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Accurate prediction of an individual's phenotype from their DNA sequence is one of the great
promises of genomics and precision medicine. We extend a powerful individual-level data
Bayesian multiple regression model (BayesR) to one that utilises summary statistics from
genome-wide association studies (GWAS), SBayesR. In simulation and cross-validation using
12 real traits and 1.1 million variants on 350,000 individuals from the UK Biobank, SBayesR
improves prediction accuracy relative to commonly used state-of-the-art summary statistics
methods at a fraction of the computational resources. Furthermore, using summary statistics
for variants from the largest GWAS meta-analysis (n = 700, 000) on height and BMI, we
show that on average across traits and two independent data sets that SBayesR improves
prediction R2 by 5.2% relative to LDpred and by 26.5% relative to clumping and p value
thresholding.
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ARTICLE

ccurate prediction of an individual’s phenotype from their

DNA sequence is one of the great promises of genomics

and precision medicine! >, recognising that the accuracy of
a genetic risk predictor is dependent on the genetic contribution to
variation in the trait. Through large consortia and biobank initia-
tives, sample sizes for genome-wide association studies (GWAS) are
reaching a critical point, now for some traits greater than a million
individuals, at which, and under optimal modelling conditions, the
genetic predictors generated could approach their maximum (from
theory) prediction accuracy for some traits®-10.

One approach for generating polygenic predictions uses a
linear combination of simple linear regression effect size esti-
mates and allele counts at single-nucleotide polymorphisms
(SNPs) that are selected via marker pruning coupled with p value
thresholding!!-14. Although simple to implement and useful, this
method leads to suboptimal genetic predictions!>!°. Linear
mixed model (LMM) methodologies have been shown to
improve prediction accuracy!’-21, and jointly analyse all SNPs,
which accounts for linkage disequilibrium (LD) between mar-
kers, capturing the maximum amount of variation at a genetic
locus, especially if multiple causal variants colocalise. Bayesian
multiple regression (BMR) methods extend the standard LMM
to include alternative genetic effect prior distributions and have
been shown to further improve genomic predictions22-27, Recent
BMR implementations require access to the individual-level
data226 and currently do not scale well computationally to data
with greater than half a million individuals and millions of
genetic variants. Restricted access to individual-level genetic and
phenotypic data has motivated methodological frameworks that
only require publicly available summary data?8. Summary sta-
tistics methodology now covers the gamut of statistical genetics
analyses, including effect size distribution estimation?%3, joint
SNP association analysis and fine mapping3!-32, allele frequency
and association statistic imputation33-3°, heritability and genetic
correlation estimation30-4! and polygenic prediction*>~44. These
methods require GWAS summary data, which typically include
the estimated marginal effect, standard error and an estimate of
LD among genetic markers, which are easily accessed via public
databases.

In this work, we derive a BMR summary statistic methodology,
SBayesR, that performs Bayesian posterior inference through the
combination of a likelihood that connects the multiple regression
coefficients with summary statistics from GWAS (similar to Zhu
and Stephens??) and a finite mixture of normal distributions prior
on the marker effects. We focus on optimising prediction accu-
racy, but the methodology is capable of simultaneously estimating
SNP-based heritability (h?y,), genetic marker mapping and
estimating the distribution of marker effects. We maximise
computational efficiency by taking advantage of LD matrix
sparsity, and importantly, once the GWAS effect size estimates
have been generated, the computational time of our method is
independent of sample size, making the method applicable to an
arbitrary number of individuals.

We establish that SBayesR improves prediction accuracy over
other state-of-the-art summary statistics methods in a wide range
of simulations by using real genotype data from 350,000 unre-
lated individuals of European ancestry from the UK Biobank
(UKB). We use the following state-of-the-art methods for com-
parison: individual-level data BayesR?®, regression with summary
statistics (RSS)?°, LDpred*?, summary best linear unbiased pre-
diction (SBLUP)*® implemented in the GCTA software?® and
clumping and p value thresholding (P 4 T) implemented in the
PLINK 1.9 software*®, For h2\p estimation comparison, we use
the summary data LD score regression (LDSC) method3®,
individual-level data Haseman-Elston regression (HEreg)
method?” and additionally for case-control phenotypes

S-PCGCHL. In fivefold cross-validation with 1.1 million HapMap
3 (HM3) variants and 12 real traits in the UKB, we show that
SBayesR obtains similar prediction accuracies to BayesR and
increases prediction accuracy over other summary statistics-based
methods. We further perform large-scale analyses for height and
body mass index (BMI) by using 1.1 million HM3 variants and an
extended set of 2.8 million pruned common variants from the full
UKB European ancestry (n=450,000) data set and predict into
the independent Health and Retirement Study (HRS) and the
Estonian Biobank (ESTB) data sets. In these across-biobank
analyses, we show that by exploiting summary statistics from the
largest GWAS meta-analysis to date (n = 700,000) on height and
BMI*8 that on average across traits SBayesR improves prediction
accuracy by 6.4% relative to an individual-level data BayesR
analysis from the UKB (n=450,000). We show that SBayesR
improves the prediction R? by 5.2% relative to LDpred and by
26.5% relative to clumping and p value thresholding and gives
comparable prediction accuracy to the RSS method, but at a
computational time that is two orders of magnitude smaller.
SBayesR achieves a maximum prediction accuracy for height of
R? =0.352 in the ESTB when we use 2.8 million pruned common
variants from the full UKB European ancestry cohort.

Results

Method overview. A detailed method description is provided in
the ‘Methods” section. In brief, we express the multiple linear
regression likelihood such that it is a function of GWAS summary
statistics and a reference LD correlation matrix. We couple this
likelihood with a flexible finite mixture of normal distributions
prior on the genetic effects that incorporates sparsity, to perform
Bayesian posterior inference on the model parameters, which
include the genetic effects, variance components and mixing
proportions. A right-hand side updating scheme is combined
with the use of sparse matrix operations on the reference LD
correlation matrix to maximise the computational efficiency of
the implemented Gibbs sampling algorithm. The resultant
methodology is capable of generating powerful polygenic pre-
dictors from the massive GWAS results now available at a frac-
tion of the time and memory of individual data methods. Our
method is implemented in the GCTB software?’, freely available
at http://cnsgenomics.com/software/gctb/.

Genome-wide simulation study. Before performing simulations
using genome-wide variants, we thoroughly tested individual-
level and summary statistics-based methods using a simulation
study on chromosomes 21 and 22 and 100,000 individuals from
the UKB (see Supplementary Note 1 and Supplementary Figs. 1-
4). This simulation established the implementation of the method
by comparing the individual data BayesR method with SBayesR
using the full LD matrix constructed from the cohort used to
perform the GWAS, which are theoretically equivalent. Further-
more, it provided an initial validation of SBayesR’s properties as a
function of genetic architecture and LD reference in reasonable
computing time relative to genome-wide analyses. In particular,
we observed that SBayesR outperformed other summary statistics
methods when the genetic architecture of the simulated trait
contained very large genetic effects and a polygenic background,
which is expected due to the very flexible SBayesR prior (Sup-
plementary Fig. 3). The simulation established that a reference LD
correlation matrix constructed from a random subset of 50,000
individuals from the UKB showed the highest prediction accuracy
and least bias in hd, estimation for SBayesR (Supplementary
Figs. 1 and 2). Overall, SBayesR generally outperformed other
methods in terms of prediction accuracy.
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To investigate the performance of the methodology at a
genome-wide scale, we simulated quantitative and case-control
phenotypes using 1,094,841 genome-wide HM3 variants and a
random subset of 100,000 individuals from the 348,580 unrelated
European ancestry individuals in the UKB data set. We chose the
HM3 variant set because it captures common variation well, has
precedence in the literature as a widely used set, variants are
imputed to high accuracy and 1 million variants were within the
computational scope of the methods applied. The 1,094,841 var-
iant subset was formed from the 1,365,446 HM3 SNPs further
filtered on minor allele frequency (MAF) >0.01, strand
ambiguous SNPs (as do Vilhjdlmsson et al.#2 and Bulik-Sullivan
et al.>®) and removal of long-range LD regions (defined in Bycroft
et al.#? in their Table S13 and includes the major histocompat-
ibility (MHC)), and overlapped with the 1000G genetic map. The
1000G genetic map is required for use in the LD matrix shrinkage
estimator33 implemented in RSS and SBayesR (see Methods). For
the same set of variants, we generated two independent tuning
and validation genotype sets, each containing 10,000 individuals.

Two genetic architecture scenarios were simulated: 10,000
causal variants sampled under the SBayesR model, that is, 2500,
5000 and 2500 variants from each of N(0,0.010%), N(0,0.10%)

and N(0,03) distributions, respectively, and oj = 1. For the

second architecture, 50,000 causal variants were sampled from a
standard normal distribution. For each replicate a new sample of
causal variants was chosen at random from the set of 1,094,841
variants. For each quantitative trait scenario, 10 simulation
replicates were generated under the multiple regression model by
using the GCTA software*> and centred and scaled genotypes.
For each architecture the residual variance was scaled such that
the trait heritability (h) was 0.1, 0.2 or 0.5.

Two further case-control phenotype scenarios were simulated
with 10,000 SNP effects being drawn from the above BayesR
model. Case—control phenotypes were generated from the liability
threshold model in the GCTA software with a simulated disease
prevalence of 0.05 and h* = 0.2 or 0.5.

For each simulation scenario, the following methods were used
to estimate the genetic effects and heritability: BayesR, SBayesR,
RSS, LDpred, SBLUP and P + T. For further k2, comparison, we
ran LDSC3%, HEreg?”:>0 and S-PCGC*! (see Methods for detailed
description of implementation and model initialisation for each
method). For methods requiring summary statistics (except S-
PCGCQ), simple linear regression was run in the PLINK 1.9 soft-
ware for each of the 10 simulation replicates in the eight
simulation scenarios. To assess prediction accuracy, we generated
polygenic risk score (PRS) (using the PLINK 1.9 software) for
each individual by using the genotypes from the 10,000 individual
tuning and validation data sets and the genetic effects estimated
from each method. Parameter tuning was performed for LDpred
and P+ T, where for each simulation replicate the prediction
accuracy was assessed for each of the prespecified fraction of
nonzero effect parameters for LDpred and the pruning R? and p
value thresholds for P+ T. The parameters that gave the
maximum prediction accuracy in the tuning data set were then
used for PRS calculation in the validation data set. The prediction
R? was calculated via linear regression of the true simulated
phenotype on that predicted from each method. For the
case—control scenarios, prediction accuracy is summarised by
using the area under the receiver-operating characteristic curve
(AUC) and the hi, estimate is reported on the liability scale by
using the transformation of Lee et al.”!, except for S-PCGC.

Across the simulation scenarios, BayesR or SBayesR gave the
highest or equal highest mean validation prediction R? across the
10 replicates (Fig. 1). SBayesR showed the highest or equal highest
mean prediction R?> of the summary statistics methodologies

across all scenarios. We investigated the calibration of SBayesR
predictors by estimating the slope of the regression of the true
phenotype on the predicted value of SBayesR. Slope values were
on mean close to unity across scenarios (Supplementary Fig. 5).
Prediction R? for BayesR was maximally greater than SBayesR
when h? = 0.5 and for the 10,000 causal variant scenario with a
relative increase of 13.5% (from 0.357 to 0.405). P 4+ T performed
well across scenarios and showed increased mean prediction R2
relative to LDpred-inf and SBLUP in the 10,000 causal variant
scenarios, but did not exceed the mean prediction R? of LDpred
tuned for the polygenicity parameter. RSS showed the closest
mean prediction R* to SBayesR in the 10,000 causal variant
simulation scenarios. SBayesR showed the largest significant
(paired ¢ test statistic = 15.4, p value = 8.8 x 10~8) improvement
in mean prediction R? over other summary statistics methodol-
ogies in the 10,000 causal variant scenario and h* = 0.5 with a
relative difference in mean of 4.1% (from 0.343 to 0.357) over RSS.
The results from the case-control phenotypes largely reflect those
from the quantitative traits, with the exception that the SBayesR
AUC exceeded that of BayesR for the 0.5 heritability scenario.

Across all scenarios, all methods except RSS showed minimal
bias in 3, estimation (Supplementary Fig. 6), with HEreg or S-
PCGC showing the least bias. SBayesR maintained a small
upward bias across all simulation scenarios and a maximum
upward relative bias of 6.2% (0.531 compared with 0.5) in the
10,000 causal variant, k> = 0.5 case—control scenario (Supple-
mentary Fig. 6). LDSC maintained a small downward bias in hy,
with a maximum relative deviation of 6.4% (0.468 compared with
0.5) for the h*> = 0.5 and 10,000 causal variant scenario.

We compared the CPU time and memory usage between all
methods in each scenario. For the Bayesian methodologies,
runtime is dependent on the length of the MCMC chain. The
chain length for BayesR and SBayesR (10,000 MCMC iterations)
was chosen as mean prediction accuracy did not improve for
further iterations (Supplementary Figs. 7 and 8). We observed
differences between prediction accuracy and hiy;, estimates from
RSS when the chain length was reduced to 200,000 iterations (to
reduce computational time) (Supplementary Figs. 9 and 10), and
we thus maintained an MCMC chain length of 2 million
iterations, which was used in Zhu and Stephens3®. Across the
simulation scenarios, SBayesR had the shortest mean runtime
(~2-4h) with up to a fourfold improvement over the second
quickest LDpred (Supplementary Fig. 11). SBayesR required ~44
GB of memory, which was similar to SBLUP (23 GB) and LDpred
(37-41 GB). SBayesR required half the memory of the individual
data BayesR, which has been highly optimised for time and
memory efficiency, and a 30-fold improvement over RSS
(Supplementary Fig. 12). The Methods section details the
memory and time requirements required to build the sparse
shrunk LD correlation matrix for SBayesR and RSS, which are not
included in these memory and time statements. We note that the
memory requirements for SBayesR are fixed for this set of
variants for an arbitrary number of individuals, which is not the
case for the individual-level BayesR method.

Application to 12 traits in the UKB. To assess the methodology
in real data, we performed fivefold cross-validation using phe-
notypes and genotypes from 348,580 unrelated individuals of
European ancestry from the full release of the UKB data set. We
chose 12 real traits including adult standing height (HEIGHT,
n = 347,106), male-pattern baldness (MPB, n = 125,157), basal
metabolic rate (BMR, n = 341,819), heel bone mineral density T-
score (hBMD, n=197,789), forced vital capacity (FVC, n=
317,502), type 2 diabetes (12D, n=274,271, prevalence 5.9%),
body mass index (BMI, n = 346,738), body fat percentage (BFP,
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Fig. 1 Prediction accuracy performance for the UKB genome-wide simulation. Each panel displays boxplot summaries of the prediction R2 (y-axis) or area
under receiver-operating characteristic curve (AUC), in the 10,000 individual validation data set for each method (x-axis) across the 10 replicates. The
simulation study contained eight scenarios that varied in the number of causal variants, 10,000 (10k) and 50,000 (10,000), and the true simulated
heritability h?> = (0.1,0.2,0.5). The two genetic architecture scenarios generated were 10,000 causal variants sampled under the SBayesR model, that is,
2500, 5000 and 2500 variants from each of N(O, 0.01), N(O, 0.1) and N(O, 1) distributions, respectively, and 50,000 causal variants sampled from a
standard normal distribution. Case-control phenotypes were generated from the liability threshold model with a simulated disease prevalence of 0.05 and
the 10,000 causal variant genetic architecture. In each panel, LDpred has two boxplot summaries, one that has been optimised for the polygenicity
parameter and the other is LDpred-inf, which is displayed for comparison with SBLUP. LDpred and SBLUP were initialised with the true heritability
parameter. The mean prediction accuracy across the 10 replicates is displayed above the boxplot for each method. The centre line inside the box is the
median, the bottom and top of the box are the first and third quartiles, respectively (Q1 and Q3), and the lower and upper whiskers are Q1-1.5IQR and Q3
+ 1.5 IQR, respectively, where IQR = Q3 - Q1. The points depict the prediction accuracy for each replicate

n = 341,633), forced expiratory volume in 1s (FEV, n = 317,502),
hip circumference (HC, n = 347,231), waist-to-hip ratio (WHR,
n=347,198) and birth weight (BW, n=197,778). The primary
SNP set used for method comparison was the same set of
1,094,841 HM3 variants described in the genome-wide simulation
study. To investigate the capacity of SBayesR to perform analyses
at large scale, we generated a set of 2,865,810 common (MAF >
0.01) variants by pruning (R?>0.99) a larger set of 8 million
variants from the UKB that were of good quality, overlapped with
previous large GWAS® and were present in the 1000G genetic
map. A set of 5000 individuals was kept separate for LDpred and
P+ T parameter tuning. To perform the cross-validation, the
remaining individuals were partitioned into five equal-sized dis-
joint subsamples. For each fold analysis, a single subsample was
retained for validation with the remaining four subsamples used
as the training data. This process was repeated five times. We
generated summary statistics for each pre-adjusted trait (see
Methods) in the training sample in each fold by running simple
linear regression in PLINK 1.9. We performed cross-validation
for all traits by using the following methods: BayesR, SBayesR,
RSS, LDpred, SBLUP and P + T. For hi, comparison we addi-
tionally ran LDSC and HEreg or S-PCGC for T2D. Furthermore,
we ran SBayesR for the expanded set of 2.8 million variants for
height and BMI. To assess prediction accuracy, we calculated
PRSs by using the genotype data from the independent validation
set in each fold. The prediction R? was calculated via linear
regression of the true phenotype on the PRS from each method or
the AUC for type 2 diabetes. We assessed the adequacy of four
mixture distributions for use in SBayesR by performing the cross-
validation analyses using 2-6 mixture distributions. The use of
four mixture distributions was a good compromise between
prediction accuracy and computational speed across all traits
(Supplementary Figs. 13 and 14).

