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Causal associations between risk factors and
common diseases inferred from GWAS summary
data
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Health risk factors such as body mass index (BMI) and serum cholesterol are associated with

many common diseases. It often remains unclear whether the risk factors are cause or

consequence of disease, or whether the associations are the result of confounding. We

develop and apply a method (called GSMR) that performs a multi-SNP Mendelian rando-

mization analysis using summary-level data from genome-wide association studies to test the

causal associations of BMI, waist-to-hip ratio, serum cholesterols, blood pressures, height,

and years of schooling (EduYears) with common diseases (sample sizes of up to 405,072).

We identify a number of causal associations including a protective effect of LDL-cholesterol

against type-2 diabetes (T2D) that might explain the side effects of statins on T2D, a

protective effect of EduYears against Alzheimer’s disease, and bidirectional associations with

opposite effects (e.g., higher BMI increases the risk of T2D but the effect of T2D on BMI is

negative).
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H
ealth risk factors such as body mass index (BMI), serum
cholesterol, and blood pressure are associated with many
human common diseases1,2, e.g., being overweight is

associated with increased risk to cardiovascular diseases (CVD)3

and type-2 diabetes (T2D)4. These associations are usually
derived from observational studies that cannot distinguish whe-
ther the risk factors are “upstream” causal factors, “downstream”

consequences of the diseases, or confounding factors associated
with both the exposures and outcomes. The randomized
controlled trial (RCT) is considered to be the gold standard
approach to test for causality. For instance, LDL-cholesterol
(LDL-c) was initially found to be associated with coronary artery
disease (CAD) in an observational study5, and the association was
subsequently confirmed to be causal by RCTs6,7. However, RCTs
are time-consuming, expensive, and sometimes impractical or
even unethical8. It is not feasible to design RCTs that can test
many different interventions simultaneously. Genetic methods
are useful to infer causality because genetic variants are present
from birth and therefore unlikely to be confounded with envir-
onmental factors. Mendelian randomization (MR) is an analysis
that uses genetic variants, which are expected to be independent
of confounding factors, as instrumental variables to test for
causality9–11. MR can be used to infer credible causal associations
when RCTs are not feasible or as a strategy to rank order
candidate causal associations to be prioritized for follow-up in
RCTs. MR is becoming increasingly efficient and cost-effective
given the ever-growing data curated from recent genome-wide
association studies (GWAS). The large amount of GWAS
data available in the public domain provide a great opportunity
for methods that are able to make inference about causality
by integrating summary-level GWAS data from different
studies12–16. We have previously shown that the power of an MR
analysis could be greatly improved by exploiting GWAS summary
data from two independent studies with large sample sizes, and
have applied a summary data-based MR (SMR) approach to test
whether the effects of genetic variants on a phenotype are
mediated by gene expression17.

In this study, we extend the SMR approach to a more general
form (generalized SMR or GSMR) by leveraging power from
multiple genetic variants accounting for linkage disequilibrium
(LD) between the variants, and demonstrate by simulation that
GSMR is more powerful than existing summary data-based MR
methods12,13,18. Separation of signals of causality from pleiotropy
(a single locus directly affecting multiple phenotypes, also called

type-II pleiotropy19) and further separation of marginal effect
from conditional effect (the net effect of a risk factor on the
outcome accounting for the effects of other risk factors, e.g., there
is no effect of HDL cholesterol on CAD correcting for the other
serum cholesterol levels20,21) are recognized issues that require
careful interpretation in MR analyses19. We develop a method
(HEIDI-outlier) to detect and eliminate genetic instruments that
have apparent pleiotropic effects on both risk factor and disease,
and another method (multi-trait-based conditional and joint
analysis, or mtCOJO) to estimate the effect of a risk factor on
disease conditioning on other risk factors. All methods developed
in this study only require summary-level data (with LD between
genetic variants from a reference sample with individual-level
data), providing a great flexibility to integrate data from multiple
studies. We apply the methods to publicly available data of very
large sample sizes (n = up to 405,072 for risk factors and 184,305
for diseases) to test the causal associations between health risk
factors such as BMI, serum cholesterol levels and blood pressure
levels and a range of human common diseases. Our study
develops powerful tools to integrate summary data from large
studies to infer causality, and provides important candidates to be
prioritized for further studies in medical research and for drug
discovery.

Results
Overview of the methods. Let y be the liability of a disease on the
logit scale, x be a risk factor in standard deviation (SD) units and
z be the genotype of a SNP (coded as 0, 1, or 2). The MR estimate
of the causal effect of risk factor on disease9 is b̂xy ¼ b̂zy=b̂zx ,
where bzy is the effect of z on y on the logit scale (logarithm of
odds ratio, logOR), bzx is the effect of z on x, and bxy is the effect
of x on y free of confounding from non-genetic factors (note that
bxy can be approximately interpreted as logOR; see below). SMR
is a flexible and powerful MR approach that is able to estimate
and test the significance of bxy using the estimates of bzx and bzy
from independent samples17. If there are multiple independent
(or nearly independent) SNPs associated with x and the effect of x
on y is causal, then all the x-associated SNPs will have an effect on
y through x (Fig. 1a). In this case, bxy at any of the x-associated
SNPs is expected to be identical in the absence of pleio-
tropy13,16,22 as all the SNP effects on y are mediated by x
(Fig. 1b). Therefore, increased statistical power can be achieved
by integrating the estimates of bxy from all the x-associated SNPs
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Fig. 1 Leveraging multiple independent genetic instruments (z) to test for causality. Shown in panel a is a schematic example that if an exposure (x) has an

effect on an outcome (y), any instruments (SNPs) causally associated with x will have an effect on y, and the effect of x on y (bxy) at any of the SNPs is

expected to be identical. This is further illustrated in a toy example in panel b that under a causal model, for the SNPs associated with x, the estimated

effect of z on y (b̂zy) should be linearly proportional to the estimated effect of z on x (b̂zx) and the ratio between the two is an estimate of the mediation

effect of x on y, i.e., b̂xy ¼ b̂zy=b̂zx
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using a generalized least squares (GLS) approach (Methods). The
GSMR method essentially implements SMR analysis for each SNP
instrument individually, and then integrates the bxy estimates of
all the SNP instruments by GLS, accounting for the sampling
variance in both b̂zx and b̂zy for each SNP and the LD among
SNPs. It is important to note that in accordance with one of the
basic assumptions for MR9, only the SNPs that are strongly
associated with the risk factor should be used as the instruments
for MR analyses including GSMR. We demonstrate using simu-
lations (Supplementary Note 1) that if we use independent SNPs
that are associated with the exposure at P< 5×10−8, there is no
inflation in the GSMR test-statistics under the null hypothesis
that bxy = 0 (Supplementary Fig. 1a), that the estimate of bxy by
GSMR is unbiased under the alternative hypothesis that bxy≠0
(Supplementary Table 1), and that bxy approximately equals to
logOR (where OR is the effect of risk factor on disease in
observational study without confounding) (Supplementary
Fig. 2). GSMR accounts for LD if the SNP instruments are not
fully independent. This is demonstrated by the simulation that in
the presence of LD the test-statistic is well calibrated under the
null (Supplementary Fig. 1b) and that the estimate of bxy is
unbiased under the alternative (Supplementary Table 1). In
comparison with the existing methods that use summary data to
make causal inference12,13,16,18, GSMR is more powerful as
demonstrated by simulation (Supplementary Fig. 3) because
GSMR accounts for the sampling variance in both b̂zx and b̂zy
while the other approaches assume that bzx is estimated without
error.

Pleiotropy is an important potential confounding factor that
could bias the estimate and often results in an inflated test-
statistic in a MR analysis9,10,13,19. We propose a method (called
HEIDI-outlier) to detect pleiotropic SNPs at which the estimates
of bxy are significantly different from expected under a causal
model, and remove them from the GSMR analysis (Methods).
The power of detecting a pleiotropic SNP depends on the sample
sizes of the GWAS data sets and the deviation of b̂xy estimated at
the pleiotropic SNP from the causal model. We have demon-
strated by simulation based on a causal model with pleiotropy
that the power of HEIDI-outlier is high especially when the
pleiotropic effects are large (Supplementary Fig. 4a). There are
certainly pleiotropic outliers (e.g., those with very small effects)
not detected by HEIDI-outlier. Nevertheless, these undetected
pleiotropic effects do not seem to bias the GSMR estimate
(Supplementary Fig. 4b), in contrast to a small bias in the
estimate from Egger regression (MR-Egger) which is thought to
be free of confounding from pleiotropy13. Our simulation results
also show that the GSMR estimate of bxy is not significantly
different from zero under a pleiotropic model without causal
effect in the presence or absence of LD (Supplementary Table 2).

We further develop an approximate method (called mtCOJO;
URLs) that only requires summary data to conduct a GWAS
analysis for a phenotype conditional on multiple covariate
phenotypes (Methods). The purpose of developing this method
is to estimate the effect of a risk factor on disease adjusting for
other risk factors (Methods; Supplementary Note 2; Supplemen-
tary Fig. 5), which helps to infer whether the marginal effect of
the risk factor on disease depends on other risk factors, and to
predict the joint effect of multiple risk factors on disease. It is of
note that mtCOJO is free of bias due to shared environmental or
genetic effect between the phenotype and covariate as described
in Aschard et al.23 (Supplementary Fig. 6).

The effects of seven health risk factors on common diseases.
We applied the methods to test for causal associations between
seven health risk factors and common diseases using data from

multiple large studies. The risk factors are BMI, waist-to-hip ratio
adjusted for BMI (WHRadjBMI), HDL cholesterol (HDL-c),
LDL-c, triglycerides (TG), systolic blood pressure (SBP), and
diastolic blood pressure (DBP). We chose these risk factors
because of the availability of summary-level GWAS data from
large samples (n = 108,039–322,154) (Supplementary Table 3).
We accessed data for BMI, WHRadjBMI, HDL-c, LDL-c and TG
from published GWAS24–26, and data for SBP and DBP from the
subgroup of UK Biobank (UKB)27 with genotyped data released
in 2015. We selected SNPs at a genome-wide significance level
(PGWAS< 5 × 10–8) using the clumping algorithm (r2 threshold =
0.05 and window size = 1Mb) implemented in PLINK28 (Meth-
ods). Note that the GSMR method accounts for the remaining LD
not removed by the clumping analysis. There were m = 84, 43,
159, 141, 101, 28, and 29 SNPs for BMI, WHRadjBMI, HDL-c,
LDL-c, TG, SBP and DBP, respectively, after clumping. These
SNP instruments are nearly independent as demonstrated by the
distribution of LD scores computed from the instruments for
each trait (Supplementary Fig. 7). We only included in the ana-
lysis the near-independent SNPs for the ease of directly com-
paring the results from GSMR with those from other methods
that do not account for LD (e.g., MR-Egger). Our simulation
result suggests that the gain of power by including SNPs in LD is
limited (Supplementary Fig. 8). Moreover, although the GSMR
approach accounts for LD, including many SNPs in moderate to
high LD often results in the V matrix being non-invertible
(Methods).

The summary-level GWAS data for the diseases were
computed from two independent community-based studies with
individual-level SNP genotypes, i.e., the Genetic Epidemiology
Research on Adult Health and Aging29 (GERA) (n = 53,991) and
the subgroup of UKB27 (n = 108,039). We included in the analysis
22 common diseases as defined in the GERA data, and added an
additional phenotype related to comorbidity by counting the
number of diseases affecting each individual (i.e., disease count)
as a crude index to measure the general health status of an
individual (Supplementary Table 4). We performed genome-wide
association analyses of the 23 disease phenotypes in GERA and
UKB separately (Methods). We assessed the genetic heterogeneity
of a disease between the two cohorts by a genetic correlation (rg)
analysis using the bivariate LD score regression (LDSC)
approach30. The estimates of rg across all diseases varied from
0.75 to 0.99 with a mean of 0.91 (Supplementary Table 4),
suggesting strong genetic overlaps for the diseases between the
two cohorts. We therefore meta-analyzed the data of the two
cohorts to maximize power using the inverse-variance meta-
analysis approach31. Because OR is free of the ascertainment bias
in a case–control study, the effect size (logOR) of a SNP on
disease in the general population can be approximated by that
from a case–control study assuming that disease in the
case–control study is defined similarly as that in the general
population. Therefore, GSMR can be applied to data with SNP
effects on the risk factor from a population-based study and SNP
effects on the disease from an ascertained case–control study, and
the estimated causative effect of risk factor on disease should be
interpreted as that in the general population. We therefore
included in the analysis summary data for 11 diseases from
published case–control studies (n = 18,759–184,305) (Supplemen-
tary Table 5). The estimated SNP effects and standard errors (SE)
for age-related macular degeneration (AMD) were not available
in the summary data32, which were estimated from z-statistics
using an approximate approach (Supplementary Note 3).

We applied the HEIDI-outlier approach to remove SNPs that
showed pleiotropic effects on both risk factor and disease,
significantly deviated from a causal model (Methods). The LD
correlations between pairwise SNPs were estimated from the
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Atherosclerosis Risk in Communities (ARIC) data33 (n = 7703
unrelated individuals) imputed to 1000 Genomes (1000G)34.
Using the large data sets described above, we identified from
GSMR analyses 45 significant causative associations between risk
factors and diseases (Supplementary Data 1; Fig. 2). We
controlled the family-wise error rate (FWER) at 0.05 by
Bonferroni correction for 231 tests (PGSMR threshold = 2.2 × 10
−4). For method comparison, we have also performed the analyses
with MR-Egger13 and the methods in Pickrell et al.16 (Supple-
mentary Data 2).

Obesity and common diseases. Results from analyses of the
community-based data showed that BMI had risk effects on T2D
(odds ratio, OR = 3.29), hypertensive disease (OR = 1.85), der-
matophytosis (i.e., tinea) (OR = 1.67), peripheral vascular diseases
(PVD) (OR = 1.59), osteoarthritis (OR = 1.50), dyslipidemia (OR
= 1.37), asthma (OR = 1.35), and CVD (OR = 1.30). The risk
effects of BMI on T2D, CVD, and hypertensive disease have been
confirmed by RCT35 (Supplementary Data 1), providing proof-
of-principle validation. The interpretation of OR(BMI→T2D)= 3.29
is that people whose BMI are 1 SD (SD = 3.98 for BMI in Eur-
opean men corresponding to ~12 kg of weight for men of 175 cm
stature; see Supplementary Table 6 for the SD of the risk factors)
above the population mean will have 3.29 times increase in risk to

T2D compared with the population prevalence (~8% in the US).
It is interesting to note that the estimate of bxy at the TCF7L2
locus strongly deviated from those at the other loci (Fig. 3),
suggesting that the TCF7L2 SNP has pleotropic effects on BMI
and T2D. The TCF7L2 SNP was detected as an outlier by the
HEIDI-outlier method and removed from the GSMR analysis. In
addition, the risk effect of BMI on asthma is in line with the result
from a recent MR study (using a weighted genetic allele score as
the instrument) that higher BMI increases the risk of childhood
asthma36. Moreover, we identified a protective effect of BMI
against osteoporosis (OR = 0.68), consistent with the observed
associations in previous studies37,38. The estimated risk effect of
BMI on T2D in the community data (OR = 3.29) was similar to
that in the case–control data (OR = 3.12, Fig. 2b and Supple-
mentary Data 1). We also observed a strong risk effect of BMI on
coronary artery disease (CAD) in the case–control data (OR =

1.70), in line with the risk effect of BMI on CVD (OR = 1.30) in
the community data.

Being overweight is a risk factor for general health outcomes as
indicated by its risk effect on disease count (b̂xy ¼ 0:41) in the
community data. The question is then how bxy for disease count
should be interpreted. We have shown in Supplementary Fig. 9
that the estimate of bxy for disease status (a dichotomous
phenotype to indicate whether an individual is affected by any of
the 22 diseases) was very similar to that for disease count.
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Fig. 2 Putative causal associations between seven modifiable risk factors and common diseases. Shown are the results from GSMR analyses with disease

data a from a meta-analysis of two community-based studies (GERA and UKB) and b from published independent case–control studies. Colors represent

the effect sizes (as measured by odds ratios, ORs) of risk factors on diseases, red for risk effects and blue for protective effects. The significant effects after

correcting for 231 tests (PGSMR< 2.2 × 10−4) are labeled with ORs (P-values). The nominally significant effects (PGSMR< 0.05) are labeled with “*”
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Although disease status and disease count are two distinct
phenotypes and the analysis of disease count is more powerful,
for the ease of interpretation, bxy for disease count can be
approximately interpreted as logOR for disease status. Hence,
b̂xy ¼ 0:41 for disease count is approximately equivalent to OR =

1.51 for disease status, meaning an increase of BMI by 1 SD will
increase the probability of being affected by any of the 22 diseases
by a factor of ~1.5. In addition, we found that the effects of
WHRadjBMI and BMI on disease were largely concordant
(Supplementary Fig. 10a; Supplementary Note 4).

Serum cholesterol levels and common diseases. LDL-c is a
known causative risk factor for CAD as confirmed by RCTs6,7.
We found that LDL-c had a significant risk effect on dyslipidemia
(OR = 3.36) and CVD (OR = 1.22) in the community data, and
CAD (OR = 1.50) in the case–control data (Fig. 2). TG had a
significant risk effect on dyslipidemia (OR = 2.09), hypertensive
disease (OR = 1.24) and CVD (OR = 1.14) in the community data,
and CAD (OR = 1.33) in the case–control data (Fig. 2). The effects
of TG on diseases were largely consistent with those for LDL-c
(Supplementary Fig. 10b), despite the modest phenotypic corre-
lation between the two traits (rp = 0.19 in the ARIC data). Both
LDL and TG had significant risk effects on disease count in the
community data (Fig. 2).

There was another example where the HEIDI-outlier approach
detected strong effects due to pleiotropy. The effect of LDL-c on
Alzheimer’s disease (AD) was highly significant without HEIDI-

outlier filtering (OR = 1.35 and PGSMR= 7.8 × 10−16) (Fig. 4). The
HEIDI-outlier analysis flagged 16 SNPs, 12 of which are located
in the APOE gene region (LD r2 among these SNPs < 0.05) and
all of which had highly significant effects on both LDL-c and AD.
Excluding these SNPs makes a more conservative GSMR test
because if there is a true causal relationship of increased LDL-c
with AD, then the GSMR test should remain significant based on
evidence from other LDL-c associated SNPs. In fact, after
removing the 16 pleiotropic SNPs, the estimated effect of LDL-
c on AD was not significant (OR = 1.03, PGSMR = 0.47). Never-
theless, the multiple pleiotropic signals clustered at the APOE
locus are worth further investigation (Supplementary Fig. 11).

We identified a significant protective effect of LDL-c against
T2D (OR = 0.84, PGSMR = 1.1 × 10−4) in the case–control data,
which might explain the observation from a previous study that
lowering LDL-c using statin therapy is associated with a slightly
increased risk of T2D39. The estimate was not significant in the
community data (likely due to the lack of power) but in a
consistent direction (OR = 0.95, PGSMR = 0.08). Given the strong
genetic correlation between the two T2D data sets (rg = 0.98, SE =

0.062) as estimated by the bivariate LDSC analysis30, we meta-
analyzed the two data sets using the inverse-variance approach,
and performed the GSMR analysis to re-estimate the effect of
LDL-c on T2D using the T2D meta-analysis data. The effect size
was highly significant (OR = 0.88, PGSMR = 3.0 × 10−7).

The consequences of HDL-c on health outcomes are
controversial40. Observational studies suggest that HDL-c is
associated with a reduced risk to CAD41, whereas genetic studies
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show that the effect of HDL-c on CAD is not significant
conditional on LDL-c and TG20,21. We found that HDL-c had
protective effects against T2D (OR = 0.83), hypertensive disease
(OR = 0.88), CVD (OR = 0.88) and disease count (OR = 0.94) in
the community data, and T2D (OR = 0.81) and CAD (OR = 0.84)
in the case–control data. However, none of these effects remained
significant conditioning on the other risk factors, suggesting that
the marginal effects of HDL-c on diseases are dependent of the
other risk factors (see below for details of the results from
conditional analyses). The effect of HDL-c on dyslipidemia is
negative (b̂xy ¼ �0:21 and OR = 0.81), which is obvious because
one of the diagnostic criteria for dyslipidemia is an abnormally
low level of HDL-c. In addition, there was a highly significant risk
effect (OR = 1.36) of HDL-c on age-related macular degeneration
(AMD) in the case–control data, consistent with the result from a
recent MR study42. The associations between lipids and AMD are
controversial and results from different observational studies are
inconsistent43. Our results support the observations that
increased HDL-c is associated with increased risk of AMD43–45.
It should be noted that LDL-c and TG also appeared to be
associated with AMD before HEIDI-outlier filtering but the
effects were not significant after HEIDI-outlier filtering (Supple-
mentary Fig. 12), implying that the observed association between
LDL-c (or TG) and AMD in epidemiological studies43 might be
due to pleiotropy.

Blood pressure and common diseases. We identified significant
risk effects of SBP on hypertensive disease (OR = 4.38),

dyslipidemia (OR = 1.50), CVD (OR = 1.40) and disease count
(OR = 1.43) in the community data, and CAD (OR = 1.73) in the
case–control data. The results for SBP and DBP were highly
concordant (Fig. 2; Supplementary Fig. 10c). The risk effect of
blood pressure on CAD is known to be causal as confirmed by
RCTs46,47. Note that the power of the GSMR analysis for blood
pressure was likely to be limited given the small number of
instruments used (m< 30).

Conditional effects of risk factors on diseases. We have iden-
tified (from the analyses above) 45 significant causal associations
between health risk factors and diseases (Fig. 2). As the risk
factors are not independent, we further sought to estimate the
effect of a risk factor on a disease adjusting for other risk factors.
To do this, we first investigated the causal associations among the
risk factors. We detected 19 significant associations by the GSMR
analysis among the 7 risk factors at a FWER of 0.05 (PGSMR<

1.2 × 10−3) (Supplementary Fig. 13). For example, BMI had a
significant negative effect on HDL-c (b̂xy ¼ �0:29), and positive
effects on TG (b̂xy ¼ 0:28) and DBP (b̂xy ¼ 0:15).

We developed an approach called mtCOJO (multi-trait-based
conditional and joint analysis; URLs) to perform a GWAS
analysis for a trait conditioning on other traits using GWAS
summary data (Methods; Supplementary Fig. 5). We then re-ran
the GSMR analysis using the adjusted GWAS summary data from
the mtCOJO analysis (Methods). The mtCOJO analysis requires
the estimates of bxy of the covariate risk factors on the target risk
factor and disease, rg among the covariate risk factors, SNP-based
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heritability (h2SNP) for the covariate risk factors, and sampling
covariance between SNP effects estimated from potentially
overlapping samples, all of which can be computed from
summary data (Methods; Supplementary Tables 7–10). Given
the similar GSMR results between BMI and WHRadjBMI and
between SBP and DBP (Supplementary Fig. 10), we did not
include DBP and WHRadjBMI in the conditional analysis to
avoid over-correction.

Results from conditional analyses were largely consistent with
those from unconditional analyses (Fig. 5; Supplementary
Table 11), suggesting that most of the marginal effects are
independent of the other risk factors analyzed in this study.
Conditioning on the other risk factors, SBP, LDL-c and BMI were
the three major risk factors for CAD, BMI was still a large risk
factor for T2D and the protective effect of LDL-c on T2D
remained largely unchanged (Supplementary Fig. 14). We show
above that the GSMR analyses identified significant protective
effects of HDL-c against CVD, CAD, T2D and hypertension
(Supplementary Fig. 15). However, all the effects became non-
significant conditioning on the covariates (i.e., BMI, LDL-c, TG,
and SBP), suggesting that the marginal effects of HDL-c on the
diseases are not independent of the covariates due to the
bidirectional causative associations between HDL-c and the other
risk factors as illustrated in Supplementary Fig. 13. It is difficult to
distinguish whether the effects of HDL-c on the diseases are
mediated or driven by the covariates (Supplementary Fig. 16)
because of the complicated association network among risk
factors and diseases (Supplementary Fig. 14). Nevertheless, there
might be an exception, that is, the association between HDL-c
and AMD, because HDL-c is the only risk that showed a
significant effect on AMD (OR = 1.36 with PGSMR = 5.9 × 10−16)

and the effect size remained largely unchanged and highly
significant conditioning on the covariates (conditional OR = 1.36
with PGSMR = 5.1 × 10−13). We conclude that HDL-c is likely to be
a direct risk factor for AMD and the effect size is independent of
the covariate risk factors analyzed in this study.

Given the estimates from conditional GSMR analyses (Fig. 5;
Supplementary Table 11), we could use an approximate approach
to calculate the aggregate effect of multiple risk factors on a
disease, i.e., log ORð Þ ¼ P½xi log ORið Þ�. Here is a hypothetical
example. If all the risk factors increase by 1 SD (i.e., ~4 kg m−2 for
BMI, ~1 mmol L−1 for LDL-c, ~1 mmol L−1 for TG and ~19 mm
Hg for SBP), we would have an increased risk of ~2.3-fold to T2D
(e1.01−0.17), and 4.5-fold to CAD (e0.41+0.47+0.14+0.48).

Effects of other phenotypes on diseases. Having identified a
number of causal associations between seven modifiable risk
factors and common diseases, we then sought to test whether
there were causative associations between other phenotypes and
diseases. We included in the analysis two traits, height48 and
years of schooling49 (EduYears), for which there were a large
number of instruments owing to the large GWAS sample sizes.
We selected 811 and 119 near-independent genome-wide sig-
nificant(GWS) SNPs for height and EduYears, respectively, using
the clumping analysis (Methods). The threshold PGSMR after
Bonferroni correction was 7.6 × 10−4 correcting for 66 tests. The
large number of instruments for height gave us sufficient power
to detect a small effect (Fig. 6; Supplementary Table 12; Supple-
mentary Note 5).

Our results also showed that EduYears had protective effects
against almost all the diseases (Fig. 6 and Supplementary
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Table 12). It showed protective effect against PVD (OR = 0.54),
hypertensive diseases (OR = 0.62), T2D (OR = 0.64), dyslipidemia
(OR = 0.71) and CVD (OR = 0.73) in the community data, and
RA (OR = 0.44), AD (OR = 0.61) and CAD (OR = 0.63) in the
case–control data. It also showed significant protective effect on
disease count (OR = 0.74), suggesting that educational attainment
is protective for general health outcomes. The protective effect of
EduYears against AD is consistent with the observed association
from epidemiological studies50. On the other hand, however,
EduYears showed a strong risk effect on autism spectrum
disorder (OR = 2.30) (Supplementary Note 6), which is not
influenced by SNP outliers (Supplementary Fig. 17) and
consistent with a positive estimate of genetic correlation (rg =
0.28, SE = 0.038) from a bivariate LD score regression analysis30.

Reverse GSMR analysis. It is important to note that the causative
associations identified from the GSMR analyses above are unli-
kely to be explained by reverse causality for two reasons. First, the
individuals used in GWAS for risk factors were independent of
the individuals used in GWAS for diseases (the only exception
was that the blood pressure GWAS data set was part of the
community-based disease GWAS data). Secondly, if the associa-
tions presented above are driven by reverse causality, we would
expect to see strong association signals of the instruments with
the diseases, which is not the case as demonstrated in Supple-
mentary Fig. 18, an idea not too dissimilar to the asymmetry
analysis that has been used to infer causality in a previous
study16,22. Nevertheless, it is interesting to investigate the changes
in risk factors after development of the diseases. To do this, we
selected instruments for diseases from the disease GWAS data
(i.e., GWS SNPs for the disease, hence the instruments used in the
reverse-GSMR analysis were distinct from those used in the
forward-GSMR analysis). The false positive rate of reverse-GSMR
is well calibrated as demonstrated by simulation under the null
that there is no reverse effect (Supplementary Fig. 19). We per-
formed a reverse-GSMR analysis of the risk factors and diseases
for which there was a significant association in the forward-
GSMR analysis above (Supplementary Note 7). We identified

10 significant reverse effects (i.e., the effect of disease on risk
factor) in the community data and 4 in the case–control data at a
FWER of 0.05 (Preverse-GSMR< 1.0 × 10−3) (Supplementary
Table 13). The estimates of reverse effects were very small com-
pared with those of the forward effects. To avoid an under-
powered test, we limited the reverse-GSMR analysis to diseases
with more than 10 instruments. Given the fact that some of the
small estimates of reverse effects were highly significant (Supple-
mentary Table 13), it is unlikely that the large difference in the
estimated effect size between the forward and reverse analyses is
due to the lack of power in the reverse analysis. We further
confirmed by simulation that the GSMR estimate of bxy is
unbiased irrespective of the sample size for the exposure (Sup-
plementary Fig. 20). Interestingly, there were two cases where the
estimated forward and reverse effects were in opposite directions, i.e.,

b̂xyðBMI!T2DÞ ¼ 1:19 and b̂xyðT2D!BMIÞ¼� 0:07 P ¼ 3:6 ´ 10�26ð Þ;
b̂xyðBMI!dyslipidemiaÞ ¼ 0:32 and b̂xyðdyslipidemia!BMIÞ ¼ �0:03

P ¼ 2:0´ 10�10ð Þ, meaning that although BMI is risk factor for
the two diseases, patients who have developed the diseases may
tend to lose weight.

Discussion
We proposed a flexible and powerful approach that performs a
MR analysis with multiple near-independent instruments (i.e.,
GWS SNPs) to test for causal association between a risk factor (or
phenotype) with a disease using summary-level GWAS data from
independent studies. We have implemented the method in an R
package (URLs). The method and software tool are general and
can be applied more broadly to test for causality in other fields
such as behavioral sciences. We applied the method to summary
data from GWAS of very large sample size, and identified a large
number of causal associations between risk factors and common
diseases. As the effect sizes of SNPs on risk factor and disease
used in the GSMR analysis were from independent GWAS data
sets, the effect of risk factor on disease estimated by GSMR was
very unlikely to be confounded by environmental factors. The
results remain unchanged when we removed SNPs in the major
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ratios, ORs) of risk factors on diseases, red for risk effects and blue for protective effects. The significant effects after correcting for multiple testing (PGSMR

< 7.6×10−4) are labeled with ORs (P-values). The nominally significant effects (PGSMR< 0.05) are labeled with “*”
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histocompatibility complex (MHC) region (Supplementary
Fig. 21). The result, however, could be biased if there are SNPs
that have strong pleiotropic effects on both risk factor and dis-
ease. For example, the result for LDL-c and Alzheimer’s disease
could have been biased due to 16 pleiotropic SNPs (Fig. 4). There
are three lines of evidence that our results are not driven by
pleiotropy between risk factor and disease. First, as demonstrated
in the example above, we have used the HEIDI-outlier approach
that removes instruments with strong putative pleiotropic effects
(Figs. 3 and 4) and we have confirmed by simulation that the
GSMR estimate is unbiased in the presence of LD (Supplementary
Table 1; Supplementary Fig. 1). After the HEIDI-outlier filtering,
the instruments selected for risk factors did not show strong
associations with the diseases except for those highly related
diseases and traits (e.g., lipids and dyslipidemia, blood pressures,
and hypertensive disease) (Supplementary Fig. 18). Note that the
test-statistics decreased slightly after filtering SNPs by HEIDI-
outlier (Supplementary Fig. 22), indicating that the result from
the analysis with HEIDI-outlier filtering is more conservative.
Second, the estimates of bxy were highly consistent with the slopes
from Egger regression that are considered to be free of con-
founding from pleiotropy13 (MR-Egger) (Supplementary Fig. 23).
Note that we used GSMR for the main analyses because in
comparison with MR-Egger and inverse-variance weighted
method (MR-IVW, equivalent to MR-Egger without intercept)12,
GSMR gains power by taking the sampling variation of b̂zx and
b̂zy into account as demonstrated in simulations (Supplementary
Fig. 3), and GSMR also has the advantage of accounting for LD
among SNPs not removed by the clumping analysis, a property
that is important especially when the number of instruments is
large. Third, the intercepts from MR-Egger (a significant devia-
tion of the intercept from 0 is evidence for the presence of
pleiotropy) were very small relative to the slopes (Supplementary
Fig. 24), and there was no inflation in the test-statistics (Sup-
plementary Fig. 24b, c), suggesting that the degree of pleiotropy
was negligible if there was any.

We have shown above that our results were not driven by
pleiotropy and reverse causality. In some cases, the relationship
between a risk factor and a disease could be a mixture of multiple
models. For example, we have shown above that BMI had a risk
effect on T2D, which has been confirmed by RCT35, that T2D
had a significant reverse effect on BMI and effect size was
negative, and that there was a SNP (at the TCF7L2 gene locus)
that appeared to have pleiotropic effects on T2D and BMI
(Fig. 3), a mixture model of causality, reverse causality and
pleiotropy. In addition, we demonstrated by the conditional
GSMR analyses that the mediation effects (i.e., the effect size of a
risk factor on disease mediated or driven by other risk factors) are
apparently small for most risk factors except for HDL-c (Fig. 5;
Supplementary Table 11).

Nevertheless, there are several caveats in interpreting the
GSMR results. First, if the exposure is a composite trait that
comprises multiple sub-phenotypes, we could not rule out the
possibility that the effect of exposure on disease is driven by one
of the sub-phenotypes. For instance, we have identified from the
GSMR analysis that EduYears had effects on many diseases
(Fig. 6). A conservative interpretation is that these are the effects
of the genetic component of EduYears (e.g., cognitive ability and
personality) on health outcomes. If we express EduYears = g + e,
where g is the genetic component of EduYears and e is the resi-
dual component that includes environmental influence, then the
SNPs identified from GWAS for EduYears are those associated
with g rather than e, meaning that the GSMR analysis for Edu-
Years was performed on g rather than e and thus did not provide
any evidence whether e also has effects on diseases. Therefore,
strictly speaking, the causative associations identified in this study

are not definitive and need to be confirmed by follow-up ran-
domized controlled trials (RCTs) in the future, if practical. Sec-
ond, the effect of a risk factor on disease can be non-linear (e.g.,
the relationship between BMI and mortality is a U-shaped
curve17, suggesting that both underweight and overweight are risk
factors of death) whereas we used a linear approximation to
estimate the effect because of the limited information that we had
access to from GWAS summary data. Therefore, the bxy estimates
need to be interpreted with caution at extremes. Third, although
we have identified a large number of associations, we would
expect that associations of small effect size would be missed in
our study (e.g., the instrument for SBP, SBP, was based on only 28
SNPs). The power can be improved in the future with GWAS
results based on larger sample sizes. Fourth, our analyses ignored
age-specific and sex-specific effects because of the lack of data
from age- and sex-stratified analyses. Lastly, we have shown in a
previous study that the SMR test-statistic is slightly deflated due
to the use of a Taylor series expansion to compute an approxi-
mated sampling variance based on summary data, especially if the
association between the instrument and risk factor is not strong
enough. We therefore strongly recommend that only SNPs that
are associated with the exposure at a genome-wide significance
level (i.e., 5×10−8) should be used in GSMR analysis, and as a rule
of thumb advise application only when there are 10 or more
independent (e.g., r2< 0.05) genome-wide significant SNPs.

In summary, we present here summary data-based MR analysis
approaches that leverage the large amount of GWAS data from
independent studies to detect the effect of a risk factor on disease
and assess the effect size conditional on the other risk factors. All
the data used in this study were from the public domain, which
demonstrates the power of an integrative analysis of existing data
to make novel discoveries. The causal associations identified in
this study not only provided important candidates to be prior-
itized in RCTs in the future but also provided fundamental
knowledge to understand the biology of the diseases. Our findings
of the effects of risk factors on common diseases could have a
significant influence on medical research, pharmaceutical indus-
try and public health.

Methods
The GSMR method. Mendelian randomization is a method that uses genetic
variants as instrumental variables to test for causative association between an
exposure and an outcome9. Let z be a genetic variant (e.g., SNP), x be the exposure
(e.g., health risk factor) and y be the outcome (e.g., disease). If z is significantly
associated with x, the effect of x on y can be estimated using a two-step least
squares (2SLS) approach51

b̂xy ¼ b̂zy=b̂zx with var b̂xy

� �

¼ varðyÞð1� R2
xyÞ= nvar xð ÞR2

zx

� �

;

where n is the sample size, R2
xy is the variance in y explained by x, and R2

zx is the

variance in x explained z. This analysis requires individual-level data so that the
statistical power could be limited if bxy is small. We have previously proposed an
approach that only requires summary-level data to estimate bxy so that the power
can be greatly improved if bzx and bzy are estimated from independent studies of

large sample size17, i.e., b̂xy ¼ b̂zy=b̂zx with varðb̂xyÞ �
b2zy
b2zx

var b̂zxð Þ
b2zx

þ var b̂zyð Þ
b2zy

� �

. We

called this approach a summary data-based Mendelian randomization (SMR)
analysis17. We have also shown previously that a SMR analysis using a single genetic
variant is unable to distinguish between causality (the effect of SNP on outcome is
mediated by exposure) and pleiotropy (the SNP has distinct effects on exposure and
outcome). Here, we extend the SMR method to use all the top associated SNPs at a
genome-wide significance level for the exposure as instrumental variables to test for
causality. We call this method a generalized SMR (GSMR) analysis. The basic idea
of GSMR is that if x is causal for y, any SNP associated with x will have an effect on

y, and the expected value of b̂xyðiÞ at any SNP i will be identical in the absence of

pleiotropy. Let m be the number of GWS top SNPs associated with x after

clumping. We have b̂xy ¼ b̂xy 1ð Þ; b̂xy 2ð Þ; � � � ; b̂xyðmÞ
n o

with b̂xyðiÞ ¼ b̂zyðiÞ=b̂zxðiÞ , and

b̂xy � N 1bxy;V
� 	

where 1 is an m × 1 vector of ones and V is the variance-

covariance matrix of b̂xy . We have derived previously that the ij-th element of V is
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cov b̂xy ið Þ; b̂xy jð Þ
� �

� r
bzx ið Þbzx jð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var b̂zy ið Þ
� �

var b̂zy jð Þ
� �

r

þ bxy ið Þbxy jð Þ

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var b̂zx ið Þð Þvar b̂zx jð Þð Þ
p

bzx ið Þbzx jð Þ
� var b̂zx ið Þð Þvar b̂zx jð Þð Þ

b2
zx ið Þb

2
zx jð Þ

� �

, where sub-

scripts i and j represent SNP i and j, respectively, r is LD correlation between the
two SNPs (not available in the summary data but can be estimated from a reference
sample with individual-level genotypes). The i-th diagonal element of V is

var b̂xy ið Þ
� �

¼ b2xyðiÞ
var b̂zx ið Þð Þ

b2
zx ið Þ

þ var b̂zy ið Þð Þ
b2
zy ið Þ

� var2 b̂zx ið Þð Þ
b4
zx ið Þ

� �

. Therefore, we can estimate bxy

from all the instruments using the generalized least squares approach as b̂xy ¼
ð1′V�11Þ�1

1′V�1b̂xy with varðb̂xyÞ ¼ ð1′V�11Þ�1 . The statistical significance of b̂xy

can be tested by TGSMR ¼ b̂2xy=varðb̂xyÞ which follows a χ
2 distribution with 1

degree of freedom. Note that because logOR is free of ascertainment bias (i.e., the
bias due to a higher proportion of cases in the sample than in the general popu-
lation), the method can be applied to disease data from case–control studies, and
the estimate of bxy should be interpreted as that of the general population.

Removal of pleiotropic SNPs by HEIDI-outlier. We have shown above that under
a causal model the expected value of b̂xy estimated at any of the SNP instruments is
identical in the absence of pleiotropy. If there are SNPs that have pleiotropic effects
on x and y, b̂xy estimated at these SNPs will deviate from the expected value under a
causal model, and hence will present as outliers. There have been methods to assess
the sensitivity of an MR analysis to detect pleiotropy52. These methods, however,
do not account for possible LD between SNPs nor the sampling errors in the
estimated effect sizes of the instruments on the exposures. We previously proposed
an approach (heterogeneity in dependent instrument, HEIDI) to test for hetero-
geneity in bxy estimated at multiple correlated instruments17. Here, we extend this
approach to detect heterogeneity in bxy estimated at m near-independent instru-
ments (note that the method accounts for remaining LD not removed by clump-
ing). The basic idea is to test where there is a significant difference between bxy
estimated at an instrument i (i.e., bxy(i)) and bxy estimated at a target SNP that
shows a strong association with the exposure. The power of detecting heterogeneity
increases with the strength of association between the target SNP and exposure.
However, we cannot simply choose the top exposure-associated SNP because
sometimes when a SNP has an extremely strong effect on the exposure, it is also
likely to be a pleiotropic outlier (e.g., the top LDL-associated SNP at the APOE
locus shows a very strong pleiotropic effect on Alzheimer’s disease, as shown in
Fig. 4). Therefore, to increase the robustness of the HEIDI-outlier test, we examine
the distribution of b̂xy as a function of −log10(P-value) for b̂zx and choose the SNP
that shows the strongest association with the exposure in the third quintile of the

distribution of b̂xy to avoid choosing an extreme pleiotropic outlier as the target
SNP. If we define di ¼ bxyðiÞ � bxyðtopÞ , we will have

var d̂i

� �

var b̂xy ið Þ � b̂xy topð Þ
� �

¼ var b̂xy ið Þ
� �

þ var b̂xy topð Þ
� �

� 2covðb̂xy ið Þ; b̂xy topð ÞÞ,

where
cov b̂xy ið Þ; b̂xy topð Þ

� �

¼ ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðb̂zy ið ÞÞvarðb̂zy topð ÞÞ
p

bzxðiÞbzxðtopÞ
þ

bxyðiÞbxyðtopÞ
ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var b̂zx ið Þð Þvar b̂zx topð Þð Þ
p

bzx ið Þbzx topð Þ
� var b̂zx ið Þð Þvar b̂zx topð Þð Þ

b2
zx ið Þb

2
zx topð Þ

� � , and r is the LD

correlation between the two SNPs (estimated from a reference sample with
individual-level genotypes). We can test the deviation of each SNP from the causal

model using the χ2-statistic T ¼ d̂2i =varðd̂iÞ, and remove the SNPs with P-values <
0.01. We call this approach HEIDI-outlier. We choose a relatively less stringent P-
value threshold for the HEIDI-outlier analysis because even if a causal signal is
detected as pleiotropy and eliminated from the analysis, it will only affect the power
rather than the false positive rate or biasedness of the GSMR analysis. To retain as
much power as possible to detect heterogeneity, we use a modest threshold 0.01.
This means that even if there is no pleiotropic outlier, we will remove only ~1% of
the instruments by chance, which is very unlikely to result in a substantial decrease
in power of the subsequent GSMR analysis.

Multi-trait conditional GWAS analysis using summary data. To test whether
the effect of a risk factor (x0) on a disease (y) depends on other risk factors (x = {x1,
x2,…, xi}), we usually perform a joint analysis based on the model below

y ¼ x0b0 þ xbxy þ e;

where b0 is the effect of x0 on y, bxy ¼ fbxiyg is a t-length vector with bxiy being the
effect of a covariate xi on y, and e is the residual. Such an analysis is equivalent to a
two-step analysis with the first step to adjust both x0 and y by x and the second step
to estimate the effect of adjusted x0 on adjusted y. We therefore can estimate the
effect size of x0 on y accounting for x by a GSMR analysis using SNP effects on x0
and y conditioning on x.

The conditional GWAS analysis usually requires individual-level genotype and
phenotype data, which are not always available. Here, we propose a method to
perform an approximate multi-trait-based conditional GWAS analysis that only
requires summary data. Since GWAS summary data for risk factors and disease are
often from multiple independent studies, the analysis has to be performed

conditioning on the genetic values of the covariate risk factors (denoted by
gx ¼ fgx1 ; gx2 ; ¼ ; gxt g), where the genetic value is defined as the aggregated effect of
all SNPs on a phenotype accounting for LD. Following the method that uses GWAS
summary data to perform a multi-SNP-based conditional and joint analysis (GCTA-
COJO)53, the SNP effect on the disease accounting for gx can be expressed as

b̂zyjb̂xy ¼ b̂zy � b̂
t

zx b̂xy;

where b̂zy is the SNP effect on the disease on the logit scale (i.e., logOR), b̂xy is a t-
length vector with the i-th element b̂xiy being the effect of gxi on the disease when
all the covariates are fitted jointly, and b̂zx is a t-length vector of SNP effects on x.
For the ease of derivation, we assume each covariate has been standardized with
mean 0 and variance 1 (note that the method can be applied to data on the original
scale without standardization). We know from previous studies53 that the joint
effects of gx on y (bxy) can be transformed from the marginal effects (βxy), i.e.,

bxy ¼ D�1
2R�1

x D
1
2βxy;

where Rx ¼ frgðxi ;xjÞg is a t×t matrix with rgðxi ;xjÞ being the genetic correlation
between covariates i and j, D is a t×t diagonal matrix with the i-th diagonal element
h2SNPðxiÞ being the SNP-based heritability for the i-th covariate. We can estimate
h2SNPðxjÞ and rgðxi ;xjÞ from GWAS summary data using the LDSC approaches30,54,
and estimate βxiy by GSMR.

The sampling variance of b̂zy jb̂xy is approximately

var b̂zy jb̂xy
� �

¼ var b̂zy

� �

þ b̂
t

xyVzxb̂xy � 2b̂
t

xycov b̂zy; b̂zx

� �

;

where Vzx ¼ varðb̂zxÞ, and cov b̂zy; b̂zx

� �

is a t-length vector with the i-th element

cov b̂zy; b̂zxi

� �

being the covariance between b̂zy and b̂zxi . We know from our

previous study17 that cov b̂zy; b̂zxi

� �

¼ ρxiyrpðxi ;yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var b̂zxi

� �

varðb̂zyÞ
r

where ρxiy is

the proportion of sample overlap between xi and y and rpðxi ;yÞ is the phenotypic
correlation between xi and y. In special cases, if y and x are observed in the same

sample, var b̂zyjb̂xy
� �

¼ var b̂zy

� �

� b̂
t

xyVzxb̂xy , and if there is no sample overlap

between y and x, var b̂zyjb̂xy
� �

¼ var b̂zy

� �

þ b̂
t

xyVzxb̂xy . More generally, if there is a

sample overlap between y and x, ρxiyrpðxi ;yÞ can be approximated by the intercept of

a bivariate LDSC analysis between xi and y (ref. 30). Vzx is the sampling variance-

covariance of b̂zx with the ij-th element

cov b̂zx ið Þ; b̂zx jð Þ
� �

¼ ρxixj rpðxi ;xjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var b̂zxi

� �

varðb̂zxj Þ
r

, where ρxixj rpðxi ;xjÞ can also be

approximated by the intercept of a bivariate LDSC analysis between xi and xj. The
multi-trait-based conditional GWAS test can be performed using the test-statistic

Tcond ¼ b̂zyjb̂xy
� �2

=var b̂zy jb̂xy
� �

. We call this approach mtCOJO (multi-trait-

based conditional and joint analysis), and have demonstrated the accuracy of the
approximation by simulation (Supplementary Fig. 5). Note that since the estimate
of βxiy is free of confounding from shared environmental or genetic effects that are

not correlated with the valid instruments, our estimate of conditional effect does
not suffer from the bias described in Aschard et al.23, as confirmed by simulation
(Supplementary Fig. 6). We have implemented mtCOJO in the GCTA software
package (URLs).

GWAS data for risk factors and diseases. We used nine risk factors as exposures
for the GSMR analysis. These include seven health risk factors, i.e., body mass
index (BMI), waist-to-hip ratio adjusted by BMI (WHRadjBMI), HDL cholesterol
(HDL-c), LDL-cholesterol (LDL-c), triglyceride (TG), systolic blood pressure (SBP)
and diastolic blood pressure (DBP), and two additional phenotypes (height and
educational attainment) that had a large number of instruments. We conducted
GWAS analyses for SBP and DBP using data from the UK Biobank27 (UKB) (see
below for details of the UKB data). GWAS summary data for the other traits were

from published studies (Supplementary Table 3). We re-calculated b̂zx from z-

statistics (zzx) using the method described in Zhu et al.17 so that b̂zx could be

interpreted in SD units (i.e., b̂zx ¼ zzx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð1�pÞðnþz2zx Þ
p with p being the allele frequency

and n being the sample size). We then applied the clumping algorithm in PLINK28

to select near-independent GWS SNPs for each trait (r2 threshold = 0.05, window
size = 1Mb and P-value threshold = 5 × 10−8) using the 1000G-imputed ARIC
data33 (n = 7,703 unrelated individuals) as the reference for LD estimation. As the
statistical power of the GSMR analysis increases as the number of instruments, we
performed the clumping analysis repeatedly for the SNPs in common between each
pair of risk factor and disease data sets to maximize the number of instruments.

GWAS data for 22 common diseases were from two community-based studies,
i.e., Genetic Epidemiology Research on Adult Health and Aging29 (GERA) and
UKB pilot phase27. There were 60,586 individuals of European ancestry in the
GERA data. We cleaned the GERA genotype data using the standard quality
control (QC) filters (excluding SNPs with missing rate ≥0.02, Hardy–Weinberg
equilibrium test P-value ≤ 1 × 10−6 or minor allele count< 1, and removing
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individuals with missing rate ≥0.02), and imputed the genotype data to the 1000G
using IMPUTE255. We used GCTA56 to estimate the genetic relationship matrix
(GRM) of the individuals using a subset of the imputed SNPs (minor allele
frequency, MAF ≥0.01 and imputation INFO score ≥0.3 and in common with
those in the HapMap phase 3, HM3), and computed the first 20 principal
components (PCs) from the GRM. We removed one of each pair of individuals
with estimated genetic relatedness ≥0.05 and retained 53,991 unrelated individuals
for analysis. Individual-level ICD-9 codes were not available in dbGaP but had
been classified into 22 common diseases (Supplementary Table 4). The disease
status was coded as 0 (unaffected) and 1 (affected). We added an additional trait
“disease count” (a count of the number of diseases affecting each individual) as a
crude measure of general health status of each individual. We then performed a
genome-wide association analysis for each of the 23 phenotypes with age, gender,
and the first 20 PCs fitted as covariates. The MHC region is often removed from
the analysis in previous studies, mainly because of the complicated LD structure in
this region. In this study, we did not remove this region because we use a set of
near-independent SNPs as instruments after LD clumping.

Genotype data from UKB pilot phase had been cleaned and imputed to a
combined reference panel of 1000G and UK10K (see UKB documentation for
details about QC and imputation). We included in the analysis only the individuals
of European ancestry. Similarly as above, we computed the GRM and the first 20
PCs based on the HM3 SNPs with MAF ≥0.01 and imputation INFO score ≥0.3,
and retained 108,039 unrelated individuals (GRM threshold of 0.05) for analysis.
Individual-level ICD-10 codes were available in the UKB data. To match the
diseases in GERA, we classified the phenotypes into 22 common diseases by
projecting the ICD-10 codes to the classifications of ICD-9 codes in GERA taking
into account self-reported disease status (Supplementary Table 4). We also added
the trait “disease count”. We then conducted genome-wide association analyses for
the 23 phenotypes using the same approach as above.

URLs. GSMR R package: http://cnsgenomics.com/software/gsmr/
mtCOJO: http://cnsgenomics.com/software/gcta/#mtCOJO
SMR: http://cnsgenomics.com/software/smr
PLINK: http://pngu.mgh.harvard.edu/~purcell/plink/
PLINK2: https://www.cog-genomics.org/plink2
GCTA: http://cnsgenomics.com/software/gcta
LDSC: https://github.com/bulik/ldsc

Data availability. The summary-level GWAS data from the meta-analyses of
GERA and UKB are available at http://cnsgenomics.com/data.html. All the other
data sets used in this study are from the public domain. The software tools are
available at the URLs above.
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