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Abstract

Background: Single-cell transcriptomics is rapidly advancing our understanding of the cellular composition of
complex tissues and organisms. A major limitation in most analysis pipelines is the reliance on manual annotations
to determine cell identities, which are time-consuming and irreproducible. The exponential growth in the number
of cells and samples has prompted the adaptation and development of supervised classification methods for
automatic cell identification.

Results: Here, we benchmarked 22 classification methods that automatically assign cell identities including single-
cell-specific and general-purpose classifiers. The performance of the methods is evaluated using 27 publicly available
single-cell RNA sequencing datasets of different sizes, technologies, species, and levels of complexity. We use 2
experimental setups to evaluate the performance of each method for within dataset predictions (intra-dataset)
and across datasets (inter-dataset) based on accuracy, percentage of unclassified cells, and computation time.
We further evaluate the methods’ sensitivity to the input features, number of cells per population, and their performance
across different annotation levels and datasets. We find that most classifiers perform well on a variety of datasets with
decreased accuracy for complex datasets with overlapping classes or deep annotations. The general-purpose support
vector machine classifier has overall the best performance across the different experiments.

Conclusions: We present a comprehensive evaluation of automatic cell identification methods for single-cell RNA
sequencing data. All the code used for the evaluation is available on GitHub (https://github.com/tabdelaal/scRNAseq_
Benchmark). Additionally, we provide a Snakemake workflow to facilitate the benchmarking and to support the
extension of new methods and new datasets.

Keywords: scRNA-seq, Benchmark, Classification, Cell identity

Background
Single-cell RNA sequencing (scRNA-seq) provides unpre-

cedented opportunities to identify and characterize the

cellular composition of complex tissues. Rapid and con-

tinuous technological advances over the past decade have

allowed scRNA-seq technologies to scale to thousands of

cells per experiment [1]. A common analysis step in ana-

lyzing single-cell data involves the identification of cell

populations presented in a given dataset. This task is

typically solved by unsupervised clustering of cells into

groups based on the similarity of their gene expression

profiles, followed by cell population annotation by assign-

ing labels to each cluster. This approach proved very valu-

able in identifying novel cell populations and resulted in

cellular maps of entire cell lineages, organs, and even

whole organisms [2–7]. However, the annotation step is

cumbersome and time-consuming as it involves manual

inspection of cluster-specific marker genes. Additionally,

manual annotations, which are often not based on stan-

dardized ontologies of cell labels, are not reproducible

across different experiments within and across research

groups. These caveats become even more pronounced as

the number of cells and samples increases, preventing fast

and reproducible annotations.
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To overcome these challenges, a growing number of clas-

sification approaches are being adapted to automatically

label cells in scRNA-seq experiments. scRNA-seq classifica-

tion methods predict the identity of each cell by learning

these identities from annotated training data (e.g., a refer-

ence atlas). scRNA-seq classification methods are relatively

new compared to the plethora of methods addressing

different computational aspects of single-cell analysis (such

as normalization, clustering, and trajectory inference).

However, the number of classification methods is rapidly

growing to address the aforementioned challenges [8, 9].

While all scRNA-seq classification methods share a com-

mon goal, i.e., accurate annotation of cells, they differ in

terms of their underlying algorithms and the incorporation

of prior knowledge (e.g., cell type marker gene tables).

In contrast to the extensive evaluations of clustering,

differential expression, and trajectory inference methods

[10–12], there is currently one single attempt comparing

methods to assign cell type labels to cell clusters [13].

The lack of a comprehensive comparison of scRNA-seq

classification methods leaves users without indications

as to which classification method best fits their problem.

More importantly, a proper assessment of the existing

approaches in comparison with the baseline methods

can greatly benefit new developments in the field and

prevent unnecessary complexity.

Here, we benchmarked 22 classification methods to

automatically assign cell identities including single-cell-

specific and general-purpose classifiers. The methods were

evaluated using 27 publicly available single-cell RNA se-

quencing datasets of different sizes, technologies, species,

and complexity. The performance of the methods was eval-

uated based on their accuracy, percentage of unclassified

cells, and computation time. We performed several experi-

ments to cover different levels of challenge in the classifica-

tion task and to test specific features or tasks such as the

feature selection, scalability, and rejection experiments. We

evaluated the classification performance through two ex-

perimental setups: (1) intra-dataset in which we applied 5-

fold cross-validation within each dataset and (2) inter-

dataset involving across datasets comparisons. The inter-

dataset comparison is more realistic and more practical,

where a reference dataset (e.g., atlas) is used to train a clas-

sifier which can then be applied to identify cells in new un-

annotated datasets. However, in order to perform well

across datasets, the classifier should also perform well

using the intra-dataset setup on the reference dataset. The

intra-dataset experiments, albeit artificial, provide an ideal

scenario to evaluate different aspects of the classification

process (e.g., feature selection, scalability, and different an-

notation levels), regardless of the technical and biological

variations across datasets. In general, most classifiers per-

form well across all datasets in both experimental setups

(inter- and intra-dataset), including the general-purpose

classifiers. In our experiments, incorporating prior know-

ledge in the form of marker genes does not improve the

performance. We observed large variation across different

methods in the computation time and classification per-

formance in response to changing the input features and

the number of cells. Our results highlight the general-

purpose support vector machine (SVM) classifier as the

best performer overall.

Results
Benchmarking automatic cell identification methods

(intra-dataset evaluation)

We benchmarked the performance and computation

time of all 22 classifiers (Table 1) across 11 datasets used

for intra-dataset evaluation (Table 2). Classifiers were di-

vided into two categories: (1) supervised methods which

require a training dataset labeled with the corresponding

cell populations in order to train the classifier or (2)

prior-knowledge methods, for which either a marker

gene file is required as an input or a pretrained classifier

for specific cell populations is provided.

The datasets used in this study vary in the number of

cells, genes, and cell populations (annotation level), in

order to represent different levels of challenges in the clas-

sification task and to evaluate how each classifier performs

in each case (Table 2). They include relatively typical sized

scRNA-seq datasets (1500–8500 cells), such as the 5 pan-

creatic datasets (Baron Mouse, Baron Human, Muraro,

Segerstolpe, and Xin), which include both mouse and hu-

man pancreatic cells and vary in the sequencing protocol

used. The Allen Mouse Brain (AMB) dataset is used to

evaluate how the classification performance changes when

dealing with different levels of cell population annotation

as the AMB dataset contains three levels of annotations

for each cell (3, 16, or 92 cell populations), denoted as

AMB3, AMB16, and AMB92, respectively. The Tabula

Muris (TM) and Zheng 68K datasets represent relatively

large scRNA-seq datasets (> 50,000 cells) and are used to

assess how well the classifiers scale with large datasets.

For all previous datasets, cell populations were obtained

through clustering. To assess how the classifiers perform

when dealing with sorted populations, we included the

CellBench dataset and the Zheng sorted dataset, repre-

senting sorted populations for lung cancer cell lines and

peripheral blood mononuclear cells (PBMC), respectively.

Including the Zheng sorted and Zheng 68K datasets al-

lows the benchmarking of 4 prior-knowledge classifiers,

since the marker gene files or pretrained classifiers are

available for the 4 classifiers for PBMCs.

All classifiers perform well in intra-dataset experiments

Generally, all classifiers perform well in the intra-dataset

experiments, including the general-purpose classifiers

(Fig. 1). However, Cell-BLAST performs poorly for the
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Baron Mouse and Segerstople pancreatic datasets. Fur-

ther, scVI has low performance on the deeply annotated

datasets TM (55 cell populations) and AMB92 (92 cell

populations), and kNN produces low performance for

the Xin and AMB92 datasets.

For the pancreatic datasets, the best-performing classi-

fiers are SVM, SVMrejection, scPred, scmapcell, scmapclus-

ter, scVI, ACTINN, singleCellNet, LDA, and NMC. SVM is

the only classifier to be in the top five list for all five pan-

creatic datasets, while NMC, for example, appears only in

the top five list for the Xin dataset. The Xin dataset con-

tains only four pancreatic cell types (alpha, beta, delta, and

gamma) making the classification task relatively easy for

all classifiers, including NMC. Considering the median

F1-score alone to judge the classification performance can

be misleading since some classifiers incorporate a rejec-

tion option (e.g., SVMrejection, scmapcell, scPred), by which

a cell is assigned as “unlabeled” if the classifier is not

confident enough. For example, for the Baron Human

dataset, the median F1-score for SVMrejection, scmapcell,

scPred, and SVM is 0.991, 0.984, 0.981, and 0.980, respect-

ively (Fig. 1a). However, SVMrejection, scmapcell, and scPred

assigned 1.5%, 4.2%, and 10.8% of the cells, respectively, as

unlabeled while SVM (without rejection) classified 100%

of the cells with a median F1-score of 0.98 (Fig. 1b). This

shows an overall better performance for SVM and SVMre-

jection, with higher performance and less unlabeled cells.

The CellBench 10X and CEL-Seq2 datasets represent

an easy classification task, where the five sorted lung

cancer cell lines are quite separable [34]. All classifiers

have an almost perfect performance on both CellBench

datasets (median F1-score ≈ 1).

For the TM dataset, the top five performing classifiers

are SVMrejection, SVM, scmapcell, Cell-BLAST, and scPred

with a median F1-score > 0.96, showing that these classi-

fiers can perform well and scale to large scRNA-seq data-

sets with a deep level of annotation. Furthermore,

scmapcell and scPred assigned 9.5% and 17.7% of the cells,

respectively, as unlabeled, which shows a superior per-

formance for SVMrejection and SVM, with a higher median

F1-score and 2.9% and 0% unlabeled cells, respectively.

Performance evaluation across different annotation levels

We used the AMB dataset with its three different levels

of annotations, to evaluate the classifiers’ performance

behavior with an increasing number of smaller cell pop-

ulations within the same dataset. For AMB3, the classifi-

cation task is relatively easy, differentiating between

three major brain cell types (inhibitory neurons, esxcita-

tory neurons, and non-neuronal). All classifiers perform

Table 1 Automatic cell identification methods included in this study

Name Version Language Underlying classifier Prior knowledge Rejection option Reference

Garnett 0.1.4 R Generalized linear model Yes Yes [14]

Moana 0.1.1 Python SVM with linear kernel Yes No [15]

DigitalCellSorter GitHub version: e369a34 Python Voting based on cell type markers Yes No [16]

SCINA 1.1.0 R Bimodal distribution fitting for marker genes Yes No [17]

scVI 0.3.0 Python Neural network No No [18]

Cell-BLAST 0.1.2 Python Cell-to-cell similarity No Yes [19]

ACTINN GitHub version: 563bcc1 Python Neural network No No [20]

LAmbDA GitHub version: 3891d72 Python Random forest No No [21]

scmapcluster 1.5.1 R Nearest median classifier No Yes [22]

scmapcell 1.5.1 R kNN No Yes [22]

scPred 0.0.0.9000 R SVM with radial kernel No Yes [23]

CHETAH 0.99.5 R Correlation to training set No Yes [24]

CaSTLe GitHub version: 258b278 R Random forest No No [25]

SingleR 0.2.2 R Correlation to training set No No [26]

scID 0.0.0.9000 R LDA No Yes [27]

singleCellNet 0.1.0 R Random forest No No [28]

LDA 0.19.2 Python LDA No No [29]

NMC 0.19.2 Python NMC No No [29]

RF 0.19.2 Python RF (50 trees) No No [29]

SVM 0.19.2 Python SVM (linear kernel) No No [29]

SVMrejection 0.19.2 Python SVM (linear kernel) No Yes [29]

kNN 0.19.2 Python kNN (k = 9) No No [29]
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almost perfectly with a median F1-score > 0.99 (Fig. 1a).

