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Bulk tissue cell type deconvolution with
multi-subject single-cell expression reference
Xuran Wang1, Jihwan Park 2, Katalin Susztak2, Nancy R. Zhang 3 & Mingyao Li4

Knowledge of cell type composition in disease relevant tissues is an important step towards

the identification of cellular targets of disease. We present MuSiC, a method that utilizes

cell-type specific gene expression from single-cell RNA sequencing (RNA-seq) data to

characterize cell type compositions from bulk RNA-seq data in complex tissues. By appro-

priate weighting of genes showing cross-subject and cross-cell consistency, MuSiC enables

the transfer of cell type-specific gene expression information from one dataset to another.

When applied to pancreatic islet and whole kidney expression data in human, mouse, and

rats, MuSiC outperformed existing methods, especially for tissues with closely related cell

types. MuSiC enables the characterization of cellular heterogeneity of complex tissues for

understanding of disease mechanisms. As bulk tissue data are more easily accessible

than single-cell RNA-seq, MuSiC allows the utilization of the vast amounts of disease relevant

bulk tissue RNA-seq data for elucidating cell type contributions in disease.
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B
ulk tissue RNA-seq is a widely adopted method to under-
stand genome-wide transcriptomic variations in different
conditions such as disease states. Bulk RNA-seq measures

the average expression of genes, which is the sum of cell type-
specific gene expression weighted by cell type proportions.
Knowledge of cell type composition and their proportions in
intact tissues is important, because certain cell types are more
vulnerable for disease than others. Characterizing the variation of
cell type composition across subjects can identify cellular targets
of disease, and adjusting for these variations can clarify down-
stream analysis.

The rapid development of single-cell RNA-seq (scRNA-seq)
technologies have enabled cell type-specific transcriptome pro-
filing. Although cell type composition and proportions are
obtainable from scRNA-seq, scRNA-seq is still costly, prohibiting
its application in clinical studies that involve a large number of
subjects. Furthermore, scRNA-seq is not well suited to char-
acterizing cell type proportions in a solid tissue, because the cell
dissociation step is biased towards certain cell types1.

Computational methods have been developed to deconvolve
cell type proportions using cell type-specific gene expression
references2. CIBERSORT3, based on support vector regression, is
a widely used method designed for microarray data. More
recently, BSEQ-sc4 extended CIBERSORT to allow the use of
scRNA-seq gene expression as a reference. TIMER5, developed
for cancer data, focuses on the quantification of immune cell
infiltration. These methods rely on pre-selected cell type-specific
marker genes, and thus are sensitive to the choice of significance
threshold. More importantly, these methods ignore cross-subject
heterogeneity in cell type-specific gene expression as well as
within-cell type stochasticity of single-cell gene expression, both

of which cannot be ignored based on our analysis of multiple
scRNA-seq datasets (Supplementary Figure 1a).

Here we introduce a new MUlti-Subject SIngle Cell deconvo-
lution (MuSiC) method (code available) that utilizes cross-subject
scRNA-seq to estimate cell type proportions in bulk RNA-seq
data. Through comprehensive benchmark evaluations, and
applications to pancreatic islet and whole kidney expression
data in human, mouse, and rats, we show that MuSiC out-
performed existing methods, especially for tissues with closely
related cell types.

Results
Methods overview. An overview of MuSiC is shown in Fig. 1.
MuSiC starts with multi-subject scRNA-seq data, and assumes
that the cells for each subject have been classified into a set
of fixed cell types that are shared across subjects. MuSiC
deconvolves bulk RNA-seq samples to obtain the proportions
of these cell types in each sample. A key concept in MuSiC
is “marker gene consistency”. We show that, when using scRNA-
seq data as a reference for cell type deconvolution, two funda-
mental types of consistency must be considered: cross-subject and
cross-cell, in which the first is to guard against bias in subject
selection, and the second is to guard against bias in cell capture
in scRNA-seq. By incorporating both types of consistency,
MuSiC allows for scRNA-seq datasets to serve as effective refer-
ences for independent bulk RNA-seq datasets involving different
individuals.

Rather than pre-selecting marker genes from scRNA-seq based
only on mean expression, MuSiC gives weight to each gene,
allowing for the use of a larger set of genes in deconvolution.
The weighting scheme prioritizes consistent genes across subjects:

Multi-subject scRNA-seq Cell type-specific gene expression reference from scRNA-seq

Cross-subject mean Cross-subject variance

Healthy

Diseased

Bulk tissue deconvolution

Informative gene

Non-informative gene

Weight

Stage 1

Stage 2

Cluster proportions

Cell type proportions

Cluster 1 Cluster 2

Fig. 1 Overview of MuSiC framework. MuSiC starts from scRNA-seq data from multiple subjects, classified into cell types (shown in different colors), and

constructs a hierarchical clustering tree reflecting the similarity between cell types. Based on this tree, the user can determine the stages of recursive

estimation and which cell types to group together at each stage. MuSiC then determines the group-consistent genes and calculates cross-subject mean

(red to blue) and cross-subject variance (black to white) for these genes in each cell type. MuSiC up-weighs genes with low cross-subject variance and

down-weighs genes with high cross-subject variance. In the example shown, deconvolution is performed in two stages, only cluster proportions are

estimated for the first stage. Constrained by these cluster proportions, the second stage estimates cell type proportions, illustrated by the length of the bar

with different colors. The deconvolved cell type proportions can then be compared across disease cohorts
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up-weighing genes with low cross-subject variance (informative
genes) and down-weighing genes with high cross-subject variance
(non-informative genes). This requirement on cross-subject
consistency is critical for transferring cell type-specific gene
expression information from one dataset to another.

