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Abstract

Here, we introduce the 3D Genome Browser, http://3dgenome.org, which allows users to conveniently explore

both their own and over 300 publicly available chromatin interaction data of different types. We design a new

binary data format for Hi-C data that reduces the file size by at least a magnitude and allows users to visualize

chromatin interactions over millions of base pairs within seconds. Our browser provides multiple methods linking

distal cis-regulatory elements with their potential target genes. Users can seamlessly integrate thousands of other

omics data to gain a comprehensive view of both regulatory landscape and 3D genome structure.

Background

The three-dimensional (3D) organization of mammalian

genomes plays an essential role in gene regulation [1–4].

At the DNA level, distal regulatory elements such as en-

hancers have been shown to be in spatial proximity to

their target genes. At a larger scale, topologically associ-

ating domains (TADs) have been suggested to be the

basic unit of mammalian genome organization [5, 6].

Several recent high-throughput technologies based on

chromatin conformation capture (3C) [7] have emerged

(such as Hi-C [8], ChIA-PET [9], Capture-C [10], Cap-

ture Hi-C [11], PLAC-Seq [12], and HiChIP [13]) and

have provided an unprecedented opportunity to study

the genome spatial organization in a genome-wide

fashion.

As the volume of chromatin interaction data keeps in-

creasing, efficient visualization and navigation of these

data become a major bottleneck for their biological in-

terpretation. Due to the size and complexity of these

interactome data, it is challenging for an individual lab

to store and explore them efficiently. To tackle this chal-

lenge, several visualization tools have been developed,

and each of them has its unique features and limitations.

The Hi-C Data Browser [8] was the first web-based

query tool that visualizes Hi-C data as heatmaps. Cur-

rently, it does not support zoom functionalities and only

hosts limited number of datasets. The WashU Epige-

nome Browser [14, 15] can display both Hi-C and

ChIA-PET data, and it also provides access to thousands

of epigenomic datasets from the ENCODE and Roadmap

Epigenome projects. Due to the large file size of Hi-C

matrices, which could reach hundreds of gigabytes, its

speed for uploading and exploring Hi-C data is still not

optimal. Furthermore, it does not offer an option to dis-

play inter-chromosomal interaction data as heatmaps.

Users can also explore Hi-C data in Juicebox [16] and

Hi-Glass [17] with great speed, but currently, neither of

them provide other types of chromatin interaction data,

such as Capture Hi-C or ChIA-PET. Delta browser [18]

is another visualization tool with many features and can

display both physical view of 3D genome modeling and

Hi-C data. However, all the aforementioned tools except

for the WashU Epigenome Browser only display Hi-C as

a heatmap, which is convenient for visualizing large
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domain structures such as TADs, but may not be the

most informative way for visualizing enhancer-promoter

interactions.

Here, we present the 3D Genome Browser (www.3dge-

nome.org), which is a fast web-based browser that allows

users to smoothly explore both published and their own

chromatin interaction data. Our 3D Genome Browser

features six distinct modes that allow users to explore

interactome data tailored toward their own needs, from

exploring organization of higher-order chromatin struc-

tures at domain level to investigating high-resolution

enhancer-promoter interactions. Our browser provides

convenient zoom and traverse functions in real time and

supports queries by gene name, genomic loci, or SNP

rsid. In addition, users can easily incorporate their UCSC

Genome Browser and the WashU Epigenome Browser

sessions and therefore can simultaneously query and

supplement chromatin interaction data with thousands

of genetic, epigenetic, and phenotypic datasets, including

ChIP-Seq and RNA-Seq data from the ENCODE and

Roadmap Epigenomics projects. So far, it has been vis-

ited by more than 60,000 unique users from 120 coun-

tries surpassing over 600,000 page views. In summary,

the 3D Genome Browser represents an invaluable re-

source and ecosystem for the study of chromosomal

organization and gene regulation in mammalian

genomes.

Results and Discussion
Overall design and implementation of the system

The overall structure of the 3D Genome Browser is

summarized in Fig. 1. Currently, our browser hosts more

than 300 chromatin interaction datasets of a variety of

different types (Table 1), including Hi-C, ChIA-PET,

Capture Hi-C, PLAC-Seq, HiChIP, GAM [19], and

SPRITE [20], in both human and mouse across multiple

genome assemblies, making it one of the most compre-

hensive and up-to-date high-quality chromatin

Fig. 1 The overall design of the 3D Genome Browser
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interaction data collection (details in Table S1, S2, S3).

To increase their impacts and usability, we systematic-

ally re-mapped and generated interaction matrices for

over 100 Hi-C datasets to the most current genome as-

sembly (GRCh38 and mm10), using the same in-house

data processing pipeline.

One of the important discoveries based on Hi-C data

analysis is that the mammalian genomes are organized

in mega-base pair chromatin domains, termed topologic-

ally associating domains (TADs). Therefore, we adopted

the same pipeline from Dixon et al. [5] and systematic-

ally predicted TADs in all cell/tissue types (Fig. 2a, or-

ange/blue bars) in our browser. Hi-C data has been

shown to contain systematic noises [21]; therefore, we

performed ICE (iterative correction and eigenvector de-

composition) normalization to all the Hi-C datasets in

our browser as well. To further assist users to explore

3D genome organization and gene regulation events

simultaneously, we also collected the open chromatin

data from the same cell type and display them in the

same window (Fig. 2a, red bars). Finally, when users

query the chromatin interaction information for a gene,

we can also display the expression profiles of this gene

across 109 cell/tissue types (Additional file 1: Figure S1),

which was uniformly processed by the ENCODE consor-

tium. In summary, for a given genomic loci, our browser

can display TADs, chromatin interaction, RNA-Seq, and

open chromatin region simultaneously and therefore

give our users a comprehensive view of these regions.

To facilitate a user’s unique interest, our 3D Genome

Browser features six distinct modes that allow users to ex-

plore interactome data, including (1) intra-chromosomal

Hi-C contact matrices as heatmaps, coupled with TADs

and available genome annotation in the same cell type; (2)

inter-chromosomal Hi-C heatmaps: this mode is particu-

larly helpful for visualizing inter-chromosomal interac-

tions and translocations; (3) compare Hi-C matrices:

stacked Hi-C heatmaps from different tissues or even

different species; (4) virtual 4C: Hi-C data is plotted as an

arc for a queried gene or loci (bait), where the center is

the bait region. This mode is particularly helpful for re-

vealing chromatin interactions between two individual

loci; (5) ChIA-PET or other ChIP-based chromatin inter-

action data such as PLAC-Seq and HiChIP; (6) Capture

Hi-C or other capture-based chromatin interaction data.

Below, we will use several examples to demonstrate these

options and also illustrate how the 3D Genome Browser

can be used to make novel biological discoveries.

Exploring chromatin interactions using Hi-C data

First, we demonstrate an example of exploring Hi-C data

with the 3D Genome Browser for a large genomic region

in Fig. 2a. It only takes ~ 5 s to show a 10-Mb region of

GM12878 Hi-C interaction map on chr12 (~ 15–25 Mb)

at a 25-kb resolution. The alternating yellow and blue

bars are predicted TADs using the same in-house pipe-

line as in Dixon et al. [5]. The dark red vertical bars are

DNase I hypersensitive sites (DHS) in the same cell type.

Users can also adjust the color scale to reduce the back-

ground signals and make the TAD structure more

visible.

Identifying cell/tissue-specific chromatin interactions

is important, as it has been shown that chromatin struc-

ture plays an important role in determining cellular

identity [22, 23]. In Fig. 2b, we notice a chromatin inter-

action in the 5-kb resolution Hi-C contact map in K562

cell line [24] (marked by the black arrow). To interpret

biological meaning of this chromatin interaction, we in-

tegrated the WashU Epigenome Browser with gene an-

notation; histone modification H3K4me1, H3K4me3,

and H3K27ac; and chromHMM [25] in K562 cells. We

found that the two interacting loci are the promoter of

SLC25A37 and a putative enhancer predicted by histone

modification patterns and chromHMM (Fig. 2b, vertical

gray bar). This putative enhancer has been confirmed to

exhibit enhancer activities that regulate SLC25A37 ex-

pression during late-phase erythropoiesis [26]. Further,

we checked the expression patterns profiled by the EN-

CODE consortium for SLC25A37 on our browser and it

showed high tissue specificity to K562 cells (Add-

itional file 1: Figure S1).

Discovering high-resolution promoter-enhancer

interactions using Capture Hi-C and DHS-linkage

While Hi-C data provides a viable way to suggest

promoter-enhancer pairing, most of the current pub-

lished Hi-C maps are at 10–40-kb resolution and there-

fore are not optimal for uncovering enhancer-promoter

interactions. Sequence capture- or pull-down-based

methods, such as Capture Hi-C or ChIA-PET, generally

have higher resolution and therefore are more effective

in identifying chromatin interactions between gene and

Table 1 Summary of number of datasets available on the 3D

Genome Browser

Data type Samples and conditions Total datasets

Hi-C 70 288

Virtual 4C, derived from Hi-C Same as above Same as above

ChIA-pet 14 14

Capture Hi-C 19 19

HiChIP 2 2

PLAC-Seq 3 3

GAM 1 1

DNase Hi-C 2 2

SPRITE 2 2

Total number 113 331
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Fig. 2 (See legend on next page.)
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their cis-regulatory elements. In Fig. 3a, we give an ex-

ample of Capture Hi-C [27], which seeks long-range in-

teractions that involve selected elements of interests

captured with pre-determined sequences (in this case,

promoters). Capture Hi-C identified chromatin loops are

presented as the green arcs (top track in Fig. 3a). The

center of the track is the capture sequence in this region,

which is the PAX-5 gene promoter. We observed that

the promoter interacts highly with the nearby regions

and most of the interacting regions are enriched for

strong enhancer marks (H3K4me1 and H3K27ac).

To further examine the predicted promoter-enhancer

linkages, we also explored the linkage data by DNase I

hypersensitive sites (DHS) in this region (blue curve line,

second track in Fig. 3a), which represents another method

of linking distal regulatory element with their target genes.

It works by computing Pearson correlation coefficients be-

tween the gene proximal and distal DHS pairs across more

than 100 ENCODE cell types, and only the pairs with

PCC > 0.7 and within 500 kb are kept as the linked pairs

[28]. In the example shown in Fig. 3a, we observed several

interactions involving the promoter of the PAX-5 gene and

a potential enhancer (marked by both H3K4me1 and

H3K27ac signals) downstream of the ZCCHC7 gene in the

naïve B cell Capture Hi-C dataset [27]. One region marked

by enhancer-associated histone modifications has indeed

been previously determined to be an enhancer for PAX5,

and its disruption leads to leukemogenesis [29]. By integrat-

ing multiple lines of evidence, our browser provides a valu-

able resource for investigators to generate hypotheses

connecting distal non-coding regulatory elements and their

target genes.

Investigating potential target genes for non-coding

genetic variants

Resolutions at loci-specific levels also hold significance

in the discovery of the functions of non-coding genetic

variants, such as single nucleotide polymorphisms

(SNPs), which may disrupt transcription factor (TF)

binding sites of cis-regulatory elements. In this section,

we will first demonstrate how to use virtual 4C mode for

such analyses. The 4C (circular chromosomal conform-

ation capture [30, 31]) experiment is a chromatin

ligation-based method that measures one-versus-many

interactions in the genome, that is, the interaction fre-

quencies between a “bait” locus and any other loci. Its

data is plotted as a line histogram, where the center is

the “bait” region and any peak signals in distal regions

indicate the frequency of chromatin interaction events.

In our browser, we use the queried region (gene name

or SNP) as the bait and extract Hi-C data centered on

the bait region, hence, virtual 4C. To bolster the power

of the virtual 4C plot, our browser also supplements

ChIA-PET and DHS-linkage data. In Fig. 3b, we queried

the SNP rs12740374 in the virtual 4C mode. This SNP

has been associated with high plasma low-density lipo-

protein cholesterol (LDL-C) [32], which could lead to

coronary artery disease and myocardial infarction. We

plotted virtual 4C and ChIA-PET data from K562 in this

region, as high-resolution Hi-C and ChIA-PET data are

only available for K562, but not for hepatic cell lines.

Since LDLs are processed by the liver, we examined the

histone modifications in the Hep2G cell line and found

rs12740374 is located within a candidate enhancer re-

gion as marked by H3K27ac signals. Hence, virtual 4C,

ChIA-PET, and DHS-linkage all support a putative inter-

action between the enhancer harboring this SNP and the

promoter region of SORT1. Further, it has been shown

that the rs12740374 minor allele creates a C/EBPα-bind-

ing site which enhances SORT1 expression leading to de-

creased LDL-C levels, thus suggesting that the minor

allele confers a gain-of-function effect [33]. Still, despite

the unusual conclusions reached by the study—as most

minor alleles are usually loss-of-function—the virtual 4C

mode of our 3D Genome Browser could aid in the hy-

pothesis generation of not only the cis-regulatory ele-

ments and their putative target genes but also the effects

of non-coding variants.

Exploring conservation of chromatin structure across

species

Studying the evolutionary conservation of TADs could

lead to a deeper understanding of their functional sig-

nificance. The compare Hi-C mode of the 3D Genome

Browser facilitates this endeavor by stacking Hi-C heat-

maps from homologous regions of different species for

visual contrast. In this mode, we observed the conserva-

tion of TADs and the genes near or at the TAD bound-

aries between human and mouse in their homologous

region surrounding the BCL-6/Bcl-6 genes (Fig. 4), sug-

gesting the chromatin structure may play a conserved

role in the regulation of this proto-oncogene. This mode

could be helpful for users to observe conserved or dy-

namic Hi-C interactions from different tissue/cell types.

(See figure on previous page.)

Fig. 2 Examples of using the 3D Genome Browser to explore Hi-C data. a A 10-Mb region of GM12878 Hi-C interaction map on chr12 (~ 15–25 Mb) at

25-kb resolution. The alternating yellow and blue bars are predicted TADs. The dark red bars are DHS in the same cell type. b Hi-C interaction map in

K562 cells at 5-kb resolution. The black arrow points to a potential tissue-specific interaction between the SLC25A37 promoter and a candidate

enhancer region (marked by H3K4me1). The ChIP-Seq tracks for histone modifications, and chromHMM are visualized using the WashU

Epigenome Browser
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Uncovering structural variations in cancer genomes

It has been shown recently that Hi-C data cannot only

be used to detect chromatin interactions, but also may

be used to denote structural variations [34–39]. Certain

structural variations, such as deletions, insertions,

inversions and translocations, establish signature pat-

terns have been observed in Hi-C heatmaps. A striking

structural variation is shown in Fig. 5 through the

inter-chromosomal heatmap mode: we confirmed the

oncogenic BCR-ABL inter-chromosomal translocations

(See figure on previous page.)

Fig. 3 Linking distal regulatory elements and SNPs with their target genes with the 3D Genome browser. a Capture Hi-C data in naïve B cells

showing potential interactions (green curve lines) with PAX5 promoter region. The Capture Hi-C interactions are consistent with patterns from

the 5-kb resolution Hi-C data in GM12878 cells. b Using virtual 4C, DHS-linkage, and ChIA-PET data to hypothesize the target gene for non-coding

variant rs12740374. Based on the annotation by chromHMM in HepG2, this SNP is located at a putative enhancer region (orange). According to

virtual 4C data, there is a potential interaction between this enhancer and the SORT1 promoter. This linkage is also supported by DHS-linkage, as

well as by the H3K4me3 and POL2A ChIA-PET data in K562 cell line

Fig. 4 Using the 3D Genome Browser to explore conserved chromatin structure across human and mouse. The similarity between human

GM12878 Hi-C data and mouse CH12 Hi-C data at the region surrounding the BCL6/Bcl6 gene indicates an evolutionary conservation event of

the chromatin structure between the two species
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in two chronic myelogenous leukemia (CML) cell lines,

K562 and KBM7. Such inter-chromosomal interactions

are not observed in the karyotypically normal GM12878

cell line. We also noted that this translocation is recipro-

cal in KBM7 but not in K562 cells and that the break-

point in ABL is different in the two cell lines. In

addition, with the browser’s compare Hi-C mode, the

users could contrast the similarities and differences of

chromosomal structure between distinct cells/tissues or

even different species. Comparing the cancer cell line

K562 to the normal cell line KBM7, we noted deletions

specific to K562, one of which encompasses the tumor

suppressor genes CDKN2A and CDKN2B (Add-

itional file 1: Figure S2), as previously confirmed [40].

New binary Hi-C data format allows faster data retrieval

and visualizing users’ own Hi-C datasets

The 3D Browser supports a variety of features that allow

users to browse unpublished data. First, our browser en-

courages integration with customized UCSC or WashU

Epigenome browser sessions, wherein the users could add

or modify existing tracks or upload their own genomic/epi-

genomic data. For example, to view a customized UCSC

session, a user would only be required to enter the UCSC

session URL. More importantly, the users could view their

own Hi-C data by converting the contact matrices into a

novel, indexed binary file format called Binary Upper Tri-

anguLar MatRix (BUTLR file) developed by us. By hosting

the BUTLR file on any HTTP-supported server and provid-

ing the URL to the 3D Genome Browser, a user can take

full advantage of the features of our browser, without hav-

ing to upload their Hi-C data since the browser would only

query the selected region through binary indexing, rather

than searching through the entire matrix. This capability is

similar to the bigWig/bigBed mechanism invented by us

and UCSC [41].

Additionally, BUTLR format dramatically reduces the file

size of high-resolution Hi-C data not only through the bi-

narization but also through the omission of redundant

values (Additional file 1: Figure S3a; Additional file 2). The

BUTLR file encodes an entire genome-wide chromatin in-

teractions data into a binary, indexed format. While 1-kb

resolution hg19 intra-chromosomal Hi-C contact matrices

in the tab-delimited format require almost 1 TB, the

BUTLR format of those same matrices would only take

11 GB (Additional file 1: Figure S3b). More importantly,

the binary file format also greatly improves the query speed:

using pre-loaded Hi-C datasets, the 3D browser generally

returns the query results as a heatmap in a matter of sec-

onds. We also want to note that our browser is designed as

query-based to maximize its usability, and as a result, it ex-

cels at exploring locus of interest and gene-element rela-

tionship, but can be a little less dynamic than other tools

when navigating Hi-C matrix for larger genomic regions.

Conclusion
In summary, we developed an interactive 3D Genome

Browser that is defined by simple and easy-to-navigate

graphical user interface, fast query-response time, and a

comprehensive collection of publicly available chromatin

interaction datasets. As our browser simultaneously dis-

plays the 3D chromatin interactions, functional (epi)ge-

nomic annotations, and disease/trait-associated SNPs,

we provide an invaluable online tool for investigators

from all over the world for the study of 3D genome

organization and its functional implications in mamma-

lian gene regulation.

Methods

Backend and user interface

The 3D Genome Browser is supported by the LAMP

(Linux, Apache, MySQL, PHP) stack web service on the

backend. At the user-interface level, the browser de-

pends on HTML5 and JavaScript and its libraries JQuery

and D3.js. All displays are rendered on HTML5 Canvas

or Inline SVG.

In-house Hi-C data processing pipeline

We followed the pipeline in Dixon et al. [22] for Hi-C

data processing. Briefly, raw fastq files were aligned to

human reference genome GRCh38 with BWA aligner

(0.7.15-r1140). Only uniquely mapped reads and prop-

erly paired reads on the same chromosome are retained.

The genome is binned at different resolution (e.g., 40 kb

and 10 kb) to generate Hi-C matrix. Paired reads were

considered to be chromatin interactions connecting two

bins. ICE (iterative correction and eigenvector decom-

position) normalization was done using the “iced” Py-

thon package.

User query submission

The user may provide genomic coordinates or genome fea-

tures such as gene symbols, RefSeq ID, Ensembl ID, or SNP

rsid as queries for all modes of the 3D Genome Browser.

(See figure on previous page.)

Fig. 5 Using the inter-chromosomal interaction mode of the 3D Genome Browser to discover structural variations in cancer cells. An inter-

chromosomal translocation event (BCR-ABL fusion) in K562 and KBM7 CML cell lines appears as “inter-chromosomal interactions” on Hi-C maps.

Such aberrant patterns are frequently observed in Hi-C maps in cancer cells, because the cancer genome is not available and Hi-C reads are

mapped to the reference genome. We also noted that this translocation is reciprocal in KBM7 but not in K562 cells and that the breakpoint in

ABL is different in the two cell lines. Such inter-chromosomal interactions are not observed in the karyotypically normal GM12878 cells

Wang et al. Genome Biology  (2018) 19:151 Page 9 of 12



External genome browser integration and alignment

For the UCSC Genome Browser, we embed its sessions

with the iframe and we align its content with our tracks

by manipulating the scroll bars of the div HTML elem-

ent containing the iframe. The WashU Epigenome

Browser provides a JavaScript function for seamless inte-

gration into our browser. For both external browsers, it

is possible for the user to embed a user-defined session

consisting of user-selected tracks and options by provid-

ing the session URL to the 3D Genome Browser.

Determining homologous regions

For the compare Hi-C mode, we determine the homolo-

gous regions between two species by querying for hom-

ologous genes from the NCBI’s HomoloGene database

[42] as well as utilizing known inter-species chains [43].

BUTLR format

The BUTLR file encodes an entire genome-wide chro-

matin interactions data into a binary, indexed format.

To compress the original contact matrices, BUTLR only

stores the nonzero values of the upper triangular matri-

ces of the intra-chromosomal data and the n ×m, where

n and m are the number of interrogated loci and where

n <m of the inter-chromosomal data. The locations of

each chromosome or chromosome-pair matrix, row in-

dices of each matrix, and column indices of nonzero

values along with nonzero values are binarized and

indexed within the BUTLR file structure. Perl scripts

that encode and decode BUTLR files are available at

http://github.com/yuelab/BUTLRTools. All the Hi-C

matrices in this manuscript are converted to BUTLR file

format for visualization [5, 8, 19, 20, 22–24, 44-54].

Additional files

Additional file 1: Figure S1. Gene expression of SCL25A37 across 109

issues. Figure S2. Using the 3D Genome Browser to determine intra-

chromosomal structural variations. Figure S3. Design and performance of

the BUTLR file format. Table S1. List of Hi-C datasets hosted by the 3D

Genome Browser. Table S2. List of ChIA-PET, Capture Hi-C, PLAC-Seq and

HiChIP datasets. Table S3. List of GAM, DNase Hi-C, and SPRITE datasets.

(PDF 1295 kb)

Additional file 2: Review history. (DOCX 1354 kb)
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