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Abstract

An individual’s brainAGE is the difference between chronological age and age predicted from machine-learning models of
brain-imaging data. BrainAGE has been proposed as a biomarker of age-related deterioration of the brain. Having an older
brainAGE has been linked to Alzheimer’s, dementia, and mortality. However, these findings are largely based on cross-
sectional associations which can confuse age differences with cohort differences. To illuminate the validity of brainAGE as a
biomarker of accelerated brain aging, a study is needed of a large cohort all born in the same year who nevertheless vary on
brainAGE. In the Dunedin Study, a population-representative 197273 birth cohort, we measured brainAGE at age 45 years,
as well as the pace of biological aging and cognitive decline in longitudinal data from childhood to midlife (N = 869). In this
cohort, all chronological age 45 years, brainAGE was measured reliably (ICC = 0.81) and ranged from 24 to 72 years. Those
with older midlife brainAGEs tended to have poorer cognitive function in both adulthood and childhood, as well as impaired
brain health at age 3. Furthermore, those with older brainAGEs had an accelerated pace of biological aging, older facial
appearance, and early signs of cognitive decline from childhood to midlife. These findings help to validate brainAGE as a
potential surrogate biomarker for midlife intervention studies that seek to measure dementia-prevention efforts in midlife.
However, the findings also caution against the assumption that brainAGE scores represent only age-related deterioration of
the brain as they may also index central nervous system variation present since childhood.

Introduction consequent cognitive decline has an outsized influence on
disability and loss of independence in older adults [1]. As
such there is growing need for interventions to slow the
progression of cognitive decline. Unfortunately, to date,
tested interventions have not slowed age-related cognitive
decline [2]. The failure of these interventions may be related

to their targeting of individuals too late in the aging process

While old age is associated with higher risk for disease
across the entire body, degeneration of the brain and
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the end of a chronic pathophysiological process with pre-
clinical stages emerging decades earlier in life [3]. Evalu-
ating interventions to prevent ADRD onset requires the
identification of surrogate biomarkers that index subclinical
cognitive decline, neurodegeneration, and accelerated aging
of the brain by midlife.

While everyone ages chronologically at the same rate,
this is not true biologically; some individuals experience
accelerated age-related biological degeneration [5, 6]. For
decades, researchers have worked to quantify the rate of
biological aging and better understand the mechanisms that
generate individual differences in the aging process [7]. The
resulting measures of accelerated biological aging have
been associated with health span, cognitive decline, cancer
risk, and all-cause mortality [5, 6, 8]. However, such aging
biomarkers have not directly quantified aging in the organ
most directly linked to ADRD, namely the brain. To address
this gap, a recently developed measure called “brain-age”
has been proposed as a biomarker for accelerated aging of
the brain [9, 10]. Brain-age is a relatively novel measure
derived from neuroimaging, but its interpretation is
uncertain.

Brain-age is estimated by training machine-learning
algorithms to predict age from structural magnetic reso-
nance imaging (MRI) data collected in large samples of
individuals across a broad age range [11]. These machine-
learning algorithms “learn” multivariate patterns from MRI
data that are useful in explaining variance in chronological
age across individuals. The difference between an indivi-
dual’s predicted age based on MRI data and their chron-
ological age is called the brain age gap estimate (brainAGE)
and is usually interpreted as a measure of accelerated aging
of the brain. Older brainAGE has been associated with mild
cognitive impairment, ADRD, and mortality [11, 12].
Individuals with an older brainAGE are more likely to have
risk factors for dementia including obesity, diabetes, alco-
holism, and traumatic brain injury [9, 12—14]. Initial studies
suggest that brainAGE may be able to predict cognitive
decline and conversion to ADRD in older adults in their
60s, 70s, and 80s [15, 16]. But there is no evidence linking
brainAGE to earlier signs of cognitive decline or acceler-
ated aging in midlife, the age when surrogate biomarkers
may be more effectively used in ADRD-prevention efforts
[4]. Promising results notwithstanding, research on brai-
nAGE is still in its infancy. Reported associations between
brainAGE and risk factors for accelerated aging are largely
cross-sectional. Inferring within-subject decline and aging
from cross-sectional associations in people of different-age
cohorts has many pitfalls and is prone to confuse aging with
cohort differences (e.g., Intelligence Quotient (IQ) scores
are higher in members of more recent cohorts, and there are
marked generational differences in exposure to diseases,
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toxins, antibiotics, education, and nutrition which can
influence brain measures, including neuroimaging data)
[17-19]. Cross-sectional observations that older brainAGE
is associated with ADRD and many of its risk factors are
consistent with at least two perspectives on brain aging,
each of which has distinct implications.

The first perspective is that older brainAGE could be an
indicator of accelerated brain aging that has accumulated
over an individual’s lifetime and increases susceptibility to
ADRD and age-related cognitive decline. This perspective
implies that at some point in early development, all indi-
viduals have a brainAGE that is very close to zero. Brai-
nAGE scores then diverge with time from chronological
age, as genetic, environmental, and lifestyle factors create
variation in the rate of brain aging. Here we will refer to this
perspective broadly as the “geroscience perspective” [20].
This perspective is based on the geroscience hypothesis
which states that aging is the result of deterioration across
multiple organ systems and that furthermore this dete-
rioration is the root cause of age-related disease. It is
hypothesized that treatments that can slow this decline will
therefore reduce the risk for age-related disease. This the-
oretical interpretation of brainAGE is the dominant inter-
pretive framework found in the brainAGE literature
[10, 11, 21].

The second perspective on brain aging is the ‘“early
system-integrity” perspective of cognitive/biological aging
[22]. According to this perspective, individuals vary in their
brain and body health from the beginning of life. Moreover,
according to the system-integrity view, the correlation
between brain and body health persists across the lifespan
so that both brain and body health predict aging outcomes
[23-25]. From this perspective, the reason brainAGE pre-
dicts ADRD and mortality later in life is because brainAGE
is an indicator of compromised lifelong brain health
[26, 27]. Instead of reflecting accelerated brain aging and
the brain’s accumulated biological degeneration, an older
brainAGE at midlife reflects compromised system integrity
that has been present since childhood and stable for dec-
ades. Importantly these two perspectives are not mutually
exclusive and both may help explain the phenomenon of
accelerated brain aging.

Here we tested to what extent older brainAGE is asso-
ciated with accelerated aging and to what extent older
brainAGE reflects stable individual differences in system
integrity in the Dunedin Study. First, we hypothesized that
if individuals with an older brainAGE have brains that are
aging faster, they should also have a body that has aged
faster, given that, according to the geroscience perspective,
aging is the progressive, generalized deterioration, and loss-
of-function across multiple organ systems [28, 29]. Second,
we hypothesized that if individuals with older brainAGE
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have undergone accelerated aging they should show signs
of cognitive decline [30]. Third, if older midlife brainAGE
represents system integrity from early life, we hypothesized
that older brainAGE should be correlated with poorer
neurocognitive functioning as assessed already in early
childhood.

Methods

See Supplementary Information for expanded “Methods”
section.

Participants

Participants are members of the Dunedin Longitudinal
Study, a representative birth cohort (N =1037; 91% of
eligible births; 52% male) born between April 1972 and
March 1973 in Dunedin, New Zealand (NZ), who were
eligible based on residence in the province and who par-
ticipated in the first assessment at age 3 years [31]. The
cohort represented the full range of socioeconomic status in
the general population of NZ’s South Island and as adults
matches the NZ National Health and Nutrition Survey on
key adult health indicators (e.g., body mass index (BMI),
smoking, and GP visits) and the NZ Census of citizens of
the same age on educational attainment. The cohort is
primarily white (93%), which matches the demographics of
the South Island. Assessments were carried out at birth and
ages 3, 5,7, 9, 11, 13, 15, 18, 21, 26, 32, 38, and most
recently (completed April 2019) 45 years, when 94% (N =
938) of the 997 participants still alive took part. Each
participant was brought to the research unit for 1.5 days of
interviews and examinations. Written informed consent
was obtained from participants and study protocols were
approved by the NZ Health and Disability Ethics Com-
mittee. Brain imaging was carried out at age 45 years for
875 study members (93% of age-45 participants). Data
from six study members were excluded due to major
incidental findings or previous head injuries (e.g., large
tumors or extensive damage to the brain). This resulted in
brain-imaging data for our current analyses from 869 study
members, who represented the original cohort (attrition
analysis in Supplementary; Supplementary Figs. S1 and
S2).

MRI acquisition

Study participants were scanned using a Siemens Skyra
3T scanner (Siemens Healthcare, Erlangen, Germany)
equipped with a 64-channel head/neck coil at the Pacific
Radiology imaging center in Dunedin, New Zealand.

High resolution structural images were obtained using a
T1-weighted MP-RAGE sequence with the following
parameters: TR =2400ms; TE =1.98 ms; 208 sagittal
slices; flip angle, 9°; FOV, 224 mm; matrix = 256 x 256;
slice thickness = 0.9 mm with no gap (voxel size 0.9 x
0.875x 0.875 mm); and total scan time = 6 min and 52 s.

BrainAGE

We generated brainAGE scores using a recently published,
publicly available algorithm [13]. This method uses a
stacked algorithm to predict chronological age from multi-
ple measures of brain structure derived from Freesurfer
version 5.3 [32]. Specifically, the algorithm is trained on
vertex-wise cortical thickness and surface area data
extracted from fsaverage4 standard space as well as sub-
cortical volume extracted from the aseg parcellation.
Test-retest reliability was assessed in 20 Dunedin Study
members (mean interval between scans =79 days). The
ICC of brainAGE was 0.81 (95% CI=0.59-0.92; p<
0.001), indicating excellent reliability [33]. Moreover, we
chose this algorithm because of its performance in pre-
dicting chronological age in independent samples and its
sensitivity to age-related cognitive impairment in old age
[13]. All regression analyses used brainAGE scores (i.e., the
difference between an individual’s predicted age from MRI
data and their exact chronological age, between birth, and
the date of the MRI scan).

Adulthood measures of cognitive functioning and
accelerated aging

Cognitive functioning at age 45 was assessed with the
Wechsler Adult Intelligence Scale-IV [34], which measures
the IQ and four specific domains of cognitive function:
verbal comprehension, perceptual reasoning, working
memory, and processing speed. Study members were also
tested with an additional suite of measures of vocabulary,
memory, and executive functioning (Table 1 and Supple-
mentary). Accelerated aging was assessed (a) by the pace of
aging, a longitudinal composite of multiple biomarkers that
indexes the integrity of metabolic, cardiovascular, respira-
tory, kidney, immune, and dental systems, measured at four
study waves from the cohort members’ 20s to their mid-40s,
and (b) by independent ratings of facial aging. All measures
are described in Table 1.

Childhood measures of brain health and cognitive
functioning

At age 3 years, each child participated in a 45-min exam-
ination that included assessment by a pediatric neurologist

SPRINGER NATURE
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Table 1 Description of Study Measures.

Measure

Description

Adult cognitive assessment
Adulthood 1Q

Childhood assessments
Childhood brain health (age 3)

Childhood 1IQ

IQ at age 45 was measured with the Wechsler Adult Intelligence Scale-IV (WAIS-IV) [53]. The WAIS-IV
generates the overall full-scale 1Q, and four WAIS-IV indexes assess abilities that make up the IQ: processing
speed, working memory, perceptual reasoning, and verbal comprehension. In addition, we examine
performance on the digit symbol substitution [54] subtest, which is most representative of “fluid” cognitive
ability, and on the Rey Auditory Verbal Learning test [55] of memory.

Age-3 Brain Health is a composite measure from a 45-min examination that included assessments by a pediatric
neurologist, standardized tests of intelligence, receptive language, and motor skills, and examiners’ ratings of
each child’s emotional and behavioral regulation [35].

IQ was measured with the Wechsler Intelligence Scale for Children-Revised (WISC-R [36]; averaged across
ages 7,9, and 11). In addition, we examine performance on the digit-span subtest and, the Rey Auditory Verbal

Learning test [55] of memory.
Measures of accelerated aging

Pace of aging

Pace of aging was measured for each Dunedin Study member with repeated assessments of a panel of 19

biomarkers taken at ages 26, 32, 38, and 45 years (see Supplementary for details), as previously described [6].

Facial aging
photograph.

Facial aging was based on ratings by an independent panel of 8 raters of each Study member’s facial

and standardized tests of intelligence, receptive language,
and motor skills. Afterwards the examiners (having no prior
knowledge of the child) rated each child’s emotional and
behavioral regulation during the protocol. These five mea-
sures were combined to yield an index of age-3 Brain
Health (Table 1 and Supplementary) [35]. In late childhood
(ages 7,9, and 11 years), Study members were administered
the Wechsler Intelligence Scale for Children-Revised
(WISC-R) yielding IQ scores [36]. Scores from the three
WISC-R administrations were averaged to yield a single,
reliable measure of childhood cognitive function. Study
members were also tested with an additional suite of mea-
sures of vocabulary, memory, and executive functioning
(Table 1).

Statistical analysis

We tested associations between brainAGE and all target
variables using linear regression models in R (version 3.4.0).
All models were adjusted for sex. Cognitive decline from
childhood to adulthood was measured using a statistical
adjustment approach that tested deviation (or change) in a
participants’ adult IQ from what would be expected based
on their childhood IQ. The premise and analysis plan
for this project were preregistered on https://sites.google.
com/site/dunedineriskconceptpapers/elliott. Analyses repor-
ted here were checked for reproducibility by an independent
data analyst, who recreated the code by working from
the paper and applied it to an independent copy of the
dataset.
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Results

People of the same chronological age differ in
brain-age

As illustrated in Fig. 1, despite the narrow range of
chronological ages in the Dunedin Study (mean =45.15,
SD =0.69, range =43.48-46.98), there was substantial
variation in brain-age (mean = 40.93, SD = 8.04, range =
23.84-71.63). The slight bias towards lower predicted
brain-age in this midlife cohort (i.e., we observe younger
mean brain-age than mean chronological age) is consistent
with findings in this field of research, where brain-age
algorithms appear to systematically overestimate mean
brain predicted age before age 35 and underestimate mean
brain predicted age after age 35 [37].

Older brainAGE and adult cognitive function

Both the system-integrity and geroscience perspectives
predict that brainAGE should be associated with cognitive
function. Consistent with both perspectives, Study members
with older brainAGEs performed more poorly on cognitive
tests (Table 1). Those with older brainAGE had lower full-
scale 1Q at age 45 (standardized = —0.20, 95% CI=
—0.27 to —0.14; p<0.001; Fig. 2). However, the associa-
tions between brainAGE and cognitive functions were
nonspecific; Study members with older brainAGEs
had lower scores on all IQ subscales at age 45 including
verbal comprehension, which is a crystallized measure
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Fig. 1 The distribution of
chronological age and brain-
age amongst the Dunedin
Study members. While there is
very little variation in
chronological age, there is a
large amount of variation in
brain-age.

75

50

Number of Participants

25

Age Measurement

Brain-age
Chronological Age

30

(standardized = —0.19, 95% CI= —0.26 to —0.13; p<
0.001), and the three fluid measures: perceptual reasoning
(standardized = —0.17, 95% CI= —0.23 to —0.10; p<
0.001), processing speed (standardized = —0.12, 95% CI
=-0.19 to —0.05; p<0.001), and working memory
(standardized = —0.15, 95% CI=—-0.22 to —0.09; p<
0.001). In addition, Study members with older brainAGEs
performed more poorly on additional cognitive tests,
including digit symbol coding (standardized f= —0.15,
95% CI=—-0.22 to —0.08; p<0.001), as well as tests of
memory (Rey total learning: standardized f = —0.14, 95%
CI=-0.21 to —0.07; p<0.001; and Rey delayed-recall
scores: standardized = —0.09, 95% CI = —0.16 to —0.02;
p=0.012).

Older brainAGE, childhood cognitive function, and
age-3 Brain Health

The system-integrity perspective predicts that associations
between brainAGE and cognitive functions are present
since childhood. Consistent with this prediction, 45 years
old with older brainAGE had lower full-scale 1Q when
measured in late childhood (standardized = —0.18, 95%
CI=-0.24 to —0.11; p<0.001; Fig. 2). Again we did not
find evidence for specificity of this association. Study

40 50 60 70
Age (years)

members with older brainAGE had lower performance IQ, a
fluid measure (standardized f = —0.14, 95% CI = —0.21 to
—0.08; p<0.001), and lower verbal IQ, a crystallized
measure (standardized f=—0.17, 95% CI=-0.24 to
—0.11; p<0.001). As in adulthood, study members with
older brainAGE had poorer performance in childhood on
digit symbol coding (standardized = —0.09, 95% Cl=
—0.15 to —0.02; p =0.014). Those with older brainAGE
also had poorer performance on measures of memory in
childhood (Rey total learning: standardized f = —0.13, 95%
CI=-0.20 to —0.05; p <0.001; Rey delayed-recall scores:
standardized f= —0.11, 95% CI=—-0.18 to —0.04; p<
0.001). Finally, consistent with the system-integrity per-
spective, Study members with older brainAGEs at age 45
had poorer age-3 Brain Health (standardized f= —0.12,
95% CI= —0.19 to —0.05; p<0.001).

Older brainAGE is associated with accelerated
biological aging

The geroscience perspective predicts that Study members
with older brainAGEs should have bodies that are aging at
a faster rate. We found evidence to support this account as
Study members with older brainAGE tended to have
a faster pace of aging from age 26 to 45 (standardized

SPRINGER NATURE
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Fig. 2 Associations betweeen A)
brainAGE, cognitive function

Cognitive Function

and biological aging. a

Associations between older age-

45 brainAGE and lower

cognitive function. The left 150
panel displays the association
between older brainAGE and
lower childhood IQ. The right
panel displays the association
between older brainAGE and
lower 1Q measured at age 45.

b Associations between older
age-45 brainAGE and
accelerated biological aging.
The left panel displays the
association between accelerated
pace of biological aging between

Childhood 1Q

50

B=-0.18, p <.001 B=-0.20, p <.001

50

ages 26 and 45 and older 20
brainAGE. The pace of aging

quantifies study members’ rate

of biological aging in year- B)
equivalent units of physiological

decline occurring per
chronological year. The average
study member experienced 1
year of physiological decline per
each chronological year, a pace
of aging of 1. The right panel
displays the association between
older facial age and older
brainAGE. To illustrate facial
aging, the right panel shows
digitally averaged faces of the
ten male and female Study
members rated as looking the o
oldest and the ten male and
female Study members rated as
looking the youngest. Facial
Age is standardized to M =0,

Pace of Aging

SD=1.

$=0.22, 95% CI=0.15-0.28; p<0.001; Fig. 2). Study
members in the oldest decile of brainAGE aged 1.17
biological years per chronological year between ages 26
and 45 years, compared with just 0.95 biological years per
chronological year for those in the youngest decile. This
amounted to 4.22 additional years of biological aging,
between ages 26 and 45, for those in the highest brai-
nAGE decile. Furthermore, those with older brainAGE
were rated by independent raters as looking physically
older than those with younger brainAGE (standardized
p=0.15, 95% CI=0.09-0.22; p<0.001; Fig. 2). In
addition Study members with older brainAGE declined
faster in their facial age scores between age 38 and 45
(standardized = 0.07, 95% CI = 0.02-0.12; p = 0.009),
suggesting older brainAGE predicted a faster pace of
facial aging over the course of just 7 years.

SPRINGER NATURE

-10 0 10
BrainAGE at 45 years

-10 ) 10 20 20 -10 0 10 20
BrainAGE at 45 years BrainAGE at 45 years
Biological Aging
B-022,p<.00l | * Q Q B=0.15, p <.001
2
Q
(o))
<
® 0
S
©
[T
23|
-4
-20 20 -20 20

-10 0 10
BrainAGE at 45 years

Older brainAGE and accelerated cognitive aging

Finally, the geroscience perspective also predicts that Study
members with older brainAGE should show cognitive
decline. Consistent with this perspective, Study members
with older brainAGE showed initial signs of cognitive
decline from their childhood 1Q scores to their age-45 1Q
scores (standardized = —0.07, 95% CI = —0.12 to —0.03;
p =0.001; Fig. 3). This decline was also found in cognitive
tests known to be especially sensitive to aging-related
cognitive decline [38] including digit symbol coding
(standardized = —0.10, 95% CI=—0.15 to —0.04; p<
0.001) and memory tests (Rey total learning: standardized
p=-0.12, 95% CI=-0.19 to —0.05; p<0.001; Rey
delayed recall: standardized = —0.08, 95% CI = —0.15 to
—0.01; p =0.028).
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Fig. 3 The associations of
brainAGE with cognitive
functioning and cognitive
decline. Those with younger
age-45 brainAGE had the
highest IQ scores in both
childhood and adulthood. In
addition, cognitive decline was
greatest among those with older
age-45 brainAGE; the slopes
connecting childhood to
adulthood are steeper among
Study members with older
brainAGEs. Sample sizes for
each decile from the lowest to
the highest brainAGE were: 86,
86, 85, 86, 85, 86, 86, 85, 86,
and 86.

110
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3

95

90
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Sensitivity analyses

Sensitivity analyses (Supplementary Table S1) revealed that
brainAGE was associated with adult IQ, cognitive decline
and the pace of aging after controlling for brain volume,
cerebrospinal fluid volume and intracranial volume. These
results suggest that brainAGE measures unique variation in
cognition and biological aging over and above commonly
used brain measures. Correction for multiple comparisons
across all results in Table 2 was done using the false dis-
covery rate. All p values remained significant at p <0.05.

Discussion

Using data from a population-representative longitudinal
birth cohort followed over four decades, we compared two
perspectives of aging (the “geroscience” and “system-
integrity” perspectives) that provide disparate explanations
for cross-sectional associations between older brainAGE
and age-related health outcomes (e.g., ADRD and mortal-
ity). We found evidence to support both perspectives.
Specifically, while Study members with older brainAGE
had lower cognitive ability in adulthood, they also had
poorer cognitive functioning in childhood and poorer brain

childhood

adulthood
Age of IQ Measurement

health already at age 3 years. These findings are consistent
with the system-integrity account of brainAGE as repre-
senting long-standing brain dysfunction present and stable
from early life. However, we also found evidence that
individual differences in brainAGE were associated with
accelerated biological and cognitive aging (e.g., with cog-
nitive decline from childhood to midlife). Together, these
findings suggest that an older midlife brainAGE is gener-
ated by early individual differences (i.e., system-integrity
perspective) as well as by accelerated aging that is
accumulated throughout a lifetime (i.e., geroscience
perspective).

In addition to comparing perspectives of aging, we were
able to investigate the relationship between brainAGE and
aging of the rest of the body. By quantifying each person’s
personal pace of biological aging, we were able to
demonstrate that Study members with older brainAGE had
experienced at least two decades of accelerated age-related
degradation of the body. Consistent with the “common-
cause hypothesis” of aging [28, 39, 40], this finding pro-
vides evidence that the brain is not exempt from the
biological aging that causes a generalized deterioration of
organ systems across the body.

A striking finding in research about aging and mortality
is that measures of health taken very early in life can predict

SPRINGER NATURE
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;f:i'r'f AZGEAZStO:‘Sa‘y‘ZZrSS})f;;Zi‘;eS Variable n Standardized § (95% CI) P value
of cognitive fL}nctioning, . Adulthood cognitive function, age 45
accelerated aging, and cognitive
decline. 1Q 867 —0.20 (—0.27 to —0.14) <0.001
Processing speed 867 —0.12 (—0.19 to —0.05) <0.001
Working memory 864 —0.15 (—=0.22 to —0.09) <0.001
Perceptual reasoning 867 —0.17 (-0.23 to —0.10) <0.001
Verbal comprehension 857 —0.19 (—0.26 to —0.13) <0.001
RAVL memory test (total score) 867 —0.14 (—0.21 to —0.07) <0.001
RAVL memory test (recall score) 863 —0.09 (—0.16 to —0.02) 0.012
Digit Symbol Coding 867 —0.15 (—0.22 to —0.08) <0.001
Childhood cognitive function
1Q 859 —0.18 (—0.24 to —0.11) <0.001
Performance 1Q 847 —0.14 (—0.21 to —0.08) <0.001
Verbal 1Q 847 —0.17 (—=0.24 to —0.11) <0.001
RAVL memory test (total score)? 644 —0.13 (—0.20 to —0.05) <0.001
RAVL memory test (recall score)® 643 —0.11 (—0.18 to —0.04) 0.003
Digit symbol coding 847 —0.09 (—0.15 to —0.02) 0.014
Early childhood neurocognitive status
Age-3 Brain Health 867 —0.12 (=0.19 to —0.05) <0.001
Biological aging
Accelerated pace of aging (age 26-45) 868 0.22 (0.15 to 0.28) <0.001
Facial age (age 45) 868 0.15 (0.09 to 0.22) <0.001
Accelerated facial aging (age 38-45) 864 0.07 (0.02 to 0.12) 0.009
Cognitive decline (childhood to age 45)
1Q 857 —0.07 (—=0.12 to —0.03) 0.001
RAVL memory test (total score)* 644 —0.12 (—0.19 to —0.05) 0.001
RAVL memory test (recall score)® 643 —0.08 (—0.15 to —0.01) 0.028
Digit symbol coding 804 —0.10 (—0.15 to —0.04) <0.001

RAVL Rey Auditory Verbal Learning

All p values remained significant (p <0.05) after adjustment for multiple comparisons across all tests using

the false discovery rate

Only children attending the research unit were administered the RAVL, resulting in a smaller sample size
with data on this neuropsychological test

the likelihood of death and disease much later in life [23].
For example, individuals with low birthweight are at an
increased risk for disease and early mortality [29, 41].
Consistent with these findings we found that brainAGE at
age 45 can, in part, be predicted from cognitive function
measured in middle childhood and from poor brain health
measured at age 3 years. These findings suggest that
accelerated brain deterioration and aging, indexed here with
brainAGE, may be one mechanism through which indivi-
dual differences in early system integrity lead to later
morbidity and mortality [42, 43]. Further research is needed
to test whether brainAGE mediates the relationship between
early deficits in system integrity and later age-related
disease.

Our study is not without limitations. First, we do not
have childhood brain-imaging data that would allow us to
directly link accelerated biological aging to accelerated

SPRINGER NATURE

brain aging in the same individuals over time. MRI was not
performed in child cohorts during the 1970’s. Previous
studies have found that longitudinal changes in brainAGE
track changes in symptom severity in schizophrenia and
cognitive decline in older adults with ADRD [16, 44] but it
is not yet known if changes in brainAGE track with cog-
nitive decline earlier in the life course.

Second, like other studies of brainAGE of which we are
aware, the brainAGE metric used here was trained on
structural MRI data from a large cross-sectional dataset of
individuals across a broad age range [13]. While we have
demonstrated that this approach can measure signs of
accelerated aging in the brain, it is nevertheless limited in
two major ways: (1) brainAGE is based on cross-sectional
comparisons of individuals of different ages, which do not
distinguish cohort effects (cohort differences in exposures)
from developmental changes [17, 18]. As a result brainAGE
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may be less sensitive to interventions that modify aging
processes. (2) BrainAGE incorporates only information
from TI1-weighted structural scans. Diffusion-weighted
imaging, fluid-attenuated inversion recovery, and func-
tional imaging are known to change with advancing age and
are linked with aging-related brain disease [45—47]. Inte-
grating these additional data types into brainAGE algo-
rithms may produce biomarkers more predictive of
pathogenic brain aging. Optimal brainAGE biomarkers for
testing interventions to slow brain aging should be devel-
oped from longitudinal, multimodal MRI data that measure
accelerated, within-subject brain aging.

While many of the effect sizes observed here are modest,
they are based on brainAGE models that do not yet include
the rich and more informative data that will become avail-
able from longitudinal, multimodal MRI datasets collected
across the lifespan [48]. It is not unreasonable to expect
incremental improvements in predictive utility and clinical
applicability as research on brainAGE expands as has
occurred with genome-wide association studies, which have
continued to improve the predictive utility of genomic
markers with increasing sample sizes especially through
data sharing [49].

Prevention of ADRD is a pressing public health
priority due to our rapidly aging population and the lack of
effective treatments for ADRD in old age [50, 51]. For
prevention to be successful, reliable measures are needed of
subclinical changes in accelerated brain aging that occur in
midlife, decades before the onset of clinically relevant
symptoms [3, 52]. Such measures would allow identifica-
tion of modifiable risk factors, novel treatment targets, and
an improved ability to evaluate the effectiveness of pre-
ventive interventions. Here we have shown that midlife
brainAGE is associated with individual differences in the
pace of biological and cognitive aging, suggesting that
brainAGE holds promise as a surrogate biomarker for
these purposes, and brainAGE measures should continue to
be refined. Importantly, we provide evidence that brainAGE
is a reliable measure in midlife that demonstrates incre-
mental validity over commonly used brain measures and is
indicative of accelerated aging as well as of early system-
integrity deficits that may predispose the brain to late-life
disease.
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