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Integrated proteogenomic deep sequencing and
analytics accurately identify non-canonical peptides
in tumor immunopeptidomes
Chloe Chong1,2, Markus Müller 3, HuiSong Pak1,2, Dermot Harnett4, Florian Huber1,2, Delphine Grun5,

Marion Leleu5,6, Aymeric Auger2, Marion Arnaud1,2, Brian J. Stevenson3, Justine Michaux1,2, Ilija Bilic 4,

Antje Hirsekorn4, Lorenzo Calviello4, Laia Simó-Riudalbas5, Evarist Planet5, Jan Lubiński7,8, Marta Bryśkiewicz7,8,

Maciej Wiznerowicz 8,9, Ioannis Xenarios1,10,11, Lin Zhang 12,13, Didier Trono5, Alexandre Harari 1,2,

Uwe Ohler 4,14, George Coukos 1,2 & Michal Bassani-Sternberg 1,2✉

Efforts to precisely identify tumor human leukocyte antigen (HLA) bound peptides capable of

mediating T cell-based tumor rejection still face important challenges. Recent studies suggest

that non-canonical tumor-specific HLA peptides derived from annotated non-coding regions

could elicit anti-tumor immune responses. However, sensitive and accurate mass spectro-

metry (MS)-based proteogenomics approaches are required to robustly identify these non-

canonical peptides. We present an MS-based analytical approach that characterizes the non-

canonical tumor HLA peptide repertoire, by incorporating whole exome sequencing, bulk and

single-cell transcriptomics, ribosome profiling, and two MS/MS search tools in combination.

This approach results in the accurate identification of hundreds of shared and tumor-specific

non-canonical HLA peptides, including an immunogenic peptide derived from an open

reading frame downstream of the melanoma stem cell marker gene ABCB5. These findings

hold great promise for the discovery of previously unknown tumor antigens for cancer

immunotherapy.
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T
he efficacy of T cell-based cancer immunotherapy relies on
the recognition of human leukocyte antigen (HLA)-bound
peptides (HLAp) presented on the surface of cancer cells.

Characterizing and classifying immunogenic epitopes is an ongoing
endeavor for developing cancer vaccines and adoptive T cell-based
immunotherapies. Neoantigens, peptides derived from mutated
proteins, are absolutely tumor-specific yet mostly patient-specific,
and are implicated in the efficacy of checkpoint blockade immu-
notherapy1–4. In contrast to tumor-specific private neoantigens,
tumor-associated antigens (TAAs) that are shared across patients
may be more attractive for immunotherapy due to the more effi-
cient and rapid treatment of a greater number of patients5–7. Recent
studies have focused on the discovery of non-canonical antigens,
which are antigens derived from the aberrant translation of pre-
sumed non-coding transcripts and/or the aberrant or deregulated
transcription of non-coding genomic regions, untranslated regions
(UTRs), or genomically altered frames. Such aberrant transcription
and translation events lead to the generation of peptide sequences
that are missing in conventional protein sequence repositories8,9. If
such translation events lead to the presentation of tumor-specific
and immunogenic HLA ligands, these occurrences could sub-
stantially expand the repertoire of targetable epitopes for cancer
immunotherapy8–19. Currently, ~1% of the entire genome is
annotated as protein-coding regions, yet 75% of the genome can be
transcribed and theoretically translated, potentially offering a pool
of previously unexplored peptide targets20.

To date, mass spectrometry (MS) is the only analytical metho-
dology that allows the direct identification of the HLAp repertoire
in vivo21. Often, MS-based immunopeptidomic discoveries are
limited to the standard, available protein sequence database, usually
containing only annotated proteome-derived sequences. Recently,
several studies have included protein sequences derived from the
translation of transcripts identified from RNA-Seq, or ribosome
profiling, in MS-based searches8,22–27. Overall, these studies warrant
further development regarding many key aspects. Importantly,
elevated false discovery rates (FDRs) for the non-canonical space
can occur when MS reference data are populated with polypeptide
sequences derived from all potential three- or six-frame translations
of transcribed regions28. Several studies did not compute FDRs,
while others applied sample-specific thresholds for FDR
calculation23,27. Furthermore, rigorous experimental confirmations
of such non-canonical sequences by targeted MS is currently
lacking. Additionally, current workflows often introduce a risk of
bias by pre-filtering peptide identification based on HLA binding
predictions23,27. Owing to the above limitations and to an a priori
restriction of the search space to tumor-specific non-canonical
polypeptide sequences23, the overall biogenesis of non-canonical
HLA-binding peptides (noncHLAp) remains to date understudied.

Here, we describe a proteogenomic approach that allows iden-
tifying tumor-specific noncHLAp derived from the translation of
presumed non-coding transcripts, such as from (long) non-coding
genes (lncRNAs), pseudogenes, UTRs of coding genes, and trans-
posable elements (TEs). We perform immunopeptidomics analyses
while integrating tumor exome, bulk and single-cell transcriptome
(scRNA-Seq), and whole translatome data. We then implement
NewAnce, a new analytical approach for non-canonical element
identification that combines two MS/MS search tools, along with
group-specific FDR calculations to identify noncHLAp. Altogether,
this approach unveils a large number of unique noncHLAp, high-
lighting the potential of this approach to increase the range of
targetable epitopes in cancer immunotherapy.

Results
A comprehensive strategy for noncHLAp identification. MS-
based immunopeptidomics was performed on seven patient-

derived melanoma cell lines and two pairs of lung cancer samples
with matched normal tissues (Fig. 1a), which resulted in the
identification of 60,320 unique proteome-derived HLA class-I
bound peptides (protHLAIp) and 11,256 proteome-derived HLA
class-II bound peptides (protHLAIIp). For the exploration and
identification of non-canonical peptides presented naturally
in vivo, whole-exome and RNA-Seq data were generated from all
samples (Fig. 1a and Supplementary Data 1). We inferred
expression of presumed non-coding genes, such as lncRNAs,
pseudogenes and other non-protein-coding genes, from indivi-
dual samples’ RNA-Seq data. In addition, we applied an analytical
pipeline to assign TE-derived RNA-Seq reads to single loci (see
Methods section for more details), resulting in expression data for
transcribed TEs. All three forward open reading frames (ORFs)
(stop-to-stop) in the above transcripts were subsequently in silico
translated into polypeptide sequences. For every sample, the
polypeptide sequences were concatenated to personalized cano-
nical proteome references containing allelic variant information
from patient tumor exome data. Finally, we searched the MS
immunopeptidomics data against these personalized reference
databases.

Database size affects false positives in noncHLAp detection. In
silico translation of transcripts in three forward reading frames
results in a large number of potential polypeptide sequences. In
proteogenomics, searching MS data against such inflated protein
reference databases may propagate false positives28,29. Hence, our
first investigative step was to understand the impact of database
size on the level of false positives in immunopeptidomics datasets.
We searched reference databases containing canonical (i.e.,
UniProt) and our non-canonical polypeptide sequences with a
single search tool (MaxQuant) and at a global 1% FDR. The
accuracy was assessed by assigning HLA binding prediction
scores to the MS-identified peptides with MixMHCpred30. We
reasoned that non-canonical HLA class-I bound peptides (non-
cHLAIp) should follow the same binding rules as protHLAIp31.
First, we compared a generic non-canonical protein sequence
database derived from the three forward frame (three-frame)
translation of all non-coding transcripts from ENCODE32 with a
sample-specific protein sequence database derived from the three-
frame translation of lncRNAs and pseudogenes from the RNA-
Seq data using an expression cutoff value of > 0 fragments per
kilobase of transcript per million mapped reads (FPKM). Addi-
tional databases of decreasing size were assembled by retaining
only the sequences that originated from more highly expressed
genes (FPKM > 2, > 5 or > 10). Reducing the size of the database
by personalizing and focusing on highly expressed genes led to an
increase in the percentage of noncHLAIp that were predicted to
bind to their respective HLA alleles (MixMHCpred p-value ≤
0.05) (Fig. 1b). Restricting the database to polypeptide sequences
originating from highly expressed genes should, on the one hand,
improve the accuracy of MS-based non-canonical peptide iden-
tification, while on the other hand, lead to the potential loss of
peptides encoded by lower-expressing transcripts. Hence, in this
study, we included all non-coding transcripts with FPKM > 0 to
circumvent the need to exclude polypeptide sequences based on
low-expressing transcripts.

NewAnce improves the accurate identification of noncHLAp.
We developed the computational module NewAnce, which com-
bines the MS search tools MaxQuant33 and Comet34, with the
implementation of a group-specific strategy for the FDR calcula-
tion (see Methods section for more information and Supplemen-
tary Fig. 1a–g for performance evaluation). All HLAp identified by
either of the search tools were consequently matched against an
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up-to-date UniProt/TrEMBL sequence database (95,106 protein
sequences of the human reference proteome (up000005640), with
isoforms) to extract noncHLAp that do not map back to known
human proteins in UniProt. For every sample, FDRs were calcu-
lated separately for protHLAp and noncHLAp identified by Comet
(Fig. 1c and Supplementary Fig. 1a). Only consensus (intersection)
peptide-spectrum matches (PSMs) from Comet and MaxQuant

were retained for further downstream analyses. Estimating the
FDR after retaining the intersection is challenging. Nevertheless,
most false-positive PSMs are specific to one search tool, and
the remaining decoys in NewAnce indicated an estimated FDR
of <0.001%.

With NewAnce, the number of protHLAIp identified across
11 samples ranged from 3490 to 16,672 per sample, and from 817
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to 5777 for protHLAIIp (Supplementary Data 2). Furthermore,
up to 148 noncHLAIp per individual sample were identified with
NewAnce, with a combined total of 452 unique noncHLAIp
(Supplementary Data 2 and Supplementary Data 3). Of note,
noncHLAp are defined here as the peptides derived from either
non-protein-coding genes, such as lncRNAs and pseudogenes, or
TEs. As the majority of the non-protein-coding genes were
lncRNAs, these will be henceforth collectively termed lncRNAs.
Among the four HLA-II expressing samples investigated, only
four non-canonical HLA class II bound peptides (noncHLAIIp)
were detected out of 11,256 protHLAIIp. Re-searching the 2,597
PSMs of identified noncHLAp against the human proteome
UniProt database concatenated with the list of non-canonical
peptide sequences and allowing identification of alternative
sequences, including six common modifications (see Methods
section) revealed a very low level of ambiguity (Supplementary
Data 4 and 5).

We employed two complementary methods to assess the
accuracy of our approach. First, we predicted the binding of
peptides to their respective HLA allotypes. Across all 11 samples,
90% of the noncHLAIp and 91% of the protHLAIp identified
with NewAnce were predicted to bind the HLA allotypes (median
values, Supplementary Fig. 1h). As expected, NewAnce detected
fewer HLAp than Comet (PSM FDR of 3%) or MaxQuant (PSM
FDR of 3%), while with a more routinely applied FDR of 1%
using MaxQuant alone, more HLAp were obtained with
NewAnce (Fig. 2a, Supplementary Fig. 1i–l, and Supplementary
Data 2). Importantly, for the noncHLAIp repertoire (lncRNAs
and TEs), significantly higher percentages of peptides predicted to
bind the HLA allotypes were identified by NewAnce than
MaxQuant or Comet alone (Fig. 2b and Supplementary Fig. 1i–l).

In addition, we correlated the observed mean retention time
(RT) of a given peptide against the calculated hydrophobicity
index (HI), which corresponds to the percentage of acetonitrile at
which the peptide elutes from the analytical high-performance
liquid chromatography (HPLC) system. Calculating the
sequence-specific hydrophobicity of peptides identified by New-
Ance with SSRCalc35 showed that the RT distribution of non-
canonical peptides was on the diagonal line, and was not
significantly different from the distribution of proteome-derived
peptides, supporting their correct identification (Fig. 2c) (one-
sided F-test p-value: 1.0e+0). However, a significant difference in
RT distribution was observed when comparing non-canonical
peptides identified by NewAnce to those identified by MaxQuant
(one-sided F-test p-value: 6.3e−32) or Comet alone (one-sided F-
test p-value: 8.4e−20) (Fig. 2d). Similar results were obtained for
all investigated samples (Supplementary Fig. 2).

A common approach to boosting non-canonical peptide
identifications is searching the MS data with a single tool (or
the union of two tools) while applying a permissive FDR
followed by an additional step of filtering to include only
peptides predicted to bind the relevant HLA allotypes36. To
evaluate this approach, we compared the correlation between the

HIs and RTs of predicted non-canonical HLA binders and non-
binders identified at 3% PSM FDR with either MaxQuant
(Fig. 2e) or Comet (Fig. 2f). Predicted binders showed better
correlations between the HI and RT than non-binders (one-sided
F-test p-values: 8.4e-6 for MaxQuant and 4.4e-18 for Comet).
These correlations were fairly poor for MaxQuant, while a much
better correlation was calculated for Comet, likely due to the
conservative group-specific FDR control strategy we applied
for Comet.

Notably, when examining the source protein sequence origins
of all noncHLAIp, we detected an enrichment towards the C-
terminus of their precursor protein sequences. This effect was also
observed for protHLAIp originating from similarly short
canonical proteins (Supplementary Fig. 3a, b).

Targeted-MS and Ribo-Seq confirm noncHLAIp detection. To
experimentally validate the NewAnce computational pipeline, we
investigated a selection of NewAnce-identified HLAp from a
melanoma sample (0D5P) with targeted MS-based analyses. All
identified noncHLAIp (lncRNAs and TEs, n= 93), as well as a
similarly sized subset of protHLAIp from clinically relevant TAAs
(n= 71) detected in 0D5P, were synthesized in their heavy
isotope-labeled forms for MS-targeted validation. The selected
TAAs were chosen solely based on their interesting tumor-
associated biological functions, such as known cancer/testis or
melanoma antigens. Here, MS-based targeted confirmation by
parallel reaction monitoring (PRM) was directly compared
between the non-canonical and proteome-derived peptide groups
by spiking the heavy-labeled peptides into multiple independent
replicates of 0D5P immunopeptidomic samples, revealing that
protHLAIp confirmation was superior to that of noncHLAIp
(78.5% for TAAs versus 55.2% for lncRNAs and 27.7% for TEs)
(Fig. 3a, Supplementary Data 6, and Supplementary Data 7). We
also observed that the PRM validation was dependent on the
source RNA expression level (Supplementary Fig. 4a–d), mea-
sured peptide intensities (Supplementary Fig. 4e–h),
and detectability by MS/MS across multiple 0D5P replicates
(Supplementary Fig. 4i–l).

To further validate the noncHLAIp with an additional
targeted strategy, we analyzed sample 0D5P also by Ribo-Seq,
which involves the sequencing of ribosome protected frag-
ments (RPFs). Periodic RPF distributions (see Methods
section) that supported translation from the correct ORFs of
the transcripts encoding the identified noncHLAIp were
observed for 22.2% of the TE peptides and 21.3% of the
lncRNA peptides, compared to 100% of the TAAs (Fig. 3b).
Notably, nine lncRNA HLAIp and two TE peptides were
validated independently by both the PRM and Ribo-Seq
approaches. For example, the noncHLAIp SYLRRHLDF was
confirmed by MS (Fig. 3c), and the translated ORF that
generated the peptide was mapped back to two non-coding
RNA transcripts (Fig. 3d–e).

Fig. 1 A proteogenomics approach for the robust identification of noncHLAp. a A schematic of the entire workflow is shown, where tissue samples or

tumor cell lines were obtained from patients, and exome, RNA- and Ribo-Seq were performed to provide a framework to assess the non-canonical antigen

repertoire. HLAp were immunoaffinity-purified from cancer cell lines and matched tumor/healthy lung tissues and then analyzed by MS.

Immunopeptidomics spectra were then searched against RNA- and Ribo-Seq-based personalized protein sequence databases that contain non-canonical

polypeptide sequences. MS-identified noncHLAIp were validated by targeted MS-based PRM and tested for immunogenicity using autologous T cells or

PBMCs. b The percentage of predicted HLA binders of length 8–14 mer peptides with a MixMHCpred p-value≤ 0.05 was used to evaluate the accuracy of

the identified HLAIp by MaxQuant at 1% FDR as a function of database size (blue line). The percentage of predicted binders obtained for each condition is

shown for each bar for the melanoma cell line 0D5P. c Different protein sequence databases combining whole-exome sequencing and inferences from

RNA-Seq and Ribo-Seq data were utilized. NewAnce was implemented by retaining the PSM intersection of the two MS search tools MaxQuant and

Comet, and applying group-specific FDR calculations for protHLAp and noncHLAp. Source data are provided as a Source Data file.
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Low RNA expression limits noncHLAIp presentation. We then
characterized the expression levels of source RNAs encoding
HLAIp in more depth. For this purpose, we compared all iden-
tified source genes of protHLAIp to source genes of noncHLAIp
in the 0D5P sample. The protein-coding source genes had a
median FPKM value of 9.3, whereas the presumed non-coding
source genes showed lower expression overall, with a median
FPKM of 2.1 (Fig. 4a, b). Generally, higher numbers of unique
peptides identified per gene were correlated with higher expres-
sion levels. PRM-validated noncHLAIp covered a large dynamic
range of gene expression, and interestingly, a few were confirmed
at very low source RNA expression levels (Fig. 4c–d).

The low expression levels of source genes that generated
noncHLAp prompted us to investigate the regulation of non-
canonical HLA presentation and whether their expression can be
induced or enhanced with drug treatments. We treated melanoma
cells with either decitabine (DAC), a DNA methyltransferase
inhibitor, known to reactivate epigenetically silenced genes, or with
interferon gamma (IFNγ), known to upregulate antigen presenta-
tion37–40. As expected, we observed large quantitative changes in
the presentation of protHLAIp when T1185B melanoma cells were

treated with IFNγ. Specifically, we found enhanced presentation of
peptides derived from immune-related genes, likely due to their
high gene expression and increased production of HLA-I molecules
(Supplementary Fig. 4m). However, no obvious change was
observed for the noncHLAIp repertoire, with 60% of the identified
noncHLAIp remaining unaltered by IFNγ treatment, suggesting
that transcription is the limiting step in the presentation of
noncHLAIp, or that transcription of noncHLAIp is not affected
generally by IFNγ (Supplementary Fig. 4n). Furthermore, we
explored the effect of the hypomethylating agent DAC on
noncHLAIp in melanoma. Although DAC induced the expression
of selected hypomethylating agent-induced immune genes41, TAAs
and non-coding transcripts (Supplementary Fig. 4o–q), changes in
the 0D5P noncHLAIp repertoire were modest. Nonetheless, we
identified and confirmed the presence of a unique DAC-induced
noncHLAIp derived from a lncRNA (Supplementary Fig. 4r).

Ribo-Seq improves the coverage of protHLAIp and non-
cHLAIp. Next, we hypothesized that immunopeptidomes would
correlate more closely with translatome than transcriptome data.
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Fig. 2 Two complementary methods to assess the accuracy of NewAnce. a The percentages of predicted proteome-derived HLA-I binders in 0D5P were

assessed with each MS search tool (MaxQuant and Comet at FDR 3%) and NewAnce. b Similar to a, the comparisons were performed for the different

non-canonical antigen classes. c Hydrophobicity index calculations by SSRCalc for peptides identified in melanoma 0D5P. The observed mean retention

time is plotted against the hydrophobicity indices for NewAnce-identified proteome-derived versus lncRNA-derived non-canonical peptides. d All peptides

identified with each tool (MaxQuant, Comet, NewAnce) were analyzed based on their hydrophobicity indices. e Hydrophobicity index calculation for

MaxQuant- or f Comet-identified 8- to 14-mer peptides, based on predicted HLA binding. Source data are provided as a Source Data file.
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To build the translatome-based database for the MS search, all
ORFs showing periodic RPF distribution were extracted for the
0D5P sample, and translated in silico. This technique reduced the
size of the search space, and we used this independent discovery
method in our study to identify additional noncHLAIp, including
those derived from previously unexplored ORFs in coding genes.

We investigated the extent by which a protein sequence database
inferred by Ribo-Seq could replace or complement the search
performed with our personalized references comprising canonical
protein sequences concatenated with polypeptidecsequences from
the three-frame translation of expressed non-coding transcripts.
Using 0D5P as a representative immunopeptidomic dataset, we
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observed a positive correlation between RNA expression and
HLAIp-sampling (see Methods section) searched against the
personalized protein sequence database (r= 0.392) (Fig. 4e).
Then, we searched the same immunopeptidomics MS data
against the de novo-assembled Ribo-Seq inferred database, and
we correlated this HLAIp-sampling with RNA abundance (Fig. 4f)
or with translation rates based on the spectral coefficient of the 3-
periodic signal in the Ribo-Seq data (see Methods section)
(Fig. 4g). This approach resulted in a significantly higher positive
correlation between HLAIp-sampling searched against the Ribo-
Seq inferred database and the translation rate (r= 0.574) than the
overall RNA abundance (r= 0.431, two-sided p-value < 10e-16).
Thus, evidence exists that the immunopeptidome, at least for the
0D5P sample, is better captured by the translatome than the
transcriptome.

Notably, restricting the database to actual translation
products detected by Ribo-Seq provided a deeper coverage of
the immunopeptidome than a canonical protein sequence
database (Fig. 4h). This enhanced coverage led to the
identification of additional noncHLAIp derived mainly from
ORFs that are not included in canonical annotation but still
showing periodic footprint of translation, such as those
originating in 5ʹ or 3ʹ UTRs, presumed non-coding RNAs,
retained introns, and pseudogenes. The majority of those
identified were derived from either upstream ORFs or other un-
annotated ORFs (Fig. 4i–j). Many of these additional non-
cHLAIp were missed using the RNA-Seq inferred database. Of
note, this method also takes into account products arising from
ribosomal frameshifting, which could be relevant in the context
of non-canonical antigens42. Interestingly, only 16 common
lncRNA-derived noncHLAIp were found when comparing both
strategies, which likely reflects the limited detection of periodic
Ribo-Seq reads in transcripts with low expression or low
mappability (Supplementary Fig. 5a–c).

scRNA-Seq reveals heterogeneity in presumed non-coding
genes. Tumor cell heterogeneity could be a key factor under-
lying immune escape, leading to the inefficacy of cancer immu-
notherapies. To understand the pattern of non-coding gene
expression at the single-cell level, we performed scRNA-Seq on
the 0D5P melanoma cell line. Overall, 1400 cells were sequenced
at a total depth of 176 million reads, resulting in the detection of a
median of 6261 genes per cell (total of 19,178 detected genes). As
expected, clustering of 0D5P cells revealed dependency on the cell
cycle status (Fig. 5a), and thus we explored whether source genes
associated with the cell cycle (Fig. 5b, c). Then, we confirmed that
the antigen presentation machinery as well as many of the
selected TAAs were uniformly expressed in all cells and were thus
independent of the cell cycle, as expected (Fig. 5d).

Out of the 71 presumed non-coding source genes identified by
bulk transcriptomics, 35 were also detected at the single-cell level
(Fig. 5d). HLAIp derived from presumed non-coding source
genes detected with higher coverage at the single-cell level were

also those confirmed by PRM (6 out of 8 genes confirmed in
>50% cells and 14 out of 27 genes confirmed in <50% cells) and
by Ribo-Seq (37 out of 41 genes confirmed in >50% cells and 25
out of 46 genes confirmed in <50% cells). Importantly, source
non-coding genes clearly showed expression heterogeneity: nearly
none of them were uniformly expressed across cells, although the
limited sensitivity of scRNA-Seq could account for this variation.
The expression of LINC00520 was higher than expected given its
detection in only 75% of cells, suggesting that it is not uniformly
expressed (Fig. 5d). Sufficient expression level in a subset of
cells would allow the sampling for HLA presentation of overall
lowly expressed genes and eventually their detection in the
immunopeptidome.

We thus sought to explore the cell subset by identifying known
biomarker genes co-expressed with LINC00520 (Fig. 5e–h).
Interestingly, we found that LINC00520 was co-expressed with
the ATP-binding cassette sub-family B member 5 (ABCB5) gene
(Fig. 5g). The ABCB5 mediates chemotherapy drug resistance in
stem-like tumor cell subpopulations in human malignant
melanoma and is commonly over-expressed in circulating
melanoma tumor cells43, together with beta-catenin (CTNNB1),
a key regulator of melanoma cell growth44, and with its critical
downstream target microphthalmia-associated transcription fac-
tor (MITF), which mediates melanocyte differentiation45 (Fig. 5h).
ABCB5 was detected in 37% of 0D5P cells (Fig. 5f), which also co-
expressed LINC005520. Importantly, we also detected a non-
cHLAIp epitope encoded by a previously unknown ORF
embedded within the ABCB5 gene which, as shown below, is
immunogenic. The detection of such non-canonical neoantigens
in subsets of melanoma cells with regenerative or metastatic
potential could prove highly interesting in the context of
immunotherapy.

Identification of tumor-specific noncHLAIp. As our initial MS
search space was not restricted to polypeptide sequences derived
from tumor-specific transcripts, we retrospectively investigated
the potential of identified noncHLAIp to be classified as tumor-
specific. A public database of RNA sequencing data from 30
different healthy tissues (Genotype-Tissue Expression, GTEx46)
was assessed at a strict 90th percentile, which sets the expression
of a gene at the top 10% of its expression across all samples. We
identified 335 noncHLAIp from 280 lncRNA genes in the seven
melanoma samples, of which 23% were expressed in any of our
tumor samples and not in the healthy tissues (excluding testis due
to its immunoprivileged nature) (Fig. 6). Among these genes was
the tumor-specific LINC00518 gene, which has been proposed as
a two-gene classifier for melanoma detection, together with the
TAA PRAME47.

Using an in-house curated inventory of human TE-derived
polypeptide sequences (from three-frame translations) as a
reference, we found 88 unique TE-HLAIp in our whole dataset.
Some were derived from autonomous TEs, such as long-tandem
repeat (LTR) retrotransposons and long interspersed nuclear

Fig. 3 MS and ribosome footprint-based evidence of non-canonical peptide generation. A set of proteome-derived tumor-associated antigens, and

noncHLAIp (lncRNAs and TEs), from melanoma 0D5P were synthesized in their heavy-labeled form and spiked back into replicates of HLAIp eluted from

0D5P cells to confirm the presence of endogenous HLAIp. The proportions of confirmed and non-confirmed HLAIp as determined by a PRM and b Ribo-

Seq-targeted validation are shown for each of the antigen classes. c An example of the co-elution profiles of the transitions of heavy-labeled and

endogenous noncHLAIp (from lncRNA; SYLRRHLDF) from 0D5P (left) is shown. The MS/MS fragmentation pattern further confirms the presence of the

endogenous peptide (Δm= 10 Da) (right). d, e The Ribo-Seq profiles of two source genes show the frequency of Ribo-Seq reads from the ribosome’s P-site

in three replicates. Library size-normalized P-sites per basepair are shown on a log2 scale on the y-axis, with P-sites inferred as a constant offset from the 5ʹ

end of the footprint for each read length. The colored bars represent different reading frames. The yellow bars below the plots represent exons. For

example, the noncHLAIp SYLRRHLDF in OVOS2 (blue arrow) falls within two nested, Ribo-Seq-supported ORFs (red arrows), within which most P-sites

(red bars) fall in the first reading frame. Source data are provided as a Source Data file.
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elements (LINEs), and others were derived from non-autonomous
retrotransposons such as short interspersed nuclear elements
(SINE) and SINE-VNTR-Alu (SVA) elements (Supplementary
Fig. 6a). Importantly, 60 of the 88 TE-HLAIp were found in
presumed non-coding TE regions and therefore represent pre-
viously unknown HLA peptides. For example, peptides derived
from AluSq2 SINE/Alu and L1PA16 LINE/L1 elements were

expressed in only skin and testis. These TE-HLAIp would have been
overlooked in canonical MS-based searches.

We next examined whether our approach could identify
tumor-specific non-canonical targets in the ideal case in which
normal and tumor biopsies are available, i.e., from the two lung
cancer patient samples included in the present dataset. For the
C3N-02671 lung tumor sample, 21 noncHLAp were detected by
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MS; however, none of the peptides were tumor-specific. In the
C3N-02289 sample, we identified 45 noncHLAIp by MS (Fig. 7a),
among which ten peptides were identified uniquely in the tumor
tissue. Four of these source genes were also entirely absent at
the RNA level in the adjacent lung (Fig. 7b). Interestingly,
the noncHLAIp from RP11-566H8.3 was also testis-specific
in the GTEx database (90th percentile transcripts per million
(TPM) ≤ 1) (Fig. 7b), thus qualifying as a non-canonical cancer/
testis antigen.

The same analyses of TEs in lung tumor sample C3N-02289
resulted in the identification of one LTR7B LTR/ERV1 TE-
HLAIp that was present in the tumor tissue; however, this gene is
also expressed in healthy brain. For sample C3N-02671, no TE-
derived HLAIp were detected.

To comparatively assess the expression of canonical tumor
antigens in the same samples, we investigated select TAAs using
the same methodology (Supplementary Fig. 6b, c). We identified
six TAA protHLAIp that were exclusively detected in the tumor
tissue of C3N-02289 (BIRC5, TERT, FAP, SPAG4, MAGEA9, and
BCL2L1). We also detected uniquely in C3N-02671 tumor tissue
two protHLAIp TAAs (CCND1 and PXDNL) and five protH-
LAIIp TAAs (MMP2 and CEACAM5).

NoncHLAIp are shared across patient samples. We investigated
the prevalence of shared noncHLAIp among the nine tumor
samples analyzed. We identified 27 peptides that were detected in
at least two patient samples. Seven noncHLAIp, already validated
in 0D5P, were confirmed by PRM in at least one other patient
sample that expressed HLA allotypes with identical or highly
similar binding specificities (Supplementary Table 1), with a total
of 15 individually detected PRM events (Fig. 8a). One non-
cHLAIp, VTDQASHIY, derived from microcephalin-1 antisense
RNA (MCPH1-AS1), was independently confirmed with PRM in
three melanoma or lung cancer patients (Supplementary Fig. 7a,
b). Further, the shared presentation of the noncHLAIp AAF-
DRAVHF, derived from the family of LINEs (LINE/L2) on
chromosome 6, was confirmed in two melanoma samples (Sup-
plementary Fig. 7c, d). Interestingly, the corresponding source
RNA expression is restricted to the skin and testis.

Next, we assessed a large collection of immunopeptidomic
datasets (ipMSDB48, 91 biological cancer tissue/cell line sources,
35 biological healthy tissues/cell line sources; 1,102 MS raw files
in total) and obtained the first large-scale signature of
noncHLAIp presentation (Supplementary Data 8). In total,
220,293 peptides were obtained from healthy samples versus
280,385 peptides from cancer samples. We re-identified in
ipMSDB 92 tumor-specific noncHLAIp (source genes described
above and were expressed at 90th percentile TPM ≤ 1 in a
maximum of three tissues) (Fig. 8b), 60 of which were only

detected in cancer immunopeptidome samples. From those, 14
were detected in at least one additional cancer sample in ipMSDB.
Overall, noncHLAIp presentation showed a trend of enrichment
in cancer samples in ipMSDB (Fig. 8c). Interestingly, two
noncHLAIp from the lncRNA HAGLROS (KVLAGTVLFK and
VLAGTVLFK), identified specifically in the lung cancer tissue in
our samples, were exclusively found in cancer samples in
ipMSDB, mainly in ovarian cancer samples, consistent with a
previous report49.

Immunogenicity of noncHLAIp with autologous T cells. The
involvement of noncHLAIp in tumor immune recognition was
assessed by measuring IFNγ release upon peptide stimulation of
autologous tumor-infiltrating lymphocytes (TILs) or peripheral
blood mononuclear cells (PBMCs) from the same patient. Out of
the 786 peptides screened (94 TEs, 421 lncRNAs, 56 alternative
ORFs, and 215 TAAs), we confirmed the specific recognition by
autologous TILs of TAAs, such as the HYYVSMDAL and
RLPSSADVEF peptides from tyrosinase (TYR) and RYNADISTF
from tyrosinase-related protein 1 (TYRP1) in melanoma sample
0D5P, and of the YLEPGPVTA peptide from the promelanosome
protein (PMEL) in melanoma sample T1015A. One non-
canonical peptide, KYKDRTNILF, derived from the down-
stream ORF (dORF) of the melanoma stem-cell marker ABCB5
gene in 0D5P, was also found to be immunogenic in both auto-
logous CD8+ TILs and CD8+ T cells from peripheral blood
lymphocytes (PBLs) (Fig. 9a–c). Notably, this peptide was found
shared across three additional melanoma samples in ipMSDB.

Discussion
Our proteogenomics approach led to the stringent identification
of hundreds of noncHLAIp derived from presumed non-coding
genes, TEs and alternative ORFs. This feat was achieved with
NewAnce, a computational module that overcomes the challenge
of reduced sensitivity and specificity when searching against large
MS search spaces, and it can be applied to any (non-canonical)
protein sequence database of interest28,50. We rigorously tested
the validity of noncHLAIp identifications with HLA binding
predictions, sequence-specific hydrophobicity characteristics,
targeted MS analyses, and provided evidence of translation in
peptide-encoding ORFs by Ribo-Seq. Using all of these strategies
together, we confirmed that NewAnce was superior to MaxQuant
and Comet alone, across all the investigated samples. Taking one
patient as an example, we conducted PRM and Ribo-Seq analyses
to compare a subset of protHLAIp to non-canonical antigen
classes (lncRNAs and TEs), thereby validating the identified
noncHLAIp at the experimental level. We found that noncHLAIp
had an overall lower confirmation rate than protHLAIp, possibly
due to their lower expression, which also led to their stochastic

Fig. 4 RNA- and Ribo-Seq-based gene expression analyses from melanoma 0D5P. a (Left panel) Genes are ranked based on their RNA expression levels

in 0D5P, with protein-coding and presumed non-coding source genes, in which HLAIp were identified, marked in orange, or in blue, respectively. (Right

panel) The frequency distributions of the gene expression levels of protein-coding and non-coding (lncRNA) genes are shown. b The region of interest is

magnified to show the distribution of noncHLAIp source gene expression. c Plot restricted to source genes. Targeted MS validation was performed, and

confirmations are denoted for all identified non-canonical peptides and for a subset of protHLAIp (selected TAAs). Confirmed hits indicate that one or

more peptides from that source gene were validated by PRM. Point sizes represent the number of peptides identified per source gene. d Frequency

distribution of gene expression for MS-confirmed versus non-confirmed (or inconclusive) noncHLAIp. Scatterplots show the correlation between

e UniProt-based HLA-I sampling and RNA abundance, f Ribo-Seq-based HLA-I sampling and RNA abundance, and g Ribo-Seq-based HLA-I sampling and

translation rate. HLA-I sampling was calculated from the adjusted peptide counts normalized by protein length. Determination of the correlation between

gene expression and HLA-I sampling was assessed by fitting a polynomial curve of degree 3 to each dataset. Pearson correlation values were calculated to

assess the correlation between the fitted curve and the corresponding dataset. h With data derived from 0D5P, a comparison of the overall overlap in

unique HLAIp identified with RNA-Seq-based and Ribo-Seq-based assembled databases for MS search is shown. i Overlap of noncHLAIp identified by

RNA-Seq- and Ribo-Seq-based searches. j The total number of noncHLAIp identified by Ribo-Seq is depicted for each of the respective ORF types. Source

data are provided as a Source Data file.
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detection by MS. Interestingly, the expression and translation of
microproteins derived from presumed non-coding RNAs in the
heart were recently discovered using a Ribo-Seq directed pro-
teogenomics approach. Similar to our results, evidence of trans-
lation was confirmed for 22.5% of the lncRNAs, while 55.4% of
the micropeptides were validated by PRM MS51. Importantly, our

results additionally demonstrate that the correct identification of
noncHLAIp in proteogenomic workflows requires proper FDR
control and validation using multiple independent methods.

Combining immunopeptidomics with RNA-Seq and Ribo-Seq
datasets enables the comprehensive assessment of how tran-
scription, translation and HLA presentation are correlated.
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Despite the different methodological challenges52–54, we observed
the expected correlations between HLA presentation level and
expression, especially by Ribo-Seq, presumably because transla-
tion is biologically closer to antigen processing and presentation
than transcription is. In addition, we found that in the melanoma
sample 0D5P, most of the noncHLAIp derived from the Ribo-Seq
inferred database originated from source genes harboring
upstream ORFs (uORFs). Notably, uORFs can trigger the non-
sense-mediated decay of messenger RNAs (mRNAs) and provide
a rich source of noncHLAIp55–57.

While a previous study showed that the presentation of non-
canonical peptides was enhanced by inflammatory stimuli, the
presentation of only specific HLA peptides was documented58. In
contrast, our large-scale analysis of both DAC- and IFNγ-treated
cells did not detect profound changes in noncHLAIp presenta-
tion, although non-coding source genes were induced. Hence, we
hypothesize that low copy numbers of such noncHLAIp remain a
limiting factor for their presentation. Moreover, corroborating
prior research27, we report the enrichment of noncHLAIp

originating from the C-terminus of source protein sequences.
Translation products of such presumed non-coding regions
could be considered defective ribosomal products that are
expected to be unstable and rapidly degraded, likely bypassing the
proteasome59.

Given the lack of complete tissue immunopeptidomics refer-
ence libraries from healthy donors, we propose a workflow to
retrospectively search for tumor-specific non-coding source
genes with publicly available RNA-Seq databases (such as
GTEx46). We observed that 23% of the source non-canonical
genes were not expressed in healthy tissues (with our selected
thresholds), and could be considered tumor-specific. However, in
the ideal situation in which both tumor and matched normal
tissues were available, we found that the majority of peptides
were detected in both, suggesting that the comparison with GTEx
overestimates the fraction of true tumor-specific non-canonical
ligands, and that some might be patient-specific. Interestingly,
two overlapping epitopes were identified in the lncRNA
HAGLROS, which were expressed and presented uniquely in the

Fig. 5 scRNA-Seq reveals non-coding transcriptional heterogeneity in melanoma 0D5P. a t-SNE plot of the 1365 cells colored by their “cell cycle” scores.

b Examples of cell cycle dependent genes: ATAD2, a tumor-associated antigen, and c TMEM106C, from which a noncHLAIp originated. d Genes of interest

were plotted based on their sum normalized expression by scRNA-Seq and ordered based on the percentage of cells that expressed the gene. The color

codes denote the type of HLAIp identified from those genes. e t-SNE plot of the 1365 cells colored by the five identified clusters. Clusters were annotated

based on functional enrichment analyses of marker genes. f t-SNE plot highlighting the expression of the ABCB5 gene enriched in cluster 0. g Heatmap

showing the scaled and centered expressions of marker genes in cluster 0. The cluster colors from e are represented above the plot. h Expression profiles

of four marker genes in cluster 0 over all other clusters, including two well-known cancer biomarkers, MITF and CTNNB1, and two source genes for which

noncHLAIp were identified, the ABCB5 gene with a dORF and LINC00520. The p-values represented in b, c, and h were obtained with Wilcoxon tests.

Source data are provided as a Source Data file.
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lncRNA source genes showing the 90th percentile gene expression levels across 30 healthy tissues on the left and the gene expression levels across our

investigated melanoma samples on the right. Tissue gene expression was classified as not expressed (90th percentile TPM≤ 1) in any, 1–3, or >3 tissues

other than testis to assess tumor specificity. Specifically for sample 0D5P, a total of 21.4% of the lncRNA source genes were considered as tumor-specific

compared to <1% of the randomly selected protein-coding source genes with similar expression levels (p-value= 1.04 e-33). The number of HLAIp

identified per gene is depicted as well as the gene (GENCODE) and sample type. Source data are provided as a Source Data file.
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lung tumor tissue. This lncRNA has been implicated in cancer
progression60,61 and should be prioritized for downstream vali-
dation. Moreover, while Laumont et al.23 first proposed the
existence of shared noncHLAIp, our work validates that non-
cHLAIp can be shared across multiple tumor samples, and we

anticipate better treatment efficacy with such shared noncHLAIp
compared to that achieved with private neoantigens62,63.

The expression of tumor-specific noncHLAp in a subpopula-
tion of tumor cells suggests a dependency on a molecular or
functional state. For example, the immunogenic noncHLAIp
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derived from the dORF in the ABCB5 gene was moderately
expressed in only 37% of the melanoma cells compared to the
expression of the TYR and TYRP1 genes, both of which were
highly and uniformly expressed and produced confirmed
immunogenic epitopes. Immune pressure on selected tumor cell
subsets with particular biological relevance, such as cancer stem-
like cells, tumor cells with epithelial-mesenchymal transition

features and proliferating tumor cells, could greatly impact tumor
behavior and be clinically beneficial.

Indeed, we found such an immunogenic noncHLAIp from
0D5P derived from the dORF of the ABCB5 gene. ABCB5 has
been shown to be expressed in malignant melanoma-initiating
cells and is thought to be responsible for both the progression
and chemotherapeutic refractoriness of advanced malignant
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melanoma43. Through an IL1³/IL8/CXCR1 cytokine signaling
circuit, ABCB5 has been shown to control IL1³ secretion and
maintain slow cycling and chemoresistance64. Blocking ABCB5
reversed resistance to multiple chemotherapeutic agents, induced
cellular differentiation and impaired tumor growth in vivo64. We
found that ABCB5 was differentially co-expressed in a cluster of
0D5P cells with the transcription factor MITF and CTNNB1,
whose expression may be enriched in melanoma stem-cell
populations65. The presence of spontaneous specific T cells
recognizing the noncHLAIp derived from the dORF of the
ABCB5 gene in both peripheral blood and TILs suggests no
central tolerance and that this target could allow immune tar-
geting of the melanoma stem-cell subpopulation to curtail tumor
growth.

Out of >500 noncHLAIp screened, immune recognition by
rapidly expanded TILs and PBMCs was detected for only a single
immunogenic noncHLAIp. Various mechanisms could account
for the lack of recognition by autologous T cells. First, we were
able to screen only autologous TILs that had long propagated in
culture. We previously reported that TIL ex vivo expansion may
lead to depletion of T cell clones that recognize tumor neoanti-
gens66. Second, it is possible that the melanoma cells, which had
to be expanded considerably in culture for immunopeptidomics
analyses, could have undergone an alteration of their HLA pep-
tide repertoire, leading to the identification of noncHLAIp that
were not originally present in the freshly extracted cells. However,
we also assessed snap-frozen lung cancer tissues and still did not
observe the immune recognition of identified non-canonical

targets in autologous PBMCs. Alternatively, the ability of non-
cHLAp to induce a natural immune response might be inferior to
that of protHLAp. Low expression might limit the uptake by
professional antigen-presenting cells and thus also limit the
priming of naive T cells in vivo through cross presentation.
Similarly, the engagement of CD4+ T helper cells through HLA
class II presentation might also be limited. Nevertheless, tumor-
specific non-canonical targets may still be valuable for immu-
notherapy, even when no prior immune response against the
targets has been detected ex vivo, as was previously shown for
neoantigens3,4,67. More research should be performed to thor-
oughly assess the ability of noncHLAp to augment protective
immune responses in vivo. Such approaches are supported by
evidence in mouse models demonstrating that peptides derived
from non-canonical regions can be spontaneously recognized and
leveraged in cancer immunotherapy23,68.

Remarkably, across tumor types, the potential number of
predicted noncHLAp is orders of magnitude larger than that of
neoantigens encompassing non-synonymous somatic mutations.
As T cell-based screenings currently have limited throughput and
are expensive69, an accurate and cost-effective non-canonical
target discovery approach is crucial for their further development
and use in cancer immunotherapy. With the renewed interest in
cancer vaccines and the constantly growing number of antigens
screened for immune recognition, we expect that enough training
data will become available to allow the development of accurate
predictors of immunogenicity. Combining this approach with our
developed module NewAnce to shortlist noncHLAp presented

Fig. 8 NoncHLAIp can be shared across individuals. a The noncHLAIp-centric heatmap (left) shows the corresponding presumed non-coding gene

expression (90th percentile) across healthy tissues as well as in our investigated samples (middle). The peptides that were identified by MS across the

investigated samples, and therefore shared, are outlined in the rightmost heatmap. Validation by PRM was performed for multiple noncHLAIp across the

corresponding samples and are denoted with cross markings. b NoncHLAIp identified across a large collection of immunopeptidomics datasets (ipMSDB)

consisting of both cancer and healthy samples. Tumor-specific noncHLAIp were re-identified and a trend of enrichment in cancer samples was observed.

The noncHLAIp sequences can be found in the source data file. Cancer samples are labeled in shades of blue, and the star symbol include tumor

metastases, myeloma, uterine, brain, and liver cancer. Healthy samples are indicated in shades of red, and the hashtag symbol include fibroblast cells and

epithelial cells. c Boxplot depicting the ratio of noncHLAIp over protHLAIp identified in the different groups of samples derived from ipMSDB (healthy n=

27, cancer n= 63, melanoma n= 25) One-sided t-test was performed, without multiple testing correction. Healthy versus cancer p-value= 0.17, healthy

versus melanoma p-value= 0.12. Please refer to the Methods section for boxplot parameters. Source data are provided as a Source Data file.

no Aga b 0D5P CD8+ (PBL) IVS 

TAAs

0D5P REP TILs

IF
N

γ
 s

p
o

ts
/1

0
6
T

IL
s
 

IF
N

γ
 s

p
o

ts
/1

0
6
C

D
8

+
 (

P
B

L
)

0

500

1000

1500
700,000
800,000
900,000

0
50

100
150
200
250

1000
1500
2000

700,000
800,000

c

B7 B9

C9

D9 137

141

112

C7

D7

16

13

8

noncHLAIp

KYKDRTNILF

no
 A

g
no

 A
g

H
YYVSM

D
AL

R
YN

AD
IS

TF

R
LP

SSAD
VEF

Pos
iti
ve

 c
on

tro
l

Pos
iti
ve

 c
on

tro
l

KYKD
R
TN

IL
F

KYKD
R
TN

IL
F

Fig. 9 Non-canonical ABCB5 peptide induced an IFNγ response. a Reactivity was measured in melanoma 0D5P by the IFN³ ELISpot assay using

autologous REP TILs. Representative example of three TAAs from TYR and TYRP1 and one non-canonical dORF-derived HLAIp from ABCB5 (written in red)

that induced an IFN³ response. b In addition, a representative example of CD8+ T lymphocytes from PBLs is shown when re-challenged with autologous

CD4+ blasts together with 1 ¿M of the non-canonical ABCB5 HLAIp. (No Ag: no peptide, positive control: 1x cell stimulation cocktail).c Representative

images of the IFN³ ELISpot response against the non-canonical ABCB5 peptide. In a and b, T cell reactivity for every peptide was validated by ≥ 2

independent experiments. Please refer to the Methods section for boxplot parameters. Source data are provided as a Source Data file.
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in vivo and to rank them according to their predicted immuno-
genicity will facilitate the comprehensive exploration of non-
canonical antigens, their association with immune responses and
their potential for building effective cancer immunotherapies.

Methods
Patient material. Melanoma cell lines (0D5P, 0MM745, 0NVC) were generated as
follows: patient-derived tumors were cut into small pieces before being transferred
into a digestion buffer containing collagenase type I (Sigma Aldrich) and DNase I
(Roche) for at least 1 h. Dissociated cells were washed and maintained in RPMI
1640+ lutaMAX medium (Life Technologies) supplemented with 10% heat-
inactivated FBS (Dominique Dutscher) and 1% Penicillin/Streptomycin Solution
(BioConcept). If fibroblasts appeared, they were selectively eliminated with G418
(Geneticin; Gibco) treatment. The primary melanoma cell lines T1185B, T1015A,
Me290, and Me275 were generated at the Ludwig Institute for Cancer Research,
Department of Oncology, University of Lausanne70,71. All established melanoma
cells were subsequently grown to 1 × 108 cells, collected by centrifugation at 151 x g
for 5 min, washed twice with ice-cold PBS and stored as dry cell pellets at −20 °C
until use. For the in vitro 72 h treatment with IFNγ (100 IU/mL, Miltenyi Biotec),
T1185B cells were grown to 2 × 108 in triplicate. For the treatment with DAC
(Sigma Aldrich), 2 × 108 melanoma cells were grown for 8 days in medium con-
taining 0.5 µM DAC, and the drug was readministered on the fourth day.

Autologous TILs were expanded from fresh melanoma tumor samples from
patients 0D5P, 0MM745, 0NVC, LAU1185 (tumor cell line T1185B), LAU1015
(tumor cell line T1015A), LAU203 (tumor cell line Me290) and LAU50 (tumor cell
line Me275) at the Ludwig Institute for Cancer Research, Department of Oncology,
University of Lausanne. The fresh tissues were manually cut into fragments of one
to two mm3. The tumor fragments were then placed in 24-well plates containing
RPMI CTS grade (Life Technologies), 10% human serum (Biowest), 0.025 M
HEPES (Life Technologies), 55 ¿mol/L 2-mercaptoethanol (Life Technologies) and
supplemented with IL-2 (6000 IU/mL, Proleukin) for 3 to 5 weeks. Following this
pre-rapid expansion protocol (REP), TILs were then expanded with another REP as
follows: 5 × 106 TILs were stimulated with irradiated feeder cells (Ratio 1:200), anti-
CD3 (OKT3, 30 ng/mL, Miltenyi Biotec) and IL-2 (3000 IU/mL) for 14 days. After
14 days of REP, ~2 × 109 TILs were harvested, washed, and cryopreserved until use.
The purity (i.e., the percentage of CD3 T cells) was >95%. As an additional control,
one flask with the exact same REP conditions without TILs was cultured in parallel,
and no cells were detectable at day 14. REP TILs were thawed in 5 IU/mL DNase I
(Sigma Aldrich) and cultured in 3000 IU/mL IL-2 for two days in RPMI 1640
medium with GlutaMAX™ Supplement (Gibco), and 8% human serum (Biowest),
10 mM HEPES (Gibco), 50 ¿M Beta-mercaptoethanol (Gibco), 100 ¿M non-
essential amino acids (Gibco), 100 IU/mL penicillin, 0.1 mg/mL streptomycin,
2 mM L-glutamine (Gibco), 0.1 mg/mL kanamycin sulfate (Carl Roth), and 1 mM
sodium pyruvate (Gibco). The cells were then washed twice in complete medium
and subsequently rested overnight in the presence of 150 IU/mL IL-2 prior to
peptide stimulation.

Snap-frozen normal and lung tumor tissue materials from the C3N-02289
(Lung squamous cell carcinoma, grade 2) and C3N-02671 (lung adenocarcinoma,
G2) samples were kindly provided by the International Institute of Molecular
Oncology. Informed consent was obtained from the participants in accordance
with the requirements of the institutional review board (Ethics Commission,
CHUV, Bioethics Committee, Poznan University of Medical Sciences, Poznań,
Poland).

All cells tested negative for mycoplasma contamination. High-resolution 4-digit
HLA-I and HLA-II typing (Supplementary Data 1) was performed at either the
Laboratory of Diagnostics, Service of Immunology and Allergy, CHUV, Lausanne
or in-house using the HLA amplification method with the TruSight HLA v2
Sequencing Panel kit (CareDx) according to the manufacturer’s protocol.
Sequencing was performed on the Illumina® MiniSeq™ System (Illumina) using a
paired end 2 × 150 bp protocol. The data were analyzed with Assign TruSight HLA
v2.1 software (CareDx).

Immunoaffinity purification of HLA peptides. We performed HLA immu-
noaffinity purification according to our previously established protocols39,72. W6/
32 and HB145 monoclonal antibodies were purified from the supernatants of HB95
(ATCC® HB-95™) and HB145 cells (ATCC® HB-145™) using protein-A sepharose
4B (Pro-A) beads (Invitrogen), and antibodies were then cross-linked to Pro-A
beads. Cells were lysed with PBS containing 0.25% sodium deoxycholate (Sigma
Aldrich), 0.2 mM iodoacetamide (Sigma Aldrich), 1 mM EDTA, a 1:200 protease
inhibitors cocktail (Sigma Aldrich), 1 mM phenylmethylsulfonylfluoride (Roche),
and 1% octyl-beta-D glucopyranoside (Sigma Alrich) at 4 °C for 1 h. The lysates
were cleared by centrifugation in a table-top centrifuge (Eppendorf) at 4 °C for
50 min at 21,191 x g. Snap-frozen tissue samples were homogenized on ice in
3–5 short intervals of 5 s each using an Ultra Turrax homogenizer (IKA) at
maximum speed. The lysates were then cleared by centrifugation at 75,600 x g in a
high-speed centrifuge (Beckman Coulter, Avanti JXN-26 Series, JA-25.50 rotor) at
4 °C for 50 min. For HLA immunopurification, we employed the Waters Positive
Pressure-96 Processor (Waters) and 96-well single-use micro-plates with 3 µm
glass fibers and 10 µm polypropylene membranes (Seahorse Bioscience, ref no:

360063). Anti pan HLA-I and HLA-II antibodies cross-linked to beads were loaded
onto separate plates, respectively. For tissue samples, depletion of endogenous
antibodies was required with Pro-A beads. The lysates were passed sequentially
through the first plate containing pan HLA-I antibody-cross-linked beads, then
through the second plate with pan HLA-II antibody-cross-linked beads, at 4 °C.
The beads in the plates were then washed separately with varying concentrations of
salts using the processor. Finally, the beads were washed twice with 2 mL of 20 mM
Tris-HCl pH 8.

Sep-Pak tC18 100 mg Sorbent 96-well plates (Waters, ref no: 186002321) were
used for the purification and concentration of HLA-I and HLA-II peptides. The
C18 sorbents were conditioned, and the HLA complexes and bound peptides were
directly eluted from the affinity plate with 1% trifluoroacetic acid (TFA; Sigma
Aldrich). After washing the C18 sorbents with 2 mL of 0.1% TFA, HLA-I peptides
were eluted with 28% acetonitrile (ACN; Sigma Aldrich) in 0.1% TFA, and HLA-II
peptides were eluted with 32% ACN in 0.1% TFA. Recovered HLA-I and -II
peptides were dried using vacuum centrifugation (Concentrator plus, Eppendorf)
and stored at −20 °C.

Liquid chromatography–mass spectrometry (LC-MS/MS) analyses. The LC-
MS/MS system consisted of an Easy-nLC 1200 (Thermo Fisher Scientific) con-
nected to a Q Exactive HF-X mass spectrometer (Thermo Fisher Scientific). Pep-
tides were separated on a 450 mm analytical column (8 µm tip, 75 µm inner
diameter, PicoTipTMEmitter, New Objective) packed with ReproSil-Pur C18
(1.9 µm particles, 120 Å pore size, Dr. Maisch GmbH). The separation was per-
formed at a flow rate of 250 nL/min by a gradient of 0.1% formic acid (FA) in 80%
ACN (solvent B) in 0.1% FA in water (solvent A). HLAIp were analyzed by the
following gradient: 0–5 min (5% B); 5–85 min (5–35% B); 85–100 min (35–60% B);
100–105 min (60–95% B); 105–110 min (95% B); 110–115 min (95–2% B) and
115–125 min (2% B). HLAIIp were analyzed by the following gradient: 0–5 min
(2–5% B); 5–65 min (5–30% B); 65–70 min (30–60% B); 70–75 min (60–95% B);
75–80 min (95% B), 80–85 min (95–2% B) and 85–90 min (2% B).

The mass spectrometer was operated in the data-dependent acquisition (DDA)
mode. Full MS spectra were acquired in the Orbitrap from m/z= 300–1650 with a
resolution of 60,000 (m/z= 200) and an ion accumulation time of 80 ms. The auto
gain control (AGC) was set to 3e6 ions. MS/MS spectra were acquired in a data-
dependent manner on the ten most abundant precursor ions (if present) with a
resolution of 15,000 (m/z= 200), an ion accumulation time of 120 ms, and an
isolation window of 1.2 m/z. The AGC was set to 2e5 ions, the dynamic exclusion
was set to 20 s, and a normalized collision energy (NCE) of 27 was used for
fragmentation. No fragmentation was performed for HLAIp with assigned
precursor ion charge states of four and above or for HLAIIp with an assigned
precursor ion charge state of one, or six and above. The peptide match option was
disabled.

Parallel reaction monitoring. Selected endogenous HLAp that required con-
firmation by PRM were ordered from Thermo Fisher Scientific as crude (PePotec
grade 3) or HPLC grade (purity >70%) with one stable isotope-labeled amino acid.
The mass spectrometer was operated at a resolution of 120,000 (at m/z= 200) for
the MS1 full scan, scanning a mass range from 300 to 1650 m/z with an ion
injection time of 100 ms and an AGC of 3e6. Then each peptide was isolated with
an isolation window of 2.0 m/z prior to ion activation by high-energy collision
dissociation (HCD, NCE= 27). Targeted MS/MS spectra were acquired at a
resolution of 30,000 (at m/z= 200) with an ion injection time of 60 ms and an
AGC of 5e5. Only those peptides that ultimately passed quality control were
considered for further downstream analyses by spiking them back into the patient
sample.

The PRM data were processed and analyzed by Skyline (v4.1.0.18169)73, and an
ion mass tolerance of 0.02 m/z was used to extract fragment ion chromatograms.
To display MS/MS spectra, raw data were converted into the MGF format by
MSConvert (Proteowizard v3.0.18136), and peak lists for the heavy-labeled
peptides and light counterparts were extracted. The assessment of MS/MS
matching was performed by pLabel (v2.4.0.8, pFind studio, Sci. Ac.) and Skyline.

Exome/RNA sequencing. DNA was extracted for HLA typing and exome
sequencing with the commercially available DNeasy Blood & Tissue Kit (Qiagen)
according to the manufacturers’ protocols. For tissue samples, pelleted DNA
was used, which was obtained after lysis of the tissue and centrifugation during
HLA immunopurification. The supernatant was used for HLA immunopurifica-
tion, whereas the pelleted DNA was resuspended in PBS using a pestle (70 mm,
1.5/2.0 mL, Schuett-Biotec) before DNA extraction according to the manufacturer’s
instructions.

RNA was extracted for RNA sequencing using the Total RNA Isolation RNeasy
Mini Kit (Qiagen) according to the manufacturer’s protocol for all melanoma cell
lines (including DNase I (Qiagen) on-column digestion). Frozen pieces of tumor
and normal tissue samples (< 20 mg) were directly submerged in 350 µL of RLT
buffer supplemented with 40 µM dithiothreitol (DTT, Sigma Aldrich). Tissues were
then completely homogenized on ice using a pestle (70 mm, 1.5/2.0 mL, Schuett-
Biotec) and passed through a 26G needle syringe five times (BD Microlance).
Centrifugation was performed in a table-top centrifuge (Eppendorf) at 4 °C for
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3 min at 18,213 x g before the supernatant was removed and used for RNA
extraction. All subsequent steps are described in detail in the manufacturer’s
protocol (including DNase I (Qiagen) on-column digestion).

Three micrograms of genomic DNA were fragmented to 200 bp using Covaris
S2 (Covaris). Sequencing libraries were prepared with the Agilent SureSelectXT
Reagent Kit (Agilent Technologies). Exome enrichment was performed with
Agilent SureSelect XT Human All Exome v5 probes. Cluster generation was
performed from the resulting libraries using the Illumina HiSeq PE Cluster Kit v4
reagents and sequenced on the Illumina HiSeq 2500 platform using SBS Kit v4
reagents. At least 70x coverage was required for the melanoma cell lines and
PBMCs/TILs. For tumor/normal lung tissues, at least 100x coverage was required.
Sequencing data were de-multiplexed using bcl2fastq Conversion Software (v. 1.84,
Illumina).

RNA quality was assessed on a Fragment Analyser (Agilent Technologies), and
all RNAs had an RNA quality number (RQN) ranging from 7.4 to 10. RNA-Seq
libraries were prepared using 500 or 375 ng of total RNA with the Illumina TruSeq
Stranded mRNA reagents (Illumina) according to the manufacturer’s
recommendations. Libraries were quantified by a fluorometric method and their
quality was assessed on a Fragment Analyser. Cluster generation was performed
from the resulting libraries using the Illumina HiSeq PE Cluster Kit v4 reagents and
sequenced on the Illumina HiSeq 2500 platform using HiSeq SBS Kit v4 paired end
reagents for 2 × 100 cycles paired end sequencing. Sequencing data were de-
multiplexed using bcl2fastq2w Conversion Software (v. 2.20, Illumina).

RNA-Seq processing for lncRNA and gene expression analysis. The GEN-
CODE comprehensive gene annotation version 221.2 was downloaded from the
GENCODE website (https://www.gencodegenes.org/human/release_22.html) and
used to define the protein-coding and non-coding gene features, including chro-
mosome position, transcript structure, and transcript and protein sequences. Here,
the human reference genome GRCh38/hg38 was downloaded from the NCBI
(https://www.ncbi.nlm.nih.gov/assembly/5800238) and used as the genome
assembly. The RNA-Seq reads were aligned to the GRCh38/hg38 reference genome
using RNA-Star (v2.4.2a; https://github.com/alexdobin/STAR). Gene expression
was normalized and calculated as FPKM values by Cufflinks (v2.2.1) (https://
github.com/cole-trapnell-lab/cufflinks). The gene-level RNA expression data for
both protein-coding and non-coding genes were used for downstream gene
expression analysis32,74.

RNA-Seq data processing for TE expression analysis. We developed an ana-
lytical pipeline that was capable of assigning TE-derived RNA-Seq reads to single
loci in >95% of the cases. Reads from the investigated samples and public data from
GTEx were mapped to the human (GRCh37) genome using hisat2 v.2.1.075. Counts
on genes and TEs were generated using featureCounts 1.6.276. To avoid read
assignment ambiguity between genes and TEs, a gtf file containing both was
provided to featureCounts. For repetitive sequences, an in-house curated version of
the Repbase database was used (fragmented LTR and internal segments belonging
to a single integrant were merged). Only uniquely mapped reads were used for
counting genes and TEs. Finally, features that did not have at least one sample with
20 reads were discarded from the analysis. Normalization for sequencing depth was
performed for both genes and TEs using the Trimmed Mean of M values (TMM)
method as implemented in the limma v.3.36.5 package of Bioconductor77 and
using the counts on genes as the library size.

Personalized sequence databases from non-coding transcripts. The curated set
of human ENCODE non-coding transcripts (GRCh37 reference assembly) was
downloaded from https://www.gencodegenes.org/human/release_24lift37.html.
ORFs in all three forward reading frames were identified using a stop-to-stop
strategy. The minimum peptide length was set to eight amino acids, and the longest
polypeptide identified was 3644 amino acids. Unless otherwise mentioned, to build
the personalized protein fasta file, we selected transcripts from non-coding genes
that were expressed in each sample (i.e., FPKM > 0) and translated them in all three
forward reading frames.

Personalized databases with variants. GENCODE v24 (GRCh37 human refer-
ence assembly) downloaded from https://www.gencodegenes.org/human/
release_24lift37.html was chosen as the standard reference dataset. Whole-exome
sequence reads were aligned to the GRCh37 human assembly with BWA-MEM78,
and variants were predicted using GATK framework v3.7 and Picard Tools
v2.9.079. Small nucleotide polymorphisms (SNPs) were defined as variants present
in both tumor and germline samples, and somatic mutations (somatic nucleotide
variants (SNVs) and indels) were defined as being present in only tumors. The
GENCODE comprehensive gene annotation file, in GFF3 format, was parsed to
extract genomic coordinate information for every exon in each protein-coding
transcript, and those coordinates were compared with sample-specific variant
coordinates to derive non-synonymous amino acid changes within each protein.
For every sample, we created a separate fasta file for which residue mutation
information was added to the header of the affected translated protein-coding
transcripts, in a format compatible with MaxQuant v1.5.9.4i80.

Mass spectrometry database search. We used two widely used search tools:
Comet 2017.01 rev. 234 and the Andromeda search engine within MaxQuant
v1.5.9.4i81. Both Andromeda and Comet allow searching for peptides with and
without variants. Andromeda matched the MS/MS spectra of each sample against
the personalized reference libraries (mentioned above). Similarly, the variants were
annotated in the PEFF format (http://www.psidev.info/peff) for Comet. Both
search tools were run with the same principal search parameters: precursor mass
tolerance 20 ppm, MS/MS fragment tolerance of 0.02 Da, peptide length of 8–15
when searching only HLA-I peptides and 8–25 for both HLA-I and HLA-II pep-
tides and no fixed modifications. For samples 0D5P, 0NVC and 0MM745, oxi-
dation (M) and phosphorylation (STY) were set as variable modifications; for the
remaining samples only oxidation (M) was included as a variable modification. A
PSM FDR of 3% was used for Andromeda as a first filter, and non-canonical
reference sequences were loaded into the “proteogenomics fasta files” module for
FDR calculations for proteome-derived and non-canonical sequences. For each
spectrum the annotated PSMs with the highest score were kept (including the
decoy hits calculated by Andromeda from reversed protein sequences) and stored
in binary files.

To assure that non-canonical peptide sequences did not match other protein-
coding genes, all peptides found by Andromeda or Comet were aligned against an
up-to-date UniProt/TrEMBL sequence database (95,106 protein sequences of the
human reference proteome up000005640, with isoforms, downloaded 26/09/2018)
using an algorithm built in NewAnce. Leucine and iso-leucines were treated as
equal since they are not distinguishable by MS. If peptides were found to match
standard UniProt sequences, they were assigned as proteome-derived with the
UniProt IDs. However, we retained non-canonical TE peptide sequences that
matched annotated TEs that were integrated into the human reference in UniProt.

Comet PSMs were read from Comet pep.xml files and all peptides were aligned
against the UniProt database as described above. Equivalent to the Andromeda
PSMs processing, PSM were annotated and the highest scoring PSMs were stored
in binary files. Comet PSM processing was implemented in Java and utilizes the
MzJava class library82. As described in detail below, it consisted of two main steps:
first, three Comet scores XCorr, deltaCn, and spScore and the spectrum charge were
combined, and second, the FDR was calculated separately for proteome-derived
and non-canonical peptides. The first step boosted the overall number of identified
PSMs at a given global FDR, whereas the second step limited the number of false
positives in the group of non-canonical peptides at a given global FDR.

All PSMs resulting from the Comet binary files were split into three sublists
with PSMs of charge (Z) 1 (applicable to HLAIp only), 2, and charge 3 or higher.
Further, the three Comet scores XCorr, deltaCn and spScore were considered (the
expect score was left out because it depends on the size of the sequence database).
In order to calculate the FDR for three-dimensional (3D) vectors
x ¼ XCorr; deltaCn; spScoreð Þ, the 3D spaces (one 3D space per charge state Z)
were partitioned into small cells with 40 intervals in each dimension
(Supplementary Fig. 1a). The PSMs in the sublist of charge Z were then parsed and
for each cell, the number of wrong hits (n0) was set to the number of decoy PSMs
in that cell, and the number of true hits (n1) was set to the number of target (non-
decoy) PSMs minus n0. The 3D probability distributions were estimated by
dividing the counts in each cell by the total counts summed over all cells resulting
in a distribution for each charge state Z for true p xjZ;H ¼ 1ð Þð Þ and wrong
p xjZ;H ¼ 0ð Þð Þ PSMs. In order to obtain smoother distributions, both true (n1)
and decoy (n0) counts were averaged over a 9-cell nearest neighborhood. This 3D
histogram based approach has the advantage that it does not require strong
assumptions about the shape of the probability distributions, and in contrast to
one-dimensional (1D) projection methods, it does take into account the full 3D
structure of the score space. On the other hand, it requires fairly large datasets with
>100,000 PSMs.

The local FDR (lFDR) is the probability that a PSM within a given cell is wrong,
whereas the global FDR is the probability that a PSM in the final result list from all
cells is wrong. It has been shown that lFDR calculation provides the most sensitive
decision boundaries while controlling the global FDR83. Mathematically, lFDR x;Zð Þ
values for a score vector x and charge Z can be calculated by Equation (1):

lFDR x;Zð Þ ¼
π0p xjZ;H ¼ 0ð Þ

π0p xjZ;H ¼ 0ð Þ þ π1p xjZ;H ¼ 1ð Þ
¼ 1þ

π1

π0
�
p xjZ;H ¼ 1ð Þ

p xjZ;H ¼ 0ð Þ

� ��1

¼ 1þ
π1

π0
γ x;Zð Þ

� ��1

ð1Þ

where π0 and π1 are the class probabilities for true (H= 1) and wrong (H= 0)
PSMs, and p xjZ;H ¼ 0; 1ð Þ are the probability distributions as described above.
Finally, the lFDR threshold was adjusted to yield a global FDR of 3% and all PSMs
within cells with lFDR values smaller than this threshold were added to the list of
PSMs. Supplementary Fig. 1b shows a comparison of this 3D histogram approach to
a simpler 1D method, where only the XCorr score was used, for the 0D5P sample.
At the same FDR of 3%, the 3D histogram approach was able to boost the number
of unique peptides for both proteome-derived and non-canonical peptides by 22%
and 13%, respectively. Importantly, the percentage of predicted HLA binders and
the standard error in hydrophobicity index calculation by SSRCalc remained
unchanged (Supplementary Fig. 1c, d), indicating that the 3D method used in
NewAnce did not inflate the error. However, Supplementary Fig. 1c also reveals that
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the percentage of predicted binders is low for the group of non-canonical peptides
(only 55% compared to 95% for proteome-derived peptides), indicating a large
portion of wrong PSMs in the non-canonical group. This phenomenon has been
reported before28 and is due to a misbalance of true and false hits in the non-
canonical sequence databases. Non-canonical sequence databases are typically very
large, and they contain mostly sequences that have low probability to contribute to
true hits.This causes a strong prevalence for wrong PSMs or a low π1=π0 ratio
(π1=π0 ratio is the total number of true PSMs divided by the total number of wrong
PSMs) compared to the proteome-derived database.

In order to tackle this problem, we implemented an approach that estimates the
lFDR values separately for non-canonical and proteome-derived PSM groups. Since
there are only several hundreds of non-canonical PSMs, we could not use the 3D
histogram approach directly for the non-canonical PSM group. Instead, we
assumed that the probability distributions p xjZ;H ¼ 0; 1ð Þ are the same for non-
canonical and proteome-derived PSMs, and that the π1=π0 ratios strongly depend
on the PSM group. The π1=π0 ratios are global measures and can be readily
calculated with a few hundred PSMs. Therefore, we first calculated the probability
ratios γ x;Zð Þ for each cell using all PSMs and then calculated the π1=π0 ratios
separately for the non-canonical and the proteome-derived groups. We then
plugged the group-specific π1=π0 ratios into Eq. (1) and obtained a group-specific
calculation of the lFDR for each cell. The low π1=π0 ratio in the non-canonical
group will increase the lFDR values for this group. When the lFDR threshold was
adjusted to yield a global FDR of 3%, less but higher quality non-canonical PSMs
passed this filter. Supplementary Fig. 1b shows that the number of passing non-
canonical peptides (3D, two groups) dropped to 28% compared to the number of
peptides identified without group adjustment (3D, one group), whereas the number
of proteome-derived peptides increased slightly by 8%. However, the percentage of
predicted binders among the passing non-canonical peptides (3D, two groups)
increased to 85% (Supplementary Fig. 1c) and the standard error of HI decreased
significantly (Supplementary Fig. 1d).

Even if this group-specific lFDR calculation improved the accuracy of non-
canonical PSMs, the fairly low percentage of predicted binders indicated that there
was still a larger error in this group. In order to discard more of this residual error,
we combined the Comet and Andromeda search results and only the intersection,
i.e., PSMs with identical Comet and Andromeda matches (same peptide sequence
with the same identification) were retained. As shown in Supplementary Fig. 1e–g,
this additional filter further reduced the number of non-canonical PSMs, but
significantly increased the percentage of predicted binders to 97.3% and decreased
the standard error of hydrophobicity index. Without the post-processing of Comet
results performed in NewAnce, this improvement would not be possible. When
only considering the XCorr score and without group-specific lFDR calculation,
combining Comet and MaxQuant would yield more peptides, but with significantly
lower percentage of predicted binders (87.3%) and almost double the standard
error of HI (1D, one group in green color compared with NewAnce 3% FDR in
gray color in Supplementary Fig. 1e–g). Using a FDR threshold of 1% instead of 3%
for MaxQuant and Comet in NewAnce would only reduce the number of peptides
but not increase the percentage of predicted binders, or decrease the standard error
of HI, thus justifying our choice of utilizing a 3% FDR threshold (NewAnce 3%
FDR in gray color compared with NewAnce 1% FDR in beige color in
Supplementary Fig. 1e–g).

In order to assign peptides into source protein groups, we implemented a
greedy bipartite graph protein grouping algorithm84. The total and unique peptide
counts were calculated for each protein. To calculate the adjusted peptide counts
we sorted the proteins in each group by decreasing number of peptides and for
each protein removed the peptides of all proteins higher up in the list.

In order to test the robustness of our approach, the 2597 PSMs of identified
noncHLAp were re-searched against the human reference proteome UniProt
database concatenated with the list of non-canonical peptide sequences, including
six common modifications. The variable modifications included were 15.9949 Da
for oxidation on M, 42.010565 Da for acetylation on the N-terminus, 79.966331 Da
for phosphorylation on STY, 119.004099 Da for cysteinylation, 0.98402 Da for
deamidation NQ and 57.021464 Da for carbamidomethyl on C. Comet was
employed (same parameters as above, but no FDR) to investigate whether PSMs
would better fit another possible proteome-derived (modified) sequence based on
XCorr. The results are reported in Supplementary Data 4 and 5.

To build the ipMSDB database, we searched 1102 immunopeptidomic raw files
with Comet (PSM FDR of 1%, as described above), and the Apache Spark cluster
computing framework85 was used to process the results and calculate the FDR. The
samples were annotated with basic biological information for further statistical
analysis.

Ribo-Seq: experimental protocol. Ribo-Seq was performed according to Calviello
et al.86. Ribo-Seq libraries were derived from adherent melanoma 0D5P cells that
were 80% confluent in 10 cm tissue culture dishes. After washing with ice-cold PBS
supplemented with 100 ¿g/mL cycloheximide (Sigma Aldrich), the cells were
immediately snap-frozen by placement in liquid nitrogen followed by placement on
wet ice. A lysis buffer containing 20 mM Tris-HCl pH 7.4, 150 mM NaCl, 5 mM
MgCl2, 1 mM DTT (Sigma Aldrich), 100 ¿g/mL cycloheximide, 1% (v/v) Triton X-
100 (Calbiochem) and 25 U/mL TURBO DNase (Life Tech) in a volume of 400 µL
was immediately added to the frozen cells. The cells and buffer were then scraped

off, mixed by pipetting, transferred to Eppendorf tubes and lysed on ice for 10 min.
The lysate was then titurated by passage through a 26-G needle ten times with a
1 mL syringe and cleared by centrifugation at 20,000 x g for 10 min at 4 °C. The
cleared supernatant was then transferred to a pre-cooled tube on ice, and foot-
printing was performed by adding 1000 U of RNase I (Life Tech. #AM2295) per
400 ¿L of lysate and incubating in a thermomixer set at 23 °C, while shaking at
500 rpm for 45 min. The digestion was stopped by adding 13 µL of SUPERASE-In
(Thermo, 20 U/µL) per 400 µL of lysate.

Ribosomes were recovered using two MicroSpin S-400 HR columns (GE
Healthcare) per sample. The columns were first equilibrated with a total of 3mL of
buffer containing 20mM Tris-Cl pH 7.4, 150mM NaCl, 5mM MgCl2, and 1mM
DTT by performing six rounds of washes with 500 µL of the buffer. The resin was
resuspended with the last wash and drained by centrifugation for 4min at 600 x g.
One-half of the sample volume was then filtered per column for 2min at 600 x g, and
the filtered halves were then combined. To the combined flow-through, three volumes
of TRIzol LS (Life Tech) were added and RNA was extracted using the Direct-zol
RNA Mini-Prep kit (Zymo Research) according to the manufacturer’s instructions
(including DNase I digestion). RNA was finally eluted in 30 ¿L of nuclease-free water
and quantified using the Qubit RNA Broad Range Assay (Life Tech).

Ribosomal RNA was depleted from up to 5 ¿g of footprinted RNA using the
RiboZero Magnetic Gold kit (Illumina) according to the manufacturer’s protocol.
Footprinted RNA was precipitated from the supernatant (90 ¿L) using 1.5 ¿L of
glycoblue (Life Tech), 9 ¿L of 3M sodium acetate and 300 ¿L of ethanol by snap-
freezing in liquid nitrogen, incubating for 1 h up to overnight at –80 °C, and
pelleting at 21,000 x g for 30 min at 4 °C. The RNA pellet was dissolved in 10 ¿L of
RNase-free water.

Following ribosomal RNA (rRNA) depletion, isolation of short fragments and
phosphorylation of these fragments by T4 PNK treatment, sequencing libraries
were prepared using the NEXTflex Small RNA-Seq Kit v3 (Bioo Scientific).
According to the manufacturer’s instructions, adapters were diluted 1:2 to decrease
adapter dimerization. To determine the optimal number of PCR cycles for library
amplification, pilot PCRs with the respective forward and reverse primers were
performed for each sample for 12, 14, 16, 18, and 20 cycles. Adapter and primer
sequences are published by Bioo Scientific. Products were separated on a native
PAGE, and optimal cycle numbers were determined as the threshold cycle of the
library product at 160 bp, the expected size for RPFs, with the smallest amount of
adapter dimer product (130 bp) possible. After the final PCR, libraries were
separated on and excised from an agarose gel, and then cleaned using the
Zymoclean Gel DNA Recovery kit (Zymo Research). Library quantification and
validation were performed using the Qubit dsDNA HS and Bioanalyzer DNA HS
assays, respectively. Three 0D5P control samples and three DAC treated samples
(in a pool of 21 libraries) and two 0D5P samples (in a pool of 3 libraries) were
sequenced on a NextSeq 500 machine at a loading concentration of 1.6 pM using
High Output Kits v2 (Illumina) with 75 cycle single-end reads.

Ribo-Seq: analysis. Ribo-Seq reads were stripped of adaptor sequences using
cutdapt, and contaminants such as transfer RNAs (tRNAs) and rRNA were
removed by alignment to a contaminants index via Bowtie v 2.3.5, consisting of
nucleotide sequences from known human rRNA and tRNA sequences drawn from
the GENCODE annotation v2487. Unaligned reads from this analysis were then
aligned to human genome version hg19 with the STAR v 2.6.1a_08-2788 splice-
aware alignment tool allowing for up to 1 mismatch. The star genome index was
built using GENCODE v24 (lift 37). Reads with up to 20 multi-mapping positions
were included, with multi-mapping reads beings separately treated in subsequent
periodicity analysis. The RIboseQC pipeline v1.089 was used to deduce P-site
positions from the Ribo-Seq reads, and the P-site data were then used as input into
the ORFquant pipeline v0.990 in combination with custom R scripts86 for ORF
calling. The ORFquant pipeline searches for the periodic ribosomal footprint
pattern characteristic of translated ORFs using a supplied database of transcripts,
yielding a set of ORFs corresponding to known coding regions, as well as ORFs
originating from UTRs, non-coding RNAs, intron retentions, and read-through
events. The 0D5P samples had a median of 2.8 million reads mapped to coding
sequences per sample, which constituted a median of 81% of the total reads
(Supplementary Table 2). Since the false-positive rate of periodicity based ORF
calling is thought to be tolerant of non-periodic sources of noise such as genomic
contamination, we included all samples for 0D5P. ORFs were called in both
individual libraries and in the pooled set of all libraries for 0D5P, and ORFs that
were fully contained within ORFs detected in another library were merged. ORFs
were tested for periodicity, by a multitaper test86, and those with a p-value below
0.05 were retained for analyses.

Polypeptide sequences in fasta format were generated from the coordinates of
these ORFs and used for both validation of the peptides found using the RNA-Seq-
based database and as a de novo-assembled database for the subsequent round of
peptide detection. Peptides were considered validated by Ribo-Seq if they matched
anywhere within the translated ORF sequences.

Ribo-Seq profile plots were plotted with P-site numbers per-base on a log2 (n+
1) scale.

The 10x genomics pipeline and gene expression analyses. For single-cell library
preparation on the 10x Genomics platform, the Chromium Single-Cell 3′ Library and
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SingleCell 3ʹ Reagent v3 were utilized, together with the 10x Chromium single-cell
controller instrument in accordance with the official CG000183 RevA user guide. A
total of 1692 0D5P cells were captured for single-cell transcriptomics. The resulting
cDNA libraries were sequenced on NextSeq v 2.5 (with Illumina protocol #15048776).
Cell Ranger v.3.0.1 software (10x Genomics, https://support.10xgenomics.com/single-
cell-gene-expression) was used to process data generated using the 10x Chromium
platform, with a restriction of including only 1400 cells to avoid cells or debris with
low unique molecular identifier (UMI) counts. This approach led to the detection of
19,178 genes with a mean of 125,937 mapped reads. Genes present in at least five cells
and cells with at least 200 genes but no >50% of mito genes were retained for analysis,
resulting in a reduced matrix of 15,710 genes over 1365 cells.

The raw counts were log-normalized using the NormalizeData implemented in
the Seurat R package (Seurat v3). Prior to further processing, we scaled the data to
remove cell-cell variations due to cell cycling or a high percentage of mitochondrial
genes. For cell cycling correction, we followed the scoring strategy described by
Tirosh et al.91: each cell was assigned a Cell Cycle score and the difference between
G2M and S phase scores was regressed out. Clusters were obtained using a graph-
based method implemented in Seurat (FindClusters with a resolution set to 0.5),
leading to the identification of five clusters. Marker genes for each cluster were
identified with FindMarkers from Seurat by setting the logFC threshold parameter
to 0.15. Marker genes with an adjusted Bonferroni p-value <0.05 were considered
significantly differentially expressed. Functional analyses of each cluster were
performed with STRING-db v11 using their corresponding marker genes as input.

Assessment of T cell reactivity. Peptides were synthesized and lyophilized by the
Protein and Peptide Chemistry Facility at the Ludwig Institute for Cancer Research
(crude, >80% purity), Department of Oncology, University of Lausanne, or by
Thermo Scientific, and resuspended in dimethyl sulfoxide at 10 mg/mL. IFNγ
ELISpot assays were conducted to assess the reactivity of the REP TILs towards
antigens of interest (TAAs, noncHLAIp) using pre-coated 96-well ELISpot plates
(Mabtech) according to the manufacturer’s protocol. If necessary, REP TILs were
stimulated with a single peptide or a peptide pool at 1 ¿g/mL in vitro for 14 days
before re-challenging with the peptide to assess the IFNγ response. For this pur-
pose, REP TILs were plated at 1–2 × 105 cells per well and challenged for 18 h with
cognate peptides at a final peptide concentration of 1 µM, in duplicate or triplicate.
Medium without peptide was used as a negative control, and 1x Cell Stimulation
Cocktail (eBioscience™, Thermo Fisher Scientific) was used as a positive control.
Spot-forming units were quantified using the Bioreader-6000-E automated counter
(BioSys). Positive hits were identified by having more spots than the negative
control wells, which did not contain any peptide, plus three times the standard
deviation of the negative control. Positivity was confirmed in at least ≥2 inde-
pendent experiments.

The identification of circulating antigen-specific T cells in patient 0D5P was
performed as such66,92: CD19+ cells were isolated from cryopreserved PBLs using
magnetic beads (Miltenyi) and expanded for 14 days with multimeric-CD40L
(Adipogen, Epalinges, Switzerland, 1 ¿g/mL) and IL-4 (Miltenyi, 200 IU/mL). CD8
+ T lymphocytes were isolated from cryopreserved PBLs using magnetic beads
(Miltenyi) and co-incubated at a 1:1 ratio with irradiated autologous CD40-
activated B cells and peptides (single peptides or pools of ≤ 50 peptides, 1 µM
each). After 12 days of in vitro expansion, CD8+ T cells were re-challenged with
cognate peptide and T cell responses were assessed by the ELISpot assay.

Statistical analyses. Statistical analyses were performed where appropriate. The
following tools were used for statistical analyses: GraphPad Prism 8, Perseus 1.5.5.3,
RStudio 3.5.1 and Python 3.6. Specifically, the boxplots in Fig. 8c, Fig. 9a, b, Sup-
plementary Fig. 1c, d and 1f–h, Supplementary Fig. 3a, b and Supplementary
Fig. S4a–l were generated using the standard settings in either RStudio or GraphPad
Prism. The boxplot settings were: Hinges (25% and 75%), with the median plotted.
For Fig. 8c and Supplementary Fig. 1c, d and 1f–g, the notch is additionally shown at
+/–1.58 IQR/sqrt(n), where IQR is the interquartile range (difference between 75-
and 25-percentile) and n the number of data points. A median at the notch edge
corresponds to a 95% significant difference (p-value= 0.05). Sample sizes and p-
values for Supplementary Fig. 1c, d and 1f–g can be found in the Source Data File. In
Fig. 9a–b, Supplementary Fig. 1h, Supplementary Fig. 3 and 4, the whiskers are
plotted down to the minimum and up to the maximum value, and each individual
value is plotted as a point superimposed on the graph.

HLA binding predictions. To evaluate the binding affinity of HLAIp,
MixMHCpred.v2 prediction software was run on all HLAIp ranging in length from
8 to 14 amino acids. Peptides with a p-value ≤ 0.05 were considered binders.

Sequence-specific HI calculator. Sequence-specific HI was calculated with the
SSRCalc vQ.0 tool35, available online at http://hs2.proteome.ca/SSRCalc/SSRCalcQ.
html. Only unmodified peptides were included and parameters were set to: 100 Å
C18 column, 0.1% formic acid separation system and without cysteine protection.
Observed RTs were obtained from Comet pep.xml files. If a peptide was detected
multiple times in the same sample, the mean RT was used. Peptides and their mean
RTs were plotted against the calculated HIs. For Fig. 2c–f, to compare the variances

in the differences between the RTs and the regression line, we applied a one-sided
F-test.

In order to calculate the standard errors of HI, we regressed the measured RTs
against the calculated HI using the lm function in R. This function returns the
residuals between the regression line and HI values. The residual absolute errors of
the lm-regression were plotted in Supplementary Fig. 1d, g (the higher this value,
the worse the correlation between predicted and measured values). In this manner,
we observe how well the HI calculations correlate with the experimentally
observed RT.

Correlation analyses. Correlative analyses of the immunopeptidome and tran-
scriptome of 0D5P (Fig. 3a–d) were performed by first assigning HLAp to their
respective source genes. For noncHLAp, the gene with the highest transcript
expression was allocated for further analyses if the peptide map back to more than
one non-coding source gene, unless otherwise indicated.

Assessment of HLAIp sampling. For HLAIp sampling analyses, peptides were
assigned to source protein groups as described above. Adjusted peptide counts were
taken, summed over a gene, and subsequently matched to their corresponding
expression values (either transcriptome or translatome based). Normalized sam-
pling corresponds to the adjusted peptide count per protein, normalized by the
protein length. The correlation between gene expression or the spectral coefficients
of 3-periodic signals in Ribo-Seq data and HLA presentation were assessed by
fitting a polynomial curve of degree 3 to each dataset. Pearson correlation was used
to assess the correlation between the fitted curve and the data.

Peptide position analysis. For peptide position analysis within a protein sequence
(Supplementary Fig. 3), proteome-derived datasets fitting to the length distribution
of the 95% confidence level of the lncRNA dataset were selected. Then, the position
of the HLAp, relative to the full protein sequence, was calculated for source
lncRNA and proteome-derived sequences. Since the data were not normally dis-
tributed, the Wilcoxon test was utilized for statistical analysis.

PRM analyses. For analyses of PRM statistics, MS-based intensities were taken
from the initial MaxQuant peptide table output. TAAs for PRM and further
comparative analyses were selected from a non-exhaustive list of known and
clinically relevant TAAs.

GTEx RNA expression analyses. Tissue-specific gene expression data was
downloaded from GTEx, a public resource that contains data from 53 non-diseased
tissues across nearly 1000 individuals46. We used a custom R script to retrieve gene
expression values, based on publicly available GTEx v7 data. In the case of multiple
transcripts matching the same entry, expression data for the most expressed
transcript were used. The 90th percentile expression of the gene in the tissue- was
reported. The FPKM expression units of the investigated sample were converted
into TPM units for comparison with the GTEx data. The R package “Complex-
Heatmap v1.99.4”93 from the Bioconductor suite was used to draw heatmaps.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Sequence data have been deposited into the European Genome-phenome Archive (EGA),
which is hosted by the EBI and the CRG, under accession numbers EGAS00001003723
and EGAS00001003724. MS raw files, corresponding fasta reference files and NewAnce
outputs have been deposited into the ProteomeXchange Consortium via the PRIDE94

partner repository with the dataset identifier PXD013649. The GENCODE v221.2 can be
accessed through https://www.gencodegenes.org/human/release_22.html The human
reference genome GRCh38/hg38 can be accessed through https://www.ncbi.nlm.nih.gov/
assembly/5800238. Human ENCODE non-coding transcripts can be accessed through
https://www.gencodegenes.org/human/release_24lift37.html. GTEx v7 can be accessed
through https://www.gtexportal.org/home/datasets. The UniProt/TrEMBL database can
be accessed through https://www.uniprot.org/proteomes/UP000005640. The source data
underlying Figs. 1–9 and Supplementary Figs. 1–7, where applicable, are provided as a
Source Data file. All other data are available from the corresponding author on
reasonable request.

Code availability
An executable jar file of NewAnce has been deposited to PRIDE with the dataset
identifier PXD013649. The NewAnce code is available on the following GitHub link
https://github.com/bassanilab/NewAnce.git.
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