For AMB16, the classification task becomes slightly more

challenging and the performance of some classifiers drops,

especially kNN. The top five classifiers are SVMrejection,

scmapcell, scPred, SVM, and ACTINN, where SVMrejection,

scmapcell, and scPred assigned 1.1%, 4.9%, and 8.4% of the

cells as unlabeled, respectively. For the deeply annotated

AMB92 dataset, the performance of all classifiers drops

further, specially for kNN and scVI, where the median F1-

score is 0.130 and zero, respectively. The top five classi-

fiers are SVMrejection, scmapcell, SVM, LDA, and

scmapcluster, with SVMrejection assigning less cells as un-

labeled compared to scmapcell (19.8% vs 41.9%), and once

more, SVMrejection shows improved performance over

scmapcell (median F1-score of 0.981 vs 0.906). These

results show an overall superior performance for general-

purpose classifiers (SVMrejection, SVM, and LDA) compared

to other scRNA-seq-specific classifiers across different

levels of cell population annotation.

Instead of only looking at the median F1-score, we

also evaluated the F1-score per cell population for each

classifier (Additional file 1: Figure S1). We confirmed

previous conclusions that kNN performance drops with

deep annotations which include smaller cell populations

(Additional file 1: Figure S1B-C), and scVI poorly per-

forms on the deeply annotated AMB92 dataset. Add-

itionally, we observed that some cell populations are

much harder to classify compared to other populations.

For example, most classifiers had a low performance on

the Serpinf1 cells in the AMB16 dataset.

Table 2 Overview of the datasets used during this study

Dataset No. of cells No. of genes No. of cell
populations (> 10 cells)

Description Protocol Reference

Baron (Mouse)a 1886 14,861 13 (9) Mouse pancreas inDrop [30]

Baron (Human)a,b 8569 17,499 14 (13) Human pancreas inDrop [30]

Muraroa,b 2122 18,915 9 (8) Human pancreas CEL-Seq2 [31]

Segerstolpea,b 2133 22,757 13 (9) Human pancreas SMART-Seq2 [32]

Xina,b 1449 33,889 4 (4) Human pancreas SMARTer [33]

CellBench 10Xa,b 3803 11,778 5 (5) Mixture of five human
lung cancer cell lines

10X chromium [34]

CellBench CEL-Seq2a,b 570 12,627 5 (5) Mixture of five human
lung cancer cell lines

CEL-Seq2 [34]

TMa 54,865 19,791 55 (55) Whole Mus musculus SMART-Seq2 [6]

AMBa 12,832 42,625 4/22/110 (3/16/92) Primary mouse visual cortex SMART-Seq v4 [35]

Zheng sorteda 20,000 21,952 10 (10) FACS-sorted PBMC 10X CHROMIUM [36]

Zheng 68Ka 65,943 20,387 11 (11) PBMC 10X CHROMIUM [36]

VISpb (Mouse) 12,832 42,625 3/36 (3/34) Primary visual cortex SMART-Seq v4 [35]

ALMb (Mouse) 8758 42,461 3/37 (3/34) Anterior lateral motor area SMART-Seq v4 [35]

MTGb (Human) 14,636 16,161 3/35 (3/34) Middle temporal gyrus SMART-Seq v4 [37]

PbmcBench pbmc1.10Xv2b 6444 33,694 9 (9) PBMC 10X version 2 [38]

PbmcBench pbmc1.10Xv3b 3222 33,694 8 (8) PBMC 10X version 3 [38]

PbmcBench pbmc1.CLb 253 33,694 7 (7) PBMC CEL-Seq2 [38]

PbmcBench pbmc1.DRb 3222 33,694 9 (9) PBMC Drop-Seq [38]

PbmcBench pbmc1.iDb 3222 33,694 7 (7) PBMC inDrop [38]

PbmcBench pbmc1.SM2b 253 33,694 6 (6) PBMC SMART-Seq2 [38]

PbmcBench pbmc1.SWb 3176 33,694 7 (7) PBMC Seq-Well [38]

PbmcBench pbmc2.10Xv2,b 3362 33,694 9 (9) PBMC 10X version 2 [38]

PbmcBench pbmc2.CLb 273 33,694 5 (5) PBMC CEL-Seq2 [38]

PbmcBench pbmc2.DRb 3362 33,694 6 (6) PBMC Drop-Seq [38]

PbmcBench pbmc2.iDb 3362 33,694 9 (9) PBMC inDrop [38]

PbmcBench pbmc2.SM2b 273 33,694 6 (6) PBMC SMART-Seq2 [38]

PbmcBench pbmc2.SWb 551 33,694 4 (4) PBMC Seq-Well [38]
aUsed for intra-dataset evaluation
bUsed for inter-dataset evaluation
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Incorporating prior-knowledge does not improve intra-

dataset performance on PBMC data

For the two PBMC datasets (Zheng 68K and Zheng

sorted), the prior-knowledge classifiers Garnett, Moana,

DigitalCellSorter, and SCINA could be evaluated and

benchmarked with the rest of the classifiers. Although the

best-performing classifier on Zheng 68K is SCINA with a

median F1-score of 0.998, this performance is based only

on 3, out of 11, cell populations (Monocytes, B cells, and

NK cells) for which marker genes are provided. Add-

itional file 1: Table S1 summarizes which PBMC cell popu-

lations can be classified by the prior-knowledge methods.

Interestingly, none of the prior-knowledge methods

showed superior performance compared to other classi-

fiers, despite the advantage these classifiers have over other

classifiers given they are tested on fewer cell populations

due to the limited availability of marker genes. Garnett,

Moana, and DigitalCellSorter could be tested on 7, 7, and

5 cell populations, respectively (Additional file 1: Table S1).

Besides SCINA, the top classifiers for the Zheng 68K data-

set are CaSTLe, ACTINN, singleCellNet, and SVM. SVMre-

jection and Cell-BLAST show high performance, at the

expense of a high rejection rate of 61.8% and 29%,

respectively (Fig. 1). Moreover, scPred failed when tested

on the Zheng 68K dataset. Generally, all classifiers show

relatively lower performance on the Zheng 68K dataset

compared to other datasets, as the Zheng 68K dataset con-

tains 11 immune cell populations which are harder to dif-

ferentiate, particularly the T cell compartment (6 out of 11

cell populations). This difficulty of separating these popula-

tions was previously noted in the original study [36]. Also,

the confusion matrices for CaSTLe, ACTINN, singleCell-

Net, and SVM clearly indicate the high similarity between

cell populations, such as (1) monocytes with dendritic cells,

(2) the 2 CD8+ T populations, and (3) the 4 CD4+ T popu-

lations (Additional file 1: Figure S2).

The classification of the Zheng sorted dataset is rela-

tively easier compared to the Zheng 68K dataset, as al-

most all classifiers show improved performance (Fig. 1),

with the exception that LAmbDA failed while being

tested on the Zheng sorted dataset. The prior-knowledge

methods show high performance (median F1-score >

0.93), which is still comparable to other classifiers such

as SVMrejection, scVI, scPred, and SVM. Yet, the super-

vised classifiers do not require any marker genes, and

they can predict more (all) cell populations.

A B

Fig. 1 Performance comparison of supervised classifiers for cell identification using different scRNA-seq datasets. Heatmap of the a median
F1-scores and b percentage of unlabeled cells across all cell populations per classifier (rows) per dataset (columns). Gray boxes indicate that the
corresponding method could not be tested on the corresponding dataset. Classifiers are ordered based on the mean of the median F1-scores.
Asterisk (*) indicates that the prior-knowledge classifiers, SCINA, DigitalCellSorter, GarnettCV, Garnettpretrained, and Moana, could not be tested on all
cell populations of the PBMC datasets. SCINADE, GarnettDE, and DigitalCellSorterDE are versions of SCINA, GarnettCV, and DigitalCellSorter; the marker
genes are defined using differential expression from the training data. Different numbers of marker genes, 5, 10, 15, and 20, were tested, and the
best result is shown here. SCINA, Garnett, and DigitalCellSorter produced the best result for the Zheng sorted dataset using 20, 15, and 5 markers,
and for the Zheng 68K dataset using 10, 5, and 5 markers, respectively
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The performance of prior-knowledge classifiers strongly

depends on the selected marker genes

Some prior-knowledge classifiers, SCINA, DigitalCellSor-

ter, and GarnettCV, used marker genes to classify the

cells. For the PBMC datasets, the number of marker

genes per cell population varies across classifiers (2–161

markers) and the marker genes show very little overlap.

Only one B cell marker gene, CD79A, is shared by all

classifiers while none of the marker genes for the other

cell populations is shared by the three classifiers. We an-

alyzed the effect of the number of marker genes, mean

expression, dropout rate, and the specificity of each

marker gene (beta score, see the “Methods” section) on

the performance of the classifier (Additional file 1:

Figure S3). The dropout rate and marker specificity (beta-

score) are strongly correlated with the median F1-score,

highlighting that the performance does not only depend

on biological knowledge, but also on technical factors.

The difference between the marker genes used by each

method underscores the challenge of marker gene selec-

tion, especially for smaller cell populations. Moreover,

public databases of cell type markers (e.g., PanglaoDB [39]

and CellMarker [40]) often provide different markers for

the same population. For example, CellMarker provides

33 marker genes for B cells, while PanglaoDB provides

110 markers, with only 11 marker genes overlap between

the two databases.

Given the differences between “expert-defined” markers

and the correlation of classification performance and tech-

nical dataset-specific features (e.g., dropout rate), we

tested if the performance of prior-knowledge methods can

be improved by automatically selecting marker genes

based on differential expression. Through the cross-

validation scheme, we used the training folds to select the

marker genes of each cell population based on differential

expression (see the “Methods” section) and later used

these markers to evaluate the classifiers’ performance on

the testing fold. We tested this approach on the two

PBMC datasets, Zheng sorted and Zheng 68K for different

numbers of marker genes (5, 10, 15, and 20 markers). In

Fig. 1, the best result across the number of markers for

SCINADE, GarnettDE, and DigitalCellSorterDE are shown.

The median F1-score obtained using the differential

expression-defined markers is significantly lower com-

pared to the original versions of classifiers using the

markers defined by the authors. This lower performance

is in part due to the low performance on challenging

populations, such as subpopulations of CD4+ and CD8+

T cell populations (F1-score ≤ 0.68) (Additional file 1:

Figure S4). These challenging populations are not identi-

fied by the original classifiers since the markers provided

by the authors only considered annotations at a higher

level (Additional file 1: Table S1). For example, the me-

dian F1-score of SCINADE on Zheng sorted is 0.38,

compared to a median F1-score of 1.0 for SCINA (using

the original markers defined by the authors). However,

SCINA only considers three cell populations: CD14+

monocytes, CD56+ NK cells, and CD19+ B cells. If we

only consider these cell populations for SCINADE, this

results in a median F1-score of 0.95.

We observed that the optimal number of marker genes

varies per classifier and dataset. For the Zheng sorted

dataset, the optimal number of markers is 5, 15, and 20

for DigitalCellSorterDE, GarnettDE, and SCINADE, re-

spectively, while for Zheng 68K, this is 5, 5, and 10. All

together, these results illustrate the dependence of the

classification performance on the careful selection of

marker genes which is evidently a challenging task.

Classification performance depends on dataset complexity

A major aspect affecting the classification performance is

the complexity of the dataset at hand. We described the

complexity of each dataset in terms of the pairwise simi-

larity between cell populations (see the “Methods” section)

and compared the complexity to the performance of the

classifiers and the number of cell populations in a dataset

(Fig. 2). When the complexity and/or the number of cell

populations of the dataset increases, the performance gen-

erally decreases. The performance of all classifiers is

relatively low on the Zheng 68K dataset, which can be

explained by the high pairwise correlations between the

mean expression profiles of each cell population

(Additional file 1: Figure S5). These correlations are sig-

nificantly lower for the TM and AMB92 datasets, justify-

ing the higher performance of the classifiers on these two

datasets (Additional file 1: Figures S6–S7). While both

TM and AMB92 have more cell populations (55 and 92,

respectively) compared to Zheng 68K (11 populations),

these populations are less correlated to one another, mak-

ing the task easier for all the classifiers.

