observed for the S686G substitution. In addi-
tion, an R685H substitution in the spike protein was detected in
two ferrets and L207F and L260F substitutions in Nsp6 were
detected in individual ferrets, all at low percentages (Supple-
mentary Table 2A). SNP analysis of the virus isolates

demonstrated that S686G was the only substitution that was
present in more than 5% of the reads: 8.1% in the passage 3 virus
stock used to inoculate donor ferrets and 15,2% in the passage 1
virus isolate from Germany (Supplementary Table 2B). Among
the other substitutions observed in the ferret samples, only the
R685H substitution was detected at >1% of the reads in the ori-
ginal virus isolate (Supplementary Table 2B).

Fig. 1 The ferret transmission experimental set-up. Picture (a) and schematic representation (b) of one independent experimental set-up to assess direct

contact transmission and indirect transmission via the air. One inoculated donor ferret is housed in a cage (right-hand side of the picture). Six hours later, a

direct contact ferret is added to the same cage as the donor ferret. The next day, an indirect recipient ferret is placed in an opposite cage (left-hand side of

the picture) separated by two steel grids, 10 cm apart, to avoid contact transmission. The direction of the air flow (100 Lmin−1) is indicated by the arrows.

The ferret transmission set-ups are placed in class III isolators in a biosafety level 3+ laboratory.

Fig. 2 SARS-CoV-2 shedding in ferrets in the transmission experiment. SARS-CoV-2 viral RNA was detected by RT-qPCR in throat (black), nasal (white)

and rectal (grey) swabs collected from inoculated donor ferrets (bars; left panels), direct contact ferrets (circles; left panels) and indirect recipient ferrets

housed in separate cages (squares; right panels). Swabs were collected from each ferret every other day until no viral RNA was detected in any of the three

swabs. The dotted line indicates the detection limit.
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Discussion
Here, we show that SARS-CoV-2 is transmitted via contact and
via the air between ferrets. SARS-CoV-2 transmission in experi-
mental animal models has recently also been described by others.
SARS-CoV-2 direct contact transmission between ferrets21 and
hamsters22 was reported, with similar efficiency as observed in
our study. In addition, SARS-CoV-2 was also found to be
transmitted via the air in two out of six ferrets21, and in two out
of six cats23. However, only low levels of SARS-CoV-2 RNA were
detected in nasal washes and feces of the indirect recipient ferrets,
and no infectious virus was isolated21. Furthermore, virus shed-
ding was shorter as compared to the donor animals and only one
out of the two SARS-CoV-2 RNA positive indirect recipient
ferrets seroconverted. Similarly, the transmission via the air
between cats was not efficient. SARS-CoV-2 RNA was detected in
the feces and tissues of one cat at 3 and 11 dpi, respectively and in
nasal washes of another cat, but no infectious virus was isolated.
Both SARS-CoV-2 RNA positive indirect recipient cats ser-
oconverted. In contrast, the present study showed that SARS-
CoV-2 was efficiently transmitted via the air between ferrets, as
demonstrated by long-term virus shedding and the presence of
infectious virus in the indirect recipient animals, which is com-
parable to the transmissibility of pandemic influenza viruses in
the ferret model24.

To date, there is no evidence of fecal-oral transmission of
SARS-CoV-2 in humans. However, the prolonged detection of
RNA in consecutive stool samples25 and the environmental
contamination of sanitary equipment26 may suggest that the
fecal-oral route could be a potential route of transmission of
SARS-CoV-2. Here, no infectious virus was retrieved from any of
the rectal swabs. Despite this, it cannot be fully excluded that
SARS-CoV-2 was also transmitted from donors to direct contact
ferrets partly via the fecal-oral route. In the study by Kim et al.,
ferret fecal material was used to inoculate ferrets, resulting in a
productive infection, indicating that infectious SARS-CoV-2 was
shed in fecal specimens21.

Our experimental system does not allow to assess whether
SARS-CoV-2 was transmitted via the air through respiratory
droplets, aerosols or both, as donor and indirect recipient ferret
cages are placed only 10 cm apart from each other. In a recent
study, SARS-CoV-2 remained infectious in aerosols for at least
3 h after aerosolization at high titers in a rotating drum, com-
parable to SARS-CoV27. Although it is informative to compare
the stability of different respiratory viruses in the air, our study
provides the additional information that infectious SARS-CoV-2
particles can actually be expelled in the air and subsequently

infect recipients. In two other studies, the presence of SARS-CoV-
2 in air samples collected in hospital settings was investigated.
However, no SARS-CoV-2 RNA was detected in the air sampled
in three isolation rooms26, or 10 cm from a symptomatic patient
who was breathing, coughing or speaking28. Nevertheless, RNA
was detected on the air exhaust outlet of one of the isolation
rooms in the first study, suggesting that virus-laden droplets may
be displaced by airflows26.

Here we provide the first experimental evidence that SARS-
CoV-2 can be transmitted efficiently via the air between ferrets,
resulting in a productive infection and the detection of infectious
virus in indirect recipients, as a model for human-to-human
transmission. Although additional experiments on the relative
contribution of respiratory droplets and aerosols to the trans-
mission of SARS-CoV-2 are warranted, the results of this study
corroborate the WHO recommendations about transmission
precautions in health care settings and the social distancing
measures implemented in many countries around the globe to
mitigate the spread29. The ferret transmission model will also be
useful to understand transmission dynamics and the molecular
basis of the transmissibility of SARS-Cov-2 and other betacor-
onaviruses, which, in the context of the current SARS-CoV-2
pandemic and future pandemic threats, is clearly of utmost
importance.

Methods
Virus and cells. SARS-CoV-2 (isolate BetaCoV/Munich/BavPat1/2020; GISAID
ID EPI_ISL 406862; kindly provided by Prof. Dr. C. Drosten) was propagated to
passage 3 on VeroE6 cells (ATCC) in Opti-MEM I (1×)+GlutaMAX (Gibco),
supplemented with penicillin (10,000 IUmL−1, Lonza) and streptomycin
(10,000 IUmL−1, Lonza) at 37 °C in a humidified CO2 incubator. VeroE6 cells
were inoculated at an moi of 0.01. Supernatant was harvested 72 hpi, cleared by
centrifugation and stored at –80 °C. The virus stock was tested mycoplasma
negative and contained 3.15 × 108 genome copies/ml (RdRp gene).

VeroE6 cells were maintained in Dulbecco modified Eagle medium (DMEM,
Gibco) supplemented with 10% foetal calf serum (Greiner), 2 mM of L-glutamine
(Gibco), 10 mM Hepes (Lonza), 1.5 mg ml−1 sodium bicarbonate (NaHCO3,
Lonza), penicillin (10,000 IU/mL) and streptomycin (10,000 IU/mL) at 37 °C in a
humidified CO2 incubator. All work was performed in a Class II Biosafety Cabinet
under BSL-3 conditions at the Erasmus Medical Center.

Ferret transmission experiment. All relevant ethical regulations for animal
testing have been complied with. Animals were housed and experiments were
performed in strict compliance with the Dutch legislation for the protection of
animals used for scientific purposes (2014, implementing EU Directive 2010/63).
Influenza virus, SARS-CoV-2 and Aleutian Disease Virus seronegative 6 month-old
female ferrets (Mustela putorius furo), weighing 700–1000 g, were obtained from a
commercial breeder (TripleF (USA)). Research was conducted under a project
license from the Dutch competent authority (license number AVD1010020174312)
and the study protocol was approved by the institutional Animal Welfare Body

Fig. 3 Antibody responses in donor, direct contact and indirect recipient ferrets 21 dpi/dpe. Sera were collected from the donor, direct contact and

indirect recipient ferrets 21 dpi/dpe and IgG responses were assessed using a SARS-CoV-2 receptor binding site (RBD) ELISA (a) and using a plaque

reduction neutralization assay (b). The dotted lines indicate the detection limit of the assays. PRNT: plaque reduction neutralization titer. OD: optic density.

All presera were tested negative by RBD ELISA and plaque reduction neutralization assay (OD450 0.02–0.05; PRNT < 20).
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(Erasmus MC permit number 17-4312-02). Animal welfare was monitored on a
daily basis. Virus inoculation of ferrets was performed under anesthesia with a
mixture of ketamine/medetomidine (10 and 0.05 mg kg−1, respectively) antag-
onized by atipamezole (0.25 mg kg−1). Swabs were taken under light anesthesia
using ketamine to minimize animal discomfort.

Four donor ferrets were inoculated intranasally with 6 × 105 TCID50 of SARS-CoV-
2 virus diluted in 500 μl of phosphate-buffered saline (PBS) (250 μl instilled dropwise in
each nostril) and were housed individually in a cage. Six hpi, direct contact ferrets were
placed in the same cage as the donor ferrets. One day later, indirect recipient ferrets
were placed in an opposite cage separated by two steel grids, 10 cm apart, to avoid
contact transmission (Supplementary Fig. S1). The air flow rate from the donor to the
recipient ferret was ~100 Lmin−1 and the temperature of the room was between 21 and
22 °C. Throat, nasal and rectal swabs were collected using dry swabs (Coban, cat.
155CS01) every other day, to prevent cross-contamination, until they were negative for
SARS-CoV-2 RNA or maximum for 21 dpi/dpe by determined by real-time RT-qPCR
as described below. Swabs were stored at −80 °C in transport medium (Minimum
Essential Medium Eagle with Hank’s BSS (Lonza), 5 g L−1 lactalbumine enzymatic
hydrolysate (Sigma-Aldrich), 10% glycerol (Sigma-Aldrich), 200Uml−1 of penicillin,
200mgml−1 of streptomycin, 100Uml−1 of polymyxin B sulfate (Sigma-Aldrich), and
250mgml−1 of gentamicin (Life Technologies)) for end-point titration in VeroE6 cells
as described below. Ferrets were euthanized at 21 dpi/dpe by heart puncture under
anaesthesia. Therefore, the exposure duration of direct contact and indirect recipient
ferrets was 21 and 20 days respectively. Blood was collected in serum-separating tubes
(Greiner) and processed according to the manufacturer’s instructions. Sera were heated
for 1 h at 60 °C and used for the detection of specific antibodies against SARS-CoV-2 as
described below. All animal experiments were performed in class III isolators in a
negatively pressurized ABSL3+ facility.

RNA isolation and RT-qPCR. RNA was isolated using an in-housed developed high-
throughput method in a 96-well format. Sixty μl of sample were added to 90 μl of
MagNA Pure 96 External Lysis Buffer (Roche). A known concentration of phocine
distemper virus (PDV) was added to the sample as internal control for the RNA
extraction30. The 150 μl of sample/lysis buffer was added to a well of a 96-well plate
containing 50 μl of magnetic beads (AMPure XP, Beckman Coulter). After thorough
mixing by pipetting up and down at least 10 times, the plate was incubated for
15minutes (min) at room temperature. The plate was then placed on a magnetic
block (DynaMag™-96 Side Skirted Magnet (ThermoFisher Scientific)) and incubated
for 3 min to allow the displacement of the beads towards the side of the magnet.
Supernatants were carefully removed without touching the beads and beads were
washed three times for 30 seconds (sec) at room temperature with 200 μl/well of 70%
ethanol. After the last wash, a 10 μl multi-channel pipet was used to remove residual
ethanol. Plates were air-dried for 6min at room temperature. Plates were removed
from the magnetic block and 30 μl of PCR grade water was added to each well and
mixed by pipetting up and down 10 times. Plates were incubated for 5 min at room
temperature and then placed back on the magnetic block for 2 min to allow
separation of the beads. Supernatants were pipetted in a new plate and RNA was kept
at 4 °C. Eight μl of RNA were directly pipetted into a mix for RT-qPCR, containing
0.4 μl of primers and probe mix targeting the E gene of SARS-CoV-2 (forward primer:
5′-ACAGGTACGTTAATAGTTAATAGCGT-3′; reverse primer: 5′-ATATTGCAGC
AGTACGCACACA-3′; probe: 5′-FAM-ACACTAGCCATCCTTACTGCGCTTCG-B
HQ-3′)31, 0.4 μl of primers and probe mix targeting the HA gene of PDV (forward
primer: 5′-CGGGTGCCTTTTACAAGAAC-3′; reverse primer: 5′-TTCTTTCCTCA
ACCTCGTCC-3′, probe: 5′-Cy5-ATGCAAGGGCCAATTCTTCCAAGTT-BHQ-3′),
4 μl of TaqMan™ Fast Virus 1-Step Master Mix (ThermoFisher Scientific) and 6.2 μl
of PCR grade water. Amplification and detection was performed on an ABI7700
(ThermoFischer Scientific) using the following program: 5min 50 °C, 20” 95 °C,
[3” 95 °C, 31” 58 °C] × 45 cycles.

Virus titrations. Throat, nasal and rectal swabs were titrated in quadruplicates in
VeroE6 cells. Briefly, confluent VeroE6 cells were inoculated with 10-fold serial
dilutions of sample in Opti-MEM I (1×)+GlutaMAX, supplemented with peni-
cillin (10,000 IUmL−1), streptomycin (10,000 IUmL−1). At one hpi, the first three
dilutions were washed twice with media and fresh media was subsequently added
to the whole plate. At six dpi, virus positivity was assessed by reading out cyto-
pathic effects. Infectious virus titers (TCID50/ml) were calculated from four
replicates of each throat, nasal and rectal swabs and from 24 replicates of the virus
stock using the Spearman–Karber method.

Serology. Pre-sera (collected before the start of the experiment) and sera collected
at 21 dpi/dpe were tested for SARS-CoV-2 antibodies using a receptor binding
domain (RBD) enzyme-linked immunosorbent assay (ELISA)32. ELISA plates were
coated overnight at 4 °C with 100 ng/well of in-housed produced SARS-CoV-2
RBD diluted in PBS. After blocking with BlockerTM BLOTTO in TBS (Life tech-
nologies)+ 0.01% of Tween-20 (Sigma-Aldrich), heat-inactivated sera (diluted
1:100) were added and incubated for 1 h at 37 °C. Bound antibodies were detected
using horseradish peroxidase (HRP)-labelled goat anti-ferret IgG (1:10,000;
ab112770, Abcam) and 3,3′,5,5′-Tetramethylbenzidine (TMB, Life Technologies) as
a substrate. The absorbance of each sample was measured at 450 nm.

Additionally, presera and sera collected at 21 dpi/dpe were tested for the
presence of SARS-CoV-2 neutralizing antibodies using a plaque reduction
neutralization test (PRNT)32. Heat-inactivated sera were two-fold serially diluted in
DMEM supplemented with NaHCO3, HEPES buffer, penicillin, streptomycin, and
1% fetal bovine serum, starting at a dilution of 1:10 in 50 μL. Fifty μL of diluted
virus suspension (400 plaque-forming units) were added and the mixture was
incubated for 1 h at 37 °C. The mixtures were then placed on VeroE6 cells and
incubated for 8 h. After incubation, cells were fixed with 4% formaldehyde/
phosphate-buffered saline (PBS) and stained with a monoclonal mouse anti-SARS-
CoV nucleocapsid antibody (1:10,000; 40143-MM05, Sino Biological), and a
secondary HRP-labeled goat anti-mouse IgG1 (1:2000; 1071-05, Southern Biotech).
HRP was revealed using the 3,3′,5,5′-tetramethylbenzidine substrate (True Blue;
Kirkegaard and Perry Laboratories) and the number of infected cells per well was
assessed by using ImmunoSpot Image Analyzer (CTL Europe GmbH). The plaque
reduction neutralization titer (PRNT) was determined as the reciprocal of the
highest dilution resulting in a reduction of >90% of the number of infected cells.
The detection limit of the assay was <20.

Whole genome sequencing using MinION. A SARS-CoV-2 specific multiplex
PCR was performed as recently described33. In short, primers for 86 overlapping
amplicons spanning the entire genome were designed using primal scheme (http://
primal.zibraproject.org/.) (for primer sequences, see Supplementary Table 3). The
amplicon length was set to 500 bp with 75 bp overlap between the different
amplicons. The libraries were generated using the native barcode kits from
Nanopore (EXP-NBD104 and EXP-NBD114 and SQK-LSK109) and sequenced on
a MinION R9.4 flow cell multiplexing up to 24 samples per sequence run according
to the manufacturer’s instructions.

The resulting raw sequence data were demultiplexed using Porechop (https://
github.com/rrwick/Porechop). FASTQ files were then imported to the CLC
Genomics Workbench v20.0.3 (QIAGEN) for analysis. First, sequences were
trimmed off 33 base pairs on both the 3′ and 5′ ends to remove primer sequences
and also using a Phred quality score threshold of 8. The trimmed sequences were
mapped to the reference sequence (GISAID ID EPI_ISL 406862) with the following
default parameters (match score= 1, mismatch cost= 2, insertion cost= 3, length
fraction= 0.5 and similarity fraction= 8) and consensus genomes were extracted.

Next-generation sequencing. Amplicons were generated by a SARS-CoV-2 spe-
cific multiplex PCR as described above for the whole genome sequencing.
Amplicons were purified with 0.8x AMPure XP beads (Beckman Coulter) and
100 ng of DNA was converted into paired-end Illumina sequencing libraries using
KAPA HyperPlus library preparation kit (Roche), following the manufacturer’s
recommendations, to enable subsequent sequencing of multiple libraries in a single
Illumina V3 MiSeq flowcell (2×300 cycles). Multiplex Adaptors (KAPA Unique
Dual-Indexed Adapters Kit (Roche)) with indexes were used. FASTQ files were
then imported to the CLC Genomics Workbench v20.0.3 (QIAGEN) for analysis.
First, sequences were trimmed off 33 base pairs on both the 3′ and 5′ ends to
remove primer sequences and also using Phred quality score threshold of 20. The
trimmed sequences were mapped to the reference sequence (GISAID ID EPI_ISL
406862) with the following default parameters (match score= 1, mismatch
cost= 2, insertion cost= 3, length fraction= 0.5 and similarity fraction= 8).
Variants were called with the Basic Variant Detection tool. Single nucleotide
polymorphisms that were present in both the forward and reverse reads with a
200x minimum coverage and a minimum variant count of 10 (5%) were called.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
All data are available from the corresponding author (S.H.) on reasonable request.

Porechop, which was used to demultiplex data from the MinION and Illumina

sequencing, is available on github at: https://github.com/rrwick/Porechop. The source

data underlying Figs. 2, 3, Supplementary Figs. 2 and 3 are provided as a Source data

file. The sequencing raw data were deposited in the NCBI Sequence Read Archive (SRA)

under the BioProject PRJNA641813. Source data are provided with this paper.
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