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Abstract

The vitamin B, family of cofactors known as cobamides are essential for a variety of microbial metabolisms. We used
comparative genomics of 11,000 bacterial species to analyze the extent and distribution of cobamide production and use
across bacteria. We find that 86% of bacteria in this data set have at least one of 15 cobamide-dependent enzyme families,
but only 37% are predicted to synthesize cobamides de novo. The distribution of cobamide biosynthesis and use vary at the
phylum level. While 57% of Actinobacteria are predicted to biosynthesize cobamides, only 0.6% of Bacteroidetes have the
complete pathway, yet 96% of species in this phylum have cobamide-dependent enzymes. The form of cobamide produced
by the bacteria could be predicted for 58% of cobamide-producing species, based on the presence of signature lower ligand
biosynthesis and attachment genes. Our predictions also revealed that 17% of bacteria have partial biosynthetic pathways,
yet have the potential to salvage cobamide precursors. Bacteria with a partial cobamide biosynthesis pathway include those
in a newly defined, experimentally verified category of bacteria lacking the first step in the biosynthesis pathway. These
predictions highlight the importance of cobamide and cobamide precursor salvaging as examples of nutritional dependencies
in bacteria.

Introduction understanding which organisms require nutrients and
which can produce them, we can predict specific meta-
bolic interactions between members of a microbial com-

munity [2]. With the development of next-generation

Microorganisms almost universally reside in complex
communities where individual members interact with each

other through physical and chemical networks. A major
type of chemical interaction is nutrient salvaging, in
which microbes that lack the ability to synthesize parti-
cular required nutrients (termed auxotrophs) obtain these
nutrients from other organisms in their community [1]. By
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sequencing, the genome sequences of tens of thousands of
bacteria from diverse environments are now available,
leading to the possibility of predicting community inter-
actions based on the genomes of individual members.
However, the power to predict the metabolism of an
organism by analyzing its genome remains limited.

The critical roles of cobamides (the vitamin B, family
of enzyme cofactors) in the metabolism of humans and
diverse microbes have long been appreciated. Only
recently, however, has cobamide-dependent metabolism
been recognized as a potential mediator of microbial
interactions [1, 3, 4]. Cobamides are used in a variety of
enzymes in prokaryotes, including those involved in
central metabolic processes such as carbon metabolism
and the biosynthesis of methionine and deoxynucleotides
[5] (Fig. 1). Some of the functions carried out by
cobamide-dependent pathways, such as acetogenesis via
the Wood-Ljungdahl pathway in anaerobic environments,
can be vital in shaping microbial communities [6].
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Fig. 1 Functions carried out by
cobamide-dependent processes.
Reactions carried out by
cobamide-dependent enzymes
are shown on the left side of the
arrows and cobamide-
independent alternative
processes, if known, on the
right. Annotations or query
genes used for searching for '
each function are listed in
Supplementary Table 4.
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Cobamides are also used for environmentally and
industrially important processes such as reductive deha-
logenation and natural product synthesis [7, 8].

De novo cobamide biosynthesis involves approxi-
mately 30 steps [9], and the pathway can be divided into
several segments (Fig. 2). The first segment, tetrapyrrole
precursor biosynthesis, contains the first five steps of the
pathway, most of which are also common to the bio-
synthesis of heme, chlorophyll, and other tetrapyrroles.
The next segment, corrin ring biosynthesis, is divided
into oxygen-sensitive (anaerobic) and oxygen-dependent
(aerobic) routes, depending on the organism. These
two alternative pathways then converge at a late inter-
mediate, which is further modified to form the cobamide
(Fig. 2, nucleotide loop assembly). The latter portion
of the pathway involves adenosylation of the central
cobalt ion followed by the synthesis and attachment of
the aminopropanol linker and lower axial ligand (Fig. 2).
Investigation of cobamide salvaging must account for
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structural diversity in the lower ligand (Fig. 2b), as
only a subset of cobamide cofactors can support growth
of any individual organism [10-16]. Recent work has
identified many of the genetic determinants for the
biosynthesis of the benzimidazole class of lower ligands
[17-21] and attachment of phenolic lower ligands [22, 23]
(Fig. 2).

Previous analyses of bacterial genomes have found
that less than half to three fourths of prokaryotes that
require cobamides are predicted to make them [24, 25],
suggesting that cobamide salvaging may be widespread
in microbial communities. Analyses of cobamide bio-
synthesis in the human gut [10, 26] and in the phylum
Cyanobacteria [11] further reinforce that cobamide-
producing and cobamide-dependent bacteria coexist in
nature. These studies provide valuable insights into the
extent of cobamide use and biosynthesis in bacteria, but
are limited in the diversity and number of organisms
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Fig. 2 Cobamide biosynthesis and structure. a The cobamide bio-
synthesis pathway is shown with each enzymatic step indicated by a
white box labeled with the gene names and functional annotation.
Subsections of the pathway and salvaging and remodeling pathways
are bracketed or boxed with labels in bold. Orthologous enzymes that
carry out similar reactions in aerobic and anaerobic corrin ring

studied and have limited prediction of cobamide
structure.

Here, we have analyzed the genomes of over 11,000
bacterial species and generated predictions of cobamide
biosynthesis, dependence, and structure. We predict that
86% of sequenced bacteria are capable of using cobamides,
yet only 37% produce cobamides de novo. We were able to
predict cobamide structure for 58% of cobamide producers.
Additionally, our predictions revealed that 17% of bacteria
can salvage cobamide precursors, of which we have defined

biosynthesis are indicated by dashed lines. b Structure of cobalamin.
The upper ligand R can be a 5'-deoxyadenosyl or methyl group.
Classes of possible lower ligand structures are also shown. Benzimi-
dazoles: Ry, R, = H, OH, CH3, OCHj3. Purines: R; = H, CH3, NH,; R,
=H, NH,, OH, O. Phenolics: R =H, CHj.

a new category of bacteria that require early tetrapyrrole
precursors to produce cobamides.

Materials and methods
Data set download and filtering

The names, unique identifiers, and metadata for 44,802
publicly available bacterial genomes on the Joint Genome

SPRINGER NATURE
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Institute’s Integrated Microbial Genomes with Expert
Review database (JGI/IMG/M ER, https://img.jgi.doe.gov/
cgi-bin/mer/main.cgi) [27] classified as “finished” (accessed
11 January 2017) or “permanent draft” (accessed 23 Feb-
ruary 2017) were downloaded (Supplementary Table 1,
Sheet 1). To assess genome completeness, we searched
for 55 single copy gene annotations [28, 29] using
the “function profile: genomes vs functions” tool in each
genome (Supplementary Table 1, Sheet 4). Completeness
was measured first based on the unique number of single
copy gene annotation hits (55/55 was best) and, second, by
the average copy number of the annotations (values closest
to 1 were considered most complete) (Supplementary
Table 3). We removed 2776 genomes with fewer than
45 out of 55 unique single copy genes (Supplementary
Fig. 1). To filter the remaining genomes to one genome per
species, we used name-based matching to create species
categories, in which each unique binomial name was con-
sidered a single species. The genome with the highest
unique single copy gene number and that had an average
single copy gene number closest to 1 was chosen to
represent a species. If both scores were identical the
representative genome was chosen at random. For strains
with genus assignments, but without species name assign-
ments, we considered each genome to be a species. The list
of species was manually curated for species duplicates
caused by data entry errors (Supplementary Table 2).

Detection of cobamide biosynthesis and
dependence genes in genomes

Annotations from Enzyme Commission (EC) numbers
(http://www .sbcs.qmul.ac.uk/iubmb/enzyme/), Pfam,
TIGRFAM, Clusters of Orthologous Groups (COG), and
IMG Terms [27, 30-33] for cobamide biosynthesis,
cobamide-dependent enzymes, and cobamide-independent
alternative annotations were chosen. These included anno-
tations used by Degnan et al. [10], but in other cases
alternative annotations were chosen to improve specificity
of the identified genes (Supplementary Table 4). For
example, EC: 4.2.1.30 for glycerol dehydratase identifies
both cobamide-dependent and -independent isozymes,
and hence Pfam annotations specific to the cobamide-
dependent version were used instead. These genes were
identified in each genome using the “function profile: gen-
omes vs functions” tool (Jan-May 2017) (Supplementary
Table 1, 2 sheet 2).

For genes without functional annotations in the IMG/
M ER database, we chose sequences that were genetically
or biochemically characterized [34-37] to use as the query
genes in one-way BLASTP [38] against the filtered genomes
using the IMG/M ER “gene profile: genomes vs genes” tool,
accessed Jan—-May 2017 (Supplementary Table 4).

SPRINGER NATURE

Output files for the cobamide genes were combined into
a master file in Microsoft Excel (Supplementary Table 1, 2
sheet 2). This master file was used as input for custom
Python 2.7 code that interpreted the presence or absence of
genes as predicted phenotypes. We used Microsoft Excel
and Python for further analysis. Genomes were scored for
the presence or absence of cobamide-dependent enzymes
and alternatives (Supplementary Table 5) based on the
annotations in Supplementary Table 4. We then created
criteria for seven cobamide biosynthesis phenotypes based
on the presence of certain sets of cobamide biosynthesis
genes (Supplementary Table 7): very likely cobamide pro-
ducer, likely cobamide producer, possible cobamide pro-
ducer, tetrapyrrole precursor salvager, cobinamide (Cbi)
salvager, likely non-producer, and very likely non-producer,
and classified genomes accordingly (Supplementary
Table 5). These are grouped into complete biosynthesis
(very likely, likely, and possible cobamide producer), par-
tial biosynthesis (tetrapyrrole precursor salvager and Cbi
salvager), and no biosynthesis (likely non-producer and
very likely non-producer).

During cobamide biosynthesis, the lower ligand base is
activated by CobT to allow attachment to the nucleotide
loop. For phenolic lower ligands, this reaction is carried out
by ArsA and ArsB, subfamilies of cobT homologs found in
tandem [22, 39]. To distinguish putative arsAB homologs
from other cobT homologs that are not known to produce
phenolyl cobamides, IMG/M ER entries for all genes that
were annotated as cobT homologs were downloaded. Tan-
dem cobT homologs were defined as those with sequential
IMG gene IDs. This list of tandem cobT genes was then
filtered by size to eliminate genes encoding less than 300
or more than 800 amino acid (AA) residues, indicating
annotation errors (CobT is approximately 350 AA residues)
(Supplementary Table 9). The remaining tandem cobT
homologs were assigned as putative arsAB homologs.

To identify the anaerobic benzimidazole biosynthesis
genes bzaABCDEF, four new hidden Markov model pro-
files (HMMs) were created and two preexisting ones
(TIGR04386 and TIGR04385) were refined. Generally, the
process for generating the new HMMs involved performing
a Position-Specific Iterated (PSI) BLAST search using
previously classified instances of the Bza proteins aligned in
Jalview [38, 40]. Due to their similarity, BzaA, BzaB, and
BzaF were examined together, as were BzaD and BzaE. To
help classify these sequences, Training Set Builder (TSB)
was used [41]. All six HMMs have not been assigned
TIGRFAM accessions at the time of publication, but will be
included in the next TIGRFAM release, and are included
as Supplementary HMM Files. Details for each protein are
listed in the Supplementary Materials and Methods. Protein
sequences for 10,591 of the filtered genomes were queried
for each bza HMM using hmm3search (HMMER3.1)[96].
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Hits are only reported above the trusted cutoff defined
for each HMM (Supplementary Table 8). A hit for bzaA
and bzaB or bzaF indicated that the genome had the
potential to produce benzimidazole lower ligands. The
specific lower ligand was predicted based on the bza
genes present [19].

We used BLASTP on IMG/M ER to search for tetra-
pyrrole precursor biosynthesis genes that appeared to be
absent in the 201 species identified as tetrapyrrole precursor
salvagers. Query sequences used were the following: Rho-
dobacter sphaeroides HemA (GenPept C49845); Clos-
tridium saccharobutylicum DSM 13864 HemA, HemlL,
HemB, HemC, and HemD (GenBank: AGX44136.1,
AGX44131.1, AGX44132.1, AGX44134.1, AGX4133.4,
respectively). We additionally searched for the Bacillus
subtilis HemD, which only has the Urolll synthase activity
(UniProtKB P21248.2). We visually inspected the open
reading frames near any BLASTP hits in the IMG/M ER
genome browser. After this analysis, 180 species remained
(Supplementary Table 10). Genomes were classified as a
particular type of tetrapyrrole precursor salvager only if
they were missing all genes upstream of a precursor.

Strains and growth conditions

Clostridium scindens ATCC 35704, Clostridium spor-
ogenes ATCC 15579, and Treponema primitia ZAS-2
were grown anaerobically with and without added 5-
aminolevulinic acid (1 mM for C. sporogenes and T. pri-
mitia and 0.5 mM for C. scindens).

Desulfotomaculum reducens MI-1, Listeria mono-
cytogenes, Blautia hydrogenotrophica DSM 10507,
Clostridium kluyveri DSM 555, and Clostridium phyto-
fermentans ISDg were grown anaerobically. Details of the
growth conditions are listed in the Supplementary Materials
and Methods.

Corrinoid extraction and analysis

Corrinoid extractions were performed as previously
described [16]. For corrinoids extracted from 1L cultures
of C. sporogenes, C. scindens, and T. primitia, high-
performance liquid chromatography (HPLC) analysis was
performed with an Agilent Series 1200 system (Agilent
Technologies, Santa Clara, CA) equipped with a diode array
detector with detection wavelengths set at 362 and 525 nm.
Samples were injected onto an Agilent Eclipse XDB C18
column (5 um, 4.6 x 150 mm) at 35 °C, with 0.5 mL/min
flow rate. Compounds in the samples were separated using
acidified water and methanol (0.1% formic acid) with a
linear gradient of 18 to 30% acidified methanol over 20 min.

For all other bacteria excluding B. hydrogenotrophica,
extracted corrinoids were analyzed as above, except with a

1.5 mL/min flow rate and a 40 °C column. Corrinoids were
eluted with the following method: 2% acidified (0.1% for-
mic acid) methanol for 2 min, 2 to 10% acidified methanol
in 0.1 min, and 10 to 40% acidified methanol over 9 min.

For B. hydrogenotrophica, corrinoids were analyzed as
above with the following changes. Samples were injected
onto an Agilent Zorbax SB-Aq column (5 ym, 4.6 x 150
mm) with 1 mL/min flow rate at 30 °C. The samples were
separated with a gradient of 25 to 34% acidified (0.1%
formic acid) methanol over 11 min, followed by 34 to 50%
over 2 min, and 50 to 75% over 9 min.

Results

Most bacteria are predicted to have at least one
cobamide-dependent enzyme

We surveyed publicly available bacterial genomes for
51 functions involved in cobamide biosynthesis, modifica-
tion, and salvage, as well as 15 cobamide-dependent
enzyme families and five cobamide-independent alter-
native enzymes and pathways. To make generalizations
about the abundances of bacteria with cobamide-dependent
metabolisms and biosynthesis, the data set was reduced
to representative strains for 11,436 species from approxi-
mately 45,000 available genomes. Our results indicate
that the capability to use cobamides is widespread in
bacteria. Eighty-six percent of species in the filtered data
set have at least one of the 15 cobamide-dependent
enzyme families shown in Fig. 1 and Supplementary
Table 4, and 88% of these species have more than one
family (Fig. 3a). This is consistent with previous analyses of
smaller data sets [10, 24, 25]. The four major phyla in the
data set have different distributions of the number of
cobamide-dependent enzyme families per genome, with
the Proteobacteria and Bacteroidetes having higher mean
numbers of enzyme families than the Firmicutes and Acti-
nobacteria (Fig. 3a). The most abundant cobamide-
dependent enzymes are involved in core metabolic
processes such as methionine synthesis and nucleotide
metabolism, whereas processes such as reductive dehalo-
genation and mercury methylation are less abundant
(Fig. 3b, Supplementary Table 5). We also observe phylum-
level differences in the relative abundance of cobamide-
dependent enzyme families (Fig. 3b), most notably the
nearly complete absence of epoxyqueuosine reductase in
Actinobacteria. Nonetheless, the cobamide-dependent
methionine synthase (MetH) and, to a lesser extent
methylmalonyl-CoA mutase (MCM) and the cobamide-
dependent ribonucleotide reductase (RNR), are the most
abundant cobamide-dependent enzyme families in all of
the four phyla (Fig. 3b).

SPRINGER NATURE
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For some cobamide-dependent processes, cobamide-
independent alternative enzymes or pathways also exist
(Fig. 1, right side of arrows). For example, we find that the
occurrence of MetH is more common than the cobamide-
independent methionine synthase, MetE, but that most
bacteria have both enzymes (Fig. 3c). In contrast,
cobamide-independent RNRs are found more commonly
than the cobamide-dependent versions, and 30% of gen-
omes have both cobamide-dependent and -independent
RNRs (Fig. 3c). The cobamide-dependent propionate
(which uses MCM), ethanolamine, and glycerol/propane-
diol metabolisms appear more abundant than the cobamide-
independent alternatives (Fig. 3c). However, the abundance
of the cobamide-dependent propionate metabolism is
overestimated because the MCM annotation used in this
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analysis includes mutases for which cobamide-independent
versions have not been found. The abundance of both
the ethanolamine and glycerol/propanediol cobamide-
independent functions may be underestimated, as they
were identified based on similarity to a limited number of
sequences. We did not observe dramatic phylum-level dif-
ferences in the relative abundances of cobamide-dependent
and -independent processes (Supplementary Figure 2).

Thirty-seven percent of bacterial species are
predicted to produce cobamides de novo

We analyzed the filtered data set to make informed pre-
dictions of cobamide biosynthesis to determine the extent of
cobamide biosynthesis in bacteria and to identify marker
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genes predictive of cobamide biosynthesis. A search for
genomes containing the complete pathways for anaerobic
or aerobic cobamide biosynthesis, as defined in the model
bacteria Salmonella enterica serovar Typhimurium and
Pseudomonas denitrificans, respectively [9], revealed that
few genomes contain all annotations for the complete
pathway, but many contain nearly all. Some bacteria that
appear to have an incomplete pathway might nonetheless
be capable of cobamide biosynthesis because of poor
annotation, non-homologous replacement of certain genes
[42, 43], or functional overlap of some of the enzymes. We
therefore relied on experimental data on cobamide bio-
synthesis in diverse bacteria to inform our predictions, using
63 bacteria that are known to produce cobamides (Table 1,
Supplementary Table 6), including five tested in this study
(Table 1, bold names, Supplementary Figure 3). We iden-
tified a core set of eight annotations shared by all or all
except one of the genomes of cobamide-producing bacteria
(Table 1, gray highlight). These core annotations include
three required for corrin ring biosynthesis: cbiL, cbiF and
cbiC in the anaerobic pathway, which are orthologous to
cobl, cobM and cobH, respectively, in the aerobic pathway
(Table 1, Fig. 2a). An additional five nucleotide loop
assembly annotations were also highly abundant in these
genomes (Table 1).

Our analysis additionally showed that the anaerobic
and aerobic corrin ring biosynthesis pathways cannot be
distinguished based on their annotated gene content, pre-
sumably because portions of the two pathways share
orthologous genes (Table 1; Fig. 2a, dashed lines). Even the
cobalt chelatases, cobNST and cbiX/cbiK, are not exclusive
to genomes with the aerobic or anaerobic pathways,
respectively (Table 1). Cobalt chelatase annotations are also
found in some bacteria that lack most of the corrin ring
and nucleotide loop assembly genes, suggesting that there
is overlap in annotations with other metal chelatases [44].

We next sought to predict cobamide biosynthesis cap-
ability across bacteria by analyzing the filtered genome data
set by defining different levels of confidence for predicting
cobamide biosynthesis (Supplementary Table 7). Annota-
tions that are absent from the majority of genomes of
experimentally verified cobamide producers (cobR, pduX,
and cobD) (Table 1, Fig. 2a), as well as one whose role in
cobamide biosynthesis has not been determined (cobW)
[45], were excluded from these threshold-based definitions.
We did not exclusively use the small set of core annotations
identified in Table 1 because a correlation between the
absence of these genes and lack of cobamide biosynthesis
ability has not been established. Using these threshold-
based definitions, we predict that 37% of bacteria in the data
set have the potential to produce cobamides (Fig. 4, black
bars). Forty-nine percent of species in the data set have at
least one cobamide-dependent enzyme but lack a complete

cobamide biosynthetic pathway. Genomes in the latter
category can be further divided into non-producers, which
contain fewer than five corrin ring biosynthesis genes, and
precursor salvagers, which contain distinct portions of the
pathway (described in a later section). The distribution of
cobamide-dependent enzyme families also varies based on
predicted cobamide biosynthesis, with predicted cobamide
producers having more cobamide-dependent enzyme
families per genome than non-producers (Supplementary
Figure 4).

To assess whether the core corrin ring annotations
(Table 1, gray highlight) identified in the experimentally
verified cobamide producers could be used as markers, the
threshold-based assignments of cobamide biosynthesis
categories were compared to the frequency of the three
annotations. The presence of each core annotation alone is
largely consistent with the threshold-based category
assignments, as each is present in 99% of genomes in the
producer categories and in less than 1% of the non-
producers (Table 2). The presence of two or all three marker
annotations matches the threshold-based predictions even
more closely (Table 2). The corrin ring markers chosen in
Table 2 are slightly more predictive of our threshold-based
cobamide biosynthesis classifications than cbiA/cobB
(EC:6.3.5.11/EC:6.3.5.9), a previously selected marker used
in environmental DNA analysis [46]; although cbiA/cobB
was found in 99% of predicted cobamide producers, is it
also present in 2.6% of predicted non-producers and 46% of
precursor salvagers (Supplementary Table 5).

As with the cobamide-dependent enzyme families, the
four major phyla in the data set have notable differences in
their predicted cobamide biosynthesis phenotypes (Fig. 4).
Around half of Actinobacteria (57%) and Proteobacteria
(45%) and 30% of Firmicutes are predicted to be cobamide
producers. In contrast, only 0.6% of Bacteroidetes are pre-
dicted to produce cobamides de novo, yet 96% have at least
one cobamide-dependent enzyme, suggesting that most
members of this phylum must acquire cobamides from other
organisms in their environment. In addition, Bacteroidetes
have the highest relative proportion of species predicted to
salvage Cbi via a partial cobamide biosynthesis pathway,
and most of the tetrapyrrole precursor salvagers are Firmi-
cutes (see later section; Supplementary Table 10), whereas
very few Actinobacterial species are predicted to salvage
precursors (Fig. 4). These divisions reveal potential coba-
mide and cobamide precursor requirements across phyla.

Predicting cobamide structure
Lower ligand structure is determined by the intracellular
production of lower ligand bases as well as specific features

of the lower ligand attachment genes cobT or arsAB [17-19,
21, 22, 39, 47, 48]. We first defined predictions for the
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Table 1 Experimentally-verified cobamide producers and their cobamide biosynthesis annotation content
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Nucleotide loop

Adenosylation
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linker

Anaerobic Aerobic
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EC:4.99.1.3 (CbiK/CbiX)

EC:1.3.1.76 (CysG)
EC:2.1.1.151 (CbiL)
EC:2.1.1.131 (CbiH)
EC:2.1.1.130 (Cobl)
EC:1.14.13.83 (CobG)
EC:2.1.1.132 (CoblL)
EC:5.4.99.61 (CobH)
EC:6.3.5.9 (CobB)
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Total genomes with step)
Organism name
Propionibacterium acidipropionici
Actinobacteria Propionibacterium freudenreichii
Propionibacterium shermanii
Prochlorococcus sp. MIT9313
Synechococcus elongatus
Synechococcus sp. CC9311
: Synechococcus sp. WH5701
Cyanobacteria Synechococcus sp. WH7803
Synechococcus sp. WH7805
v coccus sp. WHE102
Synechocystis sp. PCC6803
Bacillales Bacillus megaterium
Listeria monocytogenes
Lactobacillus coryniformis
Lactobacillales Lactobacillus reuteri
Lactobacillus rossiae
Clostridium cochlearium
Clostridium kluyveri
Acetobacterium woodii
Eubacterium barkeri
Eubacterium hallii
Eubacterium limosum
. Blautia hydrogenotrophica
Lachnospiraceae Clostridium phytofermentans
Dehalobacter restrictus
Desulfitobacterium hafniense
Desulfitc ium sp. PCE1
Desulfotomaculum reducens
Thermoanaerobacterale |Moorella thermoacetica
Pelosinus fermentans
Negativicutes [Sporomusa ovata
Veillonella parvula
Desulfobacterium autotrophicum
Desulfobacterales Desulfobulbus propionicus
Desulfovibrio desulfuricans
5 |Desulfovibrionales Desulfovibrio vulgaris
|Geobacter lovieyi
Geobacter sulfurreducens
D Pelobacter propionicus
B Sulfurospirillum multivorans
[Salmonella typhimurium
M Yersinia enterocolitica
Thermosipho africanus H1760334
Thermosipho africanus TCF52B
Streptomyces coelicolor
Streptomyces griseus
Agrobacterium tumefaciens
Methvic ium dichlorc hani a
Methvic ium extorauens®
Methvlosinus trichosporium®
Sinorhizobium meliloti
Dinoroseobacter shibae
Rhodobacter capsulatus
Rhodobacter sphaeroides
Rhodobacterales Ruegeria pomeryoi
Rhodospirillales Rhodospirillum rubrum
Methylobacter luteus
Methylococcales Methylococcus capsulatus
Pseudomonas denitrificans
Pseudomonas putida
Aphanizomenon flos-aquae
Crocosph watsonii
Firmicutes Clostridium tetanomorphum
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Order
Family

»

»
Kud
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Bacilli

Clostridiaceae

Eubacteriaceae

Firmicutes

Anaerobic
Clostridia
Clostridiales

Peptococcaceae

Proteobacteria

Thermotogae

Actinobacteria

Aerobic
Proteobacteria

<

Pseudomonadales

Cyanobacteria

4
c
=]

Methylophilus methylotrophus was also reported to be an aerobic cobamide producer, but its genome only has one corrin ring biosynthesis
annotation (CobH). The reported concentration of cobamide it produced is at least 6-fold less than other strains in the study by Ivanova et al.
(2006). We did not include it in this table.

Bold species names were identified as cobamide producers in this study (Supplementary Figure 3)

biosynthesis of the class of cobamides containing benzi-  benzimidazoles. We used the presence of bluB, the aerobic
midazole lower ligands (benzimidazolyl cobamides), based synthase for the lower ligand of cobalamin, 5,6-dimethyl-
on the presence of genes for the biosynthesis of  benzimidazole (DMB), as a marker for cobalamin
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Fig. 4 Predicted cobamide biosynthesis phenotypes in the complete
filtered data set and the four most abundant phyla in the data set.
Genomes were classified into predicted cobamide biosynthesis phe-
notypes based on the criteria listed in Supplementary Table 7. The
“Partial biosynthesis” category includes cobinamide (Cbi) salvagers

production [17, 21, 49] and found it in 25% of genomes in
the data set, including those without complete cobamide
biosynthesis pathways. bluB is most abundant in predicted
cobamide-producing bacteria (Fig. 5a), particularly in Pro-
teobacteria (Fig. 5b).

Anaerobic biosynthesis of DMB and three other benzi-
midazoles requires different combinations of the bza genes
as shown in Figs. 2a and 5c [19, 20]. Because annotations
for the majority of the bza genes were not available, we
developed profile HMMs to search for them (see Supple-
mentary Materials and Methods, Supplementary Files).
Ninety-six genomes contain one or more bza genes, and 88
of these contain either bzaF or both bzaA and bzaB, the first
step necessary for the anaerobic biosynthesis of all four
benzimidazoles (Fig. 5c, Supplementary Table 8). As seen
with bluB, anaerobic benzimidazole biosynthesis genes are
highly enriched in cobamide producers (Fig. 5a). Examin-
ing the set of bza genes in each genome allowed us to
predict the structures of cobamides produced in 86 out of
the 96 genomes (Fig. 5c). Based on the frequency of bluB
and the bza genes, 24% of bacteria are predicted to produce
cobalamin, the cobamide required by humans.

To predict the biosynthesis of phenolyl cobamides, we
searched for genomes containing two adjacent cobT anno-
tations, since the cobT homologs arsA and arsB, which
together are necessary for activation of phenolic compounds
for incorporation into a cobamide, are encoded in tandem
[22]. Using this definition, arsAB was found in only
27 species, and is almost entirely restricted to the class
Negativicutes in the phylum Firmicutes, which are the only
bacteria reported to produce phenolyl cobamides [50, 51]
(Fig. 5a, b, Supplementary Table 9).

and tetrapyrrole precursor salvagers. The “Uses cobamides” category
is defined as having one or more of the cobamide-dependent enzyme
families shown in Fig. 1. The numbers are given for bars that are not
visible

Forty-two percent of predicted cobamide producers in
the data set do not have any of the benzimidazole bio-
synthesis or phenolic attachment genes (Fig. 5a). However,
bacteria that have the a-ribazole kinase CblS (Fig. Sa, b,
inner rings) and the transporter CbIT (not included)
are predicted to use activated forms of lower ligand
bases found in the environment (Fig. 2a, a-ribazole salva-
ging); we found CbIS in 363 species (3.2%), mostly in the
Firmicutes phylum (Fig. 5a, b, inner rings) [42, 52]. A
higher proportion of bacteria, 1041 species (9.1%), have a
CbiZ annotation (Fig. 5a, b, outer rings), an amidohydrolase
that cleaves the nucleotide loop, allowing cells to rebuild a
cobamide with a different lower ligand [53] (Fig. 2a, cor-
rinoid remodeling). CbiZ is found in genomes of predicted
cobamide producers and Cbi auxotrophs (see following
section) (Fig. 5a), as expected based on experimental
studies [16, 54-56]. The reliance of some bacteria on
exogenous lower ligands or a-ribazoles produced by other
organisms precludes prediction of cobamide structure in
all cases.

Seventeen percent of bacteria have partial
cobamide biosynthetic pathways

Our analysis of the cobamide biosynthesis pathway
revealed two categories of genomes that lack some or most
genes in the pathway, but retain contiguous portions of the
pathway. Genomes in one category, the Cbi (cobinamide)-
salvaging bacteria (15% of genomes), contain the nucleo-
tide loop assembly steps but lack all or most of the corrin
ring biosynthesis annotations (Fig. 6a). As demonstrated
in Escherichia coli [57], Thermotoga lettingae [58], and
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All non-producers
(n=5292)

Very likely
(n=5263)

Non-producers

Likely
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(n=1734)

Partial biosynthesis
Tetrapyrrole precursor
salvager (n =201)

All cobamide

Possible

Likely

Cobamide biosynthesis category

Cobamide producers

Very likely

(n

Table 2 Presence of corrin ring marker annotations in predicted cobamide biosynthesis categories
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“Numbers represent the percent of genomes containing each marker annotation and combinations of annotations within each cobamide biosynthesis category

Dehalococcoides mccartyi [16], and predicted in human
gut microbes [10], Cbi salvagers can take up the late
intermediate Cbi, assemble the nucleotide loop, and attach a
lower ligand.

We observed an additional 201 genomes (1.7%) that lack
one or more initial steps in tetrapyrrole precursor bio-
synthesis but have complete corrin ring biosynthesis and
nucleotide loop assembly pathways, primarily in the Fir-
micutes (Supplementary Table 7). After searching these
genomes manually for genes missing from the pathway, we
designated 180 of these species as tetrapyrrole precursor
salvagers, a new classification of cobamide intermediate
auxotrophs (Fig. 6a, Supplementary Table 10). These
organisms are predicted to produce cobamides only when
provided with a tetrapyrrole precursor or a later intermediate
in the pathway.

Experimental validation of 5-aminolevulinic acid
(ALA) dependence

The identification of putative tetrapyrrole precursor salva-
gers suggests that either these bacteria are capable of taking
up a tetrapyrrole precursor from the environment to produce
a cobamide or that they synthesize the precursors through
a novel pathway. We therefore tested three putative tetra-
pyrrole precursor salvagers for their ability to produce
corrinoids (cobamides and other corrin ring-containing
compounds) in the presence and absence of a tetrapyrrole
precursor. C. scindens and C. sporogenes, which are pre-
dicted to require ALA, produced corrinoids in defined
media only when ALA was supplied, suggesting that they
do not have a novel ALA biosynthesis pathway (Fig. 6b).
We tested an additional predicted ALA salvager, the termite
gut bacterium Treponema primitia ZAS-2, for which a
defined medium has not been developed. When cultured in
medium containing yeast autolysate, 7. primitia produced
trace amounts of corrinoids, and corrinoid production
was increased by supplementing this medium with ALA
(Fig. 6b). The ability of T. primitia to use externally sup-
plied ALA was further shown by its increased growth rate
and cell density at stationary phase when ALA was added
(Fig. 6c). Together, these results support the hypothesis
that predicted ALA salvagers synthesize cobamides by
taking up ALA from the environment.

Discussion

Vitamin B, and other cobamides have long been appre-
ciated as a required nutrient for humans, bacteria, and other
organisms due to their critical function as enzyme cofactors.
The availability of tens of thousands of genome sequences
afforded us the opportunity to conduct a comprehensive
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Fig. 5 Lower ligand structure predictions. a, b Proportion of genomes
containing the indicated lower ligand structure determinants (inner
circle), a-ribazole salvaging gene (inner ring), and corrinoid remo-
deling gene (outer ring) in the complete filtered data set separated by
cobamide producer category (a) and in cobamide producers separated
by phylum (b). c. The anaerobic benzimidazole biosynthesis pathway
is shown with the functions that catalyze each step above the arrows.

analysis of cobamide metabolism across over 11,000 bac-
terial species. This analysis gives an overview of cobamide
dependence and cobamide biosynthesis across bacteria,
allowing for the generation of hypotheses for cobamide and
cobamide precursor interactions in bacterial communities.
Our work shows that cobamide use is much more wide-
spread than cobamide biosynthesis, consistent with
the majority of previous studies of smaller data sets
[10, 24, 25]. The prevalence of cobamide-dependent
enzymes in bacteria, coupled with the relative paucity of
de novo cobamide producers, underscores the ubiquity of
both cobamide-dependent metabolism and cobamide sal-
vaging in microbial communities. Here, we additionally
find that cobamide production and use are unevenly dis-
tributed across the major phyla represented in the data set,
identify bacteria dependent on cobamide precursors, and
predict cobamide structure. These results highlight the
widespread nutritional dependence of bacteria.

The most abundant types of cobamide-dependent
enzymes in our data set are methionine synthase, epox-
yqueuosine reductase, RNR, and MCM. For all of these
enzymes, cobamide-independent alternative enzymes or
pathways exist. (Note that the newly discovered alternative

The genes required to produce each benzimidazole are shown below
each structure, with the number of genomes in the complete filtered
data set containing each combination of genes in parentheses. The sets
of bza genes that do not have a predicted structure are listed on the
right. Aminoimidazole ribotide (AIR), 5-hydroxybenzimidazole (5-
OHBza), 5-methoxybenzimidazole (5-OMeBza), 5-methoxy-6-
methylbenzimidazole (5-OMe-6-MeBza)

to epoxyqueuosine reductase, QueH [59], was not included
in our analysis.) The prevalence of cobamide-dependent
enzymes for which cobamide-independent counterparts
exist, particularly in the same genome, suggests that
cobamide-dependent enzymes confer distinct advantages.
This view is supported by the observations that MetE
is sensitive to stress and has a 100-fold lower turnover
number than MetH [60-62] and that cobamide-independent
RNRs are active in a limited range of oxygen concentra-
tions [63, 64].

In our analysis of cobamide biosynthesis, it was not
possible to use a single definition of the complete de
novo cobamide biosynthesis pathway across all bacterial
genomes because of divergence in sequence and function.
Similarly, while Archaea are known to produce and
use cobamides, the archaeal cobamide biosynthetic
pathway differs in key steps from the bacterial pathways,
making annotation-based assignment of biosynthesis
predictions difficult without further experimental char-
acterization of non-homologous replacements [65]. The
use of experimental data gives confidence to our predictions
and allowed identification of marker genes for cobamide
biosynthesis. Nevertheless, our predictions likely
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Fig. 6 Characterization of putative tetrapyrrole precursor salvagers
a Steps in cobamide biosynthesis. The enzymes that catalyze each step
are indicated to the right of each arrow. The number of genomes in the
complete filtered data set in each precursor salvage category is on the
left. Two genomes had cobamide biosynthesis pathways inconsistent
with simple auxotrophy (*). Specific tetrapyrrole precursor salvager
genomes are listed in Supplementary Table 10. b HPLC analysis of
corrinoid extracts from Clostridium scindens, Clostridium sporogenes,

overestimate the extent of cobamide biosynthesis in situ,
as genome predictions do not account for differences in
gene expression. For example, cobamide production in
S. typhimurium is repressed in environments containing
oxygen or lacking propanediol [5], and cobamide bio-
synthesis operons are commonly subjected to negative
regulation by riboswitches [24, 66]. The abundance
of cobamide importers [10, 24, 25], even in bacteria
capable of cobamide biosynthesis, reinforces the possibility
that many bacteria may repress expression of cobamide
biosynthesis genes in favor of cobamide uptake in some
environments.

A comparison of genomes containing one or more
cobamide-dependent annotations to those with none
revealed an absence of bacteria that produce cobamides
but do not use them. This finding suggests that altruistic
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bacteria that produce cobamides exclusively for others do
not exist. Metabolically coupled organisms that crossfeed
cobalamin in exchange for another nutrient have been
described in the mutualistic relationships between algae
and cobalamin-producing bacteria [67, 68], yet it remains
unclear if such intimate partnerships are widespread.
Notably, our results show that cobamide biosynthesis
is unevenly distributed across bacteria, with Actinobacteria
enriched in and Bacteroidetes lacking in de novo cobamide
biosynthesis. Such phylogenetic comparisons can be used
to make crude predictions of cobamide-based nutritional
interactions among different taxa.

The reliance of many bacteria on environmental coba-
mides, coupled with the fact that structurally different
cobamides are not functionally equivalent in bacteria
[10-16], underscores the importance of cobamide lower
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ligand structure in microbial interactions. Additional var-
iation in the nucleotide loop was not considered here
because of the absence of signature genes specific to nor-
cobamide biosynthesis [69, 70]. We were able to predict
lower ligand structure for 58% of predicted cobamide pro-
ducers. The remaining bacteria may produce purinyl coba-
mides, the class of cobamides containing purine bases as
lower ligands, which are abundant in some bacterial taxa
and microbial communities [11, 39, 71]. Further analysis of
substrate specificity in CobT and other lower ligand
attachment enzymes could lead to improved strategies for
predicting production of cobamides with purinyl lower
ligands, as some CobT homologs appear to segregate into
different clades based on lower ligand structure [39, 48, 72].
The presence of free benzimidazoles and o-ribazoles in
microbial communities [73—75] and the ability of bacteria to
take up and incorporate these compounds into cobamides
[13, 72, 76, 77] suggest that it will not be possible to predict
the structures of cobamides produced by all bacteria in situ
solely from genomic analysis.

We predict that 32% of bacteria that have cobamide-
dependent enzymes are unable to synthesize cobamides,
attach a preferred lower ligand to Cbi, or remodel corri-
noids. This group of bacteria must take up cobamides
from their environment for use in their cobamide-dependent
metabolisms. Given the variable use of structurally
different cobamides by different bacteria, the availability
of specific cobamides is likely critical to bacteria that
are unable to synthesize cobamides or alter their structure.
The availability of preferred cobamides may limit the
range of environments that these organisms can inhabit.
Variation in the abundance of different cobamides has
been observed in different environments. For example, in
a trichloroethylene (TCE)-contaminated groundwater
enrichment culture, 5-hydroxybenzimidazolyl cobamide
and p-cresolyl cobamide were the most abundant cobamides
[50], compared to cobalamin in bovine rumen [78] and
2-methyladeninyl cobamide in human stool [71]. One
strategy for acquiring preferred cobamides could be selec-
tive cobamide import, as suggested by the ability of two
cobamide transporters in Bacteroides thetaiotaomicron to
distinguish between different cobamides [10].

Dependence on biosynthetic precursors has been
observed or predicted for amino acids, nucleotides, and the
cofactors thiamin and folate [79-82]. Here, we describe
genomic evidence for dependence on cobamide precursors,
namely Cbi or tetrapyrrole precursors. The prevalence of
Cbi-salvaging bacteria (Fig. 6a) suggests that it is common
for bacteria to fulfill their cobamide requirements by
importing Cbi from the environment and assembling the
nucleotide loop intracellularly. Consistent with this,
Cbi represented up to 9% of total corrinoids in TCE-
contaminated  groundwater enrichments [50], and

represented up to 12.8% of the total corrinoids detected in
human stool samples [71].

Our analysis defined five types of tetrapyrrole precursor
salvagers and experimentally verified the ALA salvager
phenotype in three species. It was observed previously that
Porphyromonas gingivalis lacks the steps to synthesize
precorrin-2 [83]. However little additional work has
explored tetrapyrrole precursor salvagers. This biosynthesis
category was overlooked in previous genomic studies
of cobamide biosynthesis because these studies considered
only the corrin ring biosynthesis and nucleotide loop
assembly portions of the pathway [11, 24-26]. Tetrapyrrole
precursors have been detected in biological samples, sug-
gesting that they are available for uptake in some environ-
ments. For example, uroporphyrin III, a derivative of the
tetrapyrrole precursor uroporphyrinogen III (Urolll), was
detected in human stool [84, 85] and ALA has been found
in swine manure extract [86]. Although we confirmed
experimentally the ALA dependence phenotype, we were
unable to detect ALA in several biological samples using
a standard chemical assay via a fluorometric derivatization
[87] or bioassay with Rhodobacter sphaeroides hemATI
[88], which lacks ALA synthase, suggesting that either
ALA is not freely available in these environments or is
present at concentrations lower than the 100 nM detection
limit of these assays (data not shown). Based on the eco-
system assignment information available for 48% of the
genomes, 78% of tetrapyrrole precursor salvagers are
categorized as host-associated bacteria compared to 41%
in the complete filtered data set. One interpretation of
this finding is that tetrapyrrole precursors are provided
by the host, either from host cells that produce them as
intermediates in heme biosynthesis [89, 90] or, for gut-
associated microbes, as part of the host’s diet. Alternatively,
these precursors may be provided by other microbes, as was
observed in a coculture of Fibrobacter species [91]. Gen-
ome analysis suggests that Candidatus Hodgkinia cicadi-
cola, a predicted Urolll salvager [92], may acquire a
tetrapyrrole  precursor from its insect host or
other endosymbionts to be able to provide methionine for
itself and its host via the cobamide-dependent methionine
synthase. Seventeen percent of cobamide-requiring human
gut bacteria lacked genes to make Urolll de novo from
glutamate, suggesting they could be Urolll salvagers [10].

Nutritional dependence is nearly universal in bacteria.
Auxotrophy for B vitamins, amino acids, and nucleic acids
is so common that these nutrients are standard components
of bacterial growth media. We speculate that the availability
of cobamides in the environment, coupled with the relative
metabolic cost of cobamide biosynthesis, has driven selec-
tion for loss of the cobamide biosynthesis pathway [93].
The large number of genomes with partial cobamide bio-
synthesis pathways, namely in the “possible cobamide
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biosynthesis”, “likely non-producer”, and “Cbi salvager”
classifications, suggests that some of these genomes are in
the process of losing the cobamide biosynthesis pathway.
At the same time, evidence for horizontal acquisition of the
cobamide biosynthesis pathway suggests an adaptive
advantage for nutritional independence for some bacteria
[94, 95]. Such advantages could include early colonization
of an environmental niche, ability to synthesize cobamides
with lower ligands that are not commonly available, or
association with hosts that do not produce cobamides. The
analysis of the genomic potential of bacteria for cobamide
use and production presented here could provide a foun-
dation for future studies of the evolution and ecology of
cobamide interdependence.
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