Performance evaluation across datasets (inter-dataset

evaluation)

While evaluating the classification performance within a

dataset (intra-dataset) is important, the realistic scenario in

which a classifier is useful requires cross-dataset (i.e., inter-

dataset) classification. We used 22 datasets (Table 2) to test

the classifiers’ ability to predict cell identities in a dataset

that was not used for training. First, we tested the classifiers’

performance across different sequencing protocols, applied

to the same samples within the same lab using the two Cell-

Bench datasets. We evaluated the classification performance

when training on one protocol and testing on the other.

Similar to the intra-dataset evaluation result, all classifiers

performed well in this case (Additional file 1: Figure S8).

Second, we tested the classification performance on

the PbmcBench datasets, which represent a more exten-

sive protocol comparison. PbmcBench consists of 2
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samples (pbmc1 and pbmc2), sequenced using 7 differ-

ent protocols (Table 2) with the exception that 10Xv3

was not applied to the pbmc2 sample. We used the

pbmc1 datasets to evaluate the classification perform-

ance of all pairwise train-test combinations between the

7 protocols (42 experiments, see the “Methods” section).

Moreover, we extended the evaluation to include com-

parisons across different samples for the same protocol,

using pbmc1 and pbmc2 (6 experiments, see the

“Methods” section). All 48 experiment results are sum-

marized in Fig. 3. Overall, several classifiers performed

well including SCINADE using 20 marker genes, single-

CellNet, scmapcell, scID, and SVM, with an average me-

dian F1-score > 0.75 across all 48 experiments (Fig. 3a,

Additional file 1: Figure S9A). SCINADE, GarnettDE, and

DigitalCellSorterDE were tested using 5, 10, 15, and 20

marker genes; Fig. 3a shows the best result for each clas-

sifier, where SCINADE and GarnettDE performed best

using 20 and 5 marker genes, respectively, while Digital-

CellSorterDE had a median F1-score of 0 during all ex-

periments using all different numbers of marker genes.

DigitalCellSorterDE could only identify B cells in the test

sets, usually with an F1-score between 0.8 and 1.0, while

the F1-score for all other cell populations was 0.

We also tested the prior-knowledge classifiers on all 13

PbmcBench datasets. The prior-knowledge classifiers

showed lower performance compared to other classifiers

(average median F1-score < 0.6), with the exception of

SCINA which was only tested on three cell populations

(Fig. 3b, Additional file 1: Figure S9B). These results are in

line with our previous conclusions from the Zheng sorted

and Zheng 68K datasets in the intra-dataset evaluation.

Comparing the performance of the classifiers across the

different protocols, we observed a higher performance for

all classifiers for specific pairs of protocols. For example,

all classifiers performed well when trained on 10Xv2 and

A

B

Fig. 2 Complexity of the datasets compared to the performance of the classifiers. a Boxplots of the median F1-scores of all classifiers for each
dataset used during the intra-dataset evaluation. b Barplots describing the complexity of the datasets (see the “Methods” section). Datasets are
ordered based on complexity. Box- and bar plots are colored according to the number of cell populations in each dataset
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tested on 10Xv3, and vice versa. On the other hand, other

pairs of protocols had a good performance only in one dir-

ection, training on Seq-Well produced good predictions

on 10Xv3, but not the other way around. Compared to all

other protocols, the performance of all classifiers was low

when they were either trained or tested on Smart-seq2

data. This can, in part, be due to the fact that Smart-seq2

data does not contain unique molecular identifier (UMI),

in contrast to all other protocols.

We also tested the classification performance using the

3 brain datasets, VISp, ALM, and MTG (Table 2), which

allowed us to compare the performances across species

(mouse and human) as well as single-cell RNA-seq (used

in VISp and ALM) vs single-nucleus RNA-seq (used in

MTG). We tested all possible train-test combinations for

both levels of annotation, three major brain cell types

(inhibitory neurons, excitatory neurons, and non-neuronal

cells), and the deeper annotation level with 34 cell popula-

tions (18 experiments, see the “Methods” section). Predic-

tion of the three major cell types was easy, where almost

all classifiers showed high performance (Fig. 4a) with

some exceptions. For example, scPred failed the classifica-

tion task completely when testing on the MTG dataset,

producing 100% unlabeled cells (Additional file 1: Figure

S10A). Predicting the 34 cell populations turned out to be

a more challenging task, especially when the MTG human

dataset is included either as training or testing data, result-

ing in significantly lower performance across all classifiers

(Fig. 4b). Across all nine experiments at the deeper anno-

tation, the top-performing classifiers were SVM, ACTINN,

singleCellNet, SingleR, and LAmbDA, with almost 0% un-

labeled cells (Additional file 1: Figure S10B).

A

B

Fig. 3 Classification performance across the PbmcBench datasets. a Heatmap showing the median F1-scores of the supervised classifiers for all
train-test pairwise combination across different protocols. The training set is indicated in the gray box on top of the heatmap, and the test set is
indicated using the column labels below. Results shown to the left of the red line represent the comparison between different protocols using
sample pbmc1. Results shown to the right of the red line represent the comparison between different samples using the same protocol, with
pbmc 1 used for training and pbmc2 used for testing. Boxplots on the right side of the heatmap summarize the performance of each classifier across
all experiments. The mean of the median F1-scores, also used to order the classifiers, is indicated in the boxplots using a red dot. Boxplots underneath
the heatmap summarize the performance of the classifiers per experiment. For SCINADE, GarnettDE, and DigitalCellSorterDE, different numbers of marker
genes were tested. Only the best result is shown here. b Median F1-score of the prior-knowledge classifiers on both samples of the different protocols.
The protocol is indicated in the gray box on top of the heatmap, and the sample is indicated with the labels below. Classifiers are ordered based on
their mean performance across all datasets
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Finally, to evaluate the classification performance across

different protocols and different labs, we used the four hu-

man pancreatic datasets: Baron Human, Muraro, Segersto-

ple, and Xin (see the “Methods” section, Additional file 1:

Table S2). We tested four combinations by training on

three datasets and test on one dataset, in which case the

classification performance can be affected by batch differ-

ences between the datasets. We evaluated the performance

of the classifiers when trained using the original data as

well as aligned data using the mutual nearest neighbor

(MNN) method [41]. Additional file 1: Figure S11 shows

UMAPs [42] of the combined dataset before and after

alignment, demonstrating better grouping of pancreatic

cell types after alignment.

For the original (unaligned) data, the best-performing

classifiers across all four experiments are scVI, SVM,

ACTINN, scmapcell, and SingleR (Fig. 5a, Additional file 1:

Figure S12A). For the aligned data, the best-performing

classifiers are kNN, SVMrejection, singleCellNet, SVM, and

NMC (Fig. 5b, Additional file 1: Figure S12B). Some classi-

fiers benefit from aligning datasets such as SVMrejection,

kNN, NMC, and singleCellNet, resulting in higher median

F1-scores (Fig. 5). On the other hand, some other classi-

fiers failed the classification task completely, such as

scmapcell which labels all cells as unlabeled. Some other

classifiers failed to run over the aligned datasets, such as

ACTINN, scVI, Cell-BLAST, scID, scmapcluster, and

scPred. These classifiers work only with positive gene ex-

pression data, while the aligned datasets contain positive

and negative gene expression values.

Rejection option evaluation

Classifiers developed for scRNA-seq data often incorpor-

ate a rejection option to identify cell populations in the

test set that were not seen during training. These popula-

tions cannot be predicted correctly and therefore should

remain unassigned. To test whether the classifiers indeed

leave these unseen populations unlabeled, we applied two

different experiments using negative controls of different

tissues and using unseen populations of the same tissue.

First, the classifiers were trained on a data set from

one tissue (e.g., pancreas) and used to predict cell popu-

lations of a completely different tissue (e.g., brain) [22].

The methods should thus reject all (100%) of the cells in

the test dataset. We carried out four different negative

control experiments (see the “Methods” section, Fig. 6a).

scmapcluster and scPred have an almost perfect score for

all four combinations, rejecting close 100% of the cells.

Other top-performing methods for this task, SVMrejection

and scmapcell, failed when trained on mouse pancreatic

data and tested on mouse brain data. All labeled cells of

the AMB16 dataset are predicted to be beta cells in this

case. The prior-knowledge classifiers, SCINA, Garnettpre-

trained, and DigitalCellSorter, could only be tested on the

Baron Human pancreatic dataset. GarnettCV could, on

top of that, also be trained on the Baron Human

dataset and tested on the Zheng 68K dataset. During

the training phase, GarnettCV tries to find representa-

tive cells for the cell populations described in the

marker gene file. Being trained on Baron Human

using the PBMC marker gene file, it should not be

able to find any representatives, and therefore, all

cells in the Zheng 68K dataset should be unassigned.

Surprisingly, GarnettCV still finds representatives for

PBMC cells in the pancreatic data, and thus, the cells

in the test set are labeled. However, being trained on

the PBMC dataset and tested on the pancreatic data-

set, it does have a perfect performance.

A B

Fig. 4 Classification performance across brain datasets. Heatmaps show the median F1-scores of the supervised classifiers when tested on a

major lineage annotation with three cell populations and b deeper level of annotation with 34 cell populations. The training sets are indicated
using the column labels on top of the heatmap. The test set is indicated in the gray box. In each heatmap, the classifiers are ordered based on
their mean performance across all experiments
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A B

Fig. 5 Classification performance across pancreatic datasets. Heatmaps showing the median F1-score for each classifier for the a unaligned and b

aligned datasets. The column labels indicate which of the four datasets was used as a test set, in which case the other three datasets were used
as training. Gray boxes indicate that the corresponding method could not be tested on the corresponding dataset. In each heatmap, the classifiers are
ordered based on their mean performance across all experiments

A B

Fig. 6 Performance of the classifiers during the rejection experiments. a Percentage of unlabeled cells during the negative control experiment for
all the classifiers with a rejection option. The prior-knowledge classifiers could not be tested on all datasets, and this is indicated with a gray box.
The species of the dataset is indicated in the gray box on top. Column labels indicate which datasets are used for training and testing. b Percentage of
unlabeled cells for all classifiers with a rejection option when a cell population was removed from the training set. Column labels indicate which cell
population was removed. This cell population was used as a test set. In both a and b, the classifiers are sorted based on their mean performance
across all experiments
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To test the rejection option in a more realistic and

challenging scenario, we trained the classifiers on some

cell populations from one dataset and used the held out

cell populations in the test set (see the “Methods” sec-

tion). Since the cell populations in the test set were not

seen during training, they should remain unlabeled.

Here, the difficulty of the task was gradually increased

(Additional file 1: Table S3). First, all the T cells were re-

moved from the training set. Next, only the CD4+ T

cells were removed. Finally, only CD4+/CD45RO+ mem-

ory T cells, a subpopulation of the CD4+ T cells, were

removed. The top-performing methods for this task are

scmapcell, scPred, scID, SVMrejection, and SCINA (Fig. 6b).

We expected that rejecting T cells would be a relatively

easy task as they are quite distinct from all other cell

populations in the dataset. It should thus be comparable

to the negative control experiment. Rejecting CD4+/

CD45RO+ memory T cells, on the other hand, would be

more difficult as they could easily be confused with all

other subpopulations of CD4+ T cells. Surprisingly, al-

most all classifiers, except for scID and scmapcluster,

show the opposite.

To better understand this unexpected performance, we

analyzed the labels assigned by SVMrejection. In the first

task (T cells removed from the training set), SVMrejection

labels almost all T cells as B cells. This can be explained

by the fact that SVMrejection, and most classifiers for that

matter, relies on the classification posterior probabilities

to assign labels but ignores the actual similarity between

each cell and the assigned population. In task 2 (CD4+ T

cells were removed), there were two subpopulations of

CD8+ T cells in the training set. In that case, two cell pop-

ulations are equally similar to the cells in the test set,

resulting in low posterior probabilities for both classes

and thus the cells in the test set remain unlabeled. If one

of these CD8+ T cell populations was removed from the

training set, only 10.53% instead of 75.57% of the CD4+ T

cells were assigned as unlabeled by SVMrejection. All to-

gether, our results indicate that despite the importance of

incorporating a rejection option in cell identity classifiers,

the implementation of this rejection option remains

challenging.

Performance sensitivity to the input features

During the intra-datasets cross-validation experiment

described earlier, we used all features (genes) as input to

the classifiers. However, some classifiers suffer from

overtraining when too many features are used. There-

fore, we tested the effect of feature selection on the per-

formance of the classifiers. While different strategies for

feature selection in scRNA-seq classification experiments

exist, selecting genes with a higher number of dropouts

compared to the expected number of dropouts has been

shown to outperform other methods [22, 43]. We

selected subsets of features from the TM dataset using

the dropout method. In the experiments, we used the

top 100, 200, 500, 1000, 2000, 5000, and 19,791 (all)

genes. Some classifiers include a built-in feature selec-

tion method which is used by default. To ensure that all

methods use the same set of features, the built-in feature

selection was turned off during these experiments.

Some methods are clearly overtrained when the number

of features increases (Fig. 7a). For example, scmapcell shows

the highest median F1-score when using less features, and

the performance drops when the number of features in-

creases. On the other hand, the performance of other classi-

fiers, such as SVM, keeps improving when the number of

features increases. These results indicate that the optimal

number of features is different for each classifier.

Looking at the median F1-score, there are several

methods with a high maximal performance. Cell-BLAST,

ACTINN, scmapcell, scPred, SVMrejection, and SVM all have

a median F1-score higher than 0.97 for one or more of the

feature sets. Some of these well-performing methods,

however, leave many cells unlabeled. scmapcell and

scPred, for instance, yield a maximum median F1-score of

0.976 and 0.982, respectively, but 10.7% and 15.1% of the

cells are assigned as unlabeled (Fig. 7b). On the other

hand, SVMrejection has the highest median F1-score (0.991)

overall with only 2.9% unlabeled. Of the top-performing

classifiers, only ACTINN and SVM label all the cells.

Overall SVM shows the third highest performance with a

score of 0.979.

Scalability: performance sensitivity to the number of cells

scRNA-seq datasets vary significantly across studies in

terms of the number of cells analyzed. To test the influ-

ence of the size of the dataset on the performance of the

classifier, we downsampled the TM dataset in a stratified

way (i.e., preserving population frequencies) to 1, 5, 10,

20, 50, and 100% of the original number of 45,469 cells

(see the “Methods” section) and compared the perform-

ance of the classifiers (Fig. 7c, d). Using less than 500 cells

in the dataset, most classifiers have a relatively high per-

formance. Only scID, LAmbDA, CaSTLe, and Cell-BLAST

have a median F1-score below 0.85. Surprisingly, SVMrejec-

tion has almost the same median F1-score when using 1%

of the data as when using all data (0.993 and 0.994). It

must be noted here, however, that the percentage of un-

labeled cells decreases significantly (from 28.9% to 1.3%).

Overall, the performance of all classifiers stabilized when

tested on ≥ 20% (9099 cells) of the original data.

Running time evaluation

To compare the runtimes of the classification methods and

see how they scale when the number of cells increases, we

compared the number of cells in each dataset with the

computation time of the classifiers (Additional file 1: Figure
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S13). Overall, big differences in the computation time can

be observed when comparing the different methods. Sin-

gleR showed the highest computation time overall. Running

SingleR on the Zheng 68K dataset took more than 39 h,

while scmapcluster was finished within 10 s on this dataset.

Some of the methods have a high runtime for the small

datasets. On the smallest dataset, Xin, all classifiers have a

computation time < 5min, with most classifiers finishing

within 60 s. Cell-BLAST, however, takes more than 75min.

In general, all methods show an increase in computation

time when the number of cells increases. However, when

comparing the second largest (TM) and the largest (Zheng

68K) datasets, not all methods show an increase in compu-

tation time. Despite the increase in the number of cells be-

tween the two datasets, CaSTLe, CHETAH, and SingleR

have a decreasing computation time. A possible explanation

could be that the runtime of these methods also depends

on the number of genes or the number of cell populations

in the dataset. To evaluate the run time of the methods

properly, we therefore investigated the effect of the number

of cells, features, and cell populations separately (Fig. 7e–g).

To assess the effect of the number of genes on the com-

putation time, we compared the computation time of the

methods during the feature selection experiment (Fig. 7e).

Most methods scale linearly with the number of genes.

However, LDA does not scale very well when the number

of genes increases. If the number of features is higher than

the number of cells, the complexity of LDA is O(g^3),

where g is the number of genes [44].

The effect of the number of cells on the timing showed

that all methods increase in computation time when the

number of cells increases (Fig. 7f). The differences in

runtime on the largest dataset are larger. scmapcluster, for

instance, takes 5 s to finish, while Cell-BLAST takes more

than 11 h.

Finally, to evaluate the effect of the number of cell

populations, the runtime of the methods on the AMB3,

AMB16, and AMB92 datasets was compared (Fig. 7g).

For most methods, this shows an increase in runtime

when the number of cell populations increases, specially

singleCellNet. For other methods, such as ACTINN and

scmapcell, the runtime remains constant. Five classifiers,

scmapcell, scmapcluster, SVM, RF, and NMC, have a

computation time below 6 min on all the datasets.

Discussion

In this study, we evaluated the performance of 22 different

methods for automatic cell identification using 27 scRNA-

seq datasets. We performed several experiments to cover

different levels of challenges in the classification task and

to test specific aspects of the classifiers such as the feature

selection, scalability, and rejection experiments. We

A B C

E F G

D

Fig. 7 Computation time evaluation across different numbers of features, cells, and annotation levels. Line plots show a the median F1-score, b
percentage of unlabeled cells, and e computation time of each classifier applied to the TM dataset with the top 100, 200, 500, 1000, 2000, 5000,
and 19,791 (all) genes as input feature sets. Genes were ranked based on dropout-based feature selection. c The median F1-score, d percentage
of unlabeled cells, and f computation time of each classifier applied to the downsampled TM datasets containing 463, 2280, 4553, 9099, 22,737,
and 45,469 (all) cells. g The computation time of each classifier is plotted against the number of cell populations. Note that the y-axis is 100^x
scaled in a and c and log-scaled in e–g. The x-axis is log-scaled in a–f
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summarize our findings across the different experiments

(Fig. 8) and provide a detailed summary of which dataset

was used for each experiment (Additional file 1: Table S4).

This overview can be used as a user guide to choose the

most appropriate classifier depending on the experimental

setup at hand. Overall, several classifiers performed accur-

ately across different datasets and experiments, particu-

larly SVMrejection, SVM, singleCellNet, scmapcell, scPred,

ACTINN, and scVI. We observed relatively lower perform-

ance for the inter-dataset setup, likely due to the technical

and biological differences between the datasets, compared

to the intra-dataset setup. SVMrejection, SVM, and single-

CellNet performed well for both setups, while scPred and

scmapcell performed better in the intra-dataset setup, and

scVI and ACTINN had a better performance in the inter-

dataset setup (Fig. 8). Of note, we evaluated all classifiers

using the default settings. While adjusting these settings

for a specific dataset might improve the performances, it

increases the risk of overtraining.

Considering all three evaluation metrics (median F1-

score, percentage of unlabeled cells, and computation time),

SVMrejection and SVM are overall the best-performing classi-

fiers for the scRNA-seq datasets used. Although SVM has a

shorter computation time, the high accuracy of the rejection

option of SVMrejection, which allows flagging new cells and

assigning them as unlabeled, results in an improved per-

formance compared to SVM. Our results show that SVMre-

jection and SVM scale well to large datasets as well as deep

annotation levels. In addition, they did not suffer from the

large number of features (genes) present in the data, produ-

cing the highest performance on the TM dataset using all

genes, due to the incorporated L2 regularization. The com-

parable or higher overall performance of a general-purpose

classier such as SVM warrants caution when designing

scRNA-seq-specific classifiers that they do not introduce

unnecessary complexity. For example, deep learning

methods, such as ACTINN and scVI, showed overall lower

performance compared to SVM, supporting recent observa-

tions by Köhler et al. [45].

scPred (which is based on an SVM with a radial ker-

nel), LDA, ACTINN, and singleCellNet performed well

on most datasets, yet the computation time is long for

large datasets. singleCellNet also becomes slower with a

large number of cell populations. Additionally, in some

cases, scPred and scmapcell/cluster reject higher propor-

tions of cells as unlabeled compared to SVMrejection,

without a substantial improvement in the accuracy. In

general, incorporating a rejection option with classifica-

tion is a good practice to allow the detection of poten-

tially novel cell populations (not present in the training

data) and improve the performance for the classified

cells with high confidence. However, for the datasets

used in this study, the performance of classifiers with a

rejection option, except for SVMrejection, did not show

substantial improvement compared to other classifiers.

Furthermore, our results indicate that designing a proper

rejection option can be challenging for complex datasets

(e.g., PBMC) and that relying on the posterior probabil-

ities alone might not yield optimal results.

For datasets with deep levels of annotation (i.e., large

number) of cell populations, the classification performance

of all classifiers is relatively low, since the classification task

is more challenging. scVI, in particular, failed to scale with

deeply annotated datasets, although it works well for data-

sets with a relatively small number of cell populations.

Further, applying the prior-knowledge classifiers becomes

infeasible for deeply annotated datasets, as the task of de-

fining the marker genes becomes even more challenging.

We evaluated the performance of the prior-knowledge

methods (marker-based and pretrained) on PBMC data-

sets only, due to the limited availability of author-provided

marker genes. For all PBMC datasets, the prior-knowledge

methods did not improve the classification performance

over supervised methods, which do not incorporate such

prior knowledge. We extended some prior-knowledge

methods such that the marker genes were defined in a

data-driven manner using differential expression which

did not improve the performance of these classifiers, ex-

cept for SCINADE (with 20 marker genes) for the

PbmcBench datasets. The data-driven selection of markers

allows the prediction of more cell populations compared

to the number of populations for which marker genes

were originally provided. However, this data-driven selec-

tion violates the fundamental assumption in prior-

knowledge methods that incorporating expert-defined

markers improves classification performance. Further, sev-

eral supervised classifiers which do not require markers to

be defined a priori (e.g., scPred and scID) already apply a

differential expression test to find the best set of genes to

use while training the model. The fact that prior-

knowledge methods do not outperform other supervised

methods and given the challenges associated with explicit

marker definition indicate that incorporating prior know-

ledge in the form of marker genes is not beneficial, at least

for PBMC data.

In the inter-dataset experiments, we tested the ability of

the classifiers to identify populations across different

scRNA-seq protocols. Our results show that some protocols

are more compatible with one another (e.g., 10Xv2 and

10Xv3), Smart-Seq2 is distinct from the other UMI-based

methods, and CEL-Seq2 suffers from low replicability of cell

populations across samples. These results can serve as a

guide in order to choose the best set of protocols that can

be used in studies where more than one protocol is used.

The intra-dataset evaluation included the Zheng sorted

dataset, which consists of 10 FACS-sorted cell populations

based on the expression of surface protein markers. Our

results show relatively lower classification performance
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compared to other datasets, except the Zheng 68K dataset.

The poor correlation between the expression levels of

these protein markers and their coding genes mRNA

levels [46] might explain this low performance.

Overall, we observed that the performance of almost

all methods was relatively high on various datasets, while

some datasets with overlapping populations (e.g., Zheng

68K dataset) remain challenging. The inter-dataset

comparison requires extensive development in order to

deal with technical differences between protocols,

batches, and labs, as well as proper matching between

different cell population annotations. Further, the pan-

creatic datasets are known to project very well across

studies, and hence, using them to evaluate inter-dataset

performance can be misleading. We recommend consid-

ering other challenging tissues and cell populations.

Fig. 8 Summary of the performance of all classifiers during different experiments. For each experiment, the heatmap shows whether a classifier
performs good, intermediate, or poor. Light gray indicates that a classifier could not be tested during an experiment. The gray boxes to the right
of the heatmap indicate the four different categories of experiments: intra-dataset, inter-dataset, rejection, and timing. Experiments itself are indicated
using the row labels. Additional file 1: Table S4 shows which datasets were used to score the classifiers exactly for each experiment. Gray boxes above
the heatmap indicate the two classifier categories. Within these two categories, the classifiers are sorted based on their mean performance on the
intra- and inter-dataset experiments
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Conclusions
We present a comprehensive evaluation of automatic cell

identification methods for single-cell RNA sequencing data.

Generally, all classifiers perform well across all datasets, in-

cluding the general-purpose classifiers. In our experiments,

incorporating prior knowledge in the form of marker genes

does not improve the performance (on PBMC data). We

observed large differences in the performance between

methods in response to changing the input features. Fur-

thermore, the tested methods vary considerably in their

computation time which also varies differently across

methods based on the number of cells and features.

Taken together, we recommend the use of the general-

purpose SVMrejection classifier (with a linear kernel) since it

has a better performance compared to the other classifiers

tested across all datasets. Other high-performing classi-

fiers include SVM with a remarkably fast computation

time at the expense of losing the rejection option, single-

CellNet, scmapcell, and scPred. To support the future

extension of this benchmarking work with new classifiers

and datasets, we provide a Snakemake workflow to

automate the performed benchmarking analyses

(https://github.com/tabdelaal/scRNAseq_Benchmark/).

Methods
Classification methods

We evaluated 22 scRNA-seq classifiers, publicly available

as R or Python packages or scripts (Table 1). This set in-

cludes 16 methods developed specifically for scRNA-seq

data as well as 6 general-purpose classifiers from the scikit-

learn library in Python [29]: linear discriminant analysis

(LDA), nearest mean classifier (NMC), k-nearest neighbor

(kNN), support vector machine (SVM) with linear kernel,

SVM with rejection option (SVMrejection), and random for-

est (RF). The following functions from the scikit-learn li-

brary were used respectively: LinearDiscriminantAnalysis(),

NearestCentroid(), KNeighborsClassifier(n_neighbors=9),

LinearSVC(), LinearSVC() with CalibratedClassifierCV()

wrapper, and RandomForestClassifier(n_estimators=50).

For kNN, 9 neighbors were chosen. After filtering the data-

sets, only cell populations consisting of 10 cells or more

remained. Using 9 neighbors would thus ensure that this

classifier could also predict very small populations. For

SVMrejection, a threshold of 0.7 was used on the posterior

probabilities to assign cells as “unlabeled.” During the re-

jection experiments, also an LDA with rejection was

implemented. In contrast to the LinearSVC(), the Linear-

DiscriminantAnalysis() function can output the posterior

probabilities, which was also thresholded at 0.7.

scRNA-seq-specific methods were excluded from the

evaluation if they did not return the predicted labels for

each cell. For example, we excluded MetaNeighbor [47]

because the tool only returns the area under the receiver

operator characteristic curve (AUROC). For all methods,

the latest (May 2019) package was installed or scripts

were downloaded from their GitHub. For scPred, it

should be noted that it is only compatible with an older

version of Seurat (v2.0). For CHETAH, it is important

that the R version 3.6 or newer is installed. For

LAmbDA, instead of the predicted label, the posterior

probabilities were returned for each cell population.

Here, we assigned the cells to the cell population with

the highest posterior probability.

During the benchmark, all methods were run using their

default settings, and if not available, we used the settings

provided in the accompanying examples or vignettes. As

input, we provided each method with the raw count data

(after cell and gene filtering as described in the “Data pre-

processing” section) according to the method documenta-

tion. The majority of the methods have a built-in

normalization step. For the general-purpose classifiers, we

provided log-transformed counts, log2(count + 1).

Some methods required a marker gene file or pretrained

classifier as an input (e.g., Garnett, Moana, SCINA, Digi-

talCellSorter). In this case, we use the marker gene files or

pretrained classifiers provided by the authors. We did not

attempt to include additional marker gene files for all

datasets, and hence, the evaluation of those methods is re-

stricted to datasets where a marker gene file for cell popu-

lations is available.

Datasets

A total of 27 scRNA-seq datasets were used to evaluate

and benchmark all classification methods, from which 11

datasets were used for intra-dataset evaluation using a

cross-validation scheme, and 22 datasets were used for

inter-dataset evaluation, with 6 datasets overlapping for

both tasks as described in Table 2. Datasets vary across

species (human and mouse), tissue (brain, pancreas,

PBMC, and whole mouse), and the sequencing protocol

used. The brain datasets, including Allen Mouse Brain

(AMB), VISp, ALM (GSE115746), and MTG (phs001790),

were downloaded from the Allen Institute Brain Atlas

http://celltypes.brain-map.org/rnaseq. All 5 pancreatic data-

sets were obtained from https://hemberg-lab.github.io/

scRNA.seq.datasets/ (Baron Mouse: GSE84133, Baron Hu-

man: GSE84133, Muraro: GSE85241, Segerstolpe: E-

MTAB-5061, Xin: GSE81608). The CellBench 10X dataset

was obtained from (GSM3618014), and the CellBench

CEL-Seq2 dataset was obtained from 3 datasets

(GSM3618022, GSM3618023, GSM3618024) and

concatenated into 1 dataset. The Tabula Muris (TM) data-

set was downloaded from https://tabula-muris.ds.czbiohub.

org/ (GSE109774). For the Zheng sorted datasets, we

downloaded the 10 PBMC-sorted populations (CD14+

monocytes, CD19+ B cells, CD34+ cells, CD4+ helper T

cells, CD4+/CD25+ regulatory T cells, CD4+/CD45RA+/

CD25− naive T cells, CD4+/CD45RO+ memory T cells,
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CD56+ natural killer cells, CD8+ cytotoxic T cells, CD8+/

CD45RA+ naive cytotoxic T cells) from https://support.1

0xgenomics.com/single-cell-gene-expression/datasets; next,

we downsampled each population to 2000 cells obtaining a

dataset of 20,000 cells in total. For the Zheng 68K dataset,

we downloaded the gene-cell count matrix for the “Fresh

68K PBMCs” [36] from https://support.10xgenomics.com/

single-cell-gene-expression/datasets (SRP073767). All 13

PbmcBench datasets, 7 different sequencing protocols ap-

plied on 2 PBMC samples, were downloaded from the

Broad Institute Single Cell portal https://portals.broadinsti-

tute.org/single_cell/study/SCP424/single-cell-comparison-

pbmc-data. The cell population annotation for all datasets

was provided with the data, except the Zheng 68K dataset,

for which we obtained the cell population annotation from

https://github.com/10XGenomics/single-cell-3prime-paper/

tree/master/pbmc68k_analysis. These annotations were

used as a “ground truth” during the evaluation of the

cell population predictions obtained from the classifica-

tion methods.

Data preprocessing

Based on the manual annotation provided in the datasets,

we started by filtering out cells that were labeled as dou-

blets, debris, or unlabeled cells. Next, we filtered genes

with zero counts across all cells. For cells, we calculated

the median number of detected genes per cell, and from

that, we obtained the median absolute deviation (MAD)

across all cells in the log scale. We filtered out cells when

the total number of detected genes was below three MAD

from the median number of detected genes per cell. The

number of cells and genes in Table 2 represent the size of

each dataset after this stage of preprocessing.

Moreover, before applying cross-validation to evaluate

each classifier, we excluded cell populations with less

than 10 cells across the entire dataset; Table 2 summa-

rizes the number of cell populations before and after this

filtration step for each dataset.

Intra-dataset classification

For the supervised classifiers, we evaluated the perform-

ance by applying a 5-fold cross-validation across each

dataset after filtering genes, cells, and small cell popula-

tions. The folds were divided in a stratified manner in

order to keep equal proportions of each cell population

in each fold. The training and testing folds were exactly

the same for all classifiers.

The prior-knowledge classifiers, Garnett, Moana, Digi-

talCellSorter, and SCINA, were only evaluated on the

Zheng 68K and Zheng sorted datasets, for which the

marker gene files or the pretrained classifiers were avail-

able, after filtering genes and cells. Each classifier uses

the dataset and the marker gene file as inputs and out-

puts the cell population label corresponding to each cell.

No cross-validation is applied in this case, except for

Garnett where we could either use the pretrained ver-

sion (Garnettpretrained) provided from the original study,

or train our own classifier using the marker gene file

along with the training data (GarnettCV). In this case, we

applied 5-fold cross-validation using the same train and

test sets described earlier. Additional file 1: Table S1

shows the mapping of cell populations between the

Zheng datasets and each of the prior-knowledge classi-

fiers. For Moana, a pretrained classifier was used, this

classifier also predicted cells to be memory CD8+ T cells

and CD16+ monocytes, while these cell populations

were not in the Zheng datasets.

Evaluation of marker genes

The performance and choice of the marker genes per cell

population per classifier were evaluated by comparing the

F1-score of each cell population with four different charac-

teristics of the marker genes across the cells for that par-

ticular cell population: (1) the number of marker genes, (2)

the mean expression, (3) the average dropout rate, and (4)

the average beta of the marker genes [37]. Beta is a score

developed to measure how specific a marker gene for a cer-

tain cell population is based on binary expression.

Selecting marker genes using differential expression

Using the cross-validation scheme, training data of each

fold was used to select sets of 5, 10, 15, and 20 differen-

tially expressed (DE) marker genes. First, if the data was

not already normalized, a CPM read count normalization

was applied to the data. Next, the data was log-

transformed using log2(count + 1), and afterwards, the DE

test could be applied. As recommended in [48], MAST

was used to find the DE genes [49]. The implementation

of MAST in the FindAllMarkers() function of Seurat

v2.3.0 was used to do a one-vs-all differential expression

analysis [50]. Genes returned by Seurat were sorted, and

the top 5, 10, 15, or 20 significant genes with a positive

fold change were selected as marker genes. These marker

genes were then used for population prediction of the test

data of the corresponding fold. These marker gene lists

can be used by prior-knowledge classifiers such as SCINA,

GarnettCV, and DigitalCellSorter, by modifying the cell

type marker gene file required as an input to these classi-

fiers. Such modification cannot be applied to the pre-

trained classifiers of Garnettpretrained and Moana.

Dataset complexity

To describe the complexity of a dataset, the average ex-

pression of all genes for each cell population (avgCi
) in

the dataset was calculated, representing the prototype of

each cell population in the full gene space. Next, the

pairwise Pearson correlation between these centroids
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was calculated corr∀i; jðavgCi
; avgC j

Þ. For each cell popu-

lation, the highest correlation to another cell population

was recorded. Finally, the mean of these per cell popula-

tion maximum correlations was taken to describe the

complexity of a dataset.

Complexity ¼ mean max
∀i;i≠ j

corr
∀i; j

avgCi
; avgC j

� �

� �

Inter-dataset classification

CellBench

Both CellBench datasets, 10X and CEL-Seq2, were used

once as training data and once as test data, to obtain

predictions for the five lung cancer cell lines. The com-

mon set of detected genes by both datasets was used as

features in this experiment.

PbmcBench

Using pbmc1 sample only, we tested all train-test pair-

wise combinations between all 7 protocols, resulting in

42 experiments. Using both pbmc1 and pbmc2 samples,

for the same protocol, we used pbmc1 as training data

and pbmc2 as test data, resulting in 6 additional experi-

ments (10Xv3 was not applied for pbmc2). As we are

now dealing with PBMC data, we evaluated all classifiers,

including the prior-knowledge classifiers, as well as the

modified versions of SCINA, GarnettCV, and DigitalCell-

Sorter, in which the marker genes are obtained through

differential expression from the training data as previ-

ously described. Through all these 48 experiments, genes

that are not expressed in the training data were excluded

from the feature space. Also, as these PbmcBench data-

sets differ in the number of cell populations (Table 2),

only the cell populations provided by the training data

were used for the test data prediction evaluation.

Brain

We used the three brain datasets, VISp, ALM, and MTG

with two levels of annotations, 3 and 34 cell populations.

We tested all possible train-test combinations, by either

using one dataset to train and test on another (6 experi-

ments) or using two concatenated datasets to train and

test on the third (3 experiments). A total of 9 experi-

ments were applied for each annotation level. We used

the common set of detected genes between the datasets

involved in each experiment as features.

Pancreas

We selected the four major endocrine pancreatic cell types

(alpha, beta, delta, and gamma) across all four human pan-

creatic datasets: Baron Human, Muraro, Segerstolpe, and

Xin. Additional file 1: Table S2 summarizes the number of

cells in each cell type across all datasets. To account for

batch effects and technical variations between different

protocols, datasets were aligned using MNN [41] from the

scran R package (version 1.1.2.0). Using both the raw data

(unaligned) and the aligned data, we applied leave-one-

dataset-out cross-validation where we train on three data-

sets and test on the left out dataset.

Performance evaluation metrics

The performance of the methods on the datasets is evalu-

ated using three different metrics: (1) For each cell popu-

lation in the dataset, the F1-score is reported. The median

of these F1-scores is used as a measure for the perform-

ance on the dataset. (2) Some of the methods do not label

all the cells. These unassigned cells are not considered in

the F1-score calculation. The percentage of unlabeled cells

is also used to evaluate the performance. (3) The compu-

tation time of the methods is also measured.

Feature selection

Genes are selected as features based on their dropout rate.

The method used here is based on the method described

in [22]. During feature selection, a sorted list of the genes

is made. Based on this list, the top n number of genes can

be easily selected during the experiments. First, the data is

normalized using log2(count + 1). Next, for each gene, the

percentage of dropouts, d, and the mean, m, of the nor-

malized data are calculated. Genes that have a mean or

dropout rate of 0 are not considered during the next steps.

These genes will be at the bottom of the sorted list. For all

other genes, a linear model is fitted to the mean and

log2(d). Based on their residuals, the genes are sorted in

descending order and added to the top of the list.

Scalability

For the scalability experiment, we used the TM dataset.

To ensure that the dataset could be downsampled without

losing cell populations, only the 16 most abundant cell

populations were considered during this experiment. We

downsampled these cell populations in a stratified way to

1, 5, 10, 20, 50, and 100% of its original size (45,469 cells).

Rejection

Negative control

Two human datasets, Zheng 68K and Baron Human, and

two mouse datasets, AMB16 and Baron Mouse, were

used. The Zheng 68K dataset was first stratified down-

sampled to 11% of its original size to reduce computation

time. For each species, two different experiments were ap-

plied by using one dataset as a training set and the other

as a test set and vice versa.

Unseen cell populations

Zheng 68K dataset was stratified downsampled to 11% of

its original size to reduce computation time. Three
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different experiments were conducted. First, all cell popu-

lations that are a subpopulation of T cells were considered

the test set. Next, the test set consisted of all subpopula-

tions of CD4+ T cells. Last, only the CD4+/CD45RO+

memory T cells were in the test set. Each time, all cell

populations that were not in the test set were part of the

training set. Additional file 1: Table S3 gives an exact

overview of the populations per training and test set.

Benchmarking pipeline

In order to ensure reproducibility and support the future

extension of this benchmarking work with new classifica-

tion methods and benchmarking datasets, a Snakemake

[51] workflow for automating the performed benchmark-

ing analyses was developed with an MIT license (https://

github.com/tabdelaal/scRNAseq_Benchmark/). Each tool

(license permitting) is packaged in a Docker container

(https://hub.docker.com/u/scrnaseqbenchmark) alongside

the wrapper scripts and their dependencies. These images

will be used through Snakemake’s singularity integration

to allow the workflow to be run without the requirement

to install specific methods and to ensure reproducibility.

Documentation is also provided to execute and extend

this benchmarking workflow to help researchers to further

evaluate interested methods.

Additional files

Additional file 1 Supplementary data, Tables S1-S4 and Figures S1–13.
(PDF 12800 kb)

Additional file 2 Review history. (DOCX 42 kb)

Acknowledgements

Not applicable.

Review history

The review history is available as Additional file 2.

Authors’ contributions

TA, LM, MJTR, and AM conceived the study and designed the experiments. TA
and LM performed the experiments. DH, DC, and HM designed and developed
the Snakemake workflow. MJTR and AM supervised the experiments. TA, LM,
HM, and AM wrote the manuscript. All authors reviewed and approved the
manuscript.

Funding

This work was supported by the European Commission of a H2020 MSCA
award under proposal number [675743] (ISPIC).

Availability of data and materials

The filtered datasets analyzed during the current study can be downloaded
from Zenodo (https://doi.org/10.5281/zenodo.3357167). The source code is
available in the GitHub repository, at https://github.com/tabdelaal/scRNAseq_
Benchmark [52], and in the Zenodo repository, at https://doi.org/10.5281/
zenodo.3369158 [53]. The source code is released under MIT license. Datasets
accession numbers: AMB, VISp, and ALM [35] (GSE115746), MTG [31]
(phs001790), Baron Mouse [30] (GSE84133), Baron Human [30] (GSE84133),
Muraro [31] (GSE85241), Segerstolpe [32] (E-MTAB-5061), Xin [33] (GSE81608),
CellBench 10X [34] (GSM3618014), CellBench CEL-Seq2 [34] (GSM3618022,
GSM3618023, GSM3618024), TM [6] (GSE109774), and Zheng sorted and Zheng
68K [36] (SRP073767). The PbmcBench datasets [38] are not yet uploaded to

any
data repository.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details
1Leiden Computational Biology Center, Leiden University Medical Center,
Einthovenweg 20, 2333 ZC Leiden, The Netherlands. 2Delft Bioinformatics
Laboratory, Delft University of Technology, Van Mourik Broekmanweg 6, 2628
XE Delft, The Netherlands. 3Sequencing Analysis Support Core, Department
of Biomedical Data Sciences, Leiden University Medical Center,
Einthovenweg 20, 2333 ZC Leiden, The Netherlands.

Received: 18 May 2019 Accepted: 17 August 2019

References

1. Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-
cell RNA-seq in the past decade. Nat Protoc. 2018;13:599–604. https://doi.
org/10.1038/nprot.2017.149.

2. Plass M, Solana J, Wolf FA, Ayoub S, Misios A, Glažar P, et al. Cell type atlas
and lineage tree of a whole complex animal by single-cell transcriptomics.
Science. 2018;360. https://doi.org/10.1126/science.aaq1723.

3. Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, et al.
Comprehensive single-cell transcriptional profiling of a multicellular organism.
Science. 2017;357:661–667. https://doi.org/10.1126/science.aam8940.

4. Fincher CT, Wurtzel O, de Hoog T, Kravarik KM, Reddien PW. Cell type
transcriptome atlas for the planarian. Science. 2018;360. https://doi.org/1
0.1126/science.aaq1736.

5. Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, et al. Mapping the Mouse Cell
Atlas by Microwell-Seq. Cell. 2018;173:1307. https://doi.org/10.1016/j.cell.201
8.05.012.

6. Schaum N, Karkanias J, Neff NF, May AP, Quake SR, Wyss-Coray T, et al.
Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris.
Nature. 2018;562:367–372. https://doi.org/10.1038/s41586-018-0590-4.

7. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, et al. The single-
cell transcriptional landscape of mammalian organogenesis. Nature. 2019;
566:496–502. https://doi.org/10.1038/s41586-019-0969-x.

8. Henry VJ, Bandrowski AE, Pepin A-S, Gonzalez BJ, Desfeux A. OMICtools: an
informative directory for multi-omic data analysis. Database. 2014;2014.
https://doi.org/10.1093/database/bau069.

9. Zappia L, Phipson B, Oshlack A. Exploring the single-cell RNA-seq analysis
landscape with the scRNA-tools database. PLoS Comput Biol. 2018;14:
e1006245. https://doi.org/10.1371/journal.pcbi.1006245.

10. Saelens W, Cannoodt R, Todorov H, Saeys Y. A comparison of single-cell
trajectory inference methods. Nat Biotechnol. 2019;37:547–554. https://doi.
org/10.1038/s41587-019-0071-9.

11. Duò A, Robinson MD, Soneson C. A systematic performance evaluation of
clustering methods for single-cell RNA-seq data. F1000Res. 2018;7:1141.
https://doi.org/10.12688/f1000research.15666.2.

12. Soneson C, Robinson MD. Bias, robustness and scalability in single-cell
differential expression analysis. Nat Methods. 2018;15:255–261. https://doi.
org/10.1038/nmeth.4612.

13. Diaz-Mejia JJ, Javier Diaz-Mejia J, Meng EC, Pico AR, MacParland SA, Ketela T,
et al. Evaluation of methods to assign cell type labels to cell clusters from
single-cell RNA-sequencing data. 2019. https://doi.org/10.1101/562082.

14. Pliner HA, Shendure J, Trapnell C. Supervised classification enables rapid
annotation of cell atlases. bioRxiv. 2019; 538652. https://doi.org/10.1101/538652.

15. Wagner F, Yanai I. Moana: A robust and scalable cell type classification
framework for single-cell RNA-Seq data. bioRxiv. 2018; 456129. https://doi.
org/10.1101/456129.

16. Domanskyi S, Szedlak A, Hawkins NT, Wang J, Paternostro G, Piermarocchi C.
Polled Digital Cell Sorter (p-DCS): automatic identification of hematological

Abdelaal et al. Genome Biology          (2019) 20:194 Page 18 of 19

https://github.com/tabdelaal/scRNAseq_Benchmark/tree/snakemake_and_docker
https://github.com/tabdelaal/scRNAseq_Benchmark/tree/snakemake_and_docker
https://hub.docker.com/u/scrnaseqbenchmark
https://doi.org/10.1186/s13059-019-1795-z
https://doi.org/10.1186/s13059-019-1795-z
https://doi.org/10.5281/zenodo.3357167
https://github.com/tabdelaal/scRNAseq_Benchmark
https://github.com/tabdelaal/scRNAseq_Benchmark
https://doi.org/10.5281/zenodo.3369158
https://doi.org/10.5281/zenodo.3369158
https://doi.org/10.1038/nprot.2017.149
https://doi.org/10.1038/nprot.2017.149
http://paperpile.com/b/3qMtz6/wQr3S
https://doi.org/10.1126/science.aaq1723
http://paperpile.com/b/3qMtz6/WDrd
https://doi.org/10.1126/science.aam8940
http://paperpile.com/b/3qMtz6/QRsj
https://doi.org/10.1126/science.aaq1736
https://doi.org/10.1126/science.aaq1736
http://paperpile.com/b/3qMtz6/fpVI
https://doi.org/10.1016/j.cell.2018.05.012
https://doi.org/10.1016/j.cell.2018.05.012
http://paperpile.com/b/3qMtz6/LI5b
https://doi.org/10.1038/s41586-018-0590-4
http://paperpile.com/b/3qMtz6/43jy
https://doi.org/10.1038/s41586-019-0969-x
http://paperpile.com/b/3qMtz6/Mmfd
https://doi.org/10.1093/database/bau069
http://paperpile.com/b/3qMtz6/5JqUL
https://doi.org/10.1371/journal.pcbi.1006245
http://paperpile.com/b/3qMtz6/ajQ3d
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1038/s41587-019-0071-9
http://paperpile.com/b/3qMtz6/qKnyM
https://doi.org/10.12688/f1000research.15666.2
http://paperpile.com/b/3qMtz6/MhAiH
https://doi.org/10.1038/nmeth.4612
https://doi.org/10.1038/nmeth.4612
http://paperpile.com/b/3qMtz6/Zcw28
https://doi.org/10.1101/562082
http://paperpile.com/b/3qMtz6/YtKHm
https://doi.org/10.1101/538652
http://paperpile.com/b/3qMtz6/jD2Xo
https://doi.org/10.1101/456129
https://doi.org/10.1101/456129
http://paperpile.com/b/3qMtz6/GIxrc


cell types from single cell RNA-sequencing clusters. bioRxiv. 2019; 539833.
https://doi.org/10.1101/539833.

17. Zhang Z, Luo D, Zhong X, Choi JH, Ma Y, Mahrt E, et al. SCINA: semi-
supervised analysis of single cells in silico. bioRxiv. 2019; 559872. https://doi.
org/10.1101/559872.

18. Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling
for single-cell transcriptomics. Nat Methods. 2018;15:1053–1058. https://doi.
org/10.1038/s41592-018-0229-2.

19. Cao Z-J, Wei L, Lu S, Yang D-C, Gao G. Cell BLAST: searching large-scale
scRNA-seq databases via unbiased cell embedding. bioRxiv. 2019; 587360.
https://doi.org/10.1101/587360.

20. Ma F, Pellegrini M. Automated identification of cell types in single cell RNA
sequencing. bioRxiv. 2019; 532093. https://doi.org/10.1101/532093.

21. Johnson TS, Wang T, Huang Z, Yu CY, Wu Y, Han Y, et al. LAmbDA: label
ambiguous domain adaptation dataset integration reduces batch effects
and improves dsubtype detection. Bioinformatics. 2019. https://doi.org/10.1
093/bioinformatics/btz295.

22. Kiselev VY, Yiu A, Hemberg M. scmap: projection of single-cell RNA-seq data
across data sets. Nat Methods. 2018;15:359. https://doi.org/10.1038/nmeth.4644.

23. Alquicira-Hernandez J, Nguyen Q, Powell JE. scPred: scPred: cell type prediction
at single-cell resolution. bioRxiv. 2018; 369538. https://doi.org/10.1101/369538.

24. Kanter JK de, Lijnzaad P, Candelli T, Margaritis T, Holstege F. CHETAH: a
selective, hierarchical cell type identification method for single-cell RNA
sequencing. bioRxiv. 2019; 558908. https://doi.org/10.1101/558908.

25. Lieberman Y, Rokach L, Shay T. CaSTLe – classification of single cells by
transfer learning: harnessing the power of publicly available single cell RNA
sequencing experiments to annotate new experiments. PLoS One. 2018;13:
e0205499. https://doi.org/10.1371/journal.pone.0205499.

26. Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, et al. Reference-based analysis of
lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat
Immunol. 2019;20:163–172. https://doi.org/10.1038/s41590-018-0276-y.

27. Boufea K, Seth S, Batada NN. scID: identification of equivalent transcriptional
cell populations across single cell RNA-seq data using discriminant analysis.
https://doi.org/10.1101/470203.

28. Tan Y, Cahan P. SingleCellNet: a computational tool to classify single cell
RNA-Seq data across platforms and across species. bioRxiv. 2018; 508085.
https://doi.org/10.1101/508085.

29. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: Machine Learning in Python. JMLR. 2011;12:2825–30.

30. Baron M, Veres A, Wolock SL, Faust AL, Gaujoux R, Vetere A, et al. A single-
cell transcriptomic map of the human and mouse pancreas reveals inter-
and intra-cell population structure. Cell Syst. 2016;3:346–60.e4. https://doi.
org/10.1016/j.cels.2016.08.011.

31. Muraro MJ, Dharmadhikari G, Grün D, Groen N, Dielen T, Jansen E, et al. A
single-cell transcriptome atlas of the human pancreas. Cell Syst. 2016;3:385–
94.e3. https://doi.org/10.1016/j.cels.2016.09.002.

32. Segerstolpe Å, Palasantza A, Eliasson P, Andersson E-M, Andréasson A-C,
Sun X, et al. Single-cell transcriptome profiling of human pancreatic islets in
health and type 2 diabetes. Cell Metab. 2016;24:593–607. https://doi.org/1
0.1016/j.cmet.2016.08.020.

33. Xin Y, Kim J, Okamoto H, Ni M, Wei Y, Adler C, et al. RNA sequencing of
single human islet cells reveals type 2 diabetes genes. Cell Metab. 2016;24:
608–615. https://doi.org/10.1016/j.cmet.2016.08.018.

34. Tian L, Dong X, Freytag S, Lê Cao K-A, Su S, JalalAbadi A, et al. Benchmarking single
cell RNA-sequencing analysis pipelines using mixture control experiments. Nat
Methods. 2019;16:479–487. https://doi.org/10.1038/s41592-019-0425-8.

35. Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN, Bertagnolli D, et al.
Shared and distinct transcriptomic cell types across neocortical areas.
Nature. 2018;563:72–78. https://doi.org/10.1038/s41586-018-0654-5.

36. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al.
Massively parallel digital transcriptional profiling of single cells. Nat
Commun. 2017;8:14049. https://doi.org/10.1038/ncomms14049.

37. Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER, Graybuck LT, et al.
Conserved cell types with divergent features between human and mouse
cortex. Nature. 2019. https://doi.org/10.1038/s41586-019-1506-7.

38. Ding J, Adiconis X, Simmons SK, Kowalczyk MS, Hession CC, Marjanovic ND,
et al. Systematic comparative analysis of single cell RNA-sequencing
methods. bioRxiv. 2019; 632216. https://doi.org/10.1101/632216.

39. Franzén O, Gan L-M, Björkegren JLM. PanglaoDB: a web server for
exploration of mouse and human single-cell RNA sequencing data.
Database. 2019;2019. https://doi.org/10.1093/database/baz046.

40. Zhang X, Lan Y, Xu J, Quan F, Zhao E, Deng C, et al. CellMarker: a manually
curated resource of cell markers in human and mouse. Nucleic Acids Res.
2019;47:D721–D728. https://doi.org/10.1093/nar/gky900.

41. Haghverdi L, Lun ATL, Morgan MD, Marioni JC. Batch effects in single-cell
RNA-sequencing data are corrected by matching mutual nearest neighbors.
Nat Biotechnol. 2018;36:421–427. https://doi.org/10.1038/nbt.4091.

42. McInnes L, Healy J, Melville JUMAP. Uniform manifold approximation and
projection for dimension reduction. arXiv [stat.ML]. 2018; http://arxiv.org/
abs/1802.03426.

43. Andrews TS, Hemberg M. M3Drop: dropout-based feature selection for
scRNASeq. Bioinformatics. 2018. https://doi.org/10.1093/bioinformatics/bty1044.

44. D. Cai, X. He, J. Han. Training linear discriminant analysis in linear time. 2008.
https://doi.org/10.1109/ICDE.2008.4497429.

45. Köhler ND, Büttner M, Theis FJ. Deep learning does not outperform classical
machine learning for cell-type annotation. bioRxiv. 2019; 653907. https://doi.
org/10.1101/653907.

46. van den Berg PR, Budnik B, Slavov N, Semrau S. Dynamic post-
transcriptional regulation during embryonic stem cell differentiation.
bioRxiv. 2017; 123497. https://doi.org/10.1101/123497.

47. Crow M, Paul A, Ballouz S, Huang ZJ, Gillis J. Characterizing the replicability of
cell types defined by single cell RNA-sequencing data using MetaNeighbor.
Nat Commun. 2018;9:884. https://doi.org/10.1038/s41467-018-03282-0.

48. Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a
tutorial. Mol Syst Biol. 2019;15:e8746. https://doi.org/10.15252/msb.20188746.

49. Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: a
flexible statistical framework for assessing transcriptional changes and
characterizing heterogeneity in single-cell RNA sequencing data. Genome
Biol. 2015;16:278. https://doi.org/10.1186/s13059-015-0844-5.

50. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell
transcriptomic data across different conditions, technologies, and species.
Nat Biotechnol. 2018;36:411–420. https://doi.org/10.1038/nbt.4096.

51. Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow
engine. Bioinformatics. 2018;34:3600–3600. https://doi.org/10.1093/
bioinformatics/bty350.

52. Abdelaal T, Michielsen L, Cats D, Hoogduin D, Mei H, Reinders MJT, et al.
scRNA-seq classification benchmarking source code. Github. 2019. https://
github.com/tabdelaal/scRNAseq_Benchmark.

53. Abdelaal T, Michielsen L, Cats D, Hoogduin D, Mei H, Reinders MJT, et al.
scRNA-seq classification benchmarking source code: Zenodo; 2019. https://
doi.org/10.5281/zenodo.3369158.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Abdelaal et al. Genome Biology          (2019) 20:194 Page 19 of 19

https://doi.org/10.1101/539833
http://paperpile.com/b/3qMtz6/Aazdm
https://doi.org/10.1101/559872
https://doi.org/10.1101/559872
http://paperpile.com/b/3qMtz6/zqYpC
https://doi.org/10.1038/s41592-018-0229-2
https://doi.org/10.1038/s41592-018-0229-2
http://paperpile.com/b/3qMtz6/k7yFA
https://doi.org/10.1101/587360
http://paperpile.com/b/3qMtz6/2erN7
https://doi.org/10.1101/532093
http://paperpile.com/b/3qMtz6/pITwW
https://doi.org/10.1093/bioinformatics/btz295
https://doi.org/10.1093/bioinformatics/btz295
http://paperpile.com/b/3qMtz6/7Hgi
https://doi.org/10.1038/nmeth.4644
http://paperpile.com/b/3qMtz6/tSwKd
https://doi.org/10.1101/369538
http://paperpile.com/b/3qMtz6/trO4D
https://doi.org/10.1101/558908
http://paperpile.com/b/3qMtz6/SQu7Z
https://doi.org/10.1371/journal.pone.0205499
http://paperpile.com/b/3qMtz6/Bj6IE
https://doi.org/10.1038/s41590-018-0276-y
http://paperpile.com/b/3qMtz6/9bS7d
https://doi.org/10.1101/470203
http://paperpile.com/b/3qMtz6/LloZA
https://doi.org/10.1101/508085
http://paperpile.com/b/3qMtz6/7Snvz
https://doi.org/10.1016/j.cels.2016.08.011
https://doi.org/10.1016/j.cels.2016.08.011
http://paperpile.com/b/3qMtz6/kWCz1
https://doi.org/10.1016/j.cels.2016.09.002
http://paperpile.com/b/3qMtz6/Ub3D2
https://doi.org/10.1016/j.cmet.2016.08.020
https://doi.org/10.1016/j.cmet.2016.08.020
http://paperpile.com/b/3qMtz6/ApTi3
https://doi.org/10.1016/j.cmet.2016.08.018
http://paperpile.com/b/3qMtz6/iv3nU
https://doi.org/10.1038/s41592-019-0425-8
http://paperpile.com/b/3qMtz6/HTu8
https://doi.org/10.1038/s41586-018-0654-5
http://paperpile.com/b/3qMtz6/dHxb7
https://doi.org/10.1038/ncomms14049
http://paperpile.com/b/3qMtz6/bsbi1
https://doi.org/10.1038/s41586-019-1506-7
https://doi.org/10.1101/632216
http://paperpile.com/b/3qMtz6/vM9z
https://doi.org/10.1093/database/baz046
http://paperpile.com/b/3qMtz6/HOhB
https://doi.org/10.1093/nar/gky900
http://paperpile.com/b/3qMtz6/CP0B
https://doi.org/10.1038/nbt.4091
http://paperpile.com/b/3qMtz6/x2HCh
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
http://paperpile.com/b/3qMtz6/oOdZC
https://doi.org/10.1093/bioinformatics/bty1044
http://paperpile.com/b/3qMtz6/0nOJp
https://doi.org/10.1109/ICDE.2008.4497429
http://paperpile.com/b/3qMtz6/m84nb
https://doi.org/10.1101/653907
https://doi.org/10.1101/653907
http://paperpile.com/b/3qMtz6/BdDN
https://doi.org/10.1101/123497
http://paperpile.com/b/3qMtz6/HE08
https://doi.org/10.1038/s41467-018-03282-0
http://paperpile.com/b/3qMtz6/0HTbS
https://doi.org/10.15252/msb.20188746
http://paperpile.com/b/3qMtz6/yqmQ
https://doi.org/10.1186/s13059-015-0844-5
http://paperpile.com/b/3qMtz6/jMDf
https://doi.org/10.1038/nbt.4096
http://paperpile.com/b/3qMtz6/cdkl
https://doi.org/10.1093/bioinformatics/bty350
https://doi.org/10.1093/bioinformatics/bty350
http://paperpile.com/b/3qMtz6/9bZja
https://github.com/tabdelaal/scRNAseq_Benchmark
https://github.com/tabdelaal/scRNAseq_Benchmark
https://doi.org/10.5281/zenodo.3369158
https://doi.org/10.5281/zenodo.3369158

	ㄶ㐠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄶ㔠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄶ㘠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄶ㜠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄶ㠠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄶ㤠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄷ〠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄷㄠ〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄷ㈠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄷ㌠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄷ㐠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄷ㔠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄷ㘠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄷ㜠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄷ㠠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄷ㤠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄸ〠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄸㄠ〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄸ㈠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄸ㌠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄸ㐠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄸ㔠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄸ㘠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄸ㜠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄸ㠠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄸ㤠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄹ〠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄹㄠ〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄹ㈠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄹ㌠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄹ㐠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄹ㔠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄹ㘠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄹ㜠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄹ㠠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿ㄹ㤠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿㈰〠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿㈰ㄠ〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿㈰㈠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿㈰㌠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿㈰㐠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿㈰㔠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿㈰㘠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿㈰㜠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿㈰㠠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿㈰㤠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿㈱〠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿㈱ㄠ〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿㈱㈠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿㈱㌠〠潢樊㰼 䌠嬰‰‰崊⽆‰ਯ呩瑬攨﻿㈱㐠〠潢樊㰼⽎″⽌敮杴栠㌱㐴㸾獴牥慭਀�䡌楮漂ကm湴牒䝂⁘奚 츀Ȁऀ؀㄀a捳灍卆吀�I䕃⁳則䈀������ö혀Ā�Óⵈ倠 �����������������������ᅣ灲琀�倀�㍤敳挀�萀�汷瑰琀��ᑢ歰琀�Ѐ�ᑲ塙娀�᠀�ᑧ塙娀�Ⰰ�ᑢ塙娀�䀀�ᑤ浮搀�吀�灤浤搀�쐀�衶略搀�䰀�虶楥眀�퐀�⑬畭椀��ᑭ敡猀�ఀ�⑴散栀�　�౲呒䌀�㰀�౧呒䌀�㰀�ౢ呒䌀�㰀�౴數琀�C潰祲楧桴 挩‱㤹㠠䡥睬整琭偡捫慲搠䍯浰慮礀d敳挀���ታ則䈠䥅䌶ㄹ㘶ⴲ⸱������獒䝂⁉䕃㘱㤶㘭㈮㄀������������������������X奚 ��ó儀Ā�Ė챘奚 �������X奚 ��oꈀ8�遘奚 ��b餀·蔀�� ��$ꀀ�萀¶콤敳挀���ᙉ䕃⁨瑴瀺⼯睷眮楥挮捨������䥅䌠桴瑰㨯⽷睷⹩散⹣栀����������������������d敳挀���⹉䕃‶ㄹ㘶ⴲ⸱⁄敦慵汴⁒䝂⁣潬潵爠獰慣攠ⴠ獒䝂�����.䥅䌠㘱㤶㘭㈮ㄠ䑥晡畬琠則䈠捯汯畲⁳灡捥‭⁳則䈀����������d敳挀���ⱒ敦敲敮捥⁖楥睩湧⁃潮摩瑩潮⁩渠䥅䌶ㄹ㘶ⴲ⸱�����,剥晥牥湣攠噩敷楮朠䍯湤楴楯渠楮⁉䕃㘱㤶㘭㈮㄀������������v楥眀��Ꭴ︀ᑟ⸀჏᐀ϭ찀Г଀Ξ��塙娠��LॖP�Wῧ浥慳�������������ʏ��獩朠��䍒吠捵牶���Ѐ��
����#(-27;@EJOTY^chmrw|�������¤©®²·¼ÁÆËÐÕÛàåëðöûāćčēęğĥīĲĸľŅŌŒřŠŧŮŵżƃƋƒƚơƩƱƹǁǉǑǙǡǩǲǺȃȌȔȝȦȯȸɁɋɔɝɧɱɺʄʎʘʢʬʶˁˋ˕ˠ˫˵̸̡̖̭̀̋̓͏͚ͦͲ;ΊΖ΢ήκχϓϠϬϹІГРЭлшѕѣѱѾҌҚҨҶӄӓӡӰӾԍԜԫԺՉ՘էշֆֵ֖֦ׅוץ׶؆ؖاطوٙ٪ٻڌڝگۀۑۣ۵܇ܙܫܽݏݡݴކޙެ޿ߒߥ߸ࠋࠟ࠲ࡆ࡚࡮ࢂ࢖ࢪࢾ࣒ࣧࣻऐथऺॏ।ॹএত঺৏৥৻਑ਧ਽੔੪ઁઘમૅ૜૳ଋଢହ୑୩஀஘ரை௡௹ఒపృఌ甌踌꜌쀌�഍☍䀍娍琍踍ꤍ쌍�ጎ⸎䤎搎缎鬎똎툎ए┏䄏帏稏阏댏켏ऐ☐䌐愐縐鬐뤐휐጑ㄑ休洑谑ꨑ중ܒ☒䔒搒萒ꌒ쌒̓⌓䌓挓茓ꐓ씓ؔ✔䤔樔謔괔츔ሕ㐕嘕砕鬕봕̖☖䤖氖輖눖혖益ᴗ䄗攗褗긗툗ᬘ䀘攘記꼘픘神’䔙欙鄙뜙�К⨚儚眚鸚씚ᐛ㬛挛訛눛�⨜刜笜ꌜ찜ḝ䜝瀝餝쌝ᘞ䀞樞鐞븞ጟ㸟椟鐟뼟ᔠ䄠氠頠쐠ᰡ䠡甡ꄡ측ﬢ✢唢舢꼢�ਣ㠣昣鐣숣ἤ䴤簤ꬤ�㠥栥霥윥✦圦蜦뜦ᠧ䤧稧꬧�ന㼨焨ꈨ퐩ة㠩欩鴩퀪Ȫ㔪株鬪켫ȫ㘫椫鴫턬Ԭ㤬測ꈬ휭భ䄭瘭ꬭᘮ䰮舮뜮␯娯鄯윯︰㔰氰ꐰ�䨱舱먱⨲挲鬲퐳ള䘳缳렳⬴攴鸴�䴵蜵숵ﴶ㜶父긶␷怷鰷휸ᐸ倸谸젹Թ䈹缹밹鷺㘺琺눺ⴻ欻꨻✼攼ꐼ∽愽ꄽ‾怾ꀾℿ愿ꈿ⍀摀Ꙁ⥁橁걁あ牂땂㩃絃쁄̈́䝄詄칅ቅ啅驅�≆杆ꭆ㕇筇쁈Ո䭈酈흉ᵉ捉ꥉ㝊絊쑋ో卋驋⩌牌멍ɍ䩍鍍�╎湎띏O䥏鍏�❐煐뭑ّ偑魑ㅒ籒읓ፓ当꩓䉔轔�畕쉖བ嚩囷坄垒埠堯塽壋多奩妸娇婖媦嫵孅宕寥ֆ홝❝硝쥞ᩞ汞뵟ཟ慟덠ՠ坠ꩠﱡ佡ꉡ䥢鱢䍣靣䁤鑤㵥鉥㵦鉦㵧鍧㽨陨䍩驩䡪齪佫ꝫｬ坬꽭࡭恭륮ቮ歮쑯ṯ硯텰⭰虰㩱镱䭲꙳ų嵳롴ᑴ灴챵⡵蕵㹶魶噷델ᅸ湸챹⩹襹䙺ꕻѻ捻쉼ⅼ腼䅽ꅾž找쉿⍿葿䞀ꢁઁ殁춂も銂垃몄ᶄ肄䞅ꮆຆ犆힇㮇龈҈榈캉㎉馉ﺊ撊쪋る隋ﲌ掌쪍ㆍ颍ﾎ暎캏㚏麐ڐ源횑㾑ꢒᆒ窒䶓뚔ₔ誔徕즖㒖龗ગ疗䲘뢙⒙邙ﲚ梚햛䊛꾜Ნ覜撝튞䂞꺟ᶟ讟猪榠�뚢⚢隣ڣ皣嚤장㢥ꦦ᪦讦ﶧ溧动쒩㞩ꦪᲪ辫ʫ疫곐굄궸긭꺡꼖꾋뀀끵냪녠뇖뉋닂댸뎮됥뒜딓떊똁뙹뛰띨럠롙룑륊맂먻몵묮뮧밡벛봕붏븊뺄뻿뽺뿵쁰샬셧쇣쉟싛썘쏔쑑쓎앋었왆웃읁잿젽좼줺즹쨸쪷쬶쮶찵첵촵춵츶캶켷쾸퀹킺턼톾툿틁퍄폆푉퓋핎헑확훘ퟗ擘泙盚ﯛ胜ל諝ო雞᳞ꋟ⧟꿠㛠뷡䓡쳢叢�珤ﳥ蓦෦雧ῧꧨ㋨볩䛩탪寪烫ﯬ蛭ᇭ鳮⣮듯䃯쳰声狱￲賳᧳ꟴ㓴싵僵�淶ﯷ諸᧸꣹㣹쟺基矼߼飽⧽뫾䯾�淿＊敮摳瑲敡洊敮摯扪ਲㄵ‰⁯扪਼㰯䙩汴敲⽆污瑥䑥捯摥ਯ䙵湣瑩潮呹灥‰ਯ䑯浡楮嬰਱崊⽒慮来嬰਱ਰ਱ਰ਱崊⽂楴獐敲卡浰汥′㐊⽅湣潤敛《㈸崊⽄散潤敛《ㄊ《ㄊ《ㅝਯ卩穥嬲㥝⽌敮杴栠㈲ㄾ㹳瑲敡洊碜ﯿἊ︱ᡁ퀟虴ࣺ앰᪂뻟崍䅟ཆ繛섃䒟࿶䃐잃笡ꩿჴ曗䜈竕順䋛㑞㑞ޢ靍㞞㕮ޢ㮞氮磒槓�皳ẕ汼뫩腓∐㶜듰�믷鳮�盧꺋朡⁹옭�럵盞怮Ң鬬䕗東Ǒ疖▗뎳⸳㍞敥뻄剱醹ﰲ毥蔘菳퇺᝞䰺瞴醞龜᱓㥽ꋼ핓䝤胨잖ϑ짣巇샠⃌ꟍ੥湤獴牥慭੥湤潢樊㈱㘠〠潢樊㰼⽆楬瑥爯䙬慴敄散潤攊⽔祰支塏扪散琊⽓畢瑹灥⽆潲洊⽆潲浔祰攠ㄊ⽒敳潵牣敳㰼⽐牯捓整⁛⽐䑆崾㸊⽂䉯硛㐹㘶⸸㘊㘳㔴⸱㐊㔳㠵⸸㌊㘷㜳⸱崊⽍慴物硛ㄊ《《ㄊ《そ⽌敮杴栠㠾㹳瑲敡洊碜̀��੥湤獴牥慭੥湤潢樊㈱㜠〠潢樊㰼⽔祰支䅮湯琊⽆‴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㐹㘮㘸㘠㘳㔮㐱㐠㔳㠮㔸㌠㘷㜮㌱崊⽁值㰊⽎′ㄶ‰⁒ਾ㸊⽁㰼⽕剉⡨瑴瀺⼯捲潳獭慲欮捲潳獲敦⹯牧⽤楡汯术㽤潩㴱〮ㄱ㠶⽳ㄳ〵㤭〱㤭ㄷ㤵⵺♤潭慩渽灤�

