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A human monoclonal antibody blocking
SARS-CoV-2 infection
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The emergence of the novel human coronavirus SARS-CoV-2 in Wuhan, China has caused a
worldwide epidemic of respiratory disease (COVID-19). Vaccines and targeted therapeutics
for treatment of this disease are currently lacking. Here we report a human monoclonal
antibody that neutralizes SARS-CoV-2 (and SARS-CoV) in cell culture. This cross-
neutralizing antibody targets a communal epitope on these viruses and may offer potential
for prevention and treatment of COVID-19.
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he severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) is the etiological agent of the coronavirus

induced disease 19 (COVID-19) that emerged in China late
2019 and causing a pandemic!. As of 19 April 2020, 2,241,778
cases have been reported worldwide, of which 152,551 (6.8%)
succumbed to the infection?. SARS-CoV-2 belongs to the Sar-
becovirus subgenus (genus Betacoronavirus, family Coronavir-
idae)® together with SARS-CoV that emerged in 2002 causing
~8000 infections with a lethality of 10%. Both viruses crossed
species barriers from an animal reservoir and can cause a life-
threatening respiratory illness in humans. Presently, no approved
targeted therapeutics are available for COVID-19. Monoclonal
antibodies targeting vulnerable sites on viral surface proteins are
increasingly recognized as a promising class of drugs against
infectious diseases and have shown therapeutic efficacy for a
number of viruses°.

Coronavirus-neutralizing antibodies primarily target the tri-
meric spike (S) glycoproteins on the viral surface that mediate
entry into host cells. The S protein has two functional subunits
that mediate cell attachment (the S1 subunit, existing of four core
domains S1, through S1p) and fusion of the viral and cellular
membrane (the S2 subunit). Potent neutralizing antibodies often
target the receptor interaction site in S1, disabling receptor
interactions®~!1. The spike proteins of SARS-CoV-2 (SARS2-S;
1273 residues, strain Wuhan-Hu-1) and SARS-CoV (SARS-S,
1255 residues, strain Urbani) are 77.5% identical by primary
amino acid sequence, are structurally very similar!?-1> and
commonly bind the human angiotensin coverting enzyme 2
(ACE2) protein as a host receptor!1¢ through their S1 domain.
Receptor interaction is known to trigger irreversible conforma-
tional changes in coronavirus spike proteins enabling membrane
fusion!”.

Results

Identification of SARS-CoV-2 reactive antibodies. In order to
identify SARS-CoV-2-neutralizing antibodies, ELISA-(cross)
reactivity was assessed of antibody-containing supernatants of a
collection of 51 SARS-S hybridoma’s derived from immunized
transgenic H2L2 mice that encode chimeric immunoglobulins
with human variable heavy and light chains and constant regions
of rat origin (Supplementary Table 1). Four of 51 SARS-S
hybridoma supernatants displayed ELISA-cross-reactivity with
the SARS2-S1 subunit (S residues 1-681; Supplementary Table 1),
of which one (47D11) exhibited cross-neutralizing activity of
SARS-S and SARS2-S pseudotyped VSV infection. The chimeric
47D11 H2L2 antibody was reformatted to a fully human
immunoglobulin, by cloning of the human variable heavy and
light chain regions into a human IgGl isotype backbone. The
recombinantly expressed human 47D11 was used for further
characterization.

Antiviral and biochemical properties of the human mAb
47D11. The human 47D11 antibody binds to cells expressing the
full-length spike proteins of SARS-CoV and SARS-CoV-2
(Fig. 1a). The 47D11 antibody was found to potently inhibit
infection of VeroE6 cells with SARS-S and SARS2-S pseudotyped
VSV with ICs, values of 0.061 and 0.061 pug/ml (Fig. 1b),
respectively. Authentic infection of VeroE6 cells with SARS-CoV
and SARS-CoV-2 was neutralized with ICs, values of 0.19 and
0.57 pg/ml (Fig. 1c). Using ELISA 47D11 was shown to target the
S1p receptor-binding domain (RBD) of SARS-S and SARS2-S.
47D11 bound the Sly of both viruses with similar affinities as
shown by the ELISA-based half maximal effective concentration
(ECs)) values (0.02 and 0.03 pg/ml, respectively; Fig. 2a). ELISA-
based binding affinity of 47D11 for the spike ectodomain (Sec,)

of SARS-CoV was higher relative to that of SARS-CoV-2 (ECs
values: 0.018 and 0.15 pg/ml, respectively), despite equimolar
antigen coating (Supplementary Fig. 1). Congruent with the
ELISA-reactivities, measurement of binding kinetics of 47D11 by
biolayer interferometry showed that 47D11 binds SARS-S, with
higher affinity (equilibrium dissociation constant [Kp]: 0.745 nM)
relative to SARS2-S., (Kp 10.8 nM), whereas affinity for SARS-
S1p and SARS2-S1p was in a similar range (16.1 and 9.6 nM,
respectively, Supplementary Fig. 2). This difference may originate
from differences in epitope accessibility in SARS-S versus SARS2-
S, as domain B can adopt a closed and open conformation in the
prefusion spike homotrimer!>13. Remarkably, binding of 47D11
to SARS-S15 and SARS2-S1p did not compete with S1p binding to
the ACE2 receptor expressed at the cell surface as shown by flow
cytometry (Fig. 2b; Supplementary Fig. 3) nor with S, and Slg
binding to soluble ACE2 in solid-phase based assay (Supple-
mentary Fig. 4), whereas two SARS-S1 specific antibodies 35F4
and 43C6 that neutralize SARS-S (but not SARS2-S) pseudotyped
VSV infection (Supplementary Fig. 5) do block binding of SARS-
Secto and SARS-S1p to ACE2. Using a trypsin-triggered cell-cell
fusion assay, 47D11 was shown to impair SARS-S and SARS2-S
mediated syncytia formation (Supplementary Fig. 6). Our data
show that 47D11 neutralizes SARS-CoV and SARS-CoV-2
through a yet unknown mechanism that is different from
receptor-binding interference. Alternative mechanisms of cor-
onavirus neutralization by RBD-targeting antibodies have been
reported including spike inactivation through antibody-induced
destabilization of its prefusion structure!”, which may also apply
for 47D11.

47D11 targets a conserved epitope in the SARS2-S-S1p domain.
The SARS2-S1y RBD (residues 338-506) consists of a core
domain and a receptor-binding subdomain (residues 438-498)
looping out from the antiparallel betasheet core domain structure
that directly engages the receptor. Compared to the Sly core
domain, the protein sequence identity of the Sly receptor inter-
acting subdomain of SARS-S and SARS2-S is substantially lower
(46.7% versus 86.3%; Supplementary Fig. 7 and Fig. 2c). Potent
neutralizing antibodies often target this receptor-binding sub-
domain. However, due to common variations in this subdomain,
these antibodies are often virus-specific and bind and neutralize
related viruses poorly!®19. The cross-reactive nature of 47D11
indicates that the antibody is more likely to target the conserved
core structure of the Sly RBD. Interestingly, the SARS-CoV-
neutralizing antibody CR3022 also targeting the S1y core domain
was recently found to cross-bind SARS-CoV-2, though its ability
to cross-neutralize SARS-CoV-2 infection was not reported!8-20,
S1p binding by 47D11 further away from the receptor-binding
interface explains its inability to compromise spike-receptor
interaction and opens possibilities for combination treatments
with non-competing, potent neutralizing antibodies that target
the receptor-binding subdomain. Antibody combinations target-
ing non-overlapping epitopes may act synergistically resulting in
lower dosage and may mitigate risk of immune escape20.

In conclusion, this is the first report of a (human) monoclonal
antibody that neutralizes SARS-CoV-2. 47D11 binds a conserved
epitope on the spike RBD explaining its ability to cross-neutralize
SARS-CoV and SARS-CoV-2, using a mechanism that is
independent of receptor-binding inhibition. This antibody will
be useful for development of antigen detection tests and
serological assays targeting SARS-CoV-2. Neutralizing antibodies
can alter the course of infection in the infected host supporting
virus clearance or protect an uninfected host that is exposed to the
virus®. Hence, this antibody—either alone or in combination—
offers the potential to prevent and/or treat COVID-19, and
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Fig. 1 47D11 neutralizes SARS-CoV and SARS-CoV-2. a Binding of 47D11 to HEK-293T cells expressing GFP-tagged spike proteins of SARS-CoV and
SARS-CoV-2 detected by immunofluorescence assay. The human mAb 7.7G6 targeting the MERS-CoV S1g spike domain was taken along as a negative
control, cell nuclei in the overlay images are visualized with DAPI. b Antibody-mediated neutralization of infection of luciferase-encoding VSV particles
pseudotyped with spike proteins of SARS-CoV and SARS-CoV-2. Pseudotyped VSV particles pre-incubated with antibodies at indicated concentrations
(see Methods) were used to infect VeroE6 cells and luciferase activities in cell lysates were determined at 24 h post transduction to calculate infection (%)
relative to non-antibody-treated controls. The average + SD from at least three independent experiments with technical triplicates is shown. Iso-CTRL: an
anti-Strep-tag human monoclonal antibody™ was used as an antibody isotype control. ¢ Antibody-mediated neutralization of SARS-CoV and SARS-CoV-2
infection on VeroE6 cells. The experiment was performed with triplicate samples, the average + SD is shown. Source data are provided as a Source
Data file.
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Fig. 2 The neutralizing 47D11 mAb binds SARS1-S and SARS2-S RBD without eliminating receptor interaction. a ELISA-binding curves of 47D11to Secto
(upper panel) or S14 and S1g (RBD: receptor-binding domain) (lower panel) of SARS-S and SARS2-S coated at equimolar concentrations. The average + SD
from two independent experiments with technical duplicates is shown. b Interference of antibodies with binding of the S-S1z of SARS-CoV and SARS-CoV-
2 to cell surface ACE2-GFP analyzed by flow cytometry. Prior to cell binding, S1z was mixed with mAb (mAbs 47D11, 35F4, 43Cé6, 7.7G6, in H2L2 format)
with indicated specificity in a mAb:S1g molar ratio of 8:1 (see Supplementary Fig. 3 for an extensive analysis using different mAb:S1g molar ratio’s). Cells are
analyzed for (ACE2-)GFP expression (x axis) and S1g binding (y axis). Percentages of cells that scored negative, single positive, or double positive are
shown in each quadrant. Experiment was done twice, a representative experiment is shown. ¢ Divergence in surface residues in S1g of SARS-CoV and
SARS-CoV-2. Upper panel: Structure of the SARS-CoV spike protein S1g RBD in complex with human ACE2 receptor (PDB: 2AJF)24. ACE2 (wheat color) is
visualized in ribbon presentation. The S1g core domain (blue) and subdomain (orange) are displayed in surface presentation using PyMOL, and are
visualized with the same colors in the linear diagram of the spike protein above, with positions of the S1 and S2 subunits, the S ectodomain (Secto), the S1
domains S1a_p and the transmembrane domain (TM) indicated. Lower panel: similar as panel above with surface residues on S1z of SARS-CoV that are at
variance with SARS-CoV-2 colorored in white. Source data are provided as a Source Data file.

possibly also other future emerging diseases in humans caused by =~ Q696P8) were expressed transiently in HEK-293T cells with a C-terminal tri-
viruses from the Sarbecovirus subgenus. merization motif and Strep-tag using the pCAGGS expression plasmid. Similarly,
PCAGGS expression vectors encoding S1 or its subdomains of SARS-CoV (S1,
residues 1-676; S1 5, residues 1-302; S1g, residues, 325-533), and SARS-CoV-2 (S1,
Methods residues 1-682; S14, residues 1-294; Slp, residues 329-538) C-terminally tagged
Expression and purification of coronavirus spike proteins. Coronavirus spike with Fc domain of human or mouse IgG or strep-tag were generated as described
ectodomains (Seco) of SARS-CoV-2 (residues 1-1213; strain Wuhan-Hu-1; Gen- before2l. Coronavirus spike ectodomain of MERS-CoV (residues 19-1262; strain
Bank: QHD43416.1) and HCoV-OC43 (residues 15-1263; strain Paris; UniProtKB: ~ EMC; GenBank: YP_009047204.1) and SARS-CoV (residues 15-1182; strain
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Urbani; GeneBank: AY278741.1) fused with an C-terminal trimerization motif, a
thrombin cleavage site and a strep-tag purification tag were in-frame cloned into
pMT\Bip\V5\His expression vector. Furin cleavage site at the S1/S2 junction was
mutated to prevent cleavage by furin at this position. Spike ectodomains were
stably produced in Drosophila S2 cell line, as previously described?2. Recombinant
proteins were affinity purified from the culture supernatant by protein-A sepharose
beads (GE Healthcare, Catalog# 17-0780-01) or streptactin beads (IBA, Catalog# 2-
1201-010) purification. Purity and integrity of all purified recombinant proteins
was checked by coomassie stained SDS-PAGE.

Generation of H2L2 mAbs. H2L2 mice were sequentially immunized in 2 weeks
intervals with purified S, of different CoVs in the following order: HCoV-OC43,
SARS-CoV, MERS-CoV, HCoV-OC43, SARS-CoV, and MERS-CoV. Antigens
were injected at 20-25 pug/mouse using Stimune Adjuvant (Prionics) freshly pre-
pared according to the manufacturer's instruction for first injection, whereas
boosting was done using Ribi (Sigma) adjuvant. Injections were done sub-
cutaneously into the left and right groin each (50 ul) and 100 ul intraperitoneally.
Four days after the last injection, spleen and lymph nodes are harvested, and
hybridomas made by standard method using SP 2/0 myeloma cell line
(ATCC#CRL-1581) as a fusion partner. Hybridomas were screened in antigen-
specific ELISA and those selected for further development, subcloned and pro-
duced on a small scale (100 ml of medium). For this purpose, hybridomas are
cultured in serum- and protein-free medium for hybridoma culturing (PFHM-II
(1x), Gibco) with addition of non-essential amino acids 100x NEAA, Biowhittaker
Lonza, Catalog# BE13-114E). H2L2 antibodies were purified from hybridoma
culture supernatants using Protein-G affinity chromatography (Merck

KGaA, Catalog# 16-266). Purified antibodies were stored at 4°C until use. The
animal studies were done under the animal permit AVD101002016512, approved
by the CCD (central committee for animal experiments).

Production of human monoclonal antibody 47D11. For recombinant human
mAb production, the cDNA’s encoding the 47D11 H2L2 mAb variable regions
of the heavy and light chains were cloned into expression plasmids containing
the human IgG1 heavy chain and Ig kappa light chain constant regions,
respectively (InvivoGen). Both plasmids contain the interleukin-2 signal
sequence to enable efficient secretion of recombinant antibodies. Recombinant
human 47D11 mAb and previously described isotype control (anti-strep-tag
mAb) or 7.7G6 mAb were produced in HEK-293T cells following transfection
with pairs of the IgG1 heavy and light chain expression plasmids according to
protocols from InvivoGen. Human antibodies were purified from cell culture
supernatants using Protein-A affinity chromatography. Purified antibodies were
stored at 4°C until use.

Immunofluorescence microscopy. Antibody binding to cell surface spike proteins
of SARS-CoV, SARS-CoV-2, and MERS-CoV was measured by immuno-
fluoresence microscopy. HEK-293T (ATCC#CRL-3216) cells seeded on glass slides
were transfected with plasmids encoding SARS-S, SARS2-S, or MERS-S - C-
terminally fused to the green fluorescence protein (GFP) using Lipofectamine 2000
(Invitrogen, Catalog# 11668019). Two days post transfection, cells were fixed by
incubation with 2% paraformaldehyde in phosphate-buffered saline (PBS) for

20 min at room temperature and stained for nuclei with 4,6-diamidino-2-pheny-
lindole (Sigma, Catalog# D9542). Cells were subsequently incubated with mAbs at
a concentration of 10 pg/ml for 1 hour at room temperature, followed by incuba-
tion with 1:200 diluted Alexa Fluor 594 conjugated goat anti-human IgG antibodies
(Invitrogen, Thermo Fisher Scientific, Catalog# A-11014) for 45 min at room
temperature. The fluorescence images were recorded using a Leica Spell confocal
microscope.

Flow cytometry-based receptor-binding inhibition assay. Antibody interference
of S1y binding to human ACE2 receptor on the cell surface was measured by flow
cytometry. HEK-293T cells were seeded at a density of 2.5 x 10° cells per ml in a
T75 flask. After reaching 70~80% confluency, cells were transfected with an
expression plasmid encoding human ACE2 - C-terminally fused to the GFP using
Lipofectamine 2000 (Invitrogen). Two days post transfection, cells were dissociated
by cell dissociation solution (Sigma-aldrich, Merck KGaA; Catalog# C5914). In all,
2.5 ug/ml of human Fc tagged SARS-S1y and SARS2-S1 was pre-incubated with
mAD at the indicated mAb:S1g molar ratios for 1 hour on ice and subjected to flow
cytometry. Single-cell suspensions in FACS buffer were centrifuged at 400 x g for
10 min. Cells were subsequently incubated with S1y and mAb mixture for 1 hour
on ice, followed by incubation with 1:200 diluted Alexa Fluor 594 conjugated goat
anti-human IgG antibodies (Invitrogen, Thermo Fisher Scientific, Catalog# A-
11014) for 45 min at room temperature. Cells were subjected to flow cytometric
analysis with a CytoFLEX Flow Cytometer (Beckman Coulter). The results were
analyzed by FlowJo (version 10). FSC/SSC gates were used to select mononuclear
cells. Control antibody staining was used to define positive/negative cell
populations.

Pseudotyped virus neutralization assay. Production of VSV pseudotyped with
SARS-S and SARS2-S was performed as described previously with some

adaptations!!. Briefly, HEK-293T cells were transfected with pPCAGGS expression
vectors encoding SARS-S or SARS2-S carrying a 28- or 18-a.a. cytoplasmic tail
truncation, respectively. One day post transfection, cells were infected with the
VSV-G pseudotyped VSVAG bearing the firefly (Photinus pyralis) luciferase
reporter gene. Twenty-four hours later, supernatants containing SARS-S/SARS2-S
pseudotyped VSV particles were harvested and titrated on African green monkey
kidney VeroE6 (ATCC#CRL-1586) cells. In the virus neutralization assay, mAbs
were fourfold serially diluted at two times the desired final concentration in DMEM
supplemented with 1% fetal calf serum (Bodinco), 100 U/ml Penicillin and 100 ug/
ml Streptomycin (Lonza, Catalog# 17-602E). Diluted mAbs were incubated with an
equal volume of pseudotyped VSV particles for 1 hour at room temperature,
inoculated on confluent VeroE6 monolayers in 96-well plate, and further incubated
at 37 °C for 24 hours. Luciferase activity was measured on a Berthold Centro LB
960 plate luminometer using D-luciferin as a substrate (Promega). The percentage
of infectivity was calculated as ratio of luciferase readout in the presence of mAbs
normalized to luciferase readout in the absence of mAb. The half maximal inhi-
bitory concentrations (ICs,) were determined using 4-parameter logistic regression
(GraphPad Prism version 8).

Virus neutralization assay. Neutralization of authentic SARS-CoV and SARS-
CoV-2 was performed using a plaque reduction neutralization test as described
earlier, with some modifications?3. In brief, mAbs were twofold serially diluted in
culture medium starting at 40 pg/ml and 50 pl was mixed with 50 pl (500 TCIDs,)
SARS-CoV or SARS-CoV-2 for 1 hour. The mixture was then added to VeroE6
cells and incubated for 1 hour, after which the cells were washed and further
incubated in medium for 8 hours. The cells were then fixed and stained using a
rabbit anti-SARS-CoV serum (Sino Biological) and a secondary peroxidase-labeled
goat anti-rabbit IgG (Dako). The signal was developed using a precipitate forming
TMB substrate (True Blue, KPL) and the number of infected cells per well were
counted using the ImmunoSpot Image analyzer (CTL Europe GmbH). The half
maximal inhibitory concentrations (ICs,) were determined using 4-parameter
logistic regression (GraphPad Prism version 8).

ELISA analysis of antibody binding to CoV spike antigens. NUNC Maxisorp
plates (Thermo Scientific) were coated with equimolar antigen amounts at 4 °C
overnight. Plates were washed three times with PBS containing 0.05% Tween-20
and blocked with 3% bovine serum albumin (Bio-Connect) in PBS containing 0.1%
Tween-20 at room temperature for 2 hours. Fourfolds serial dilutions of mAbs
starting at 10 ug/ml (diluted in blocking buffer) were added and plates were
incubated for 1 hour at room temperature. Plates were washed three times and
incubated with horseradish peroxidase (HRP)-conjugated goat anti-human sec-
ondary antibody (ITK Southern Biotech) diluted 1:2000 in blocking buffer for

1 hour at room temperature. An HRP-conjugated anti-StrepMADb (IBA, Catalog# 2-
1509-001) antibody was used to corroborate equimolar coating of the strep-tagged
spike antigens. HRP activity was measured at 450 nanometer using tetra-
methylbenzidine substrate (BioFX) and an ELISA plate reader (EL-808, Biotek).
Half-maximum effective concentration (ECsp) binding values were calculated by
non-linear regression analysis on the binding curves using GraphPad Prism
(version 8).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Data underlying Figs. 1b, ¢, 2a, Supplementary Figs. 1, 2, 4, and 5 are provided as
Source Data files. Antibody and antibody sequences are available (by contacting
Vincent Rijsman from the Utrecht University Research Support Office; V.M.C.
Rijsman@uu.nl) for research purposes only under an MTA, which allows the use of
the antibody sequences for non-commercial purposes but not their disclosure to third
parties. All other data are available from the corresponding author upon reasonable
requests.
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