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Abstract

Here, we introduce the 3D Genome Browser, http://3dgenome.org, which allows users to conveniently explore
both their own and over 300 publicly available chromatin interaction data of different types. We design a new
binary data format for Hi-C data that reduces the file size by at least a magnitude and allows users to visualize
chromatin interactions over millions of base pairs within seconds. Our browser provides multiple methods linking
distal cis-requlatory elements with their potential target genes. Users can seamlessly integrate thousands of other
omics data to gain a comprehensive view of both regulatory landscape and 3D genome structure.

Background

The three-dimensional (3D) organization of mammalian
genomes plays an essential role in gene regulation [1-4].
At the DNA level, distal regulatory elements such as en-
hancers have been shown to be in spatial proximity to
their target genes. At a larger scale, topologically associ-
ating domains (TADs) have been suggested to be the
basic unit of mammalian genome organization [5, 6].
Several recent high-throughput technologies based on
chromatin conformation capture (3C) [7] have emerged
(such as Hi-C [8], ChIA-PET [9], Capture-C [10], Cap-
ture Hi-C [11], PLAC-Seq [12], and HiChIP [13]) and
have provided an unprecedented opportunity to study
the genome spatial organization in a genome-wide
fashion.

As the volume of chromatin interaction data keeps in-
creasing, efficient visualization and navigation of these
data become a major bottleneck for their biological in-
terpretation. Due to the size and complexity of these
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interactome data, it is challenging for an individual lab
to store and explore them efficiently. To tackle this chal-
lenge, several visualization tools have been developed,
and each of them has its unique features and limitations.
The Hi-C Data Browser [8] was the first web-based
query tool that visualizes Hi-C data as heatmaps. Cur-
rently, it does not support zoom functionalities and only
hosts limited number of datasets. The WashU Epige-
nome Browser [14, 15] can display both Hi-C and
ChIA-PET data, and it also provides access to thousands
of epigenomic datasets from the ENCODE and Roadmap
Epigenome projects. Due to the large file size of Hi-C
matrices, which could reach hundreds of gigabytes, its
speed for uploading and exploring Hi-C data is still not
optimal. Furthermore, it does not offer an option to dis-
play inter-chromosomal interaction data as heatmaps.
Users can also explore Hi-C data in Juicebox [16] and
Hi-Glass [17] with great speed, but currently, neither of
them provide other types of chromatin interaction data,
such as Capture Hi-C or ChIA-PET. Delta browser [18]
is another visualization tool with many features and can
display both physical view of 3D genome modeling and
Hi-C data. However, all the aforementioned tools except
for the WashU Epigenome Browser only display Hi-C as
a heatmap, which is convenient for visualizing large
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domain structures such as TADs, but may not be the
most informative way for visualizing enhancer-promoter
interactions.

Here, we present the 3D Genome Browser (www.3dge-
nome.org), which is a fast web-based browser that allows
users to smoothly explore both published and their own
chromatin interaction data. Our 3D Genome Browser
features six distinct modes that allow users to explore
interactome data tailored toward their own needs, from
exploring organization of higher-order chromatin struc-
tures at domain level to investigating high-resolution
enhancer-promoter interactions. Our browser provides
convenient zoom and traverse functions in real time and
supports queries by gene name, genomic loci, or SNP
rsid. In addition, users can easily incorporate their UCSC
Genome Browser and the WashU Epigenome Browser
sessions and therefore can simultaneously query and
supplement chromatin interaction data with thousands
of genetic, epigenetic, and phenotypic datasets, including
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ChIP-Seq and RNA-Seq data from the ENCODE and
Roadmap Epigenomics projects. So far, it has been vis-
ited by more than 60,000 unique users from 120 coun-
tries surpassing over 600,000 page views. In summary,
the 3D Genome Browser represents an invaluable re-
source and ecosystem for the study of chromosomal
organization and gene regulation in mammalian
genomes.

Results and Discussion

Overall design and implementation of the system

The overall structure of the 3D Genome Browser is
summarized in Fig. 1. Currently, our browser hosts more
than 300 chromatin interaction datasets of a variety of
different types (Table 1), including Hi-C, ChIA-PET,
Capture Hi-C, PLAC-Seq, HiChIP, GAM [19], and
SPRITE [20], in both human and mouse across multiple
genome assemblies, making it one of the most compre-
hensive and up-to-date high-quality = chromatin
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Table 1 Summary of number of datasets available on the 3D
Genome Browser

Data type Samples and conditions  Total datasets
Hi-C 70 288

Virtual 4C, derived from Hi-C  Same as above Same as above
ChlA-pet 14 14

Capture Hi-C 19 19

HiChIP 2 2

PLAC-Seq 3 3

GAM 1 1

DNase Hi-C 2 2

SPRITE 2 2

Total number 113 331

interaction data collection (details in Table S1, S2, S3).
To increase their impacts and usability, we systematic-
ally re-mapped and generated interaction matrices for
over 100 Hi-C datasets to the most current genome as-
sembly (GRCh38 and mm10), using the same in-house
data processing pipeline.

One of the important discoveries based on Hi-C data
analysis is that the mammalian genomes are organized
in mega-base pair chromatin domains, termed topologic-
ally associating domains (TADs). Therefore, we adopted
the same pipeline from Dixon et al. [5] and systematic-
ally predicted TADs in all cell/tissue types (Fig. 2a, or-
ange/blue bars) in our browser. Hi-C data has been
shown to contain systematic noises [21]; therefore, we
performed ICE (iterative correction and eigenvector de-
composition) normalization to all the Hi-C datasets in
our browser as well. To further assist users to explore
3D genome organization and gene regulation events
simultaneously, we also collected the open chromatin
data from the same cell type and display them in the
same window (Fig. 2a, red bars). Finally, when users
query the chromatin interaction information for a gene,
we can also display the expression profiles of this gene
across 109 cell/tissue types (Additional file 1: Figure S1),
which was uniformly processed by the ENCODE consor-
tium. In summary, for a given genomic loci, our browser
can display TADs, chromatin interaction, RNA-Seq, and
open chromatin region simultaneously and therefore
give our users a comprehensive view of these regions.

To facilitate a user’s unique interest, our 3D Genome
Browser features six distinct modes that allow users to ex-
plore interactome data, including (1) intra-chromosomal
Hi-C contact matrices as heatmaps, coupled with TADs
and available genome annotation in the same cell type; (2)
inter-chromosomal Hi-C heatmaps: this mode is particu-
larly helpful for visualizing inter-chromosomal interac-
tions and translocations; (3) compare Hi-C matrices:
stacked Hi-C heatmaps from different tissues or even
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different species; (4) virtual 4C: Hi-C data is plotted as an
arc for a queried gene or loci (bait), where the center is
the bait region. This mode is particularly helpful for re-
vealing chromatin interactions between two individual
loci; (5) ChIA-PET or other ChIP-based chromatin inter-
action data such as PLAC-Seq and HiChIP; (6) Capture
Hi-C or other capture-based chromatin interaction data.
Below, we will use several examples to demonstrate these
options and also illustrate how the 3D Genome Browser
can be used to make novel biological discoveries.

Exploring chromatin interactions using Hi-C data

First, we demonstrate an example of exploring Hi-C data
with the 3D Genome Browser for a large genomic region
in Fig. 2a. It only takes ~ 5 s to show a 10-Mb region of
GM12878 Hi-C interaction map on chrl2 (~ 15-25 Mb)
at a 25-kb resolution. The alternating yellow and blue
bars are predicted TADs using the same in-house pipe-
line as in Dixon et al. [5]. The dark red vertical bars are
DNase I hypersensitive sites (DHS) in the same cell type.
Users can also adjust the color scale to reduce the back-
ground signals and make the TAD structure more
visible.

Identifying cell/tissue-specific chromatin interactions
is important, as it has been shown that chromatin struc-
ture plays an important role in determining cellular
identity [22, 23]. In Fig. 2b, we notice a chromatin inter-
action in the 5-kb resolution Hi-C contact map in K562
cell line [24] (marked by the black arrow). To interpret
biological meaning of this chromatin interaction, we in-
tegrated the WashU Epigenome Browser with gene an-
notation; histone modification H3K4mel, H3K4me3,
and H3K27ac; and chromHMM [25] in K562 cells. We
found that the two interacting loci are the promoter of
SLC25A37 and a putative enhancer predicted by histone
modification patterns and chromHMM (Fig. 2b, vertical
gray bar). This putative enhancer has been confirmed to
exhibit enhancer activities that regulate SLC25A37 ex-
pression during late-phase erythropoiesis [26]. Further,
we checked the expression patterns profiled by the EN-
CODE consortium for SLC25A37 on our browser and it
showed high tissue specificity to K562 cells (Add-
itional file 1: Figure S1).

Discovering high-resolution promoter-enhancer

interactions using Capture Hi-C and DHS-linkage

While Hi-C data provides a viable way to suggest
promoter-enhancer pairing, most of the current pub-
lished Hi-C maps are at 10—40-kb resolution and there-
fore are not optimal for uncovering enhancer-promoter
interactions. Sequence capture- or pull-down-based
methods, such as Capture Hi-C or ChIA-PET, generally
have higher resolution and therefore are more effective
in identifying chromatin interactions between gene and
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Fig. 2 (See legend on next page.)
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(See figure on previous page.)

Fig. 2 Examples of using the 3D Genome Browser to explore Hi-C data. a A 10-Mb region of GM12878 Hi-C interaction map on chr12 (~ 15-25 Mb) at
25-kb resolution. The alternating yellow and blue bars are predicted TADs. The dark red bars are DHS in the same cell type. b Hi-C interaction map in
K562 cells at 5-kb resolution. The black arrow points to a potential tissue-specific interaction between the SLC25A37 promoter and a candidate
enhancer region (marked by H3K4meT1). The ChiP-Seq tracks for histone modifications, and chromHMM are visualized using the WashU

Epigenome Browser

their cis-regulatory elements. In Fig. 3a, we give an ex-
ample of Capture Hi-C [27], which seeks long-range in-
teractions that involve selected elements of interests
captured with pre-determined sequences (in this case,
promoters). Capture Hi-C identified chromatin loops are
presented as the green arcs (top track in Fig. 3a). The
center of the track is the capture sequence in this region,
which is the PAX-5 gene promoter. We observed that
the promoter interacts highly with the nearby regions
and most of the interacting regions are enriched for
strong enhancer marks (H3K4mel and H3K27ac).

To further examine the predicted promoter-enhancer
linkages, we also explored the linkage data by DNase I
hypersensitive sites (DHS) in this region (blue curve line,
second track in Fig. 3a), which represents another method
of linking distal regulatory element with their target genes.
It works by computing Pearson correlation coefficients be-
tween the gene proximal and distal DHS pairs across more
than 100 ENCODE cell types, and only the pairs with
PCC>0.7 and within 500 kb are kept as the linked pairs
[28]. In the example shown in Fig. 3a, we observed several
interactions involving the promoter of the PAX-5 gene and
a potential enhancer (marked by both H3K4mel and
H3K27ac signals) downstream of the ZCCHC? gene in the
naive B cell Capture Hi-C dataset [27]. One region marked
by enhancer-associated histone modifications has indeed
been previously determined to be an enhancer for PAXS,
and its disruption leads to leukemogenesis [29]. By integrat-
ing multiple lines of evidence, our browser provides a valu-
able resource for investigators to generate hypotheses
connecting distal non-coding regulatory elements and their
target genes.

Investigating potential target genes for non-coding
genetic variants

Resolutions at loci-specific levels also hold significance
in the discovery of the functions of non-coding genetic
variants, such as single nucleotide polymorphisms
(SNPs), which may disrupt transcription factor (TF)
binding sites of cis-regulatory elements. In this section,
we will first demonstrate how to use virtual 4C mode for
such analyses. The 4C (circular chromosomal conform-
ation capture [30, 31]) experiment is a chromatin
ligation-based method that measures one-versus-many
interactions in the genome, that is, the interaction fre-
quencies between a “bait” locus and any other loci. Its
data is plotted as a line histogram, where the center is

the “bait” region and any peak signals in distal regions
indicate the frequency of chromatin interaction events.
In our browser, we use the queried region (gene name
or SNP) as the bait and extract Hi-C data centered on
the bait region, hence, virtual 4C. To bolster the power
of the virtual 4C plot, our browser also supplements
ChIA-PET and DHS-linkage data. In Fig. 3b, we queried
the SNP rs12740374 in the virtual 4C mode. This SNP
has been associated with high plasma low-density lipo-
protein cholesterol (LDL-C) [32], which could lead to
coronary artery disease and myocardial infarction. We
plotted virtual 4C and ChIA-PET data from K562 in this
region, as high-resolution Hi-C and ChIA-PET data are
only available for K562, but not for hepatic cell lines.
Since LDLs are processed by the liver, we examined the
histone modifications in the Hep2G cell line and found
rs12740374 is located within a candidate enhancer re-
gion as marked by H3K27ac signals. Hence, virtual 4C,
ChIA-PET, and DHS-linkage all support a putative inter-
action between the enhancer harboring this SNP and the
promoter region of SORTI. Further, it has been shown
that the rs12740374 minor allele creates a C/EBPa-bind-
ing site which enhances SORT1 expression leading to de-
creased LDL-C levels, thus suggesting that the minor
allele confers a gain-of-function effect [33]. Still, despite
the unusual conclusions reached by the study—as most
minor alleles are usually loss-of-function—the virtual 4C
mode of our 3D Genome Browser could aid in the hy-
pothesis generation of not only the cis-regulatory ele-
ments and their putative target genes but also the effects
of non-coding variants.

Exploring conservation of chromatin structure across
species

Studying the evolutionary conservation of TADs could
lead to a deeper understanding of their functional sig-
nificance. The compare Hi-C mode of the 3D Genome
Browser facilitates this endeavor by stacking Hi-C heat-
maps from homologous regions of different species for
visual contrast. In this mode, we observed the conserva-
tion of TADs and the genes near or at the TAD bound-
aries between human and mouse in their homologous
region surrounding the BCL-6/Bcl-6 genes (Fig. 4), sug-
gesting the chromatin structure may play a conserved
role in the regulation of this proto-oncogene. This mode
could be helpful for users to observe conserved or dy-
namic Hi-C interactions from different tissue/cell types.



Wang et al. Genome Biology (2018) 19:151 Page 6 of 12

a Capture Hi-C
in Naive B-Cell

DHS Linkage |

36,260,888l 37,866,808 37,180, 668] 37,260,088l 37,366,800 37,488,668 37,560,086l
o h i i ] h i R R 1 Y [y 1Y

GM12878 H3K4me1 _ | s 4oy s o Bleai b i i o wlhowd MR

GM12878 H3K4me3 S — | TS |F T e aba sk hed ik A2

GM12878 H3K27ac PP | o b L Mk L*,,ML, —al) k. d

GM12878 chromH VI[V] | sss o s w01 (0 0 s [N T T | | — i
PAXS ZCCHC7 GRHPR

GM12878 2
Hi-C R

rs12740374

anchomngpont 400

Virtual 4C in K562 cells |
(5kb resolution) Jozo

Hi-C Read Value

I
‘ \A -480

Mﬁ\f L»\"N M\’\A/\AJ\AMM I

"
109.800.000 110,000.000 110,200.000

.
109.800.000 449 700,000 109,900,000

i =V
109,400,000 109,500,000

110,100,000 110.300.000
DHS Linkage
K562 ChlA-PET
H3K4me3 —
K562 ChlA-PET
POLR2A N ==
169,508, 66| N 1;;,\083,898|

HepG2 H3K4me1 um““ m |" I‘ ““ll "I IKL l I |

HepG2 H3Kdme3 b e L Wl

HepG2 H3K27ac ‘ 1 i
- e A L i L et
TR T R L2 1 e 1 i i =T Jlllw ]
HepG2 chromHMM =5 IS IO | | Sl B (sl | S | D o (N 011 N R |51 Tk 11

TCF12 | A FOSL1 [ CEBFD SINBAK26 | 1 RAD21[CILKS ©1 (1 MYC

KDMSB | RAD21 HDAC2 | L ZNF263 BCL3 EF388 |

Hesz TFS STATL ATF1L cHD2 | CTCF | M PAXS TFAP2A |H
TCF7L2 CEBFB | HI PHFS |K RAD21 TAF7 ZNF263
RFXS | GH MAFK CEBFB |1 I PHFS | K EF388 ATF2 |

SNPS | rs77134761 | rs112857853| rs141936589| rs12740374 | rs729836043 | rs6681232| rs11161972| 7‘5613395531 |

Fig. 3 (See legend on next page.)




Wang et al. Genome Biology (2018) 19:151 Page 7 of 12

(See figure on previous page.)

Fig. 3 Linking distal regulatory elements and SNPs with their target genes with the 3D Genome browser. a Capture Hi-C data in naive B cells
showing potential interactions (green curve lines) with PAX5 promoter region. The Capture Hi-C interactions are consistent with patterns from
the 5-kb resolution Hi-C data in GM12878 cells. b Using virtual 4C, DHS-linkage, and ChIA-PET data to hypothesize the target gene for non-coding
variant rs12740374. Based on the annotation by chromHMM in HepG2, this SNP is located at a putative enhancer region (orange). According to
virtual 4C data, there is a potential interaction between this enhancer and the SORT1 promoter. This linkage is also supported by DHS-linkage, as
well as by the H3K4me3 and POL2A ChIA-PET data in K562 cell line

Uncovering structural variations in cancer genomes inversions and translocations, establish signature pat-

It has been shown recently that Hi-C data cannot only
be used to detect chromatin interactions, but also may
be used to denote structural variations [34—39]. Certain

terns have been observed in Hi-C heatmaps. A striking
structural variation is shown in Fig. 5 through the
inter-chromosomal heatmap mode: we confirmed the

structural variations, such as deletions, insertions, oncogenic BCR-ABL inter-chromosomal translocations
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Fig. 4 Using the 3D Genome Browser to explore conserved chromatin structure across human and mouse. The similarity between human
GM12878 Hi-C data and mouse CH12 Hi-C data at the region surrounding the BCL6/Bcl6 gene indicates an evolutionary conservation event of
the chromatin structure between the two species
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Fig. 5 Using the inter-chromosomal interaction mode of the 3D Genome Browser to discover structural variations in cancer cells. An inter-
chromosomal translocation event (BCR-ABL fusion) in K562 and KBM7 CML cell lines appears as “inter-chromosomal interactions” on Hi-C maps.
Such aberrant patterns are frequently observed in Hi-C maps in cancer cells, because the cancer genome is not available and Hi-C reads are
mapped to the reference genome. We also noted that this translocation is reciprocal in KBM7 but not in K562 cells and that the breakpoint in
ABL is different in the two cell lines. Such inter-chromosomal interactions are not observed in the karyotypically normal GM12878 cells

in two chronic myelogenous leukemia (CML) cell lines,
K562 and KBM7. Such inter-chromosomal interactions
are not observed in the karyotypically normal GM12878
cell line. We also noted that this translocation is recipro-
cal in KBM7 but not in K562 cells and that the break-
point in ABL is different in the two cell lines. In
addition, with the browser’s compare Hi-C mode, the
users could contrast the similarities and differences of
chromosomal structure between distinct cells/tissues or
even different species. Comparing the cancer cell line
K562 to the normal cell line KBM7, we noted deletions
specific to K562, one of which encompasses the tumor
suppressor genes CDKN2A and CDKN2B (Add-
itional file 1: Figure S2), as previously confirmed [40].

New binary Hi-C data format allows faster data retrieval
and visualizing users’ own Hi-C datasets

The 3D Browser supports a variety of features that allow
users to browse unpublished data. First, our browser en-
courages integration with customized UCSC or WashU
Epigenome browser sessions, wherein the users could add
or modify existing tracks or upload their own genomic/epi-
genomic data. For example, to view a customized UCSC
session, a user would only be required to enter the UCSC
session URL. More importantly, the users could view their
own Hi-C data by converting the contact matrices into a
novel, indexed binary file format called Binary Upper Tri-
angulLar MatRix (BUTLR file) developed by us. By hosting
the BUTLR file on any HT TP-supported server and provid-
ing the URL to the 3D Genome Browser, a user can take
full advantage of the features of our browser, without hav-
ing to upload their Hi-C data since the browser would only
query the selected region through binary indexing, rather
than searching through the entire matrix. This capability is
similar to the bigWig/bigBed mechanism invented by us
and UCSC [41].

Additionally, BUTLR format dramatically reduces the file
size of high-resolution Hi-C data not only through the bi-
narization but also through the omission of redundant
values (Additional file 1: Figure S3a; Additional file 2). The
BUTLR file encodes an entire genome-wide chromatin in-
teractions data into a binary, indexed format. While 1-kb
resolution hgl9 intra-chromosomal Hi-C contact matrices
in the tab-delimited format require almost 1 TB, the
BUTLR format of those same matrices would only take
11 GB (Additional file 1: Figure S3b). More importantly,
the binary file format also greatly improves the query speed:

using pre-loaded Hi-C datasets, the 3D browser generally
returns the query results as a heatmap in a matter of sec-
onds. We also want to note that our browser is designed as
query-based to maximize its usability, and as a result, it ex-
cels at exploring locus of interest and gene-element rela-
tionship, but can be a little less dynamic than other tools
when navigating Hi-C matrix for larger genomic regions.

Conclusion

In summary, we developed an interactive 3D Genome
Browser that is defined by simple and easy-to-navigate
graphical user interface, fast query-response time, and a
comprehensive collection of publicly available chromatin
interaction datasets. As our browser simultaneously dis-
plays the 3D chromatin interactions, functional (epi)ge-
nomic annotations, and disease/trait-associated SNPs,
we provide an invaluable online tool for investigators
from all over the world for the study of 3D genome
organization and its functional implications in mamma-
lian gene regulation.

Methods

Backend and user interface

The 3D Genome Browser is supported by the LAMP
(Linux, Apache, MySQL, PHP) stack web service on the
backend. At the user-interface level, the browser de-
pends on HTML5 and JavaScript and its libraries JQuery
and D3.js. All displays are rendered on HTML5 Canvas
or Inline SVG.

In-house Hi-C data processing pipeline

We followed the pipeline in Dixon et al. [22] for Hi-C
data processing. Briefly, raw fastq files were aligned to
human reference genome GRCh38 with BWA aligner
(0.7.15-r1140). Only uniquely mapped reads and prop-
erly paired reads on the same chromosome are retained.
The genome is binned at different resolution (e.g., 40 kb
and 10 kb) to generate Hi-C matrix. Paired reads were
considered to be chromatin interactions connecting two
bins. ICE (iterative correction and eigenvector decom-
position) normalization was done using the “iced” Py-
thon package.

User query submission

The user may provide genomic coordinates or genome fea-
tures such as gene symbols, RefSeq ID, Ensembl ID, or SNP
rsid as queries for all modes of the 3D Genome Browser.
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External genome browser integration and alignment

For the UCSC Genome Browser, we embed its sessions
with the iframe and we align its content with our tracks
by manipulating the scroll bars of the div HTML elem-
ent containing the iframe. The WashU Epigenome
Browser provides a JavaScript function for seamless inte-
gration into our browser. For both external browsers, it
is possible for the user to embed a user-defined session
consisting of user-selected tracks and options by provid-
ing the session URL to the 3D Genome Browser.

Determining homologous regions

For the compare Hi-C mode, we determine the homolo-
gous regions between two species by querying for hom-
ologous genes from the NCBI's HomoloGene database
[42] as well as utilizing known inter-species chains [43].

BUTLR format

The BUTLR file encodes an entire genome-wide chro-
matin interactions data into a binary, indexed format.
To compress the original contact matrices, BUTLR only
stores the nonzero values of the upper triangular matri-
ces of the intra-chromosomal data and the n x m, where
n and m are the number of interrogated loci and where
n<m of the inter-chromosomal data. The locations of
each chromosome or chromosome-pair matrix, row in-
dices of each matrix, and column indices of nonzero
values along with nonzero values are binarized and
indexed within the BUTLR file structure. Perl scripts
that encode and decode BUTLR files are available at
http://github.com/yuelab/BUTLRTools. All the Hi-C
matrices in this manuscript are converted to BUTLR file
format for visualization [5, 8, 19, 20, 22—24, 44-54].

Additional files

Additional file 1: Figure S1. Gene expression of SCL25A37 across 109
issues. Figure S2. Using the 3D Genome Browser to determine intra-
chromosomal structural variations. Figure S3. Design and performance of
the BUTLR file format. Table S1. List of Hi-C datasets hosted by the 3D
Genome Browser. Table S2. List of ChIA-PET, Capture Hi-C, PLAC-Seq and
HiChIP datasets. Table S3. List of GAM, DNase Hi-C, and SPRITE datasets.
(PDF 1295 kb)

Additional file 2: Review history. (DOCX 1354 kb)
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