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The incomplete identification of structural variants (SVs) from whole-genome sequencing

data limits studies of human genetic diversity and disease association. Here, we apply a suite

of long-read, short-read, strand-specific sequencing technologies, optical mapping, and var-

iant discovery algorithms to comprehensively analyze three trios to define the full spectrum

of human genetic variation in a haplotype-resolved manner. We identify 818,054 indel var-

iants (<50 bp) and 27,622 SVs (≥50 bp) per genome. We also discover 156 inversions per

genome and 58 of the inversions intersect with the critical regions of recurrent microdeletion

and microduplication syndromes. Taken together, our SV callsets represent a three to

sevenfold increase in SV detection compared to most standard high-throughput sequencing

studies, including those from the 1000 Genomes Project. The methods and the dataset

presented serve as a gold standard for the scientific community allowing us to make

recommendations for maximizing structural variation sensitivity for future genome sequen-

cing studies.
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S
tructural variants (SVs) contribute greater diversity at the
nucleotide level between two human genomes than any
other form of genetic variation1–4. To date, such variation

has been difficult to uniformly identify and characterize from the
large number of human genomes that have been sequenced using
short-read, high-throughput sequencing technologies. The
methods to detect SVs in these datasets are dependent, in part, on
indirect inferences (e.g., read-depth and discordant read-pair
mapping). The limited number of SVs observed directly using
split-read algorithms5,6 is constrained by the short length of these
sequencing reads. Moreover, while larger copy number variants
(CNVs) could be identified using microarray and read-depth
algorithms, smaller events (<5 kb) and balanced events, such as
inversions, remain poorly ascertained4,7.

One fundamental problem for SV detection using short-read
sequencing alone is inherent to the predominant data type:
paired-end sequences of relatively short fragments that are
aligned to a consensus reference. Hence, SV detection algorithms
for this data type can thus be effective in unique sequences, but
break down within repetitive DNA, which is highly enriched for
SVs8. Another fundamental problem is that most SV discovery
methods do not indicate which haplotype background a given SV
resides on. Nevertheless, SVs are threefold more likely to associate
with a genome-wide association study signal than single-
nucleotide variants (SNVs), and larger SVs (>20 kb) are up to
50-fold more likely to affect the expression of a gene compared to
an SNV9. Hence, SVs that remain cryptic to current sequencing
algorithms likely represent an important source of disease-
causing variation in unsolved Mendelian disorders and a com-
ponent of the missing heritability in complex disorders10.

As part of the Human Genome Structural Variation Con-
sortium (HGSVC), we sought to comprehensively determine the
complete spectrum of human genetic variation in three family
trios. To overcome the barriers to SV detection from conventional
algorithms, we integrate a suite of cutting-edge genomic tech-
nologies that, when used collectively, allow SVs to be compre-
hensively assessed in a haplotype-aware manner in diploid
genomes. In addition, we also identify the optimal combination of
technologies and algorithms that would maximize sensitivity and
specificity for SV detection for future genomic studies.

Results
The goal of this study was to comprehensively discover, sequence-
resolve, and phase all non-single-nucleotide variation in a selected
number of human genomes. We chose three parent–child trios
(mother, father, and child) for comprehensive SV discovery: a
Han Chinese (CHS) trio (HG00513, HG00512, and HG00514), a
Puerto Rican (PUR) trio (HG00732, HG00731, and HG00733)
and a Yoruban (YRI) Nigerian trio (NA19238, NA19239, and
NA19240). The Han Chinese and Yoruban Nigerian families were
representative of low and high genetic diversity genomes,
respectively, while the Puerto Rican family was chosen to repre-
sent an example of population admixture. The parents of each
trio had been previously sequenced as part of the 1000 Genomes
Project Phase 3 (1KG-P3)11 and the children from each trio have
been selected for the development of new human reference
genomes7. As a result, extensive genomic resources, such as SNV
and SV callsets, single-nucleotide polymorphism (SNP) micro-
array data, sequence data and fosmid/bacterial artificial chro-
mosome (BAC) libraries, have been developed to establish these
trios as gold standards for SV assessment. We focused primarily
on the three children for SV discovery using parental material to
assess transmission and confirm phase.

We developed a multi-scale mapping and sequencing strategy
using a variety of technologies to detect sequence variation of

different types and sizes. To maximize sensitivity, we sequenced
each child’s genome to a combined coverage of 223-fold (physical
coverage of 582-fold) (Supplementary Data 1), using various
short- and long-read technologies (Table 1). We discovered SVs
using Illumina (IL) short-read whole-genome sequencing (WGS),
3.5 kb and 7.5 kb jumping libraries, long-read sequencing using
PacBio® (PB) (Menlo Park, CA) and optical mapping with Bio-
nano Genomics (BNG) (La Jolla, CA). We also applied a series of
genomic technologies capable of obtaining long-range phasing
and haplotype structure: 10X Chromium (CHRO) (Pleasanton,
CA), Illumina synthetic long reads (IL-SLR a.k.a. Moleculo), Hi-
C12, and single-cell/single-strand genome sequencing (Strand-
seq)13 technologies (Table 1; Supplementary Data 1; Supple-
mentary Methods 1.1).

Chromosomal-level phasing and assembly of genomes.
Assembly-based SV discoveries are usually represented as a single
haplotype, rather than differentiating the two haplotypes of a
diploid cell. This leads to reduced sensitivity for SV detection14.
We therefore aimed to resolve both haplotypes for the three
children in this study by partitioning reads by haplotype and
thereby detecting SVs in a haploid-specific manner. We applied
WhatsHap15,16 to IL paired-end, IL-SLR, and PB reads; Strand-
PhaseR17,18 to Strand-seq data, and LongRanger19 to CHRO data
and compared them to more traditional trio-based15 and
population-based20 phasing methods. As expected, the observed
phased block lengths (Fig. 1a) and marker densities (Fig. 1b)
differed substantially among the platforms but the amount of
phasing inconsistencies, as measured by switch error rates
(Fig. 1c), was found to be very low (from 0.029% for CHRO to
1.4% for Hi-C). Since no single technology alone achieved the
density, accuracy, and chromosome-spanning haplotyping
necessary to comprehensively identify and assemble SVs
throughout the entire human genome17,21,22 we systematically
evaluated the performance of all possible combinations of tech-
nologies. When combining a dense, yet local, technology (such as
PB or CHRO) with a chromosome-scale, yet sparse, technology
(such as Hi-C or Strand-seq), we obtained dense and global
haplotype blocks (Fig. 1d, e). To verify the correctness of
chromosome-spanning haplotypes, we computed the mismatch
error rates between the largest block delivered by each combi-
nation of technologies and the trio-based phasing (Fig. 1f). The
combination of Strand-seq and CHRO data showed the lowest
mismatch error rate (0.23%), while phasing 96.5% of all hetero-
zygous SNVs as part of the largest, chromosome-spanning

Table 1 Summary of sequencing statistics

Avg. seq.

coverage

Avg. frag.

length

Physical

coverage

Pacific Biosciences 39.6 (child)

20.03 (parent)

8165 (child)

9619 (parent)

39.6

Oxford Nanopore 18.9 (HG00733) 11,993 18.9

Illumina short insert 74.5 694 171

Illumina liWGS 3 3475 159

Illumina 7 kb JMP 1.1 6973.2 39.2

10X Chromium 82.4 90,098 53.9

Bionano Genomics N/A 2.81E+ 05 116.7

Tru-Seq SLR 3.47 4900 3.47

Strand-seq N/A N/A 5.87

Hi-C 19.49 1.03E+ 07 N/A

Total 223.56 607.08

Physical coverage is given for Illumina short insert, liWGS, 7 kb JMP. 10X Chromium physical

coverage is estimated read cloud coverage

For Hi-C, fragment length is the distance between two read ends for intra-chromosome read

pairs
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haplotype block (Supplementary Data 2). We note that the switch
error and mismatch rates are not constant for a given technology
and can be influenced by factors such as sequencing coverage,
data processing, and choice of restriction enzyme in the case of
Hi-C.

Once chromosomal-level phasing was obtained for each child’s
genome, we partitioned the PB reads according to haplotype. On
average, 68% of reads could be haplotype-partitioned in each
child (Supplementary Data 3). We then developed two com-
plementary algorithms to assemble the haplotype-partitioned
reads: an extension to the SMRT-SV method14 (Phased-SV,
Methods: Phased-SV), which produced a separate assembly for
each haplotype, and an extension to an assembly algorithm23

(MS-PAC), which combined separate haplotype-specific assem-
blies with de novo assemblies in autozygous regions (Methods:
MS-PAC). The assemblies covered, on average, 92.3% of the
euchromatic genome (Supplementary Data 4) and produced
contig N50 lengths ranging between 1.29 and 6.94Mb (Supple-
mentary Data 5). We then generated a high-quality consensus
sequence for both assembled haplotypes24 from which indels and
SVs could be systematically discovered by mapping the contigs to
the human reference.

In addition to providing a physical framework for phasing of
all genetic variants, the parent–child trio data also allowed us to
detect and refine meiotic breakpoints. Using Strand-seq data,
meiotic breakpoints could be determined to a median resolution
of less than 25 kb (Supplementary Methods 2.1, 2.2), which was
further refined to ~1.5 kb (Supplementary Data 6) by the
application of trio-aware phasing from PB reads25. As expected,
we observed an excess of maternal meiotic recombination events
(Supplementary Methods 2.3)26–29. Further analysis of fine-
mapped meiotic breakpoints support previously published
results30 of significant enrichment for L2 elements (p= 0.003).
Similar enrichment was found for Alu retrotransposons (p=
0.003), especially the AluS class (p= 0.001) given the mere
presence of these elements within the breakpoints (Supplemen-
tary Methods 6.3). In addition, we identified an enrichment of a
15-mer motif at the breakpoints similar to previous studies30.

Indel discovery (1–49 bp). We generated a multi-platform indel
callset by merging the IL- and PB-based callsets. Indels were
detected in the IL WGS reads using GATK31, FreeBayes32 and
Pindel yielding, on average, 698,907 indel variants per child
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Fig. 1 Characteristics of SNV-based haplotypes obtained from different data sources. a Distribution of phased block lengths for the YRI child NA19240.

Note that Strand-seq haplotypes span whole chromosomes and therefore one block per chromosome is shown. Vertical bars highlight N50 haplotype

length: the minimum length haplotype block at which at least half of the phased bases are contained. For Illumina (IL) paired-end data, phased blocks cover

<50% of the genome and hence the N50 cannot be computed. b Fraction of phase connection, i.e., pairs of consecutive heterozygous variants provided by

each technology (averaged over all proband samples). c Pairwise comparisons of different phasings; colors encode switch error rates (averaged over all

proband samples). For each row, a green box indicates the phasing of an independent technology with best agreement, with corresponding switch error

rates given in green. d Each phased block is shown in a different color. The largest block is shown in cyan, i.e., all cyan regions belong to one block, even

though interspaced by white areas (genomic regions where no variants are phased) or disconnected small blocks (different colors). e Fraction of

heterozygous SNVs in the largest block shown in d. f Mismatch error rate of largest block compared to trio-based phasing, averaged over all chromosomes

of all proband genomes (i.e., the empirical probability that any two heterozygous variants on a chromosome are phased correctly with respect to each

other, in contrast to the switch error rate, which relays the probability that any two adjacent heterozygous variants are phased correctly). (*) Not available

because trio phasing is used as reference for comparisons. (**) Not shown as population-based phasing does not output block boundaries; refer to

Supplementary Material for an illustration of errors in population-based phasing
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(Supplementary Methods 3.1). The Phased-SV assembly align-
ments were used to detect indels >1 bp from the PB data yielding
345,281 indels per genome. The IL- and PB-based indel callsets
showed similar size-spectrum distributions (Fig. 2a) and were
merged to yield, on average, 818,054 indels per individual. The
unified indel callset showed the predictable 2 bp periodicity
(Fig. 2a; Supplementary Data 7) owing to the hypermutability of
dinucleotide short tandem repeats (STRs)33. The PB reads alone
miss substantial numbers of IL-based indel calls (Fig. 2c) and also
lack the ability to reliably detect 1 bp indels, which are not
included in the unified indel callset. However, more PB indels
were discovered for variants >15 bp (12% and 23% additional for
insertions and deletions, respectively) (Supplementary Data 7).
We were able to confirm 89% (529/594) of the homozygous sites
(45% of all sites) that overlap with ~7Mb of BACs from the
children sequenced and assembled using high-coverage (>×400)
PB reads.

SV discovery (≥50 bp). We obtained a unified SV callset for each
child from high-coverage IL WGS data, PB reads, and BNG
assembly maps. To detect SVs in the IL data, we independently
applied 13 SV detection algorithms (Supplementary Data 8),
which included methods to capture paired-end, split-read, and

read-depth information (Methods: Illumina-based SV detection,
Supplementary Methods 3.3). Unlike the previous 1KG-P3 study,
we sought to maximize discovery and did not strictly control for a
given false discovery rate (FDR), opting to filter calls using
orthogonal data in later steps. These calls were integrated into a
unified Illumina-SV (IL-SV) callset (Methods: Unified Illumina
SV Callset) resulting in an average of 10,884 SVs per child
(comprising of 6965 deletions, 2654 insertions, 814 duplica-
tions and 451 other SVs) and 20,395 non-redundant IL-SVs
across all three children (Fig. 2b). Approximately half (48.7%) of
these IL-SV calls were annotated as high-confidence calls from a
single algorithm, emphasizing the value of integrating multiple
approaches from short-read sequencing data.

We generated a second set of SVs for each trio using the
haplotype-resolved Phased-SV and MS-PAC assemblies gener-
ated from the PB long-read sequencing data (Methods: Unified
PacBio SV callset). Each assembly was mapped to GRCh38, and
SVs were classified as insertions, deletions, and inversions. After
applying a read-based consistency check (Methods: Unified
PacBio SV callset) to remove assembly and alignment artifacts,
the SVs from each assembly were merged into a per-individual
unified callset (PB-SV). Excluding inversions, the integrated PB-
SV callset consisted of an average of 24,825 PB-SVs per child
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(9488 deletions and 15,337 insertions) for a total of 48,635 non-
redundant PB-SVs across the three children (comprising 18,674
deletions and 29,961 insertions). The increase in sensitivity
(threefold) from the PB-SV callset relative to the IL-SV callset was
predominantly derived from improved detection of repeat-
associated SV classes, particularly of intermediate-sized SVs (50
bp to 2 kb), and improved sequence resolution of insertions
across the SV size spectrum. We note that the total SV count is
dependent on the particular algorithm and gap penalties used
because many of the SV calls (59% insertion, 43% deletion) map
to tandem repeats where degenerate representative alignments are
possible. For example, application of the double-affine gap
penalty method NGM-LR34 reduces the number of calls by
8.8% after similar call filtration and haplotype merging. More
complex evolutionary models are necessary to determine the most
biologically appropriate alignment parameters.

We validated the PB-SV callset genome-wide using three
different approaches. First, we searched for evidence of each
child’s SVs in the long-read sequencing data of one of the two
parents. We determined that 93% of the homozygous SVs and
96% of the heterozygous SVs showed read support from one of
the two parents consistent with SV transmission. Second, we
genotyped the insertions and deletions against IL WGS data and
found that, on average, of 91.7% (21,888) of Phased-SV calls
could be genotyped. Finally, we applied an orthogonal long-read
technology, using Oxford Nanopore (ONT) to generate 19-fold
sequencing coverage on the same PUR child genome with average
read lengths of 12 kb. We also looked for support from individual
ONT reads to validate the PB-SV calls. Requiring at least three
ONT reads to support a PB-SV event, we achieved a 91%
validation rate for SVs outside of tandem repeats and an 83%
validation rate for SVs within tandem repeats (Supplementary
Methods 3.2).

A substantial fraction of human genetic variation occurs in
regions of segmental duplication35, which are often missing from
de novo assemblies36. We compared the variation detected in
regions of segmental duplication through read-depth to the
segmental duplications resolved in the Phased-SV and MS-PAC
de novo assemblies. The haplotype-specific de novo assemblies
overlapped 24.9% (43.6 Mb/175.4 Mb) of known human seg-
mental duplications. The dCGH and Genome STRiP methods
detect variation through changes in read-depth and are sensitive
to copy number changes in highly duplicated regions. We
determined that 57% and 15% of the copy number variable bases
within segmental duplications detected by dCGH and Genome
STRiP, respectively, were not in contigs resolved by de novo
assembly (Supplementary Methods 4.1). We also estimated that,
on average, ~45 genes per child had at least one exon affected by a
copy number change that was not detected in the de novo
assemblies, highlighting the importance of continued read-depth-
based CNV detection even when PB long-read-based de novo
assemblies are generated.

Characterization of inversions. Inversion variation has long
been the focus of cytogenetic studies using karyotyping, and more
recently, these large, rare inversions have been characterized at
sequence resolution37,38. However, submicroscopic and poly-
morphic inversions are ill-defined by human genome sequencing,
in part, because larger events tend to be flanked by virtually
identical duplicated sequences that can exceed a million base
pairs in length that cannot be bridged by short-read sequencing
technology2. Moreover, the copy-neutral nature of simple inver-
sions precludes detection by read-depth analysis. To generate a
map of inversions across different length scales, we called
inversions with five complementary techniques, including IL

WGS, long-insert whole-genome sequencing (liWGS), PB, BNG
optical mapping, and Strand-seq (Methods: Inversion Detection
Using Strand-seq). For Strand-seq, we developed a computational
algorithm integrating inversion discovery with trio-aware phasing
data to bolster accuracy and only retained those calls that dis-
played haplotype support (Methods: Classifying Strand-seq
Inversions Using Orthogonal Phase Data). A careful compar-
ison of inversion calls revealed that Strand-seq was the only
platform that made highly reliable calls on its own, while for the
other technologies acceptable accuracy was achieved only for calls
supported by at least two platforms (Fig. 3a; Methods: Integrating
Inversion Calls across Orthogonal Platforms). The unified, high-
confidence inversion callset comprised 308 inversions across the
nine individuals, corresponding to an average of 156 inversions
(~23Mb) per genome. Of these 308, 74% were either primarily
identified by Strand-seq (n= 170) or received additional Strand-
seq genotype support (n= 59). By comparison, 126 inversions in
the unified callset were detected by IL WGS, 118 in PB, 91 in
liWGS, and 28 in the BNG data.

The inversion size spectrum differed markedly among plat-
forms (Fig. 3b). IL WGS, PB, and liWGS excelled in mapping
relatively small inversions (<50 kb), wherever breakpoint junc-
tions could be traversed by DNA sequence reads. Indeed, the
smallest inversions (<2 kb) were only detected by IL WGS and
PB. In contrast, larger inversions (>50 kb) were nearly exclusively
detected by Strand-seq. The Strand-seq technique offers the
advantage of inversion detection solely by identifying DNA
sequence strand switches internal to the inverted sequence,
readily identifying inversions flanked by large segmental
duplications that can be neither assembled nor traversed using
standard DNA sequencing technologies39. Inversions called by
Strand-seq show a median size of 70 kb (up to 3.9 Mb in length),
in sharp contrast to IL-detected events, whose median size is 3 kb
(down to 263 bp in length) (Supplementary Data 9).

Within the unified inversion callset, 73.7% (227/308) represent
copy-neutral (i.e., simple) events, whereas 79 are more complex
inversions containing embedded copy number variation (most in
the form of inverted duplications). Consistent with previous
observations that inversions map within segmental duplications,
50.7% of the inversions have both breakpoints mapping within
segmental duplications (115/227)—an eightfold increase when
compared to unique regions of the genome. Furthermore,
inversions within segmental duplications are ~20-fold larger,
with a median length of 72.2 kb compared to a median length of
3.4 kb for inversions with breakpoints outside of segmental
duplications. On average, each individual genome harbors
121 simple and 35 copy-variable inversions, approximately 2/3
(66.8%) are heterozygous and 1/3 (32.5%) are homozygous.
Chromosomes 16 (5.2%), 7 (3.4%), X (3.3%), and 8 (3.0%) show
the highest frequency of inversions, consistent with prior
expectation4,7,39. The inverted duplications typically exhibit
highly variable copy number states, ranging between 0 and 10
(mean= 4) copies (Supplementary Data 10), indicating a large
source of genetic variability between individuals. For instance, a
260 kb complex inversion mapping to chromosome 9 (at
~40.8–41.1 Mb) contains between 4 and 6 copies in each genome.
Another notable example is an inverted duplication at the
DUSP22 locus (Fig. 3c), for which a copy was known to be
missing from the human reference40; we show it to be in the
reverse orientation. Additionally, 40 inversions were found to be
homozygous in all nine individuals and likely reflect minor alleles
or remaining assembly errors in the human reference (Supple-
mentary Data 11; Supplementary Methods 5).

Inversion polymorphisms at several loci (such as 3q29,
7q11.23, 8p23, 15q13.3, 15q24, 17q12, and 17q21.31) were
previously reported to predispose parental carriers to children
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with microdeletion and microduplication syndromes associated
with developmental disorders41–43. The substantially increased
number of inversions generated in our study prompted us to
investigate whether this association holds for other microdeletion
and microduplication syndromes. Twenty-one events from our
unified inversion callset displayed >80% overlap with one of the
255 critical regions4,41 associated with genomic disorders
(Supplementary Data 12). An additional 37 inversions were
partially overlapping one of the 255 critical regions. Interestingly,
in 12 cases we found novel inversions at both boundaries of the
respective critical regions, including the 16p13.1 and 16p11.2-12
critical regions on Chromosome 16p (Supplementary Figure 1). A
1.9 Mb inversion at chromosome 3q29, for example, was
previously shown to predispose to pathogenic SVs42, and we
identified a smaller 300 kb inversion intersecting the proximal
breakpoint of this critical region. We hypothesize that the
inversion polymorphisms we have identified will alter the
orientation of low copy repeat sequences (Supplementary Figure 1,
right panel), and as such may differentially predispose individual
loci to undergo pathogenic deletion or duplication via non-allelic
homologous recombination.

Mobile element insertions. Previous SV studies have been unable
to resolve the sequences of large mobile elements in the human

genome limiting our ability to assess differences in mutagenic
potential between individual genomes. However, since PB long
reads were routinely larger than 10 kb in length, we used the PB-
SV callset to investigate not only the location but the sequence
content of full-length L1 (FL-L1) elements. We detected an
average of 190 FL-L1 elements with two intact open reading
frames in the three children (Supplementary Figure 2; Supple-
mentary Methods 6.3). Only 56 of these copies are shared across
the three genomes (Supplementary Data 13). This diversity in
mobile element profiles likely influences L1 mutagenic potential.
For example, while all three of the genomes are homozygous for
one of the most active retrotransposon source L1 elements
associated with human cancers (chr22:2866328330,43) and
another L1 is highly active (i.e., hot) in the germline and cancers,
each genome also harbors two to six unique hot L1 source ele-
ments. One of the unique hot L1 copies in the PUR individual is
the LRE3 element, which is the most active L1 source element in
humans44,45. Twenty-eight FL-L1 copies with low-to-moderate
levels of activity are also differentially present in the genomes of
the three individuals. The cumulative differences in L1 muta-
genesis that emerge from these diverse FL-L1 profiles suggest
that, at a population level, such diversity may translate into dif-
ferential risk levels for L1-mediated diseases, such as cancers and
other disorders43,46.
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Genotyping novel SVs in population cohorts. One of the
advantages of having a more comprehensive set of sequence-
resolved SVs is the ability to accurately genotype them in different
human populations. We genotyped SV calls from the base-pair-
resolved PB-SV callset in a limited set of 27 high-coverage gen-
omes using a sensitive, but computationally intensive method,
SMRT-SV Genotyper14. An average of 91.7% (21,888) of Phased-
SV calls could be genotyped with this approach across both
insertions and deletions (Supplementary Methods 6.1), with
average Mendelian error rates of 14.1% for insertions and 8.7%
for deletions.

Functional impact with respect to gene structure. An important
consideration of increased sensitivity afforded by this multi-
platform algorithm is its potential functional impact (Supple-
mentary Methods 6.2). Although the number of individuals
compared is few, we sought to determine the number of genes
that would be modified or disrupted based on the unified callset.
On average, each child has 417 genes with indels and 186 genes
with SVs predicted to affect protein-coding sequence. The coding
frame is preserved for the majority of the genes with exonic indels
(78.2%, 326/417) or SVs (30.1% (56/186) of intersecting genes
(Supplementary Datas 14, 15). For frameshift events, we con-
sidered the intolerance to loss-of-function mutation as measured
by pLI47, which ranks genes from most tolerant (0) to least tol-
erant (1) of mutation. The median percentile of frameshift indels
was 0.002 and SV was 0.155, indicating most of the loss-of-
function variation is of modest effect (Supplementary Data 16).
There were only two genes with high pLI (>0.90) that showed
deletions concordant with the IL and PB data: RABL1 (HG00514)
and ACTN1 (NA19240), and one 34 bp deletion leading to an
alternate splice-site in TSC2 in HG00733. We also identified 16
genes (such as HTT) that were intolerant to loss-of-function (pLI
> 0.9) but carried in-frame indels—a potential source of triplet
instability. A total of 674 known canonical genes overlap inver-
sions (Supplementary Data 17), of which 88% have isoforms
entirely contained within the inversion, and 6% are intronic. The
remaining events are potentially gene disrupting, where three
events overlap at least one exon of genes (AQPEP, PTPRF, and
TSPAN8). Up to 55 genes have at least one isoform that spans one
of the breakpoints of the inversion; however, the majority (95%)
of these genes reside in segmental duplications where the exact
breakpoint of the inversion cannot be easily resolved.

Variation in untranslated region (UTR) sequences may also
affect gene expression leading to phenotypic consequences. We
overlaid our SV dataset with UTRs and found that each child
carried on average 155 genes with a deletion and 119 genes with
an insertion in a UTR. Such genes, however, tended to be more
intolerant to variation compared to exonic deletions, with a
median pLI of 0.20. For example, there were 23 genes with UTR
insertions or deletions with PLI scores >0.9: ATP11A, BANP,
BRWD3, DGKD, EIF4A3, FAM135B, FURIN, HCN1, IQSEC3,
MEGF10, NIPBL, PAXBP1, PPP2R5E, SHB, SLC38A2, SNED1,
SON, SREK1, TDRD5, TMEM165, XIAP, XPR1, and ZNF605. The
mean length of these UTR deletion variants was 176 bp and is
similarly reflected in the technology bias for sensitivity; only one
event was detected by BNG, nine by IL-SV, and 19 by PB-SV.

We also considered the overlap of SVs with functional
noncoding DNA (fnDNA; Supplementary Methods 4.2): specifi-
cally with 1.07M transcription factor binding sites (TFBS) and
2.86M conserved elements (CEs). Deletion variants overlapped
an average of 861 and 1767 TFBS and 3861 CEs in each child.
However, small SVs rarely affected fnDNA: the average size of
SVs that overlapped TFBS and CEs were 36,886 bp and 15,839 bp,
respectively. When considering the IL-SV and PB-SV callsets, the

majority of TFBS and CE deletions are detectable in the IL-SV
callset (89.1% and 77.4%, respectively). Nevertheless, we estimate
that 21 TFBS and 181 CEs would be missed per child by
application of short-read sequencing technology alone. The
opposite pattern exists for insertion SVs in fnDNA. While a
smaller number of insertion SVs map inside TFBS (an average of
nine per child, with average SV length of 665 bp) and 154
insertion SVs map inside a CE (average length of 930 bp), they
were predominantly detected in the PB-SV callset; 57% of TFBS
and 69% of CEs affected by SVs were detected only in the PB-SV
callset compared to 7% and 5%, respectively, for IL-SV. Variants
with imprecise insertion breakpoints, such as the BNG calls, were
not considered. Thus, the application of multiple technologies
enables additional resolution of smaller fnDNA SV.

Platform comparisons and optimal indel and SV detection. The
use of orthogonal technologies and various discovery algorithms
on the same DNA samples provide an opportunity for a sys-
tematic assessment of the performance of individual as well as
combinations of algorithms for indel and SV detection. While
long-read technology generally outperforms IL-based algorithms
for indel detection by ~50% for indels ≥15 bp, it is not reliable for
single-based indels even at 40-fold sequence coverage, particularly
in homopolymer regions. Benchmarking against the unified-indel
dataset, we find that maximum sensitivity for IL indels requires
application of three callers, including GATK, FreeBayes and
Pindel (the latter of which has a higher false positive rate).
Current large-scale studies rely mainly on IL sequencing, and
computational resources limit the number of algorithms that can
be applied to a genome. We therefore used a pan-SV callset
(union of IL-SV, PB-SV, and BNG) to gauge the sensitivity and
specificity of individual and combinations of IL-only algorithms.
To construct the pan-SV callset, IL-SV insertions/deletions and
BNG deletion calls were filtered according to orthogonal support
datasets (formed from orthogonal callsets, raw PB reads, unfil-
tered PB-SV calls, and read-depth information). On average, 83%
of IL, 93% of PB, and 95% of BNG deletion calls, and 82% of IL
and 96% of PB insertion calls had orthogonal support. The
concordant IL-SV and BNG calls were merged with the entire PB-
SV callset to form the pan-SV callset. The unified callsets con-
tained an average of 11,106 deletion and 16,386 insertion calls per
individual (Table 2). As expected, the PB-SV callset provided the
most unique calls, including 47% of deletions and 78% of inser-
tions, which were primarily driven by tandem repeat variation
(75%) and mobile element insertions (6.3%).

Across the entire IL-SV dataset, the deletion concordance to
pan-SV was 82.9% (largely unaffected by size), whereas the
insertion concordance to the pan-SV callset was 82.0%, decreas-
ing in sensitivity with increased insertion SV length (Supplemen-
tary Data 18). The BNG mean concordance rate for deletions was
95.2%. When considering individual methods, the average
concordance for deletion calls ranged from 46.4% to 99.3% with
a median of 94.7% (Fig. 4a), and for insertion calls ranged from
<1% to 97% (Methods: Integration of Illumina, PacBio, and
Bionano Callsets). When compared to the pan-SV callset, the
concordant calls from individual algorithms detected 1.7%–40.7%
of deletion and <1%–7.9% of insertion SVs.

It has been shown previously that sensitivity for true SV calls
(generated from IL datasets) can be improved by combining calls
from more than one algorithm10,48–50. Because it would be
computationally burdensome for a large-scale WGS study to run
all available algorithms, we used the integrated callset to compare
how SV-calling performs under different combinations of
algorithms (up to three) on standard IL data (i.e., without
liWGS), testing both unions and intersections of callsets. We used
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Table 2 Unified technology callset for copy number gain and loss structural variation

HG00514 HG00733 NA19240

Count Average length Count Average length Count Average length

Deletions

PacBio 4662 195.7 5074 193.1 5586 205.0

Illumina 1387 792.0 1251 563.1 1760 664.9

Bionano 109 11,7901.6 88 86,440.9 113 115,099.1

PacBio,Illumina 3403 298.0 3482 294.2 4132 308.3

PacBio,Bionano 128 7569.5 128 4523.8 119 4633.7

Illumina,Bionano 50 8516.0 42 9680.3 54 9767.3

All 552 3997.0 542 4076.8 657 3647.4

Total 10,291 1892.6 10,607 1273.7 12,421 1615.9

Insertions

PacBio 11,314 294.2 12,272 302.7 12,080 285.0

Illumina 533 501.4 483 1610.6 663 2163.7

Bionano 473 21,452.6 418 18,346.5 497 16,700.6

PacBio,Illumina 2146 239.5 2236 262.5 2631 260.6

PacBio,Bionano 984 2539.3 1052 2510.8 1035 2501.2

Illumina,Bionano 33 14,733.4 22 5905.0 26 6541.4

All 83 3500.9 83 3808.6 94 3751.8

Total 15,566 1126.3 16,566 955.9 17,026 997.0
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Fig. 4 Concordance of IL methods compared against total IL callset and PB callset using orthogonal technologies. Results by algorithm shown for a the

deletion concordance for individual methods, b the union of all pairs of methods, and c the requirement that more than one caller agree on any call.

Individual callers are shown as red points for comparison. Pairs and triples of combinations are in black points. The solid and dashed lines represent the 5%

and 10% non-concordance rates (NCR), respectively. The top five combinations of methods in each plot below the 10% NCR, along with the individual

plots, are labeled. d Overlap of IL-SV discovery algorithms, with total number of SVs found by each combination of IL algorithms (gray) and those that

overlapped with the PB-SV calls (blue) in the YRI child NA19240. e PCA of the genotypes of concordant calls of each method: PC 1 versus 2 (left), PC 2

versus 3 (right). VH VariationHunter
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the non-concordance rate (NCR) (1—concordance) as a proxy for
FDR. Considering the YRI child, NA19240, there were 29
combinations representing unions of two methods with an NCR
less than 5% (Methods: Integration of Illumina, PacBio, and
Bionano Callsets). For example, the union of the Pindel and
VariationHunter callsets produced 4892 calls at an NCR of 4.8%.
Greater specificity may be obtained by requiring two of three
methods to agree. There were 213 combinations of callsets with
an NCR less than 2%, but the maximum sensitivity came from the
combination of Manta, VariationHunter, and Lumpy (3182 calls
at an NCR of 2.9%) including 13% of deletions from the pan-SV
callset (including 65% of mobile element insertions and 4.5% of
simple tandem repeats and variable-number tandem repeat
deletions) (Fig. 4b, c). The sensitivity of insertion-calling
algorithms was driven by methods that detect mobile element
insertions, particularly the MELT algorithm. We observed that
while no single SV was called by every algorithm tested, there are
often sets of algorithms that call similar variants (Fig. 4d, e), and
these principal component analyses (PCAs) may provide a
conceptual framework for optimizing SV detection and computa-
tional burden in future studies.

Discussion
This study represents the most comprehensive assessment of SVs
in human genomes to date. We employ multiple state-of-the-art
sequencing technologies and methods to capture the full spec-
trum of genetic variation down to the single-nucleotide level, in a
haplotype-aware manner. Our results indicate that with current
methods, using multiple algorithms and data types maximizes SV
discovery. The PB, Strand-seq, and CHRO data were combined to
generate haplotype-resolved de novo assemblies constructed from
phased PB reads. When paired with high-coverage IL sequencing
and BNG SVs, we discovered approximately sevenfold more
variation than current high-coverage IL-only WGS datasets4,
which is, on average, 818,054 indels (1–49 bp) and 27,622 SVs,
including 156 inversions per person. Consistent with increased
genetic diversity among African populations11, we observed
20.7% more deletion and 9.4% more insertion variants in the
Yoruban child than the Han Chinese child.

The long-read sequence data provided us with an unprece-
dented view of genetic variation in the human genome. Using
average 5–10 kb reads at an average of 40-fold sequence coverage
per child, we have now been able to span areas of the genome that
were previously opaque and discover 2.48-fold more SVs than the
maximum sensitivity achieved by integrating multiple algorithms
for SV detection in short reads. Our analysis suggests that the
majority (~83%) of insertions are being missed by routine short-
read-calling algorithms. Specifically, the largest gain stems from
tandem repeat and retro-transposon insertions in the 50 bp to 2
kb size range. Inversions represent another problematic class of
human genetic variation. In 1KG-P3, 786 inversions were iden-
tified across 2504 genomes representing 3.3 Mb of sequence4, and
in the current study, we identified 308 inversions from just three
family trios, totaling 36.4 Mb of sequence. This increase in sen-
sitivity depended on the complementary nature of the five dif-
ferent technologies (Fig. 3b). In the shorter size range, inversion
discovery largely depended on a combination of IL and PB
datasets, whereas for the larger events, Strand-seq was required.
As a result, we were able to identify 181 inversions that were
missed as part of 1KG-P3. Most of these are large (>50 kb)
constituting an average of 156 inversions and representing 22.9
Mb of inverted DNA per diploid genome, which corresponds to
an ~480-fold increase in inverted bases per individual when
compared to the 1000 Genomes Project4. Our results indicate that
for maximum sensitivity and specificity related to SV discovery it

is essential to employ more than one detection algorithm and
more than one orthogonal technology. This allowed us to locate
new inversions to the boundaries of critical regions implicated in
microdeletion and microduplication syndromes. Inversion poly-
morphisms have already been linked to disease, including
Koolen-de Vries, Williams-Beuren, and 17q21 and 15q13.3
microdeletion syndromes42,51,52. Here we nominate additional
inversions that may similarly predispose critical regions to
undergoing deletion or duplication.

It is not practical for large-scale studies to detect variation by
employing the menagerie of sequencing methods and algorithms
used in this study. Instead, these data serve as a guide for the
trade-off between the cost of sequencing and desired sensitivity
for SV detection. For example, we demonstrated entire chromo-
somal phasing using the Strand-seq and CHRO libraries; how-
ever, the Strand-seq method is not yet as widely implemented in
sequencing facilities as Hi-C, which when combined with CHRO
libraries provides chromosome-arm level phasing and is likely
sufficient for many applications. Similarly, with the high-coverage
IL sequencing and the many algorithms used here, it was possible
to detect up to ~52% of the total number of deletion SVs and
~18% of insertion SVs. Moreover, we performed a series of down-
sampling experiments to determine the equivalence of our ana-
lyses to datasets routinely used for large-scale studies (IL 30X
coverage) and execution by non-expert users (i.e., by using default
parameters) for SV detection (Supplementary Methods 3.3).
These analyses revealed just an 11% reduction in calls attributable
to the lower 30X coverage, but a 23% reduction in calls using
default parameters from the six algorithms with greatest con-
tribution to our final callset. Collectively, these analyses suggest
that if large-scale studies such as TOPMed (https://www.nhlbi.
nih.gov) or CCDG (https://www.genome.gov) were to rely on an
individual algorithm, we estimate the sensitivity to detect deletion
SVs outside duplicated portions of the genome would be at most
40% with an FDR of ~7.6% (using Manta). Insertion sensitivity
would fare far worse with an estimate of ~7% and an FDR of 4%,
but only for mobile element insertions using MELT. While the
majority of the variants associated with coding regions missed by
IL-based analysis appear to be neutral in effect, there is a three-
fold increase of SVs detected in coding sequences for specific
genes (albeit genes more tolerant to mutation) when including
the PB-SV callset. Importantly, the addition of the PB-SV callset
increases sensitivity for genetic variation, which could have a
more subtle effect on gene expression changes, including a two-
fold increase in variation in UTR sequences and a ~20% increase
of SVs detected in TFBS and CEs.

Our analyses indicate that the contribution of SVs to human
disease has not been comprehensively quantified based upon
studies that have relied upon short-read sequencing. Until the
cost and throughput of long-read sequencing support larger-scale
studies, we propose that future disease studies consider a triaged
application of multiple technologies to comprehensively identify
SVs. Families that have been sequenced using IL-based WGS
should be analyzed using intersections of multiple SV-calling
algorithms (e.g., Manta, Pindel, and Lumpy for deletion detection,
and Manta and MELT for insertion detection) to gain a ~3%
increase in sensitivity over individual methods while decreasing
FDR from 7% to 3%. Because a disproportionate number of bases
affected by variation occurs in segmental duplications and PB-
based assembly does not resolve the segmental duplication
regions entirely, there is a need to apply other algorithms, such as
read-depth methods (e.g., dCGH or Genome STRiP), to detect
changes in copy number in highly duplicated regions of the
genome. The sequence structure of such variation is still not
resolved and novel methods will need to be developed to
sequence-resolve CNVs53. Of note, there is a pressing need to
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reduce the FDR of SV calling to below the current standard of 5%
because forward validation of all potentially disease-relevant
events will be impractical at this threshold. We also predict that a
move forward to full-spectrum SV detection using an integrated
algorithm could improve diagnostic yields in genetic testing.
Moreover, the proper application of SV detection for patient care
requires a deeper understanding of germline SVs from more
individuals across diverse global populations.

Methods
PacBio-based SV detection. Existing methods for detecting SV lack sensitivity on
diploid genomes14. To address this, we developed a strategy for variant calling
where dense chromosome-scale phased SNVs are used to partition sequence reads
by haplotype, and SVs are called by assembling each haplotype separately and
detecting SVs as differences between the haplotype assemblies and the reference.
Whole-chromosome phasing was generated using a combination of Strand-Seq and
CHRO, phased by WhatsHap16. SNV density is sufficient to provide good con-
tiguity. The mean distance between phased SNV sites was 1360, 1497, and 1040 bp
for the CHS, PUR, and YRI children, respectively. We aimed to generate assemblies
for each haplotype despite having lower sequence coverage per haplotype than
previous human and great ape studies54,55. To do so, we generated de novo
assemblies using two related assembly approaches: local de novo method Phased-
SV and an unguided de novo method MS-PAC, and used concordance between
assemblies to validate integrity.

Haplotype-specific de novo assembly. Phased-SV: For the local approach, we
assembled reads into 60 kb regions spaced at 20 kb intervals across the genome
(148,923 regions). Reads were mapped using BLASR56 to GRCh38. Regions were
labeled as haplotype-resolved if at least 20 heterozygous SNVs were present in the
region (CHS= 90,631, PUR= 83,758, YRI= 113,972 regions) (Supplementary
Figure 3). Otherwise regions of the genome were considered autozygous. In
haplotype-resolved regions, reads were partitioned by haplotype from each child,
and combined with reads of the parents from the corresponding inherited parental
haplotype (for a total of 30-fold sequence coverage per haplotype). The autozygous
regions were assembled without partitioning reads. The average fraction of parti-
tioned reads was 60.1%, 67.0%, and 70.1% for the CHS, PUR, and YRI children,
respectively. The set of local assemblies from each haplotype combined with the
assemblies from autozygous regions were then merged into megabase-scale hap-
lotype-resolved contigs. For each haplotype, a directed acyclic graph (DAG) was
generated with a vertex for every local assembly from the haplotype as well as local
assemblies from the autozygous regions, with edges connecting two nodes if the
corresponding local assemblies were from genomic regions separated by at most
100 kb, and with overlap alignments at least 10 kb, with direction of the edge
determined by the genomic order of the local assemblies. A contig was generated
corresponding to the longest path in each weakly connected component of the
DAG.

MS-PAC: For haplotype-partitioned de novo assembly, reads were aligned to
GRCh38 using BLASR, as described above. Using whole-chromosome phasing
information provided by WhatsHap, we partitioned the reads into three sets:
haplotype 1 reads, haplotype 2 reads, and unassigned reads. To infer the most likely
haplotype, for each read we examine all base QVs, qi, and incidents on SNVs. For
each read we give it a simple haplotype score using the product of qi for each
matching base or 1-qi for each based which does not match. Scores for haplotype 1
and 2 are compared; reads are assigned to the haplotype with higher score if the
difference in scores exceeds a phred-scaled QV of 10. Any remaining reads,
including those which do not span any SNVs, are labeled as ambiguous. The
average coverage per sample decreased by 39.84% ± 1.52 of the original coverage
per haplotype after partitioning.

After partitioning, each haplotype is assembled independently. For each
haplotype, candidate assembly intervals were defined as those with greater than ×3
coverage. Prior to assembly each such region (10157, 8908, 12829 in NA19240,
HG00733, HG00514 in haplotype 1 and 10065, 8665, 12826 in NA19240,
HG00733, HG00514 in haplotype 2) was split into subintervals of 270 kb (with 10
kb overlap between adjacent intervals). For each haplotype-specific region,
ambiguous reads overlapping the intervals were also recruited. The combined read
set was then assembled using a step-wise approach. First, assembly was performed
with Canu57 with parameters: contigFilter= “2 1000 1.0 1.0 2”; corMinCoverage=
0; errorRate= 0.035. Next, for regions that did not assemble, a more permissive
assembly was performed using minimap and miniasm58 with error-corrected reads
generated in the prior step by Canu. The resulting process sometimes generated
multiple contigs that did not span the whole interval. In the regions with no
contigs, reads were extracted and locally reassembled by extracting subinterval
reads with 10 kb flanks. The resulting assemblies were quivered and trimmed for
regions with Phred QV >30 using cutadapt59, to yield the initial set of assembled
haplotigs.

For each haplotype, contigs were mapped back to the reference using BLASR
and the -alignContigs option. Any overlapping contigs were merged by greedily
extending the upstream contig to its last aligned base, i, before adding bases from

the downstream contig beginning at i+ 1. After creating the stitched haplotigs, a
final step was performed to merge de novo assembled sequence from Falcon
(https://github.com/PacificBiosciences/FALCON), described previously. Here,
Falcon assembly substrings were only integrated in “gap” intervals if they anchored
to both the flanking left and right haplotigs of an examined gap interval. The N50
before adding in the Falcon assembly was 277 kb, 243 kb, and 169 kb for haplotype
1 for HG00733, HG00514, and NA19240, respectively. For haplotype 2, the N50 is
277 kb, 242 kb, 171 kb; after addition of the de novo assembly the N50 contig was
for haplotype 1 was 6Mb, 3.2 Mb, 1.5 Mb and for haplotype 2 the 6.3 Mb, 3.1 Mb,
and 1.4 Mb. The merged assemblies were then aligned back to the references with
BLASR using the parameters (-alignContigs -noSplitSubreads -bestn 1 -clipping
soft).

Assembly coverage. The haplotypes from each assembly were aligned using
BLASR -alignContigs -minMapQV 30 (www.github.com/mchaisso/blasr), and
intersected with chromosomal regions not labeled as acrocentric bands within the
UCSC cyctoband tables http://genome.ucsc.edu/cgi-bin/hgTables?
clade=mammal&org=Human&db=hg38&hgta_group=map&hgta_track=cyto-
BandIdeo&hgta_table=0&hgta_regionType=genome&hgta_outputType=bed.
The coverage is reported in Supplementary Data 19. Assembly quality was mea-
sured by mapping BAC sequences (27 in total) to both haplotypes of each assembly
and counting the difference to the optimally aligned haplotype. The result is given
in Supplementary Data 20.

Quality control for PacBio callset. SVs called by the two methods were first
filtered by PacBio read alignment count (PBRC) and comparison with the Bionano
Genomics (BNG) SV callset. To determine PBRC, SVs were organized into clusters
where all variants within a cluster had boundaries within a specific window (length
= 250 bp). The original Phased-SV callsets formed 17,141 clusters per haplotype
(HG00514= 15,450, HG00733= 17,474, and NA19240= 18,499) from the origi-
nal set of 25,113 (HG00514= 23,325, HG00733= 25,754, and NA19240= 26,260
pre-filtered calls. Support for MS-PAC calls was determined separately for each
haplotype and the “remaining de novo” calls prior to merging. The haplotype
callsets had between 25,741 and 28,032 original calls organized into 34,644–46,391
clusters, and the de novo calls had considerably more, between 43,271 and 60,079
original calls organized into clusters. For each SV cluster, we define the start
position of the reference interval of the cluster as 1 kb upstream of the first variant.
We define the end position as 1 kb downstream of the endpoint of the last SV in
the cluster (if the SV was a deletion), or 1 kb downstream of the starting point of
the last SV in the cluster (if this SV was an insertion). A target database of two
sequences was generated for each cluster: the reference sequence extracted from the
corresponding interval to the SV, and an alternative sequence containing mod-
ifications to the reference interval sequence defined by the SVs in the cluster; e.g., if
the cluster contained a 100 bp deletion, this sequence would be removed from the
alt-reference. All reads overlapping the first SV in the cluster were mapped to the
two-sequence database, and reads were assigned to the target with according to best
alignment score. We filtered out reads with alignments <1.5 kb.

To determine the minimal number of reads aligning to the alt-reference
required to validate a call, we performed a simulation. The level of support for the
alternate allele was measured for 22,166 variants detected on haplotype 0 of
NA19240 randomly shuffled to different euchromatic regions of the genome
(Supplementary Figure 4). We found that >4 reads supporting the alternate allele
results in an estimated FDR of 0.21%. The average number of SVs per haplotype
that had PBRC >4 for were HG00514= 17,708, HG00733= 19,304, NA19240=
20,118, and the MS-PAC haplotype assembles were HG00514= 15,439, HG00733
= 15,035, NA19240= 17,046, with the de novo assemblies (not haplotype specific)
ranging between 7044 and 10,938 calls (Supplementary Data 21).

As a final step to recover SVs with low sequence coverage, we compared the
initial SMRT SV callsets to variants discovered through BNG.

BNG calls were intersected with PB calls generated by MS-PAC and Phased-SV.
BNG-SV calls do not yield precise breakpoints, but instead provide reference
intervals and query intervals for which the observed nick-site distance is
significantly different from expectation. We calculated the BNG event size, and
positive values for x indication insertions while negative values indicate deletions.

We then compared these intervals to all SV events (passing and non-passing)
predicted from MS-PAC and Phased-SV. For all BP events overlapping a BNG
event we define LPB as the difference between the reference and alt allele. We can
then score the similarity between each of the events to the BNG event as fBN= |
LBN–LPB|/LBN, selected the corresponding event which minimized fBN. Reporting
for HG00514, HG00733, and NA19240 in order, a total of 282, 293, and 385,
deletion events, and 389, 421, and 429 insertion events for Phased-SV were
identified as having a best match and 276, 267, and 349 deletion events and 348,
337, and 467 insertion events for MS-PAC (Supplementary Data 22;
Supplementary Figure 5) shows the concordance between the estimated PB and
BNG event sizes. Note, we also examined concordance of the LBN with sum of PB
events (in each callset) overlapping the interval. However, this led to lower
concordance then selecting the single best event.

Unified PacBio SV callset. We then generated a unified callset combining the
Phased-SV and MS-PAC SVs. We initially observed low reciprocal overlap between
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the two callsets. 9751/21,733 (HG00514), 10,171/23,210 (HG00733), and 12,072/
25,309 (NA19240) quality-filtered MS-PAC calls had 50% overlap between calls of
the respective callsets from Phased-SV. However, most calls from MS-PAC have a
call in Phased-SV that was located in close proximity: 12,851/14,763 (87%), 13,640/
15,363 (89%), and 16,336/19,092 (86%) have a call at most 1 kb away in Phased-SV
p= <1e−5, permutation test.

We based our merging strategy on the observation that the two approaches
tended to make calls that were within close proximity and of similar length between
the two methods, or calls that were far apart. Additionally, we found that the
standard of using the 50% reciprocal overlap to merge calls that are in close
proximity was insufficient. When the two methods had similar calls at the same
locus but with different breakpoints, the reciprocal overlap method would leave
many calls unmerged, inflating the number of calls. The total number of MS-PAC
calls per haplotype are listed along with the number of calls unique to the MS-PAC
callset using a simple 50% reciprocal overlap metric compared to the number of
calls unique to MS-PAC when restricted to at least 10 kb away from a Phased-SV
call in Supplementary Data 23.

To first show the general agreement between the two methods, we compared
the net gain of bases of SVs in 29,609 tiled 100 kb windows across the euchromatic
genome. We considered SV callsets from Phased-SV and MS-PAC (haplotype and
de novo merged) that have passed read-backed filtering. For each window and
callset, the sizes of the SVs within the window were summed, with deletion calls as
negative and insertions as positive (Supplementary Figure 6). The correlation
between methods across bins where at least one method has an SV call ranges
between 0.27 and 0.46 across the genomes (Supplementary Data 24), which is a
lower correlation than what we would have expected. However, limiting to cases
where both methods make a call and the difference between calls is at most 10 kb,
the correlation is between 0.89 and 0.94, indicating that when both methods
produce calls in a region the net SV is similar.

Next, for every call in the Phased-SV haplotype-specific callsets, we calculated
the closest MS-PAC call, without regard to the call size. Similar to the bin-based
analysis, calls were either in close proximity (<1000 bases), or were far apart (>5000
bases) (Supplementary Figure 7).

The differences between calls from MS-PAC and Phased-SV were cataloged by
haplotype, separating out calls by not-tandem repeat and tandem repeat sequences.
For not-tandem repeat sequences, 18% of MS-PAC calls did not have a nearby call
in the same haplotype in Phased-SV; however, only 4.7% of MS-PAC calls were
missing from either haplotype in Phased-SV, indicating that roughly 30% of the
assembly differences were due to haplotype switching. The remaining calls (4.7%)
represent either errors in the MS-PAC assembly, or assembly dropout from
Phased-SV. Of these calls, 13% were not backed by raw read support (0.6% of the
entire MS-PAC callset) indicating likely mis-assemblies that are filtered by quality
checking. Regions missing from both haplotypes of the Phased-SV assemblies
accounted for 25% of the MS-PAC calls (1.2% of entire MS-PAC callset). The
remaining 3.5% of calls unique to the MS-PAC callset have PB read-backed
support, and are covered by a Phased-SV assembly. Manual inspection of some of
these calls indicates the most likely source of error is a missing haplotype or calls
for which the read-backed filter incorrectly removed a call. The full summary of
steps to merge is given in Supplementary Data 25.

The total number of SVs detected are determined by the parameters of merging
SVs from both haplotypes in addition to both assembly methods. We provide
greater detail on the merging of calls by haplotype and present an approach to
merging SVs between haplotypes where calls inside tandem repeats are merged
separately. Because our approach to detect SVs in diploid genomes is to assemble
the two haplotypes separately and combine calls into a diploid genome, calls that
overlap with a certain threshold are considered homozygous, and when there is less
than this threshold heterozygous and unique to each haplotype. We examined the
effect of the merge parameter for calls in tandem and non-tandem repeat regions
for both Phased-SV and MS-PAC (Supplementary Figure 8). For calls outside of
tandem repeats there is a less than 10% difference in total number of calls when the
reciprocal overlap threshold ranges from 10% to 90%, indicating that the
breakpoints of SV calls detected in separate haplotypes outside of tandem repeat
regions are consistent. The results are consistent between Phased-SV and MS-PAC.
Thus, we elected to use a loose overlap threshold (0.10) for determining if a call is
homozygous for calls outside tandem repeats. However, there is a 31–35%
difference for the number of calls detected in calls within tandem repeats when
ranging the reciprocal overlap between 0.1 and 0.9 indicating that either the
breakpoints are not well-defined, or that the SVs within tandem repeats are more
diverse.

Large tandem repeat loci that are highly divergent from the reference are likely
to have many different alignments with similar alignment scores but different SV
representation, often with multiple SV calls within the same tandem repeat locus.
To investigate the clustering of SVs within tandem repeat loci, all tandem and STR
annotations from hg38 were merged (with an additional 20 base pairs on either
side to account for under-annotation of tandem repeats) ~1M tandem repeat loci.
The distribution of number of calls per tandem repeat locus is shown for all callsets
from Phased-SV and MS-PAC in Supplementary Figure 9 and summarized in
Supplementary Data 26. The majority of tandem repeat loci have less than three
SVs at each locus. For all tandem repeat loci with six or more SVs detected within
the locus in either haplotype, we removed SVs from both haplotypes and assembly
methods in each cluster, and store the alternative haplotype sequences. This

covered on average of 285 loci and 1812 SVs from each haplotype (Supplementary
Data 26). After removing SV calls from large clusters of SVs, SVs were merged
between haplotypes using a 50% reciprocal overlap.

To decide between which representation of a Phased-SV or MS-PAC call to use
when both overlapped and were validated by a BNG call, the optimal overlap with
BNG was used (Supplementary Data 22). Each variant from Phased-SV and MS-
PAC that overlapped a BNG call was assigned a fractional value fBN= |LBN–LPB|/
LBN where LPB is the length of the variant from the Phased-SV or MS-PAC, and
LBN is the length of the BNG variant. Variants with f < 0.1 were considered
validated, regardless of whether or not the PBRC was >3. For NA19240, this
selected 35 SVs (average 9496 bp) from Phased-SV, and 534 (average 4168 bp)
from MS-PAC. The procedure recovered ~218 SVs per sample that would have
been filtered by low PBRC. These were typically large SVs (mean size, 5.35 kb).
Next, because the validation rate of the Phased-SV calls was greater, we included all
remaining calls from Phased-SV that had PBRC >3. For NA19240 this included
10,064 deletions (mean 507 bp) and 15,244 insertions (mean 507 bp). We then
added all calls from MS-PAC that were at least 10 kb away from a call in Phased-
SV; for NA19240 this added 514 deletions (mean 341 bp) and 872 insertions (mean
366 bp). The categories of SV types are given in Supplementary Data 27.

Illumina-based SV detection. A total of 15 algorithms, i.e., Delly, dCGH, For-
estSV, Genome STRiP, HOLMES, Lumpy, Manta, MELT, novoBreak, Pindel,
retroCNV, SVelter, Tardis, VariantHunter, and WhamG (Supplementary Meth-
ods 3.3; Supplementary Data 28) were applied to the parent–child trios to discover
SVs from IL short-read sequences. Number of SVs reported by individual algo-
rithm varies from 1000 to 23,000 (Supplementary Data 32), indicating large var-
iance in sensitivity and FDR across methods.

To derive a consensus SV set, an experimental-based approach was developed
where the breakpoint accuracy of individual algorithm was first estimated through
comparisons against high-quality PB-SVs that have single base breakpoint
resolution, then clustered by overlapping their confidence interval to derive
consensus breakpoints with minimized confident intervals (Supplementary
Figure 10).

Breakpoint accuracy estimation. The breakpoint accuracy of each short-read-
based algorithm was estimated by comparing against high confident PB-SVs by
50% reciprocal overlap (RO), i.e., for each SV predicted by short-read technology, if
there is a PB-SV that partially/fully covers the same genomic region, where the
overlap between the two calls exceeds half of both calls, a ‘match’ will be assigned
and the distance between the PB breakpoints and the short-read ones will be
recorded. The 10% and 90% quantile of each distribution will be calculated and
assigned as the confidence interval (CI) of breakpoint accuracy for each algorithm.
The distance between IL and PB breakpoints for 15 methods are shown in Sup-
plementary Figure 11.

Breakpoint clustering. Breakpoints of SVs from different algorithms were firstly
clustered into candidate groups if their CIs overlap with each other. In each group,
if a minimized common CI can be defined by taking the right most of the left
breakpoints and the left most of the right breakpoint, the consensus breakpoint will
be assigned as the one that is most frequently proposed by different algorithm.
However, there are other situations where not all CIs overlap with each other. In
this situation, a two-step approach will be adopted, where

1. All the CIs will firstly be stacked up and the number of CIs each breakpoint
goes through is counted, with each peak and their right neighbor assigned as a
CI.

2. Then the breakpoints within this cluster will be assigned to their nearest CIs
to form the sub breakpoint clusters. And consensus breakpoints will be
assigned in the same way as described above.

Quality control for Illumina callset. An integrated set of 44,505 unique SVs was
collected from the pipeline described above, out of which 421 fell within either
telomere or centromere of a chromosome and were labeled to be removed from
further genotyping. There are also 594 SVs of over 1Mb in size that were labeled
and removed in the primary quality control (QC) step. In the rest of the cohort,
most of the integrated SVs were supported by only one algorithm (singleton, n=
22,903, perc= 65%), over half (n= 11,778) of which were found to overlap with
another merged SV with support from multiple algorithms (clusters). Singletons
that overlap with clusters are assumed to be well represented by the clusters, so that
they are labeled as ‘redundancy’. The remaining SVs are labeled as ‘PASS’ and sent
for downstream analysis, such as genotyping across trios, breakpoint accuracy
assessment through GRAPHITE (https://github.com/dillonl/graphite) and
VaPoR60.

Unified Illumina SV callset. The integration pipeline described above resulted in a
non-redundant set of IL-specific SVs consisting of 27948 unique SVs, including
17799 deletions, 2211 duplications, 3310 insertions, 3698 mobile element insertions
and 930 other SVs, with 56% detected by more than one approach, and 49% with
orthogonal support from other technologies (Supplementary Data 30).
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We next assessed our integrated set by comparison with the high-quality PB-SV
set and observed 49% events with a high degree (50%) of reciprocal overlap. We
further identified ~1000 SVs per proband which appeared to be IL-specific. An in-
depth investigation of these events showed signatures of structural rearrangements
in the PB sequence data, suggesting their omission was due to methodological
rather than technological limitations (Supplementary Figure 12, Supplementary
Data 31). We also investigated the sequence context around the breakpoints of each
set and observed stark differences within repetitive regions between the
technologies (Supplementary Figure 13).

IL genotyping: In order to assess the allele frequency of the SVs discovered in
the three trios we used the Simons Genome Diversity Project (SGPD) samples. A
panel of 260 PCR-free genomes at moderate coverage (Supplementary Figure 14)
represents 127 distinct populations from seven superpopulations61,62. The
geographic distribution of the individual samples can be seen in Supplementary
Figure 15. The coverage of these genomes increases our power to genotype SVs
discovered by PB- and IL-based SV callers.

For base pair-resolved insertions and deletions, where both alleles are known,
we applied SMRT-genotyper13. For the IL-only SV calls we applied SVTyper and
Genome STRiP. The original SGDP pair-end data were lifted from hg19 to GRch38
using bwa-kit “run-bwamem.”

Genomic coverage of Illumina and PacBio. Physical coverage of IL reads with
mapping quality ≥15 (generous) and raw coverage of PB reads with mapping
quality ≥30 (conservative) were calculated in 100 bp bins from each child’s genome.
To mitigate effects of deletions obscuring which regions are not covered by a
technology, coverage was combined from each child for the two technologies.
Filtering heterochromatic regions, chromosome Y, and any bin with five reads or
fewer covering it, we found 749 kb (0.028% of the euchromatic genome) base pairs
covered by PB and not IL, and 2.94 Mb (0.1% of the euchromatic genome) of
sequence conversely covered by IL and not PB. These platform-unique sequences
are enriched for segmental duplications; 82.0% of the PB-only regions were seg-
mental duplication, and 83.9% of the IL-only regions were segmental duplication.
Thus, we expect the majority of the calls to be accessible to both platforms.

Filtering integrated Illumina callsets. We then searched for concordance
between calls from the integrated IL, integrated PB, and BNG callsets. We began by
developing filtered SV callsets. The PB calls were previously filtered by raw read
support. To develop a filtered IL callset, each call was compared to a superset of
variation from the PB integrated callset including: the set of unfiltered SV calls
from the haplotype local assemblies in Phased-SV, SVs detected through individual
PB reads, the coverage depth of the PB alignments, and the BNG-SV calls. For all
comparisons except for the BNG and read-depth comparison, the following steps
were performed to detect the concordance between a query SV and a dataset of
SVs. First, all target SVs from the dataset within 1 kb of the breakpoints of the
query SV are collected. Each SV from this set is compared against the query by
taking the ratio of the shorter of the query and target SV to the length of the larger
of the query and target SV, and the concordance is defined as the maximum of all
of these ratios. A similar test was used for comparison to BNG calls; however, the
SV position interval was used in place of breakpoint boundaries. Each IL call was
considered concordant if at least one of these conditions held true:

1. The maximal concordance of a PB or BNG target SV is at least 0.5.
2. At least three reads have at least 0.7 concordance with the query SV.
3. The call is a deletion and the PB read depth is <25 over the region of the call.
4. There are at least three PB reads that show a shift in the dotplot that is

concordant with the IL SV call. This mitigates alignment artifacts from (2).

The greater stringency for raw read overlap is to reduce false-positive
concordance caused by spurious short indels. The number of integrated IL-SV calls
that had a concordant SV was HG00514: 76.6% (5083/6637) (del) 81.1% (2798/
3450) (ins), HG00733 77.0% 5025/6530 (del) 82.3% 2825/3431 (ins), and NA19240
78.6% (6068/7723) (del), and 82.6% (3416/4137). The number and fraction of
integrated IL calls for each child is shown below.

We compared the validation rate by the number of methods supporting each
call. For calls supported by a single IL algorithm, between 45.1 and 48.3% of
deletion calls were supported by additional technologies, and 80.0–82.1% of
insertion singleton calls were supported.

We looked for evidence of the integrated IL calls that were not found in the
integrated PB callset within the original PB reads or the Phased-SV local assembly
unfiltered calls.

Filtering Bionano Genomics callset. To generate a filtered callset of the BNG
deletion calls, each call was compared with the SVs detected from local assemblies
in Phased-SV, and read depth, SVs detected in raw PB reads, and the PB read
depth. Because a genomic interval and estimated variant length are given for each
BNG variant, the read-depth is calculated by scanning the genomic interval and
taking the average coverage within a sliding window of the length of the SV. The
candidate coverage is taken as the minimum coverage. A call is considered vali-
dated if the minimal average coverage is less than 30 (compared to the ×40 average
sequencing depth of each sample). An example of a validated homozygous variant,
validated heterozygous variant, and region in which a deletion variant was

predicted but no suitable coverage interval was found is shown below. The cor-
responding variant discovered in the PB integrated set is shown in red.

In total this finds concordance rates as follows: HG00514: 94.1% (871/926),
HG00733: 94.1% (829/881), NA19240: 97.8% (984/1006). Because it was not
possible to find concordance with insertion calls and read-depth, all insertion calls
less than 15Mb were considered concordant.

The number of BNG calls overlapping segmental duplications are:
HG00514: N= 268/1656, total bp= 9608546/26129625, 6.47X increase
HG00733: N= 276/1698, total bp= 9723721/26693605, 6.41X increase
NA19240: N= 283/1740 total bp= 11830199/30477301, 6.8X increase.
Increase is computed using the fraction of the genome annotated as segmental

duplication of 0.056.

Integration of Illumina, PacBio, and Bionano callsets. The filtered integrated IL
and BNG calls were integrated with the integrated PB-SV callset. The IL and BNG
callsets were queried against the integrated PB callset in a similar manner as the
query against the validation sets, and the IL set was queried against the BNG callset
for concordant matches. The variants for which a concordant match was found
were recorded as shared between pairs of datasets. To construct an integrated
dataset, we merged (1) calls unique to each filtered dataset, (2) calls shared between
pairs of datasets, and (3) calls shared across all three datasets. For cases 2 and 3, the
PB variant was used when available (e.g., shared IL/PB, and shared BNG/PB, or
shared across all three), and the IL variant when shared between BNG and IL.

The gain in sensitivity for PB-SV only calls was largely in SVs less than 2 kb
(Supplementary Data 32).

Specificity of integrated Illumina dataset. The calls by individual algorithms
were evaluated for concordance with the PB and BNG integrated datasets, which
may be viewed as an estimate of the accuracy of each method. Because there are
calls missed by the union of the integrated PB and BNG callsets, this is a lower
bound on the estimate. The average concordance for deletion calls ranged between
41% and 98% with a median of 93%, and for insertion calls ranged between 4.6%
and 97.3% (Supplementary Data 33). The insertion statistic is affected by com-
paring the coordinates of the duplication calls, which are defined by the interval of
the source sequence, to the insertion calls in the integrated PB callset and the BNG
calls, which are defined at the insertion sites. This has an effect of reducing the
concordance of methods that produce duplication calls through discordant read
depth measurement, such as dCGH and Genome STRiP.

We then sought to assess the concordance of callsets formed from the union or
intersection of multiple methods. Because of the computational burden of running
many algorithms, we considered combinations of up to four algorithms, and tested
three separate conditions: accept all calls from the union of two algorithm callsets,
all calls from the union of three callsets, and calls from at least two of three
algorithms. The first two conditions represent scenarios where one is targeting
maximal sensitivity, while the last targets specificity. The union of methods
naturally increases the FDR while increasing the sensitivity, whereas the
intersection of methods decreases FDR requiring a majority (e.g., two of three
methods) rather than total consensus can increase sensitivity, both with the
expected trade-off between increased sensitivity and FDR. The non-concordance
rate (NCR): 1- concordance, is used as a proxy for FDR. Considering NA19240, by
requiring two of three methods to agree on a call, to it is possible to form a deletion
callset of 4191 calls with an NCR of 4.6% using the Manta, Pindel, and Lumpy
methods. This is an increase of 5–55% over any of the methods individually while
keeping the estimated FDR below 5%.

Inversion detection using Strand-seq. In order to explore larger copy-neutral as
well as more complex SVs that are typically excluded in SV studies (often due to
confounding genome architectural features and methodological limitations), we
incorporated strand-resolved sequencing data generated using Strand-seq. Strand-
seq is a single-cell sequencing technology that involves sequencing reads from
individual DNA strands following bromodeoxyuridine (BrdU) incorporation into
dividing cells13,63. In contrast to conventional Massively Parallel Sequencing,
Strand-seq maintains DNA strand directionality, which is used to directly separate
sequence data derived from each chromosomal homolog. These data preserve the
long-range structural information of individual homologs, which can be used to
scaffold phasing data to build haplotypes (as described above) and allows copy-
neutral SVs to be directly visualized18,39. In contrast to other sequencing techni-
ques, this technology identifies inversions based on the directionality of reads
contained within the inverted locus, rather than from reads spanning inversion
breakpoints. This allows even those variants embedded within large, highly iden-
tical low copy repeats (that are inaccessible by regular short or long DNA read
sequencing approaches1 to be located). Accordingly, Strand-seq has recently
emerged as a new method to discover inversions across an extensive length scale
from a few kilobases up to several Megabases in size18,39.

To map inversions in the family trios, we generated altogether 1064 Strand-seq
libraries, yielding a cumulative sequencing depth ranging from 3.6 to 7.7× per
genome, and covering up to 80% of all mappable bases (Supplementary
Figure 16A). To remove potential inter-cell inconsistencies and increase coverage
for variant detection, composite files were generated for each individual, as
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previously described18,39 (Supplementary Figure 16B, 16C). A composite file
represents merged sequence data from multiple Strand-seq libraries with strand
directionality preserved. Based on alignment to the reference genome, each read in
the composite file was designated as being in the same orientation as the reference
(‘reference’), or the opposite orientation to the reference assembly (‘non-
reference’). This allows regions of inverted orientation to be identified and
genotyped based on the proportion of non-reference reads at the locus, and a read
ratio was calculated for as the number of reads in the non-reference orientation
divided by total number of reads (Supplementary Figure 16D). Regions with higher
read ratios contain a greater proportion of reads supporting an inverted allele, and
thus this value can be used as proxy for the level of support for an inversion.

Using a sliding window approach (window size= 250 reads) local read ratios
(i.e., proportion of non-reference reads) were calculated for each window in the
composite file and putative SVs were located as chromosomal regions that
exhibited a segmental change in strand orientation and contained >15% non-
reference reads (Supplementary Figure 17A). This located up to 354 genomic loci
per individual that contained a significant portion of reads in a non-reference
orientation, suggestive of an inversion (Supplementary Data 34). We found a
cluster of these regions had a read ratio >0.80 (which supports a homozygous
inversion); however, there was a continuous distribution of regions with a ratio
<0.75 (Supplementary Figure 17B), which suggested that a subset of loci identified
in the composite files were non-diploid. Each locus was genotyped as being either
homozygous reference, heterozygous inverted, or homozygous inverted using a
Fisher exact test that allowed for a 2% level of background in the homozygous
states and required a minimum of 50 reads to genotype (Supplementary
Figure 17C). This resulted in 187–208 (74.2%) heterozygous and 63–77 (25.8%)
homozygous loci per individual (Supplementary Data 35). The inversions showed a
continuous size distribution that ranged between 448 bp and 3.7 Mb in length, with
a mean of 208 kb (Supplementary Figure 17D). This discovery set of Strand-seq
inversions together represent simple inversions, complex variants and reference
assembly errors. For example, we identified 35 inversions that were homozygous in
all nine individuals that likely represent reference assembly misorients, and were
thus removed from the downstream analyses (Supplementary Data 36).

Classifying Strand-seq inversions using orthogonal phase data. The Strand-seq
discovery set of inversions identified from the composite files were further classified
by integrating orthogonal phasing data. We used a trio-aware PB-phased vcf file
that was assembled using the WhatsHap15,16 independent of Strand-seq haplotype
data. We tagged all possible reads in the single-cell libraries by identifying het-
erozygous SNVs captured in a Strand-seq sequencing read and assigned the frag-
ment to either haplotype 1 (H1) or haplotype 2 (H2) based on agreement with the
PB phasing file (Supplementary Data 37). Haplotagged composite files were then
regenerated using the phased Strand-seq data and the haplotype structure at each
locus was assessed in a strand-aware fashion—meaning we considered the ratio of
phased H1:H2 reads in the reference orientation independent of the ratio of phased
H1:H2 reads in the ‘non-reference’ orientation. This allowed us to assign a hap-
lotype ratio for each strand of the locus, calculated as the proportion of reads with
an H1 phase divided by the total number of phased reads. By combining read ratios
with haplotype ratios, we defined distinct signatures to distinguish simple homo-
zygous, heterozygous and complex heterozygous (e.g., inverted duplications)
inversions identified in the Strand-seq discovery set.

We identified simple homozygous inversions (i.e., having a non-reference
orientation for both homologs, and without an accompanying copy number
change) as loci that were genotyped as homozygous and showed a haplotype ratio
~0.5 (>0.25 and <0.75) on the non-reference strand, where a minimum of ten
phased reads were required (Supplementary Figure 17). Across all individuals we
found 147 loci with this signature, of which 55 were unique. These simple
homozygous inversions ranged in size from 2.2 kb to 3.9 Mb (median length= 142
kb). The median read ratio was 0.95 (range: 0.79–1.0), and the median haplotype
ratio for the non-reference reads was 0.49, with an interquartile range of 0.10.

We then identified simple heterozygous inversions (i.e., loci showing non-
reference orientation for a single homolog and without a copy number change) as
loci genotyped as heterozygous and represented by different haplotypes on the
reference and non-reference strands (Supplementary Figure 17). These loci had a
haplotype ratio >0.75 on the reference strand coupled with a haplotype ratio <0.25
on the non-reference strand, or vice versa, where a minimum of ten-phased reads
were required on each. This located 221 simple heterozygous inversions in all
individuals, representing 102 unique loci. The lengths ranged between 2.9 kb and
3.9 Mb, and a median of 136 kb. The median read ratio for these events was 0.48
(range: 0.21–0.73) and the median haplotype ratio was 0.23 for the non-reference
reads and 0.79 for the reference reads. The haplotype information was subsequently
used to directly phase these inversions, where a non-reference haplotype ratio
>0.75 marked an inversion on H1 (“1/0”), and a ratio <0.25 marked an inversion
on H2 (“0/1”). This located 106 heterozygous inversions to H1, and 115 to H2.

Next, complex heterozygous inversions were identified as loci showing non-
reference orientation and represented by phase data suggestive of a copy number
change. These were located as events with a heterozygous genotype where a single
haplotype was found on the non-reference strand (i.e., haplotype ratio <0.25 or
>0.75) and both haplotypes were found on the reference strand (showing a
haplotype ratio of ~0.5). This located 207 complex inversions, of which 97 were
unique. The read ratio (median= 0.31; range= 0.18–0.79) of these inversions was

slightly lower than the simple heterozygous, suggestive of a copy number increase
on the reference strand (Supplementary Figure 18). They ranged in length from 2.1
kb to 1.3 Mb, with a median size of 72.5 kb. Taken together, this analysis located
129 simple and 98 complex inversions in the Strand-seq that have orthogonal
support from PB phase data.

Integrating inversion calls across orthogonal platforms. Although Strand-seq is
uniquely positioned to locate large (kilobase-scale) inversions, even if embedded
within highly repetitive segmental duplications, due to the sparsity of single-cell
sequence data, the ability to locate smaller variants is limited using this method
alone. For instance, the interquartile range of the Strand-seq inversion discovery set
was 17.5–189.2 kb in length. To locate inversions of a complete size spectrum, we
additionally generated inversion callsets from sequence data derived from PB, IL,
BNG, and liWGS (corresponding to jumping libraries of 3.5 kb and 7 kb insert
lengths) technologies (Supplementary Figure 19).

To unify all inversion predictions into a single integrated callset, we first
performed an intersection test that measured the level of reciprocal overlap
between the different technologies. For all intersecting inversions, we calculated the
level of overlap by dividing the number of intersecting base pairs by the total
predicted inversion length. We then filtered pairs that showed >50% reciprocal
overlap to identify inversions supported by two independent technologies
(Supplementary Figure 20).

The results of this test yielded a total of 1296 supported inversions (137 non-
redundant), with 37–96 per individual (Supplementary Data 38). Approximately
half (45.9%) were recovered for each parent because PB only produced variant calls
for the probands. Of the total supported inversions, 533 came from IL, 335 from
liWGS libraries, 172 from PB, 147 from Strand-seq and 106 from BNG callsets
(Supplementary Figure 21A). While BNG contributed the fewest number of
inversions to the total, 39.1% of the initial callset was supported, whereas only
13.6% of the initial IL callset (that contributed the most) was supported
(Supplementary Figure 21B). Notably, although a cutoff of 50% reciprocal overlap
was used, the majority of passing events showed near complete agreement (first
quartile of percent overlap was 89.5%). The majority (64.9%) of which were
represented by the minimum of two technologies, with only 5.5% represented by all
(Supplementary Figure 21C). We found IL and PB showed the most agreement at a
size scale <2 kb, the jumping libraries overlapped with IL within the size range 2–4
kb, and with PB and/or Strand-seq between 4 and 25 kb. The highest agreement
between technologies was seen between 5 and 50 kb size lengths, with the larger
events (>50 kb) dominated by Strand-seq and BNG calls (Supplementary Figure 20;
Supplementary Figure 21D). Indeed, because the interquartile range of intersecting
inversions was 1.9–18.7 kb (median 3.5 kb), the majority of inversions predicted by
Strand-seq were poorly represented by this test (Supplementary Figure 21B). This
points to the distinct strategy used by the method to locate inversions that cannot
be captured by orthogonal technologies.

To additionally recover inversions not captured in the intersection test, we next
performed a genotyping test using the Strand-seq composite files. We performed a
Fisher exact test on all inversion callsets to test whether support was seen in the
Strand-seq composite files, where a minimum of 25 reads were required to
genotype the locus. From the discovery callsets we found a striking number of
predicted inversions with a ‘reference’ genotype in the Strand-seq files, where
between 36.6 and 76.1% of genotyped loci (i.e., containing >25 reads in the
composite file) were unsupported (Supplementary Data 39). Nevertheless, this test
was able to add orthogonal support to a total of 175 non-redundant predicted
inversions, 84 of which were not present in the interception test results. Moreover,
when we repeated this genotyping test using only inversions passing the
interception test, we found the number of inversions supported by the composite
files increased up to 36.4% (Supplementary Data 40). For example, 89 (36.6%) of
the inversions predicted in the PB callset were not supported by Strand-seq in the
initial test, and this dropped to a single (0.6%) unsupported event when the filtered
set was genotyped. This analysis illustrates that both the Strand-seq re-genotyping
and interception analyses are useful validation tools for inversion discovery.

From these analyses a final unified inversion callset was generated that
represented variants supported by at least two orthogonal technologies. To obtain
this, we compiled all supported inversions from the (i) interception test, (ii) Strand-
seq genotyping test, and (iii) Strand-seq inversions supported by PB phase data
(Supplementary Figure 22). The three supported inversion lists were merged into a
non-redundant inversion set for each individual. Any pericentric events (e.g., large
>6Mb inversion predicted by IL and BNG), or those with a tandem repeat fraction
>90% were removed, and breakpoint ranges were determined for the remaining
inversions. For this, the outer breakpoint of the inverted region (InvR) was defined
as the outermost start and end positions of each non-redundant event found
between all three lists. For all events containing >1 inversion prediction within the
locus (e.g., those located in the interception test), the inner breakpoints
(innerBP_start and innerBP_end) were defined as the consensus region
represented by at least half of the overlapping predictions. If the inversion was
listed in only one of the support lists (e.g., those discovered by Strand-seq and
supported with phase data) the innerBPs were set to match the InvR. A consensus
genotype was then assigned to the inversion by taking the majority genotype call
found for all discovery sets. If no majority call was possible (e.g., an equal number
of heterozygous and homozygous genotypes were listed for all technologies) the
genotype was listed as ‘ambiguous’. Finally, we classified the unified list into simple
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(Supplementary Data 41 and Supplementary Data 42) and complex
(Supplementary Data 43 and Supplementary Data 44) inversions, by performing a
copy number analysis. Here, we called the copy number state using Genome STRiP
on the high-depth IL data to assign a copy number value for each inversion.
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Data availability
Underlying sequencing read data from the various platforms can be accessed via
the International Genome Sample Resource (IGSR)64 at http://www.
internationalgenome.org/data-portal/data-collection/structural-variation. Indel
variant calls will be made available with dbSNP build B151. SV calls are made
available under dbVar accession nstd152. All other relevant data are available upon
request.
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