Solid tissues often contain closely related cell types, and
correlation of gene expression between these cell types leads to
collinearity, making it difficult to resolve their relative propor-
tions in bulk data. To deal with collinearity, MuSiC employs a
tree-guided procedure that recursively zooms in on closely related
cell types. Briefly, we first group similar cell types into the same
cluster and estimate cluster proportions, then recursively repeat
this procedure within each cluster (Fig. 1). At each recursion
stage, we only use genes that have low within-cluster variance, a.k.
a. the cross-cell consistent genes. This is critical as the mean
expression estimates of genes with high variance are affected by
the pervasive bias in cell capture of scRNA-seq experiments, and
thus cannot serve as reliable reference. See online methods for
details.

Application to pancreatic islets in human. To demonstrate and
evaluate MuSiC, we started with a well-studied tissue, the islets of
Langerhans, which are clusters of endocrine cells within the
pancreas that are essential for blood glucose homeostasis. Pan-
creatic islets contain five endocrine cell types (α,β,δ,ϵ, and γ), of
which β cells, which secrete insulin, are gradually lost during type
2 diabetes (T2D). We applied MuSiC to bulk pancreatic islet
RNA-seq samples from 89 donors from Fadista et al.6, to estimate
cell type proportions and to characterize their associations with
hemoglobin A1c (HbA1c) level, an important biomarker for T2D.
We were motivated to re-analyze this data because, as shown in
Fig. 2 and in Baron et al.4, existing methods failed to recover the
correct β cell proportions, which should be around 50–60%7, and
also failed to recover their expected negative relationship with
HbA1c level. As reference, we experimented with scRNA-seq data
from two sources: 6 healthy and 4 T2D adult donors from
Segerstolpe et al.8, and 12 healthy and 6 T2D adult donors from
Xin et al.9. All bulk and single-cell datasets in this analysis are
summarized in Table 1.
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Fig. 2 Pancreatic islet cell type composition in healthy and T2D human samples. a, b Benchmarking of deconvolution accuracy on bulk data constructed by

combining together scRNA-seq samples. a The bulk data is constructed for 10 subjects from Segerstolpe et al. while the single-cell reference is taken from

the same dataset. The cell type proportions of healthy subjects are estimated by leave-one-out single cell reference. The subject names are relabeled; the

table shows average root mean square error (RMSD), mean absolute deviation (mAD), and Pearson correlation (R) across all samples and cell types. b The

bulk data is constructed for 18 subjects from Xin et al. while the single cell reference is six healthy subjects from Segerstolpe et al. c Jitter plots of estimated

cell type proportions for Fadista et al. subjects, color-coded by deconvolution method. Of the 89 subjects from Fadista et al., only the 77 that have recorded

HbA1c level are plotted, and T2D subjects are denoted as triangles while non-diabetic subjects are denoted as dots. d HbA1c vs beta cell type proportions

estimated by each of 4 methods. The reported p-values are from single variable regression β cell proportion ~HbA1c. Multivariable regression results are

reported in Supplementary Table 1. Supplementary Figure 7 shows the deconvolution results of Fadista et al. with the inDrop data from Baron et al. as

single-cell reference. The corresponding multivariable regression results are shown in Supplementary Table 2. Source data are provided as a Source Data

file
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First, to systematically benchmark, we applied MuSiC and
three other methods (Nonnegative least squares (NNLS),
CIBERSORT, and BSEQ-sc) to artificial bulk RNA-seq data
constructed by simply summing the scRNA-seq read counts
across cells for each single-cell sequenced subject. In this case,
true cell type proportions are known, which allows the evaluation
of accuracy. More details on artificial bulk construction are
described in the Supplementary Note 1. Figure 2a, Supplementary
Figures 1c and 2b show the estimation results when the artificial
bulk and the single-cell reference data are from the same study,
either both from Segerstolpe et al.8 or both from Xin et al.9.
MuSiC achieves improved accuracy over existing procedures.
Figure 2b and Supplementary Figure 2a show the estimation
results when the artificial bulk and the single-cell reference data
are from different studies. This is a more challenging but more
realistic scenario, since library preparation protocols vary across
labs and bulk deconvolution analyses are often performed using
single-cell reference generated by others. MuSiC still maintains
high accuracy, while other methods perform substantially worse.
Further comparisons show that, unlike existing methods that rely
on pre-selected marker genes, MuSiC gives accurate results when
the cell type composition in the bulk data is substantially different
from that of the single cell reference (Supplementary Figure 2c
and Supplementary Note 2), and when the bulk tissue contains
minority cell types that are missing in the reference (Supple-
mentary Figure 3 and Supplementary Note 3). MuSiC’s ability to
transfer knowledge across data sources is derived from its
consideration of marker gene consistency.

We now turn to the deconvolution of bulk RNA-seq data from
Fadista et al.6. We first used the scRNA-seq data from Segerstolpe
et al. as reference for all methods. MuSiC recovers the expected
~50–60% β cell proportion for the healthy subjects7, whereas
other methods grossly overestimate the proportion of α
cells and underestimate the proportion of β cells. Furthermore,
MuSiC detects a significant association of β cell proportion with
HbA1c level (p-value 0.00126, Fig. 2d). Based on clinical
standard, HbA1c level <6.0% is classified as normal, and >6.5%
is classified as diabetic. After adjusting for age, gender and
body mass index, MuSiC estimates suggest that a 0.5% increase
in HbA1c level, representing the magnitude of increase from
normal to the diabetes cutoff, corresponds to a drop of 3.07% ±
2.49% in β cell proportion (Supplementary Table 1). The scRNA-
seq data from Segerstolpe et al. was generated by the Smart-seq2
protocol. Similar results are obtained when using the InDrop
scRNA-seq data from Baron et al. as reference. MuSiC detects
the significant association of β cell proportion with HbA1c level
with and without adjustment for covariates (Supplementary
Figure 7, Supplementary Table 2). The weight ordered gene list
for pancreatic islet analysis are provided in Supplementary
Table 5.

Application to kidney in mouse and rats. As a second tissue
example, we used the kidney, a complex organ consisting
of several anatomically distinct segments each playing critical
roles in the filtration and reabsorption of electrolytes and
small molecules of the blood. Chronic kidney disease (CKD), the
gradual loss of kidney function, is increasingly recognized as a
major health problem, affecting 10–16% of the global adult
population. We aim to characterize how kidney cell type com-
position changes during CKD. Fibrosis is the histologic hallmark
common to all CKD models, and hence, we analyzed the bulk
RNA-seq data from three mouse models for renal fibrosis: uni-
lateral ureteric obstruction induced by surgical ligation of the
ureter (UUO, Arvaniti et al.10), toxic precipitation in the tubules
induced by high dose folic acid injection (FA, Craciun et al.11),
or genetic alteration by transgenic expression of genetic risk
variant APOL1 in podocytes (APOL1 transgenic mice12). As
reference, we used the mouse kidney-specific scRNA-seq data
from Park et al.1. Details of all datasets are summarized in
Table 2. We systematically benchmarked all methods on artificial
bulk experiments performed using the Park et al. scRNA-seq data,
finding similar trends as those in Fig. 2a, b (Supplementary
Figure 4a, b).

Hierarchical clustering of the cell types in the single cell
reference reveals that, apart from neutrophils and podocytes,
kidney cells fall into two large groups: Immune cell types
(macrophages, fibroblasts, T lymphocytes, B lymphocytes, and
natural killer cells) and kidney-specific cell types (proximal tubule
(PT), distal convolved tubule, loop of Henle, two cell types
forming the collecting ducts, and endothelial cells). Of these, PT
is the dominant cell type in kidney, and the proportion of PT cells
is known to decrease with CKD progression. MuSiC finds this
decrease in all three mouse models (Fig. 3b–d). Other methods
also detect this association for the APOL1 and UUO mouse
models, but showed ambiguous results for the FA model.

Distal convolved tubule cells (DCT) are known to be the
second most numerous cell type in kidney, with an expected
proportion of ∼10–20%1. Yet, CIBERSORT did not detect DCT
in any of the three bulk datasets; BSEQ-sc missed it in two
datasets and grossly over-estimated its proportion in the third
dataset at the cost of a grossly underestimated PT proportion.
This is due to the high similarity between DCT and PT,
observable in Fig. 3a. Through its tree-guided recursive algorithm,
MuSiC first estimates the combined proportion of kidney cell
types versus immune cell types using consistent genes for these
two large groups, and then zooms in and deconvolves the kidney
cell types using genes re-selected for each kidney cell type. This
allows MuSiC to successfully separate PT and DCT cells in all
three bulk datasets, recovering a consistent DCT proportion
between 8–20%, matching expectations. Interestingly, unlike for
PT, the proportion of DCT cells show a consistent increase with

Table 1 Pancreatic islet datasets

Name Journal Year Accesession

#

Tissue

type

Data type Protocol # Samples #

Cells

#

Genes

# Cell

types

Segerstolpe

et al.8
Cell

Metabolism

2016 E-MTAB-

5061

Pancreatic

islet

Single-cell

RNA-seq

Smart-seq2 10 (6 H+ 4

T2D)

2209 25,453 14+ 1

NA

Segerstolpe

et al.8
Cell

Metabolism

2016 E-MTAB-

5060

Pancreatic

islet

Bulk RNA-seq Smart-seq2 7 (3 H+ 4

T2D)

NA 25,453 NA

Xin et al.9 Cell

Metabolism

2016 GSE81608 Islet:

endocrine

Single-cell

RNA-seq

Illumina HiSeq 2500 18 (12 H+ 6

T2D)

1492 39,849 4

Baron et al.4 Cell

Systems

2016 GSE81433 Pancreatic

islet

Single-cell

RNA-seq

Illumina HiSeq 2500

(InDrop)

3 healthy 7729 17,434 14+ 1

NA

Fadista et al.6 PNAS 2014 GSE50244 Pancreatic

islet

Bulk RNA-seq Illumina HiSeq 2000 89 NA 56,638 NA
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disease progression across all three mouse models. This may seem
counterintuitive given that loss of kidney function is expected to
be associated with the loss of kidney cell types. But given the
substantial drop of the dominant PT cell type, the proportion of
DCT cells relative to the whole may increase, even if its absolute
count drops.

Next, we consider immune cells, which are known to play a
central role in the pathogenesis of CKD. MuSiC found the largest
immune sub-type to be macrophage, and all methods detected the
expected increase of macrophage proportion with disease
progression. Apart from this, MuSiC also found fibroblasts, B-
lymphocytes, and T-lymphocytes to increase in proportion with
disease progression, giving a consistent immune signature that is
reproduced across mouse models. These findings are consistent
with clinical and histological observations, indicating tissue
inflammation is a consistent feature of kidney fibrosis. Such
reproducible signatures were not found by other methods, which
show much less agreement across mouse models. The weight
ordered gene list for the three mouse models are provided in
Supplementary Table 6–7.

Finally, to illustrate MuSiC’s cross-species applicability, we
used the mouse kidney scRNA-seq reference from Park et al.1 to
deconvolve the micro-dissected segment aggregated rat RNA-seq
data from Lee et al.13, which contains 105 samples obtained from
14 segments spaced along the renal tubule. Cell type proportions
are estimated with homologous genes between mice and rat. We
mapped samples to their physical locations, and computed
correlations between their cell type proportions (Fig. 3e).
Reassuringly, cell types recovered by MuSiC for each segment
agree with knowledge (Zhai et al.14) about the dominant cell type
at its mapped position, e.g. DCT cells come from the DCT
segment. Correlation between samples is also high within
anatomically distinct segments.

Evaluation of robustness for MuSiC. A good deconvolution
method should be robust to the choice of single-cell reference. We
conducted additional experiments to evaluate the robustness of
MuSiC and other existing methods. First, we considered the case
where cell type proportions in the single cell data are drastically
different from those in the bulk data. Our results indicate that,
under this scenario, MuSiC recovers the true cell type composi-
tion, improving upon the severely biased estimates produced by
other existing approaches (Supplementary Note 2, Supplementary
Figure 2c). One limitation of scRNA-seq is that it may fail to
recover some cell types, in particular, rare cell types may be
missed. We next created considered the setting where the single-
cell reference is incomplete, and found that MuSiC estimation is
still accurate as long as the missing cell type is not the dominant
cell type in bulk tissue (Supplementary Note 3, Supplementary

Figure 3, and Supplementary Table 3). MuSiC is also tolerant of
different scRNA-seq protocols. This has already been shown
through the above analyses, where accurate deconvolution results
were obtained using single cell reference generated using the
Smart-seq2, inDrop, and 10x Chromium protocols. To probe this
further, we directly investigated the impact of using biased values
of relative abundance θkjg in MuSiC’s deconvolution step, and
found that MuSiC estimated cell type proportions remain accu-
rate, still improving upon existing methods, even though
unbiased relative abundance values were provided to the existing
methods as input (Supplementary Note 4, Supplementary Fig-
ure 8c). Finally, we evaluated the impact of dropout in the single
cell reference, by introducing dropout according to Jia et al.15

and varying the dropout rate in the benchmark experiment of
Fig. 2. MuSiC estimation is still accurate even when dropout
rate is around 30% (Supplementary Note 5, Supplementary
Figure 8a–b).

Discussion
Knowledge of cell type composition in disease relevant tissues is
an important step towards the identification of cellular targets in
disease. Although most scRNA-seq data do not reflect true cell
type proportions in intact tissues, they do provide valuable
information on cell type-specific gene expression. Existing cell
type deconvolution methods rely on pre-selected marker genes
and ignore subject-to-subject variation and cross-cell consistency
in gene expression. Through comprehensive benchmark evalua-
tions and analysis of multiple real datasets, we show that both
cross-subject and cross-cell consistency in gene expression need
to be considered in deconvolution. By incorporating both types of
consistency, MuSiC allows for scRNA-seq datasets to serve as
effective references for independent bulk RNA-seq datasets
involving different individuals. Harnessing multi-subject scRNA-
seq reference data, MuSiC reliably estimates cell type proportions
from bulk RNA-seq, therefore enabling the transfer of cell type-
specific gene expression from one dataset to another. As bulk
tissue data are more easily accessible than scRNA-seq, MuSiC
allows the utilization of the vast amounts of disease relevant bulk
tissue RNA-seq data for elucidating cell type contributions in
disease.

Although this paper uses read counts as the measures of
mRNA abundance, there are many other commonly used mea-
sures, such as RPKM and TPM. MuSiC can utilize RPKM if
estimates of cell type specific total RNA abundance can be pro-
vided (e.g., estimated from another data set). However, cell type
proportions cannot be estimated with TPM as the input. Detailed
interconversion between read counts and other gene expression
measures is discussed in Methods.

Table 2 Mouse/rat kidney datasets

Name Journal Year Accesession

#

Tissue

type

Data type Protocol # Samples #

Cells

#

Genes

# Cell

types

Park et al.1 Science 2018 GSE107585 Kidney Single-cell

RNA-seq

10x 7 health, male 43,745 16,273 14+ 2

novel

Beckerman

et al.12
Nature

Medicine

2017 GSE81492 Kidney Bulk RNA-

seq

Illumina HiSeq

2500

10 (6 control+ 4 APOL1) NA 19,033 NA

Lee et al.13 JASN 2015 GSE56743 Kidney

tubule

Bulk RNA-

seq

Illumina HiSeq

2000

118 replicates

(14 segments)

NA 10,903 NA

Craciun

et al.11
JASN 2015 GSE65267 Kidney Bulk RNA-

seq

Illumina HiSeq

2000

18 replicates (6 time

points)

NA 25,219 NA

Arvaniti

et al.10
Scientific

Reports

2016 GSE79443 Kidney Bulk RNA-

seq

Illumina HiSeq

2000

10 replicates (Sham+ 2

time points)

NA 38,683 NA
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Methods
MuSiC model set-up. In this section, we derive the relationship between gene
expression in bulk tissue and cell type-specific gene expression in single cells. This
relationship forms the basis of our deconvolution procedure. For gene g, let Xjg be
the total number of mRNA molecules in subject j of the given tissue, which is
composed of K cell types. Then, Xjg ¼

PK
k¼1

P
c2Ck

j
Xjgc , where Xjgc is the number

of mRNA molecules of gene g in cell c of subject j, and Ck
j is the set of cell index for

cell type k in subject j withmk
j ¼ jCk

j j being the total number of cells in this set. The

relative abundance of gene g in subject j for cell type k is

θkjg ¼

P
c2Ck

j
Xjgc

P
c2Ck

j

PG
g′¼1 Xjg′c

: ð1Þ
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Fig. 3 Cell type composition in kidney of mouse CKD models and rat. a Cluster dendrogram showing similarity between 13 cell types that were confidently

characterized in Park et al. Abbreviations: Neutro: neutrophils, Podo: podocytes, Endo: endothelials, LOH: loop of Henle, DCT: distal convolved tubule, PT:

proximal tubule, CD-PT: collecting duct principal cell, CD-IC: CD intercalated cell, Macro: macrophages, Fib: fibroblasts, NK: natural killers. b–d Average

estimated proportions for 6 cell types in bulk RNA-seq samples taken from three different studies, each study based on a different mouse model for chronic

kidney disease. Results from three different deconvolution methods (MuSiC, BSEQ-sc and CIBERSORT) are shown by different colors. Supplementary

Figure 5a–c show complete estimation results of all 13 cell types. b Bulk samples are from Beckerman et al., who sequenced 6 control and 4 APOL1 mice.

c Bulk data are from Craciun et al.9, where samples are taken before (C) and at 1, 2, 3, 7, 14 days after administering folic acid. Line plot shows cell type

proportion changes over time (days), averaged over 3 replicates at each time point. d Bulk data are from Arvaniti et al.10, where samples are taken from

mice after Sham operation (C), 2 days after UUO operation (D2), and 8 days after UUO operation (D8). The average proportions at each time point are

plotted. e MuSiC estimated cell type proportions of rat renal tubule segments. The estimated cell type proportions (left) and the proportions correlations

between samples (right) are shown as heatmap. Segment names are color coded and aligned according to their physical positions along the renal tubule.

Supplementary Figure 6a–c show NNLS, BSEQ-sc and CIBERSORT results. Segment name abbreviation: S1 S1 proximal tubule, S2 S2 proximal tubule, S3 S3

proximal tubule, SDL short descending limb, LDLOM long descending limb, outer medulla, LDLIM long descending limb, inner medulla, tAL thin ascending

limb, mTAL medullary thick ascending limb, cTAL cortical thick ascending limb, DCT distal convoluted tubule, CNT connecting tubule, CCD cortical

collecting duct, OMCD outer medullary collecting duct, IMCD inner medullar collecting duct. Source data are provided as a Source Data file
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We can show that

Xjg ¼
XK

k¼1

mk
j S

k
j θ

k
jg ¼ mj

XK

k¼1

pkj S
k
j θ

k
jg ; ð2Þ

where, for subject j, Skj ¼

P
c2Ck

j

PG

g′¼1
Xjg′c

mk
j

is the average number of total mRNA

molecules for cells of cell type k (also referred to as “cell size” below), mj ¼
PK

k¼1 m
k
j is

the total number of cells in the bulk tissue, and pkj ¼
mk

j

mj
is the proportion of cells

from cell type k. Let Yjg ¼
XjgPG

g′¼1
Xjg′

be the relative abundance of gene g in the bulk

tissue of subject j. Equation (2) implies

Yjg /
XK

k¼1

pkj S
k
j θ

k
jg : ð3Þ

Thus, across G genes in subject j, we have

Yj1

.

.

.

YjG

2
664

3
775 /

θ1j1 � � � θKj1

.

.

.
.
.

.
.
.
.

θ1jG � � � θKjG

2
6664

3
7775:

S1j

.
.

.

SKj

2
664

3
775:

p1j

.

.

.

pKj

2
664

3
775: ð4Þ

The goal of MuSiC is to estimate pkj using data from scRNA-seq and bulk RNA-seq.

Model assumptions. If scRNA-seq data were available for subject j, we would be
able to obtain the cell size factor Skj (or the relative values of Skj , see below) and
cell type-specific relative abundance θkjg . With bulk RNA-seq data in subject j,
we get the bulk tissue relative abundance Yjg, and, if θ

k
jg and Skj were known, we

would be able to perform a regression to estimate pkj . However, since scRNA-seq is
still costly, most studies cannot afford the sequencing of a large number of indi-
viduals using scRNA-seq. To make deconvolution possible for a broader range of
studies, it is desirable to utilize cell type-specific gene expression from other studies
or from a smaller set of individuals in the same study. This is feasible under the
following three assumptions:

(A1) Individuals with scRNA-seq and bulk RNA-seq are from the same
population, with their cell-type specific relative abundances θkjg in Equation (1)
following the same distribution with mean θkg and varianceσ2gk,

θkjg � F θkg ; σ
2
gk

� �
: ð5Þ

Here, F(·,·) represents a general distributional function, which is not assumed to be
of any particular form. Under this assumption, deconvolution can use available
single-cell data from other subjects or even subjects from other studies as reference.

(A2) The ratio of cell size Sjk across cell types are the same across subjects and
studies:

Skj

Sk′j
¼

Skj′

Sk′j′
for all subjects j; j′ 2 1; ¼ ; Nf g and cell types k; k′ 2 1; ¼ ;Kf g: ð6Þ

This second assumption allows us to replace Skj by a common value Sk across
subjects. We want to emphasize that we assume the ratio, and not the absolute
value, of cell size to be constant across subjects and studies, because to utilize the
common value Sk, we need a constant scalar in Equation (8) as shown below.

In practice, we do not observe the actual cell sizes Skj , since (1) for non-UMI
data we observe read counts, not molecule counts and (2) for each cell we observe
library size, not cell size. Let eXjg and eXjgc denote the read counts for a bulk sample

and for a specific cell c in the sample, respectively. Let eSkj ¼
P

c2Ck
j

PG

g′¼1
eXjg′c

mk
j

denote

the average library size of cell type k for subject j. We define the efficiency of cell
type k for subject j as γkj ¼ eSkj =Skj . We assume

(A3) The ratio of average library size is the same across cell types regardless of
subjects and studies

eSkj
eSk′j

¼
eSkj′
eSk′j′

for all j; j′ 2 1; ¼ ;Nf g and k; k′ 2 1; ¼ ;Kf g: ð7Þ

Combined with assumption (A2), Equation (7) is equivalent to assuming that the
ratio of efficiency between cell types is conserved across subjects and studies

γkj

γk′j
¼

γkj′

γk′j′
for all j; j′ 2 1; ¼ ;Nf g and k; k′ 2 1; ¼ ;Kf g:

This assumption seems plausible, since although efficiency varies across cell types
and samples, its ratio between cell types should be less variable. Assumptions (A2)
and (A3) allow us to use the common value of library size eSk across subjects in the
read counts setting. (A1–A3) enable us to recover the trend of cell type proportion

change across subjects, as shown in Results, but does not enable the recovery of
absolute cell type proportions.

To recover absolute cell type proportions, a stronger version of (A3) is needed,
which we call (A3′): The ratio of average library size is equal to the ratio of average
cell size, for all pairs of cell types and across all subjects and studies

eSkj
eSk′j

¼
Skj

Sk′j
¼

Skj′

Sk′j′
¼
eSkj′
eSk′j′

for all j; j′ 2 1; ¼ ;Nf g and k; k′ 2 1; ¼ ;Kf g:

Given (A2), (A3′) is equivalent to assuming that the efficiency γkj is the same across
cell types, subjects and studies

γkj ¼ γk′j′ for all j; j′ 2 1; ¼ ;Nf g and k; k′ 2 1; ¼ ;Kf g:

This stronger assumption indicates that we can safely interchange the ratio of
library size with the ratio of cell size to estimate cell type proportions. When this
assumption is not satisfied, we can estimate the fraction of RNA molecules from
each cell type, represented by pkj ´ S

k
j , but the estimate of cell type proportion, pkj ,

will be biased.

Cell type proportion estimation. To estimate cell type proportions
pj ¼ fpkj ; k ¼ 1; ¼ ;Kg, we need to consider two constraints: (C1)
Non-negativity: pkj � 0 for all j, k; (C2) Sum-to-one:

PK
k¼1 p

k
j ¼ 1 for all j. Because

the bulk tissue and single-cell relationship derived in Equation (5) is a “propor-
tional to” relationship, to satisfy the (C2) constraint, we need a normalizing con-
stant Cj so that

Yjg ¼ Cj �
XK

k¼1

pjk Sk θ
k
jg þ ϵjg

 !
; ð8Þ

where ϵjg � Nð0; δ2jgÞ represents bulk tissue RNA-seq gene expression measure-
ment noise. When cell type proportions pj ¼ fpkj ; k ¼ 1; ¼ ;Kg and subject-
specific relative abundances θjg ¼ fθkjg ; k ¼ 1; ¼ ;Kg are known, the variance of
bulk tissue gene expression measurement is

Var Yjg jpj; θjg

h i
¼ C2

j δ
2
jg : ð9Þ

Given only cell type proportions, the variance is

Var Yjgjpj

h i
¼ E Var Yjgjpj; θjg

h ih i
þ Var E Yjgjpj; θjg

h ih i

¼ C2
j δ

2
jg þ Var Cj �

PK

k¼1
pjk Sk θ

k
jg

� �

¼ C2
j δ

2
jg þ C2

j �
PK

k¼1
p2jk S

2
k Var θkjg

h i
¼ C2

j δ
2
jg þ C2

j

PK

k¼1
p2jkS

2
k σ

2
gk

¼ 1=wjg

ð10Þ

Because of the heteroscedasticity of gene expression over genes, including the
weight wjg can improve estimates. Since δ2jg is unknown, we will estimate the weight
wjg iteratively, initialized by NNLS. MuSiC is robust and converges to the same
value even with different starting points (Supplementary Note 6, Supplementary
Figure 9).

Given that bulk and single-cell expression data are generated via different
protocols, it may also be necessary to consider gene-specific protocol bias. We
note that the difference between the grand average of the single-cell and bulk
expression profiles does not necessarily reflect bias between protocols, because
the difference between cell type proportions of single-cell and bulk expression
data can also lead to expression differences of marker genes even in the absence
of protocol bias. To address potential protocol bias between bulk and single-cell
expression data, we add a gene- and subject-specific intercept in Equation (8),

that is Yjg ¼ Cj � αjg þ
PK

k¼1 pjk Sk θ
k
jg þ ϵjg

� �
. After adjusting for the protocol

bias, MuSiC can detect significant biological signals across protocols
(Supplementary Figure 7, Supplementary Table 2).

MuSiC is a weighted non-negative least squares regression (W-NNLS),
which does not require pre-selected marker genes. Indeed, the iterative
estimation procedure automatically imposes more weight on informative genes
and less weight on non-informative genes. Because it is a linear regression-
based method, genes showing less cross-cell type variations will have low
leverage, thus having less influence on the regression, whereas the most
influential genes are those with high weight and high leverage. To illustrate this
point, we also performed benchmarking experiments to show that applying
MuSiC using all genes gives more accurate results than applying MuSiC using
pre-selected marker genes, thus demonstrating that MuSiC’s weighting scheme
makes marker gene pre-selection unnecessary (Supplementary Figure 1c,
Supplementary Figure 2). MuSiC can also deal with batch effect with its
weighting scheme. When batch effect is present, the variance of relative
abundance will generally increase for all cell types. This means that the batch
effect with be absorbed in σkg, meaning that MuSiC not only up-weighs cross-
subject consistent genes, but also cross-batch consistent genes. Thus, by down-
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weighting cross-batch variable genes, MuSiC effectively deals with batch
effects.

The weighting scheme in MuSiC enables automatic selection of marker genes
for deconvolution, as supported by our findings from the pancreas and kidney
data (marker genes are highlighted with colors in Supplementary Tables 5–7).
However, we note that some of the top-ranked genes are not necessarily marker
genes. This is because genes in MuSiC are weighed by the combined effect of
cross-subject variation and cross-cell-type variation, which are very different
concepts. The cross-subject variation measures the consistency of genes across
subjects while the cross-cell-type variation measures the cell type specificity of
genes. The top ranked non-markers genes for the analyses in Results tend to be
consistently expressed across subjects, and are usually highly expressed.
Although they are not exclusively expressed in a particular cell type, they are
differentially expressed across cell types, thus offering power to differentiate
different cell types. We believe that MuSiC benefit from these genes and hence
yield more accurate cell type proportions than methods that only use marker
genes in deconvolution.

Recursive tree-guided deconvolution for closely related cell types. Complex
solid tissues often include closely related cell types with similar gene expression
levels. Correlation in gene expression can lead to collinearity, making it difficult
to reliably estimate cell type proportions, especially for less frequent and rare cell
types. Although the collinearity problem can be improved by selecting marker
genes through support vector regression, as is done in CIBERSORT3 and BSEQ-
sc4, these approaches still have limited power to resolve similar cell types. In
MuSiC, we introduce a recursive tree-guided deconvolution procedure based on
a cell type similarity tree, which can be easily obtained through hierarchical
clustering. In stage 1 of this procedure, cell types in the design matrix are divided
into high-level clusters by hierarchical clustering with closely related cell types
clustered together. Proportion for these cell type clusters are estimated using
genes with small intra-cluster variance (cluster-consistent genes) using the above
described W-NNLS. In stage 2, for cell types in each cluster, the cell type pro-
portions are estimated using W-NNLS with genes displaying small intra-cell type
variance, subject to the constraint on the pre-estimated cluster proportions. If
necessary, more than two stages of recursion can be applied, with each stage
separating the cell types within each large cluster into finer clusters, and using
cluster-consistent genes to do W-NNLS subject to the constraint that fixes
higher-level cluster proportions.

To illustrate this recursive tree-guided deconvolution procedure, we start with a
simple case with four cell types and G genes. Let X1, X2, X3, X4 represent cell type-
specific expression in the design matrix, obtained from scRNA-seq, and let Y be the
gene expression vector in the bulk RNA-seq data. The relationship of bulk and
single-cell data can be written as

Y ð1Þ

Y ð2Þ

 !
¼

X
1ð Þ
1 X

1ð Þ
2 X

1ð Þ
3 X

1ð Þ
4

X
2ð Þ
1 X

2ð Þ
2 X

2ð Þ
3 X

2ð Þ
4

 ! p1

p2
p3

p4

0
BBB@

1
CCCAþ

ϵ
ð1Þ

ϵ
ð2Þ

 !
ð11Þ

where the superscripts (1) and (2) indicate two sets of genes. Suppose the four cell
types are grouped into two clusters, (X1, X2) and (X3, X4). The first set of genes are

those showing small intra-cluster variance in gene expression, that is, Xð1Þ
1 � X

ð1Þ
2

and X
ð1Þ
3 � X

ð1Þ
4 , whereas the second set of genes are the remaining genes.

Stage 1: Estimate cluster proportions π1 = p1 + p2 and π2 = p3 + p4,
Y ð1Þ ¼ X

ð1Þ
1 π1 þ X

ð1Þ
3 π2 þ ϵ

ð1Þ: ð12Þ

The cluster proportions, π̂1 and π̂2 , are estimated by W-NNLS using intra-
cluster homogenous genes.
Stage 2: Estimate cell type proportions (p1, p2, p3, p4),

Yð2Þ ¼ X
ð2Þ
1 p1 þ X

ð2Þ
2 p2 þ X

ð2Þ
3 p3 þ X

ð2Þ
4 p4 þ ϵ

ð2Þ: ð13Þ

The cell type proportions are estimated by W-NNLS using the remaining genes
subject to the constraint that

p̂1 þ p̂2 ¼ π̂1; and p̂3 þ p̂4 ¼ π̂2: ð14Þ

Interconversion of different gene expression measures. MuSiC links bulk and
single-cell gene expression by mRNA molecule counts. There are many measures of
mRNA abundance, such as read counts, UMI counts, RPKM and TPM. As
molecule counts are not observed in real studies, we approximate the molecule
counts by read counts and estimate cell type proportions based on assumptions
A1–A3. The interconversion between other gene expression measures and read
count determines if MuSiC can utilize other measures as the input for deconvo-
lution. One step in MuSiC estimation is the use of average library size as a pro-
portional measure of average cell size for a given cell type, which is absent
in normalized measurements of mRNA abundance such as RPKM and TPM.

For RPKM, we would need the average library size for each cell type to be provided,
or the average cell size for each cell type to be obtained from other sources. Cell
type proportions cannot be estimated by MuSiC with TPM information alone.
Below, we derive the relationships of various types of gene expression measures
in detail.

Let Lg denote the length of gene g, and the corresponding RPKMs of bulk and
single-cell data are denoted by bXjg and bXjgc , respectively. For simplicity, we omit the
103 scalar for now. By definition,

bXjg ¼
eXjg=LgPG
g′¼1

eXjg′

; eXjgc ¼
eXjgc=LgPG
g′¼1

eXjg′c

; ð15Þ

where eXjg and eXjgc denote the bulk and single cell read counts, respectively.
Based on the model set-up described earlier, we can show that the relationship

between bulk and single-cell RPKMs is

bXjg /
eXjg

Lg
¼
XK

k¼1

X

c2Ck
j

eXjgc=LgPG
g′¼1

eXjg′c

�
XG

g′¼1

eXjg′c

 !
¼
XK

k¼1

X

c2Ck
j

bXjgc
eSjc ð16Þ

where eSjc is the library size of cell c. Equation (16) can be further approximated by

bXjg /
XK

k¼1

X

c2Ck
j

bXjgc
eSjc �

XK

k¼1

mk
j
bθkjgeSkj ¼ mj

XK

k¼1

pkj
bθkjgeSkj ð17Þ

where bθkjg ¼
P

c2Ck
j

bXjgc=m
k
j is the average RPKM of gene g in subject j for cell type

k.

To utilize multi-subject information, we assume bθkjg follows the same
assumption as (A1), that is, individuals with scRNA-seq and bulk RNA-seq are

from the same population, with their cell-type specific average RPKM bθkjg following
the same distribution with mean bθkg and variance bσ2gk ,

bθkjg � ~F bθkg ;bσ2jg
� �

: ð18Þ

Assumption (A2) states that the ratio of average library size is consistent across
subjects and studies, which justifies the use of eSkj from other studies if these
quantities are not available for the same data set. The linear relation between bulk
RPKM and average cell-type specific single cell RPKM is approximated by formula
(17). Since this is an approximation, MuSiC estimates using RPKM may not be as
accurate as those using read or UMI count. In our test of MuSiC using RPKM
values for the pancreatic islets bulk mixture experiment, we found that it is not as
accurate as MuSiC estimates using read count, but still higher than NNLS, BSEQ-
sc, and Cibersort (Supplementary Figure 8d).

Another widely used normalized mRNA measure is TPM. Let bZjg and bZjgc

denote the bulk and single-cells TPM values, respectively. By definition,

bZjg ¼
eXjg=LgPG

g′¼1
eXjg′=Lg′

, bZjgc ¼
eXjgc=LgPG

g′¼1
eXjg′c=Lg′

. Let Zjg and Zjgc be the gene length

normalized read count in bulk and single cell, that is, Zjg ¼ eXjg=Lg and

Zjgc ¼ eXjgc=Lg . The link between bulk and single-cell TPMs is

bZjg / Zjg ¼
XK

k¼1

X

c2Ck
j

Zjgc ¼
XK

k¼1

X

c2Ck
j

ZjgcPG
g′¼1 Zjg′c

�
XG

g′¼1

Zjg′c

 !
¼
XK

k¼1

X

c2Ck
j

bZjgc
bSjc;

ð19Þ

where bSjc is the summation of normalized read counts in cell c for subject j.
Equation (19) suggests that it is difficult to make assumptions or

approximations to express relative abundance as a function of TPM.

Construction of benchmark datasets and evaluation metrics. To evaluate
MuSiC and compare with other deconvolution methods, we need bulk RNA-seq
data with known cell type proportions. Therefore, we construct artificial bulk tissue
data from a scRNA-seq dataset in which the bulk data is obtained by summing up
gene counts from all cells in the same subject. Relative abundance is calculated by
Equation (1). The true cell type proportions in the artificial bulk data can be
directly obtained from the scRNA-seq data and this allows us to use this artificially
constructed bulk data as a benchmark dataset to evaluate the performance of
different deconvolution methods (Supplementary Note 1). Denote the true cell type
proportions by p and the estimated proportions by bp. Deconvolution methods are
evaluated by the following metrics.

(i) Pearson correlation, R = Corðp;bpÞ;
(ii) Root mean squared deviation, RMSD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
avg p� bpð Þ

2
q

;
(iii) Mean absolute deviation, mAD= avgðjp� bpjÞ.
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Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Code availability. MuSiC is available on Github (https://github.com/xuranw/
MuSiC). Tutorial and examples are provided.

Data availability
This study was a re-analysis of existing data, which is openly available at locations
cited in the Reference section. The detailed data summary are provided in Tables 1
and 2. The source data underlying Figs. 2a–d, 3b–e and Supplementary Figure 1c,
Supplementary Figures 2–8 are provided as a Source Data file. A reporting
summary for this article is available as a Supplementary Information file. All
relevant data is available upon request.
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