For the HM3 variant set, SBayesR improved or equalled the
mean prediction accuracy of all other methods, including the
individual-level BayesR method, across the five folds for 9/12

traits (Fig. 2). Slope estimates from the regression of the true
phenotype on the predicted value from SBayesR showed good
calibration for most traits (Supplementary Fig. 15). BayesR was
the only method to exceed SBayesR in mean prediction R? and
showed a relative increase of 5.7% (from 0.349 to 0.369) for
height, 15.1% (from 0.199 to 0.229) for MPB and 5.1% (from
0.188 to 0.197) for heel BMD. For height, MPB, BMR, hBMD,
FVC, T2D and BMR, SBayesR showed significant mean increases
(paired ¢ test p values=3x 1072, 8 x 1074, 9x 1074, 5x 1074,
1x 1073 and 4 x 1074, respectively) in prediction accuracy over
RSS with a relative improvement in mean prediction accuracy of
2.1% (from 0.342 to 0.349), 4.7% (from 0.190 to 0.199), 1.5%
(from 0.171 to 0.174), 2.8% (from 0.182 to 0.188), 3.0% (from
0.124 t0 0.127) and 1.6% (from 0.646 to 0.657 AUC), respectively
(Fig. 2). SBayesR showed larger improvements relative to LDpred
tuned for the polygenicity. SBayesR mean prediction accuracies
increased significantly (paired ¢ test p value =2 x 107°) by 9.6%
from 0.349 to 0.383 for height and by 2.3% from 0.124 to 0.126
(paired  test p value = 2 x 10~2) for BMI, when the expanded set
of 2.8 million common variants were used over the HM3 set.
For all traits except height, hi, estimates were consistent
across all methods for the HM3 variant set (Supplementary
Fig. 16). Across all traits HEreg, S-PCGC or SBayesR gave the
highest mean hZ,, estimate and LDSC the lowest mean value,
with the largest deviation in mean LDSC estimates from other
methods for hBMD and height. SBayesR posterior highest-
probability densities (80 and 95%) for hiy, show that the
uncertainty of the estimate given the data is small for each trait
(Supplementary Fig. 17). On mean across the five folds, relative
deviations in mean hi, estimates between SBayesR and HEreg
were between 0.2 and 16% with the largest relative deviations
being for BFP (7.8%) and BW (16.2%). We observed a further
increase in h, estimates for height and BMI when the set of 2.8
M common variants were used (Supplementary Fig. 16).
SBayesR on mean took ~1.5-4.5h and required 40 GB of
memory to complete a genome-wide analysis (1,094,841 HM3
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Fig. 2 Prediction accuracy in fivefold cross-validation for 12 traits in the UK Biobank. Panel headings describe the abbreviation for 12 traits including
standing height (HEIGHT, n = 347,106), male-pattern baldness (MPB, n =125,157), basal metabolic rate (BMR, n =341,819), heel bone mineral density T-
score (hBMD, n=197,789), forced vital capacity (FVC, n=317,502), type 2 diabetes (T2D, n= 274,271), body mass index (BMI, n=346,738), body fat
percentage (BFP, n=341,633), forced expiratory volume in 1s (FEV, n=317,502), hip circumference (HC, n=347,231), waist-to-hip ratio (WHR, n=
347,198) and birth weight (BW, n=197,778). Each panel shows a boxplot summary of the prediction accuracy across the five folds with the mean across
the five folds displayed above each method's boxplot. The centre line inside the box is the median, the bottom and top of the box are the first and third
quartiles, respectively (Q1 and Q3), and the lower and upper whiskers are Q1-1.5 IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3 - Q1. The points
depict the prediction accuracy for each replicate. Traits are ordered by mean estimated h%NP (see Supplementary Fig. 16) from highest to lowest

variants) with variability in run time depending on the number of
nonzero variants in the model (Supplementary Figs. 18 and 19).
The difference in the number of nonzero effects in the model for
these traits may be driven in part by the sample size differences
between traits. SBayesR genome-wide analyses for the 2.8 M
variant set took on average across the five folds 250 GB of RAM
and 12.5 CPU hours for 10,000 MCMC iterations (Supplemen-
tary Figs. 18 and 19). RSS had the longest runtime and shortening
the MCMC chain to 200,000 iterations decreased RSS prediction
accuracy (Supplementary Figs. 18 and 19). LDpred was the closest
to SBayesR in terms of runtime with a mean of 25h across the
traits. SBayesR showed a sixfold memory improvement over
BayesR and a 30-fold improvement over RSS (Supplementary
Fig. 19). The memory improvement over RSS is due mainly to the
sparse matrix storage and computation in SBayesR.

Across-biobank prediction analysis. To investigate how the
proposed methods scale and perform in very large data sets, we
analysed the full set of unrelated and related UKB European
ancestry individuals (n =456, 426) and used summary statistics
from the largest meta-analysis of BMI and height8. For these
analyses, the same set of 1,094,841 genome-wide HM3 SNPs and
expanded 2.8 million common variant sets described in the cross-
validation analyses were used. The set of traits was limited to BMI
and height as these traits were present in the UKB and in
accessible large independent validation sets, which included the
HRS and ESTB.

To generate a baseline for comparison between the individual
data BayesR method and the SBayesR method, we first analysed
data from the same set of individuals and variants from the full
set of unrelated and related UKB individuals. We generated
summary statistics for SBayesR analysis for BMI and height by
using a linear mixed model to account for sample relatedness in
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the BOLT-LMM v2.3 software®?! for the 1,094,841 HM3 variants
in the full UKB data set and for the expanded 2.8 million
common variant set. Using these summary statistics, we ran
SBayesR for both the HM3 and expanded set. For comparison in
the full UKB data set, we ran the individual-level BayesR method
for the HM3 set.

Motivated by the hypothesis that summary statistics meth-
odologies can increase prediction accuracy over large-scale
individual-level analyses by utilising publicly available summary
statistics from very large GWAS, we took the summary statistics
from the largest meta-analysis of BMI and height*3 and analysed
them by using SBayesR, RSS and LDpred, which were the best-
performing summary-based methods (in terms of prediction
accuracy) in the cross-validation. We subsetted the set of
1,094,841 HM3 variants to 982,074 variants that overlapped with
those in both the BMI and height summary statistics sets from
Yengo et al.48. After per-SNP sample size quality control (see
Methods), 932,969 and 909,293 variants with summary informa-
tion remained for height and BMI, respectively. These sets of
variants were also used in the LDpred and RSS analyses.

Overall, SBayesR gave similar but consistently higher predic-
tion R? values than BayesR for both BMI and height in both the
HRS and ESTB samples (Supplementary Table 1), when the
summary statistics from the full European ancestry (related and
unrelated individuals) UKB data set were used (n = 453,458 and
n=454,047 for BMI and height, respectively). When the
summary statistics from Yengo et al.#8 were used, a further
improvement in prediction R? over BayesR was observed for
SBayesR, RSS and LDpred for BMI, and for SBayesR and RSS for
height (Fig. 3 and Supplementary Table 1). SBayesR and RSS gave
similar prediction R? values for BMI with marginal increases in
SBayesR over RSS for height, which is consistent with the results
from the cross-validation. However, SBayesR explains marginally
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Fig. 3 Across-biobank prediction accuracy for height and BMI. Panels depict
prediction R? (y-axis) generated from regression of the predicted
phenotype on the observed phenotype for BMI and height for different
methods in the independent HRS and ESTB data sets. P + T refers to the
prediction R2 generated from the summary statistics of Yengo et al.48 (n~
700,000), which included 6781 SNPs for BMI and 11,816 SNPs for height
from a GCTA-COJO analysis thresholded at Wald test p value <0.001. The
BayesR predictions were calculated by using 1,094,841 HM3 variants
estimated from the full set of unrelated and related UKB European
individuals (n = 453,458 and n= 454,047 for BMI and height,
respectively). Summary statistics for SBayesR 2.8 million variant (SBayesR
2.8M) analysis for the UKB European individuals were generated by using
the BOLT-LMM software. All other prediction R? results were generated by
using summary statistics methodology and were calculated from the
analysis of summary statistics from Yengo et al.#8 for 909,293 and
932,969 variants for BMI and height that overlapped with the 1,094,841
HM3 variants set used for the UKB analyses. The overlap of the sets of
variants used in each of the analyses and those available in the imputed
HRS and ESTB data sets for prediction had a minimum value of 98%.
Supplementary Table 1 details further the figure results

Prediction R®

o
N

but significantly more variance in the true phenotype than RSS
(Supplementary Table 1). The maximum increase in SBayesR
prediction R? relative to the BayesR analysis using just the UKB
HM3 data for BMI was 10.9% (from 0.110 to 0.122) and 3.5%
(from 0.315 to 0.326) for height in the ESTB sample when the
summary statistics from Yengo et al.#8 were used. For height, we
observed a maximum relative increase of 19.9% (from 0.272 to
0.326) in SBayesR prediction R? over the P+ T predictor of
Yengo et al.*8 in the ESTB sample when the summary statistics
from Yengo et al.#8 were used. The expansion of the variant set to
2.8 million variants did not improve the prediction R? for BML
However, the maximum prediction accuracy for height was
achieved when SBayesR was used to analyse the summary
statistics generated from the full UKB for the 2.8 million variant
set, with a prediction R? value of 0.352 in the ESTB.

Discussion
Clinically relevant genetic predictors for complex traits and dis-
orders will require the analysis of data from large consortia and
biobank initiatives, with efficient methods that produce powerful
polygenic predictors being critical to this goal. We have presented
one solution, SBayesR, that rests on an extension of the estab-
lished summary statistics methodological framework to include a
class of point-normal mixture prior Bayesian regression models
and shown it to be a powerful method for polygenic prediction.
The observation that SBayesR improves on the BayesR pre-
diction accuracy in real data cross-validation and independent
out-of-sample prediction is contrary to expectation. The major
difference between these two methods is that interchromosomal

LD is ignored in the SBayesR method. Such between-
chromosome LD may result from genetic sampling in finite
population sizes, population structure and nonrandom mating
(e.g., assortative mating). The incorporation of this information
appears only advantageous for predictions performed within an
independent subset from the same population, for example, the
partitioning of the UKB in the simulation studies and in cross-
validation. The HRS and ESTB data are unlikely to contain the
same interchromosomal LD correlation structure and thus its
inclusion in the BayesR analysis may be partially detrimental as it
comes into the model as informative within the data set (UKB)
but as noise across data sets (UKB to HRS/ESTB). One hypothesis
for this is that the HRS and ESTB populations have different
patterns of assortative mating for specific traits than in the UKB,
or individuals in HRS or ESTB are more randomly mated than
those in the UKB.

SBayesR is implemented in an efficient and user-friendly
software tool that maximises computational efficiency via pre-
computing and efficiently storing sparse LD matrices that account
for the variation in the number of LD friends for each variant.
Currently, the LD matrix construction can only be performed
with PLINK hard-call genotypes. The use of imputation dosage
values may provide an improvement and is interesting future
research. In simulation and cross-validation, we showed large fold
improvements in time and memory over current state-of-the-art
individual and summary data methods. The improvements in
efficiency are not just a result of the computational imple-
mentation, but are a partial result of the faster convergence of the
Gibbs sampling algorithm. This is evidenced by the comparison
with RSS, which requires a much longer chain length to arrive at
maximum prediction accuracy. Importantly, once the GWAS
effect size estimates have been generated, the method’s runtime is
independent of the sample size, making it applicable to an arbi-
trarily large number of individuals.

We found that model convergence is sensitive to incon-
sistencies in summary statistics generated from external consortia
and meta-analyses. We observed that the shrinkage estimator of
the LD matrix? can assist with more stable model convergence.
Through simulation, we observed that the SBayesR hi, upward
bias can be minimised through an optimally sparse and suffi-
ciently large LD reference. SBayesR estimates the parameters of
the mixture distribution, such as the mixing probabilities, which
are expected to be subject to larger biases than the variance
components. The underlying true mixture distribution may not
be identifiable, especially when the causal variants are not
observed in practice. For example, a large causal effect could be
captured as a large effect or as a combination of a few small
effects at the SNPs in LD with the causal variant, which will
subsequently affect the estimation of the mixture distribution
parameters. The impact from residual population stratification in
the GWAS summary statistics in real data analyses is another
potential source in upward bias in h, estimates, but was not
investigated via simulation. A further factor to consider as a
source of potential parameter bias is the impact of using summary
statistics results from an LMM (e.g. Loh et al.!), where the
SBayesR model is derived under the assumption that the sum-
mary statistics have been generated from a least-squares analysis.
The use of summary statistics from a LMM will affect the
reconstruction of X'y with a potential remedy for this discrepancy
being the use of the reported effective sample size from the
BOLT-LMM analysis®. We recommend careful interpretation of
h\p estimates for case-control phenotypes, particularly for stu-
dies that oversample cases relative to the population prevalence
and for traits with low sample prevalence*!>1->3, We have not
assessed SBayesR’s effectiveness for mapping causal variants, but
we expect it to be capable of performing this task, which is
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inherited from the individual-level BayesR method20->4>>. The
capacity to fit millions of variants in one model also makes it a
potential tool for fine mapping. SBayesR estimates all parameters
from the data and does not require any post hoc tuning of
prediction-relevant parameters in a test data subset (as in the
tuning parameters of LDpred or P + T), which relieves the ana-
Iytical burden of tuning these parameters in an external data set.
Furthermore, SBayesR generates more generalisable predictors as
the model parameters have been optimised over all possible
values rather than selected from a finite grid.

Formally, the model assumes certain ideal data constraints
such as summary data computed from the same set of individuals
at fully observed genotypes>’, as well as minimal imputation error
and data-processing errors such as allele coding and frequency
mismatch. Summary data in the public domain often sub-
stantially deviate from these ideals and can contain residual
population stratification, which is not accounted for in this
model. Practical solutions include the use of imputed data and the
restriction of analyses to variants that are known to be imputed
with high accuracy as in Bulik-Sullivan et al.3¢ and Zhu and
Stephens3®. We found that the simple filtering of SNPs with
reported per-SNP sample sizes that deviate substantially from the
median across all variants from an analysis, as in Pickrell>®
substantially improved SBayesR model convergence. Removal of
high LD regions, such as the MHC region, further improved
model convergence for real traits. Future research into efficient
diagnostic tools and methods that can assist analysts with the
assessment of sources of bias and error in summary data quality
would be highly beneficial. The SBayesR implementation and
model are very flexible and can easily incorporate other model
formalisations such as understanding the contributions of geno-
mic annotations to prediction and hiy, enrichment’®>7 or
understanding genetic architecture via summary statistics ver-
si0n52(7)f models such as those presented in Gazal et al.>8 and Zeng
et al.*’.

Methods

UK Biobank. We used real genotype and phenotype data from the full release of
the UKB. The UKB is a prospective community cohort of over 500,000 individuals
from across the United Kingdom and contains extensive phenotypic and genotypic
information about its participants*®. The UKB was approved by the National
Research Ethics Service Committee and all participants provided written informed
consent to participate in the study. The UKB data contain genotypes for 488,377
individuals (including related individuals) that passed sample quality control
(99.9% of total samples). A subset of 456,426 European ancestry individuals was
selected. Ancestry was inferred by using the protocol in Yengo et al.48 that initially
projects each study participant onto the first two genotypic PCs calculated from
HM3 SNPs genotyped in 2504 participants of 1000 genomes project. Five super-
populations (European, African, East-Asian, South-Asian and Admixed) are used
as a reference and each participant is assigned to the closest population. The
posterior probability under a bivariate Gaussian distribution is calculated for each
participant to belong to one of the five superpopulations. Vectors of means and 2 x
2 variance—covariance matrices were calculated for each superpopulation, by using
a uniform prior. To exclude related individuals, a genomic relationship matrix
(GRM) was constructed with 1,123,943 HM3 variants further filtered for MAF
>0.01, pHWE < 10~ and missingness <0.05 in the European subset, resulting in a
final set of 348,580 unrelated (absolute GRM off-diagonal < 0.05) Europeans.
Genotype data were imputed to the Haplotype Reference Consortium and UK10K
panel, which was provided as part of the data release and described in Bycroft

et al*%, and contained SNPs, short indels and large structural variants. Variant
quality control included removal of multi-allelic variants, SNPs with imputation
info score < 0.3, retained SNPs with hard-call genotypes with > 0.9 probability,
removed variants with minor allele count (MAC) < 5, Hardy-Weinberg p value (y?
(df =1) test statistic pHWE) < 10~ and removed variants with missingness > 0.05,
which resulted in 46,500,935 SNPs for the 456,426 individuals available for
potential analysis.

ARIC, 1000 Genomes and UK10K data. The implemented summary statistics
methodology requires an estimate of LD among genetic markers. In addition to the
UKB, three data sets were used to calculate LD reference matrices. We used the
genotype data from the Atherosclerosis Risk in Communities (ARIC)*® and
GENEVA Diabetes study obtained via dbGaP. The ARIC study protocol was

approved by the institutional review boards of each participating centre, and
informed consent was obtained from each study participant. The ARIC + GEN-
EVA data consisted of 12,942 unrelated individuals determined by an absolute
GRM off-diagonal relatedness cutoff of <0.05. After imputation to the Phase 3 of
the 1000 Genomes Project (1000G)%, 1,182,558 HM3 SNPs (MAF > 0.01) were
selected and available for analysis after quality control. Whole-genome sequencing
data from the 1000G project were used for LD matrix reference calculation. These
data were subsetted to a set of 378 individuals with European ancestry to be
consistent with the LD reference used in Zhu and Stephens®. Whole-genome
sequencing data from the UK10K project® were also used for analysis. Ethics
approval for the UK10K project was performed under the framework of the Ethical
Advisory Group of the UK10K project with contributing studies ethical approval
detailed in UK10K Consortium®! with individuals providing informed consent.
The initial UK10K data set comprised 3781 individuals and ~45.5 million genetic
variants called from whole-genome sequencing after quality control. Additional
quality control (following Yang et al.%2) steps were performed, excluding SNPs
with missingness > 0.05, Hardy-Weinberg equilibrium test (2 (df = 1)) p value <
1x 1079, or MAC <3 (equivalent to MAF <0.0003) by using PLINK. Individuals
with genotype missingness rate >0.05 and one of each pair of individuals with
estimated genetic relatedness > 0.05 by using variants on HapMap 2 reference
panels after quality control. The final UK10K contains 17.6 million genetic variants
in 3642 unrelated individuals.

HRS and ESTB. For out-of-sample validation of genetic predictors we used two
cohorts that are independent of the UKB. We used genotypes imputed to the
1000G reference panel and phenotypes from 8552 unrelated (absolute GRM off-
diagonal < 0.05) participants of the HRS3. HRS obtained ethics approval from the
University of Michigan Institutional Review Board, and the study has been con-
ducted according to the principles expressed in the Declaration of Helsinki and all
participants provided written informed consent to participate in the study. After
imputation and restricting variants with an imputation quality score > 0.3, MAF
>0.01 and a pHWE > 1076 there were 24,777,992 SNPs available for prediction.
The ESTB® is a cohort study of over 50,000 individuals over 18 years of age with
phenotypic and genotypic data. The ESTB project obtained approval from the
Ethics Review Committee on Human Research of the University of Tartu and all
participants provided written informed consent to participate in the study. For the
prediction analysis we used data from 32,594 individuals genotyped on the Global
Screening Array. These data were imputed to the Estonian reference®, created
from the whole-genome sequence data of 2244 participants. Markers with impu-
tation quality score > 0.3 were selected, leaving a total of 11,130,313 SNPs available
for potential prediction.

SBayesR model overview. We relate the phenotype to the set of genetic variants
under the multiple linear regression model

y=XB+e, (1)

where y is an 7 X 1 vector of trait phenotypes, which has been centred, X is an n x p
matrix of genotypes coded as 0, 1 or 2 representing the number of copies of the
reference allele at each marker and we consider that the columns of X have either
been centred or scaled, B is a p x 1 vector of multiple regression coefficients
(marker effects) and & is the error term (n x 1). We can relate the multiple
regression model to the estimates of the regression coefficients from p simple linear
regression analyses b, by multiplying Eq. (1) by D~! X', where D =
diag(x|x;, ... ,X,X,) to arrive at
D 'X'y =D'X'Xg+D 'X'e. (2)

Noting that b=D"! X'y is the vector (p x 1) of least-squares marginal

regression effect estimates and the correlation matrix between all genetic markers

1 1
B = D 2X'XD 2, we rewrite the multiple regression model as

11

b=D"2BD2 + D 'Xe. 3)

Assuming &, ..., &, are independent N(0, 02), the following likelihood can be
proposed for the multiple regression coefficients f8

£(B;b.D, B) := A (b; D 2BD2, D 2BD 20?), )

where N (&; p, 2) represents the multivariate normal distribution with mean vector
p and covariance matrix X for &. If individual-level data are available then inference
about B can be obtained by replacing D and B with estimates (D, B) from the
individual-level data. If individual-level data are unavailable, then we can replace D
with D = diag{1/[6%(b,) + b /n,], ..., 1/[&2(bp) + blz,/np]}, where [nj,bjffz(bj)]
are the sample size used to compute the simple linear regression coefficient, an
estimate of the simple linear regression allele effect coefficient and &(b;) the
standard error of the effect for the jth variant, respectively.

This reconstruction of D assumes that the markers have been centred to mean 0
(see Supplementary Note 3 for a detailed reasoning of this reconstruction of D). If
we make the further assumption that the genetic markers have been scaled to unit

variance then we can replace D with D = diag{n,, ... n,}. Similarly, we replace B,
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the LD correlation matrix between the genotypes at all markers in the population,
in which the genotypes in the sample are assumed to be a random sample, with B
an estimate calculated from a population reference that is assumed to closely
resemble the sample used to generate the GWAS summary statistics. Zhu and
Stephens®® discuss further the theoretical properties of a similar likelihood. We
assess the limits of replacing D and B with these approximations through
simulation and real data analysis.

We perform Bayesian posterior inference by assuming a prior on the multiple
regression genetic effects and the posterior

p(Blb, D, B) o p(b|B, D, B)p(B|D, B). )

In this paper we implement the BayesR model?#26, which assumes that

0 with probability 7, ,
~ N(0,y,03) with probability ,,
ﬁj |7, Gf; =

~ N(0,yc03) with probability 1 — >,

where C denotes the maximum number of components in the finite mixture model,
which is prespecified. The y. coefficients are prespecified and constrain how the
common marker effect variance af; scales in each distribution. In previous
implementations of BayesR the variance weights y were with respect to the genetic
variance ag. For example, it is common in the BayesR model to assume C =4 such
that y = (y1, ¥2, ¥3> ¥4)’ = (0, 0.0001, 0.001, 0.01)". This requires the genotypes to be
centred and scaled and equates the genetic variance 0'; = mo3, where m is the
number of variants. We relax this assumption to disentangle the relationship
between these parameters and to maintain the flexibility of the model to assume
scaled or unscaled genotypes. In this implementation, we let the weights be with
respect to af; and have a default y = (0, 0.01, 0.1, 1.0)’, which maintains the relative
magnitude of the variance classes as in the original model. Supplementary Notes 2-
4 detail further the hierarchical model and hyperparameter prior specification.
Supplementary Note 3 details the derivation of the Markov chain Monte Carlo
Gibbs sampling routine for sampling of the key model parameters 6 =

(B, a3, 02)' from their full conditional distributions. We assume that the prior
for o} is a scaled inverse y* distribution with density

2 vg/2 2 N
(Sﬂyﬁ/z) exp(fl/ﬂsﬁ/20ﬁ>

F(l/ﬂ/2> (Ué> 1+1/2

where Slz; and v are the scale parameter and degrees of freedom, respectively. The

)

f(af;;z/ﬁ,sf;) =

residual variance o? is assumed to have scaled inverse y? distribution prior with
distribution

(S2v/2)""? exp(—v,82/202)
Tve/2)  (02)"™"

SNP-based heritability estimation is performed by calculating h, = Ué /(o +
(7;) at each iteration i of the MCMC chain, where the genetic variance o2 is
estimated via the sample variance of the vector XB() for each observed () in
iteration i and o2 by the sampled residual variance at the ith iteration (see
Supplementary Notes 3 and 4 for further details). Point estimates of hjy, are then
summarised from the generated posterior distribution.

To illustrate why the Gibbs sampling routine proposed lends itself to the use of
summary statistics, we focus on the full conditional distribution of 3; under the
proposed multiple regression model. To facilitate the explanation we make the
simplifying assumption that C=2 and y = (y;, y,) = (0, 1). The full conditional
distribution of ; under this assumption (see Supplementary Note 3) is

£(Bl0,v) x exp {M , ©)

az/l;

F(oi ) =

where [; = <xj’.x/ + J?/Gf;) and ﬁj = XJ’.[y — ijﬂfj]/lj = x/’w/lj, where X_; is X
without the jth column. The term J; only involves the diagonal elements of X'X and
11 .
is easily calculated from summary statistics via X'X; = D2BD?. For B;» we require
r=Xxw. (7)

This quantity can be efficiently stored and calculated in each MCMC iteration
via a right-hand side updating scheme. We define the right-hand side X'y corrected
for all current B as

r' =Xy — X'XB, (8)

where r* is a vector of dimension p x 1. The jth element of r* can be used to

calculate
e ’
n=xXw=r1+ xjxjﬁj. (9)
Therefore, once a variant has been chosen to be in the model its effect is
sampled from Eq. (6), which is the kernel of the normal distribution with mean [5].
and variance 02/ I,. After the effect for variant j has been sampled we update

A\ (1) o\ (1) (i+1) i)
(r) =(r") _X/xj()Bj _ﬁj )

Importantly, after the initial reconstruction of X'y = Db from summary
statistics, Eq. (10) only requires X x;, which is the jth column of X'X. The operation
in Eq. (10) is a very efficient vector subtraction and only requires the subtraction of
the nonzero elements of the shrinkage estimator of the LD correlation matrix from
Wen and Stephens3?, which we perform by using sparse vector operations. The
other elements of the Gibbs sampling routine are the same as the individual data
model, except for the sampling of 02, which is outlined in Supplementary Note 3.

(10)

Reference LD matrix construction. The summary statistics methods used require
the construction of a reference LD correlation matrix. Typically this is done
through the use of a fixed 1-10-Mb window approach, as in GCTA-SBLUP or
LDpred, which sets LD correlation values outside this window to zero. Zhu and
Stephens®” detail the reasons for using the shrinkage estimator of the LD matrix3,
which shrinks the off-diagonal entries of the LD correlation matrix towards zero
and is required for the RSS?. Experimentation with different types of sparse LD
correlation matrices led to the conclusion that the shrinkage estimator was the
most stable for SBayesR implementation. Briefly, each element of the reference LD
correlation matrix By; is shrunk by the factor exp (—p;;/2m), where m is taken to be
the sample size used to generate the genetic map, p;; is an estimate of the
population-scaled recombination rate between SNPs i and j taken as p; = 4N,c;;,
for N, the effective population size and c;; the genetic distance between sites i and j
in centimorgans as stated in Li and Stephens®®. LD matrix entries are set to zero if
exp (—p;;/2m) is less than a user-chosen cutoff.

Genetic distance between sites is derived from the genetic map files containing
interpolated map positions for the CEU population generated from the 1000G
OMNI arrays (Data availability). The calculation of the shrunk LD matrix requires
the effective population sample size, which we set to be 11,400 (as in Zhu and
Stephens®?), the sample size of the genetic map reference, which corresponds to the
183 individuals from the CEU cohort of the 1000G and the hard threshold on the
shrinkage value, which we set to 1073, This threshold gave a good balance between
computational efficiency and accuracy with, on average, each SNP having a
window width of 10.6 Mb (SD = 5.6 Mb) across the autosomes (Supplementary
Fig. 22). The shrunk LD matrix is stored in a sparse matrix format (ignoring matrix
elements equal to 0) for efficient SBayesR computation. Currently, the LD matrix
construction can only be performed with PLINK hard-call genotypes.

The simulation study on chromosomes 21 and 22 established that an LD
reference cohort of 50,000 random individuals from the UKB gave the highest
SBayesR prediction accuracy and lowest bias in 2, estimation (Supplementary
Note 1). The overlap between this random subsample with the 100,000 random
individuals used to generate the simulated phenotypes was 13,967. This same set of
50,000 individuals was used for LD reference calculation in LDpred, SBLUP and for
P+ T clumping. For this 50,000-individual UKB cohort, chromosome-wise LD
matrices, that is, all interchromosomal LD is ignored, were built, and the shrinkage
estimator of the LD matrix calculated by using an efficient implementation in the
GCTB software. This was performed for the 1,094,841 HM3 and the 2,865,810
UKB-pruned common variant sets. The total time and memory used to compute
the SBayesR LD reference is not included in the time assessment results in the main
text. The building of the sparse LD reference for SBayesR HM3 variants took in
total 13 1/3 CPU days and ~500 GB of memory. SBayesR can compute the sparse
LD matrix in parallel via dividing each chromosome into genomic chunks. We
used 100 CPUs to compute the LD matrix, which brought the average runtime and
memory for computing each LD matrix chunk to 3.25h and 5 GB. These
chromosome-wise LD matrices are a once-off computation cost that can be
distributed with the programme and were used for all SBayesR and RSS analysis in
the genome-wide simulation and further analyses using this HM3 variant set.

Genome-wide simulation method initialisation. HEreg was performed using the
GCTA software and requires a genetic relatedness matrix (GRM), which was built
from the 1,094,841 genome-wide HM3 variants in the GCTA software. LDpred was
run genome-wide and we specified hZ, to be equal to the true simulated value,
specified the number of SNPs on each side of the focal SNP for which LD should be
adjusted to be 350 and calculated effect size estimates for LDpred-inf and the
following fraction of nonzero effects prespecified parameters: 1, 0.3, 0.1, 0.03, 0.01,
0.003, 0.001, 0.0003 and 0.0001. For RSS, analyses were performed for each
chromosome with the chromosome-wise shrunk LD matrices calculated in GCTB
and stored in MATLAB format. The RSS-BSLMM model was run for 2 million
MCMC iterations with 1 million as burn-in and a thinning rate of 1 in 100 to arrive
at 10,000 posterior samples for each of the model parameters. For each chromo-
some, the posterior mean for the SNP effects and 2y, estimates was used. The
chromosome-wise h2y, estimates were summed to get the genome-wide estimate.
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For GCTA-SBLUP, we set the shrinkage parameter A = m(1/h2y, — 1) for each
true simulated k2, = (0.1,0.2,0.5) and m = 1,094,841 and the LD window size
specification was set to 1 MB. LDSC was run by using LD scores calculated from
the 1000G Europeans provided by the software and k2, estimation performed. For
P + T, we used the PLINK 1.9 software to clump the GWAS summary statistics at
LD R? = 0.1. For each set of clumped results, we generated PRSs for sets of SNPs at
the following p value thresholds: 5 x 1078, 1 x 106, 1 x 10~4, 0.001, 0.01, 0.05, 0.1,
0.2, 0.5 and 1.0. BayesR was run by using a mixture of four normal distributions
model with distribution variance weights y = (0, 1074, 1073, 10~2)". BayesR was
run for 10,000 iterations with 4000 taken as burn-in and a thinning rate of 1 in 10.
For SBayesR, the MCMC chain was run for 10,000 iterations with 4000 taken as
burn-in and a thinning rate of 1 in 10 and run with four distributions and variance
weights y = (0, 0.01, 0.1, 1)". The posterior mean of the effects and the proportion
of variance explained over the 600 posterior samples was taken as the parameter
estimate for each scenario replicate for both methods. We ran S-PCGC chromo-
some wise and computed the cross-product of 2 values and allele frequencies by
using the set of 50,000 random individuals from the UKB and a 1-Mb window.
Summary statistics were computed by using the S-PCGC software and the pre-
valence set to the true value of 0.05. The marginal or conditional S-PCGC estimates
were the same as no covariates were included.

Cross-validation pre-adjustment and method initialisation. All phenotypes
were pre-adjusted for age, sex and the first ten principal components by
using the R programming language®’. Principal components were calculated
by using high-quality genotyped variants as defined in Bycroft et al.4? that
passed additional quality control filters (as applied in the European unrelated
UKB data) that were LD pruned (R?<0.1) and had long-range LD regions
removed (Bycroft et al.4% Table S13), leaving 137,102 SNPs for principal com-
ponent calculation in the European unrelated individuals by using FlashPCA%8.
Following covariate correction, the residuals were standardised to have

mean zero and unit variance and finally rank-based inverse-normal trans-
formed. For type 2 diabetes the final inverse-normal transformation

was not performed. See below for S-PCGC T2D heritability phenotype
adjustment.

For LDpred, all parameters were as per the genome-wide simulation with the
optimal parameter chosen by predicting into the independent subset of 5000
individuals initially partitioned off and choosing that which had the highest
prediction R? when the predicted phenotype was regressed on the true simulated
phenotype. For RSS, RSS-BSLMM was again run for 2 million MCMC iterations
and the posterior mean over posterior samples for the SNP effects and h2y,
estimates was used. The chromosome-wise hy, estimates were then summed to
get the genome-wide estimate. GCTA-SBLUP requires the specification of the
A =m(1/h%yp — 1) parameter. For each fold, hZ, was taken to be the estimate
from HEreg and m =1, 094, 841. The LD window size specification was set to 1
MB for ease of computation. SBLUP was again run chromosome-wise. LDSC was
run as in the genome-wide simulation. For P + T, we clumped variants at three R?
thresholds 0.1, 0.2 and 0.5 and calculated PRSs for the same set of p value
thresholds as in the simulation studies. BayesR and SBayesR were run by using the
same protocols as in the simulation studies. SNP effects from BayesR were rescaled
before PLINK scoring was performed. To estimate hiy, for T2D with S-PCGC, we
followed the S-PCGC protocol and used the raw binary phenotype. Age, sex and
the first 10 principal components were included as covariates in the S-PCGC
summary statistics calculation with the PCs, which were generated from FlashPCA,
regressed out of the genotypes as recommended. We again used the set of 50,000
random individuals from the UKB to compute S-PCGC cross-product of 72 values
(1-Mb window) and allele frequencies. Summary statistics were computed by using
the S-PCGC software and the prevalence set at 0.06. S-PCGC was run chromosome
wise and the sum of the per-chromosome marginal k2, estimates reported
for T2D.

Across-biobank pre-adjustment and method initialisation. BMI and height
phenotypes were pre-adjusted for age, sex and the first ten principal components
by using the R programming language and standardised as per the cross-validation.
We generated summary statistics for SBayesR analysis for height and BMI by using
a linear mixed model to account for sample relatedness in the BOLT-LMM

v2.3 software”?! for the 1,094,841 HM3 variants in the full UKB data set. By using
these summary statistics, we ran SBayesR as in the genome-wide and cross-
validation analyses. For comparison in the full UKB data set, we ran the individual-
level BayesR method by using the same parameters as per the genome-wide and
cross-validation analyses. With the summary statistics from Yengo et al.4$, SBayesR
was run as above with the default y for BMI and y = (0, 10~4, 1073, 1)’ for height.
Empirically, we observed that this constraint on the elements of y was a further
requirement for SBayesR model convergence when using these height summary
statistics. LDpred was run genome wide for the same set of parameters in the
genome-wide and cross-validation analyses. The optimal parameter was chosen by
predicting into the HRS data set and choosing the parameter that had the highest
prediction R? when the predicted phenotype was regressed on the true phenotype.
This optimal parameter was then used for prediction into the ESTB. For RSS,
analyses were performed chromosome-wise by using the RSS-BSLMM model,

which was run for 2 million MCMC iterations with 1 million as burn-in and a
thinning rate of 1 in 100.

The summary-based methodology implicitly assumes that the summary
statistics have been generated on the same set of individuals®. Empirically we
observed that the methodology can tolerate deviations from this assumption up to
a limit. To improve method convergence, we removed variants from the Yengo
et al.48 summary statistics that had a per-variant sample size that deviated
substantially from the median of the sample size distribution over all variants,
which was also performed by Pickrell®® and recommended by Zhu and Stephens®.
To minimise the variants removed, we interrogated the distributions of per-variant
sample size in each of the BMI and height summary statistics sets and removed
variants in the lower 2.5th percentile and upper 5th percentile of the per-variant
sample size distribution for BMI and in the lower 5th percentile for height
(Supplementary Fig. 23).

Genotype data from the HRS and ESTB independent data sets were used to
generated PRSs for each method and the prediction accuracy assessed as in the
simulation and cross-validation analyses. The optimal LDpred polygenicity
parameter was tuned in the HRS sample and applied in the ESTB sample. P+ T
predictors were generated by using the provided summary statistics from the
GCTA-COJO analysis performed in Yengo et al.#8. Prediction R? improvement
between methods was assessed by ordering methods by prediction RZ. Two linear
models were run for each sequential pair of lower- and higher-ranked PRSs: true
phenotype on the lower-ranked PRS (null); true phenotype on lower-plus
higher-ranked PRS (alternative). Analysis of variance (ANOVA) is used to
compare the null versus alternative models, and the F-statistic and associated p
value are reported from the ANOVA analysis. We further report the partial R?
for the null versus alternative. To assess prediction accuracy, we calculated PRSs
by using the genotype data from the independent test data sets using the PLINK
1.9 software for all methods. Prediction R? was calculated via linear regression of
the true phenotype on that estimated from each method, which was used as a
measure of prediction accuracy for each trait.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

No data were generated in the present study. The LD shrinkage estimator 1000 Genomes
genetic map was downloaded from joepickrell/1000-genomes-genetic-maps. The 1000
Genomes Phase 3 data were download from?ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/
release/20130502. GCTB SBayesR shrunk and sparse matrices for 1.09 million HapMap3
variants can be downloaded (22 GB) with summary data, and results that support the
findings of this study are available from the the Zenodo public repository (10.5281/
zenodo.3350914). GCTB SBayesR shrunk and sparse matrices for 2.8 million pruned
common variants can be downloaded (160 GB) from the Zenodo public repository
(10.5281/zenodo.3375373). This study makes use of data from the following resources,
which were downloaded: UK Biobank resource under Application Number 12514, ARIC
via dbGaP accession: phs000090, NHS & HPFS (GENEVA) via dbGaP accession
phs000091, HRS via dbGaP accessions phs000428.v1.p1 and UK10K the ESTB via private
data agreement (see Supplementary Note 5 for the full set of acknowledgements for
these data).

Code availability

SBayesR is implemented in the GCTB software, which is publicly available (including
source) at http://cnsgenomics.com/software/gctb/. Illustrations of SBayesR use are
provided at http://cnsgenomics.com/software/gctb/#SummaryBayesianAlphabet. Results
of the present study were generated from version 2.0 of GCTB. This study also used the
following software packages: BayesRv2 at https://github.com/syntheke/bayesR, GCTA
(SBLUP, HEreg) (https://cnsgenomics.com/software/gcta/), RSS https://github.com/
stephenslab/rss, LDpred https://github.com/bvilhjal/ldpred, LDSC (version 1.0.0, https://
github.com/bulik/ldsc), PLINK 1.9 http://www.cog-genomics.org/plink/1.9/ and S-PCGC
https://github.com/omerwe/S-PCGC.
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̀�����̺�͒�խ�օ�Κ�ί�υ�ߚ�ÿm UᬀMᬀEᬀ:᠀-ᔀ#ጀ�ጀ
က�က�ഃ�ဓ�ᠰ�᭍�᭨�ᶂ�₝�ᶲ�ᯊ�ᯠ�৿e⠀M─E─:⌀0⌀% �ᴀ�ᴀ�ᴀ� �ᬃ�ᴕ�⌫�⡅�⭠�㉽�㊗�㖲�㣍�㣧�⣿Z㈀J　@ⴀ5ⴀ(⬀ ⬀�⬀�⬀�⬀�ⴀ�⬅�⬕�〫�㕂�㩚�䁸�䊒�䢯�䫂�䫡�㷿X㨀B㠀:㠀-㔀#㔀�㔀
㔀�㔀�㨀�㴀�㠅�㠘�㬪�䁀�䡚�䩰�劍�喪�嫇�嫡�哿R䈀=䈀2䈀(䀀�䀀�䀀�䀀�䔀�䠀�䠂�䠈�䠛�䠭�䵀�剘�塰�嶊�抧�櫆�櫟�惿M䴀5䨀-䨀#䨀�䨀
䨀�䴀�刀�堀�堄�唌�唝�堰�婂�嵘�桲�涍�犧�磆�章�淿J堀0刀(刀�唀�唀�堀�崀�戀�栁�标�戌�攠�栲�桅�灝�畵�窏�肪�苀�藘�竾H戀*崀 崀�怀�戀�攀�樀�瀀�甂�甄�爌�爠�电�硈�絠�聵�薏�趭�鋃�鋕�蛻B樀&栀�栀�樀�洀�爀�稀�紀�舀�舊�耏�耠�耵�蝍�詢�赸�鞗�鮰�馻�鷔�韽5舀�舀�蔀�言�輀�销�鴂�ꄂ�ꄂ�ꄊ�ꨏ�괨�괺�굒�뉭�뚇�릞�뒬�뚾�뫖�닻�Ă̄Ԇ܈ऊଌഎ༐ᄒጔᔖ᜘ᤚᬜᴞἠ™⌤┦✨⤪⬬⴮⼰ㄲ㌴㔶㜸㤺㬼㴾㽀䅂䍄䕆䝈䥊䭌䵎佐兒協啖坘奚孝幟恡扣摥晧桩橫汭湯灱牳瑵癷硹穻籽繿肁芃蒅蚇袉誋貍躏邑銓钕隗颙骛鲝麟ꂡꊣ꒥ꚧꢩꪫ겭꺯낱늳뒵뚷뢹못벽뺿상싃쓅웇죉쫋쳍컏탑틓퓕훗���﫻ﳽ﻿�ȃЅ؇ࠉ਋఍ฏထሓᐕᘗ᠙ᨛᰝḟ‡∣␥☧⠩⨫Ⱝⸯ〱㈳㐵㘷㠹㨻㰽㸿䁁䉃䑅䙇䡉䩋䱍乏偑剓呕噗塙婛嵞彠慢捤敦杨楪歬浮潰煲獴當睸祺筼絾羀膂莄薆螈覊讌趎辐醒鎔閖鞘馚鮜鶞龠ꆢꎤꖦꞨꦪꮬ궮꾰놲뎴떶랸릺뮼붾뿀쇂쏄없쟈짊쯌췎쿐퇒폔헖ퟘ���狀ﯼ﷾＀Ă̄Ԇ܈ऊଌഎ༐ᄒጔᔖ᜘ᤚᬜᴞἠ™⌤┦✨⤪⬬⴮⼰ㄲ㌴㔶㜸㤺㬼㴾㽀䅂䍄䕆䝈䥊䭌䵎佐兒協啖坘奚孝幟恡扣摥晧桩橫汭湯灱牳瑵癷硹穻籽繿肁芃蒅蚇袉誋貍躏邑銓钕隗颙骛鲝麟ꂡꊣ꒥ꚧꢩꪫ겭꺯낱늳뒵뚷뢹못벽뺿상싃쓅웇죉쫋쳍컏탑틓퓕훗���﫻ﳽ﻿�ȃЅ؇ࠉ਋఍ฏထሓᐕᘗ᠙ᨛᰝḟ‡∣␥☧⠩⨫Ⱝⸯ〱㈳㐵㘷㠹㨻㰽㸿䁁䉃䑅䙇䡉䩋䱍乏偑剓呕噗塙婛嵞彠慢捤敦杨楪歬浮潰煲獴當睸祺筼絾羀膂莄薆螈覊讌趎辐醒鎔閖鞘馚鮜鶞龠ꆢꎤꖦꞨꦪꮬ궮꾰놲뎴떶랸릺뮼붾뿀쇂쏄없쟈짊쯌췎쿐퇒폔헖ퟘ���狀ﯼ﷾ｴ數琀�C潬潲⁔潯汢潸″⸵⸰‭ 挩⁃潰祲楧桴′〰〭㈰〸⁈敩摥汢敲来爠䑲畣歭慳捨楮敮⁁䜮⁁汬攠剥捨瑥⁶潲扥桡汴敮⸀d敳挀���੆佇剁㌹⁳���������������������������������������m晴㄀��Ġ�Ā�������Ā�������Ā�Ă̄Ԇ܈ऊଌഎ༐ᄒጔᔖ᜘ᤚᬜᴞἠ™⌤┦✨⤪⬬⴮⼰ㄲ㌴㔶㜸㤺㬼㴾㽀䅂䍄䕆䝈䥊䭌䵎佐兒協啖坘奚孝幟恡扣摥晧桩橫汭湯灱牳瑵癷硹穻籽繿肁芃蒅蚇袉誋貍躏邑銓钕隗颙骛鲝麟ꂡꊣ꒥ꚧꢩꪫ겭꺯낱늳뒵뚷뢹못벽뺿상싃쓅웇죉쫋쳍컏탑틓퓕훗���﫻ﳽ﻿�����Ă̄Ԇ܈ऊ଍ฏထሓᐕᘗ᠙ᨛᰝḟ‡∣␥☧⠪⬬⴮⼰ㄲ㌴㔶㜸㤺㬼㴾㽀䅂䍄䕇䡉䩋䱍乏偑剓呕噗塙婛嵞彠慣摥晧桩橫汭湯灱牳瑵癷硹穻籽纀膂莄薆螈覊讌趎辐醒鎔閖鞘馚鲝麟ꂡꊣ꒥ꚧꢩꪫ겭꺯낱늳뒵뚷릺뮼붾뿀쇂쏄없쟈짊쯌췎쿐퇒폕훗���狀ﯼ﷾＀�����ȃЅ؇ࠉ਋എ༐ᄒጔᔖ᜘ᤚᬜᴞἠ™⌤┦✨⨫Ⱝⸯ〱㈳㐵㘷㠹㨻㰽㸿䁁䉃䑅䝈䥊䭌䵎佐兒協啖坘奚孝幟恡捤敦杨楪歬浮潰煲獴當睸祺筼絾肁芃蒅蚇袉誋貍躏邑銓钕隗颙骜鶞龠ꆢꎤꖦꞨꦪꮬ궮꾰놲뎴떶랹못벽뺿상싃쓅웇죉쫋쳍컏탑틓헖ퟘ���﫻ﳽ﻿���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������＀�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������＀ÿ���������������ÿ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������＀ÿ���������������ÿ�������������＀�ÿ�������������＀�ÿ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ÿ���������������ÿ�������������＀������������������������������＀�����������������＀�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������＀��������������＀������������������������������＀������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������＀������������������ÿ�����������＀���ÿ���������������ÿ���������������ÿ�����������＀���ÿ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������＀��������������＀��������������＀������������������ÿ�����������＀���ÿ���������������ÿ���������������ÿ���������������ÿ�����������＀���ÿ������������＀��ÿ�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ÿ���������������ÿ�����������＀���ÿ�����������������������������������������������������������＀���������������＀�����������������������������������ÿ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������＀��������������＀�ÿ������������＀��ÿ�����������＀���ÿ�����������������������������������������������������������＀���������������＀���������������＀�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ÿ���������������ÿ�����������＀������������������������������＀���������������������ÿ���������������ÿ����������＀����ÿ����������＀����ÿ���������������ÿ���������������ÿ�����������＀���ÿ�����������＀���ÿ�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������＀ÿ���������������ÿ���������������������������＀������������������������������������ÿ���������������ÿ����������＀����ÿ����������＀����ÿ���������������ÿ���������������ÿ�����������＀���ÿ�����������＀���ÿ�����������＀���ÿ���������������ÿ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ÿ�������������＀�ÿ������������＀��������������＀������������������������������������ÿ���������������ÿ����������＀���������������＀����������������������������������������������������������������＀���������������＀������������������������������������������������＀ÿ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ÿ����������������������������������������������������������������ÿ���������＀�����ÿ���������������ÿ��������������������������＀���������������＀������������������������������������������������＀���������������＀������������������������������������������������＀���������������＀�ÿ�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������＀��������������＀��������������＀����ÿ���������＀�����ÿ���������������ÿ��������������������������＀���������������＀�������������������������������������ÿ����������＀����ÿ����������＀����ÿ���������������ÿ���������������ÿ���������������ÿ�����������＀��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������＀�������������＀���ÿ���������������ÿ������������������������������������������＀���������������＀�����ÿ���������������ÿ���������������ÿ���������������ÿ����������＀����ÿ����������＀����ÿ���������������ÿ���������������ÿ�����������＀���ÿ�����������＀�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������＀��ÿ����������������������������������������������������������＀�����ÿ���������＀�����ÿ���������������ÿ���������������ÿ����������＀����ÿ����������＀����ÿ���������������ÿ���������������ÿ�����������＀���ÿ�����������＀��ÿ�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������＀��������������������������������������������＀�����ÿ���������＀�����ÿ���������������ÿ��������������������������＀���������������＀����������������������������������������������������������������＀���ÿ�����������＀ÿ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ÿ���������������ÿ���������＀�����ÿ����������������������������������������������������������＀���������������＀������������������������������������������������＀���������������＀���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ÿ���������������ÿ���������＀������������������������������������������������＀�����ÿ���������＀�����ÿ���������������ÿ���������������ÿ����������＀����ÿ����������＀��ÿ�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ÿ���������＀�����ÿ���������＀�����ÿ���������������ÿ���������������ÿ����������＀����ÿ����������＀���ÿ�����������＀����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ÿ���������������ÿ���������＀�����ÿ���������＀������������������������������������������������＀����ÿ����������＀��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ÿ���������＀�����ÿ���������＀������������������������������������������������＀���������������＀���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������＀���������������＀���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ÿ�����������������ÿ���������������ÿ���������＀���������������＀�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ÿ���������＀�����ÿ���������＀���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������＀���������������＀���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������＀�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������＀��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������捵牶���Ā�)Qy ÆíĒĸŝƁƥǈǪȍȯɑɴʘʽˣ̱͚̊΄ιϽуҌӗԦշ׊ؠٹ۔ܳޕ߻ࡣ࣏ाমਡગ଑எఏಓഛඦีົཅ࿑၏჉ᅅᇃቃ዆ፋᏑᑙᓣᕯᗾᚏᜣីᡑᣫᦇᨣ᫃᭤ᰈᲯᵗḃằὡ–⃆ⅻ∳⋮⎫⑫┭◱⚹➃⡏⤟⧱⫅⮜ⱷⵓ⸳⼕⿺ト㆙㉬㍁㐘㓲㗍㚬㞌㡯㥔㨻㬥㰒㴀㷱㻥㿚䃓䇍䋈䏄䓃䗃䛇䟌䣔䧟䫬䯼䴌丝估偅兝剸厕咴嗖固堡奋婷宦흞ୟ䅠穡뙢㕥幦襧뙨ᝫ䭬艭멮㉱牲둳㹶蝷퉹⁺灻쉽᝾汿슁᪂疃튅㊆钇徊좌㊍鲏࢐皑媔쾖䞗슙㾚붜㲝붟䆠잢傣�令讪₫鶭ᮮ鲰ᾱ꒳Ⲵ뚶䊷킹悺蒾ᦿ냁䧂菆⏇엉櫋჌룎拐࿑뻓濕⋖�䫜ם샟绡㷢￤쏦諨只ừ뫯菱俳ᷴ샸闺泼䗾⇿ｘ奚 ��Ø琀à砀¿䘊敮摳瑲敡洊敮摯扪ਲㄹ‰⁯扪਼㰯䙩汴敲⽆污瑥䑥捯摥ਯ䙵湣瑩潮呹灥‰ਯ䑯浡楮嬰਱崊⽒慮来嬰਱ਰ਱ਰ਱ਰ਱崊⽂楴獐敲卡浰汥‸ਯ䕮捯摥嬰ਲ㔴崊⽄散潤敛《ㄊ《ㄊ《ㄊ《ㅝਯ卩穥嬲㔵崯䱥湧瑨‶㤰㸾獴牥慭੸鰍쌃�蛡泛뙭�맕噣浱ꬡ㞯蚚ᆶ끥첫꿫ٱ丽ء舥틄႓桒䢔ఒ⟗ᒐ⒥Ꚃ꒩⅙ᩍ௉퍩穈鄁剦푌逪덦臔夝榲楶䟚Ლ펑⺗⍽滍遗㋦睤⪠ԝ餋楡䞖⊎걅떘⍛煇嫒醣钖盤ⳣ졕囋㥲韗઎㰕ᵹ⭩敇븪嫕醿骣䁵귡⡘卫㤊핶ᒮꍵᵅ絇턆蹢ඵ醣硣淢⣑푑늙㛷鑪ꄭ㶥孹쪴혶麲涵鶧筏癩�鍶꧔喻礪矗ẞ⨽㵕筩潏딾�龧䙿ᷠꤹ倇祪෶퐞ꉃ㵵蛩灏�鹺⍵钧﹨ᷣ椰훓炜軷㒚ꀓ㶍❹驌혩麦卵骧�᤺㏐扖ꃥᲝ᭨㕏娯ࢴ妨謂洗歂ꃝ鉀ﮥ먬큡릮ࡴ᧨둊圇㪯통脮巗䂷趺⧐絳ꃇᛝ᫨濾㸙ⷐ箻㸕듮ࣴ�谾ᯨﾜ㸟ᣰ䉠먫と랾ᐘﱲ惈ờᬘ멏쌎ᣃ࿪⯆街ㇲ뀱緝᣽蚾榌㥢谽꫇豱쟵萱ﺤ㇡钞㘦뺥漛鏞ㄦ뾫叞휏販Ἒ폎揺䟺넱揦ꝺ캘畞㼳晿滌壟뼴旌ﭚ뼱ꯟᤋ븷ᙞ킋욢䭺�釰挤擉喽ᙙ稽달⟽㦲ﲆ�겸ᕙ祛囝핻釕欞죚忴퟈뫟⋫翗㼢᯾풿∛ﾎ決꒏⎛￑缣対诿ϥᓍ쀊敮摳瑲敡洊敮摯扪ਲ㈰‰⁯扪਼㰯䙩汴敲⽆污瑥䑥捯摥ਯ䙵湣瑩潮呹灥‰ਯ䑯浡楮嬰਱崊⽒慮来嬰਱ਰ਱ਰ਱ਰ਱崊⽂楴獐敲卡浰汥‸ਯ䕮捯摥嬰ਸ਼㍝ਯ䑥捯摥嬰਱ਰ਱ਰ਱ਰ਱崊⽓楺敛㘴崯䱥湧瑨‱㐰㸾獴牥慭੸鱝쏗ኂ〔׀ꍈ䟒耤�＿乮렳쬐苽錈扔乩౅ο਒랞淚颺驆⥌钹㛎탆㧚Ⓡ숭끌ﵕ㛇髦┶썭䄙癳蚽쭱⠹멒ꁣɇ⹰杁ᔮ勡⨫�羯樼蛏뫁謶ᩯ귱턆彣퀛诞嫼Êᰌﰊ敮摳瑲敡洊敮摯扪ਲ㈱‰⁯扪਼㰯䙩汴敲⽆污瑥䑥捯摥ਯ䙵湣瑩潮呹灥‰ਯ䑯浡楮嬰਱崊⽒慮来嬰਱ਰ਱ਰ਱ਰ਱崊⽂楴獐敲卡浰汥‸ਯ䕮捯摥嬰ਸ਼㍝ਯ䑥捯摥嬰਱ਰ਱ਰ਱ਰ਱崊⽓楺敛㘴崯䱥湧瑨‱㠳㸾獴牥慭੸鱍쏩劂倀胑⼍䄄⻋藋踨滭폞鐺噓䚂遲㍳К㷫崌໽䎝ꁷⱻ١Ｘ冗嶓堳䦴ᅩ睠醵珝ꋐ浊쎦㈜웃꺠㙝⛭ꍩ켬齹筡ܬ淉쪑㤡휢䓜몊㭏燯씼轾쉓郲ⱓ幤왫飳ᛥ뱇ԟꫤ单糅ᗫ擌⚩�泂眶濸ⴚﺊ᧿㴉ﰑᰊ敮摳瑲敡洊敮摯扪ਲ㈲‰⁯扪਼㰯䙵湣瑩潮獛㈲〠〠刊㈲ㄠ〠剝ਯ䙵湣瑩潮呹灥″ਯ䑯浡楮嬰਱崊⽂潵湤獛〮㕝ਯ䕮捯摥嬱ਰਰ਱崾㹥湤潢樊㈲㌠〠潢樊㰼⽆楬瑥爯䙬慴敄散潤攊⽔祰支塏扪散琊⽓畢瑹灥⽆潲洊⽆潲浔祰攠ㄊ⽒敳潵牣敳㰼⽐牯捓整⁛⽐䑆崾㸊⽂䉯硛ㄳ㐰⸲㈊㔳㤶⸰㌊ㄳ㐹⸸㘊㔵〵⸴㕝ਯ䵡瑲楸嬱ਰਰ਱ਰਰ崯䱥湧瑨‸㸾獴牥慭੸鰃��Ċ敮摳瑲敡洊敮摯扪ਲ㈴‰⁯扪਼㰯呹灥⽁湮潴ਯ䘠㐊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌴⸰㈲‵㌹⸶〳‱㌴⸹㠶‵㔰⸵㐵崊⽁值㰊⽎′㈳‰⁒ਾ㸊⽁㰼⽕剉⡨瑴瀺⼯潲捩搮潲术〰〰ⴰ〰㈭〲㈹ⴰ㘲�

