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Abstract

We propose an extension to quantile normalization that removes unwanted technical variation using control probes.
We adapt our algorithm, functional normalization, to the lllumina 450k methylation array and address the open
problem of normalizing methylation data with global epigenetic changes, such as human cancers. Using data sets
from The Cancer Genome Atlas and a large case—control study, we show that our algorithm outperforms all existing
normalization methods with respect to replication of results between experiments, and yields robust results even in
the presence of batch effects. Functional normalization can be applied to any microarray platform, provided suitable

control probes are available.

Background
In humans, DNA methylation is an important epigenetic
mark occurring at CpG dinucleotides, which is impli-
cated in gene silencing. In 2011, Illumina released the
HumanMethylation450 bead array [1], also known as
the 450k array. This array has enabled population-level
studies of DNA methylation by providing a cheap, high-
throughput and comprehensive assay for DNA methyla-
tion. Applications of this array to population-level data
include epigenome-wide association studies (EWAS) [2,3]
and large-scale cancer studies, such as the ones avail-
able through The Cancer Genome Atlas (TCGA). Today,
around 9,000 samples are available from the Gene Expres-
sion Omnibus of the National Center for Biotechnology
Information, and around 8,000 samples from TCGA have
been profiled on either the 450k array, the 27k array or
both.

Studies of DNA methylation in cancer pose a chal-
lenging problem for array normalization. It is widely
accepted that most cancers show massive changes in
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their methylome compared to normal samples from the
same tissue of origin, making the marginal distribution
of methylation across the genome different between can-
cer and normal samples [4-8]; see Additional file 1:
Figure S1 for an example of such a global shift. We refer
to this as global hypomethylation. The global hypomethy-
lation commonly observed in human cancers was recently
shown to be organized into large, well-defined domains
[9,10]. It is worth noting that there are other situations
where global methylation differences can be expected,
such as between cell types and tissues.

Several methods have been proposed for normalization of
the 450k array, including quantile normalization [11,12],
subset-quantile within array normalization (SWAN) [13],
the beta-mixture quantile method (BMIQ) [14], dasen
[15] and noob [16]. A recent review examined the perfor-
mance of many normalization methods in a setting with
global methylation differences and concluded: “There is
to date no between-array normalization method suited to
450K data that can bring enough benefit to counterbal-
ance the strong impairment of data quality they can cause
on some data sets’ [17]. The authors note that not using
normalization is better than using the methods they eval-
uated, highlighting the importance of benchmarking any
method against raw data.
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The difficulties in normalizing DNA methylation data
across cancer and normal samples simultaneously have
been recognized for a while. In earlier work on the
CHARM platform [18], Aryee et al. [19] proposed a vari-
ant of subset quantile normalization [20] as a solution.
For CHARM, input DNA is compared to DNA processed
by a methylation-dependent restriction enzyme. Aryee
et al. [19] used subset quantile normalization to normalize
the input channels from different arrays to each other. The
450k assay does not involve an input channel; it is based on
bisulfite conversion. While not directly applicable to the
450k array design, the work on the CHARM platform is an
example of an approach to normalizing DNA methylation
data across cancer and normal samples.

Any high-throughput assay suffers from unwanted
variation [21]. This is best addressed by experimental
design [21]. In the gene expression literature, correc-
tion for this unwanted variation was first addressed by
the development of unsupervised normalization meth-
ods, such as robust multi-array average (RMA) [22]
and variance-stabilizing normalization (VSN) [23]. As
Mecham et al. [24], we use the term ‘unsupervised’ to
indicate that the methods are unaware of the experimen-
tal design: all samples are treated equally. These methods
lead to a substantial increase in signal-to-noise. As exper-
iments with larger sample sizes were performed, it was
discovered that substantial unwanted variation remained
in many experiments despite the application of an unsu-
pervised normalization method. This unwanted variation
is often — but not exclusively — found to be associated with
processing date or batch, and is therefore referred to as
a batch effect. This led to the development of a series of
supervised normalization tools, such as surrogate variable
analysis (SVA) [25,26], ComBat [27], supervised normal-
ization of microarrays (SNM) [24] and remove unwanted
variation (RUV) [28], which are also known as batch effect
removal tools. The supervised nature of these tools allows
them to remove unwanted variation aggressively while
keeping variation associated with the covariate of interest
(such as case/control status). Unsurprisingly, batch effects
have been observed in studies using the 450K array [29].

As an example of unwanted variation that is biological in
origin, we draw attention to the issue of cell-type hetero-
geneity, which has seen a lot of attention in the literature
on DNA methylation [30-34]. This issue arises when pri-
mary samples are profiled; primary samples are usually a
complicated mixture of cell types. This mixture can sub-
stantially increase the unwanted variation in the data and
can even confound the analysis if the cell-type distribution
depends on a phenotype of interest. It has been shown that
SVA can help mitigate the effect of cell-type heterogeneity
[33], but other approaches are also useful [30-32].

In this work, we propose an unsupervised method
that we call functional normalization, which uses control
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probes to act as surrogates for unwanted variation. We
apply this method to the analysis of 450k array data, and
show that functional normalization outperforms all exist-
ing normalization methods in the analysis of data sets
with global methylation differences, including studies of
human cancer. We also show that functional normaliza-
tion outperforms the batch removal tools SVA [25,26],
ComBat [27] and RUV [28] in this setting. Our evalua-
tion metrics focus on assessing the degree of replication
between large-scale studies, arguably the most impor-
tant biologically relevant end point for such studies. Our
method is available as the ‘preprocessFunnorm’ func-
tion in the minfi package [12] through the Bioconductor
project [35].

Results and discussion

Control probes may act as surrogates for batch effects

The 450k array contains 848 control probes. These probes
can roughly be divided into negative control probes (613),
probes intended for between array normalization (186)
and the remainder (49), which are designed for qual-
ity control, including assessing the bisulfite conversion
rate (see Materials and methods and Additional file 1:
Supplementary Materials). Importantly for our proposed
method, none of these probes are designed to measure a
biological signal.

Figure la shows a heat map of a simple summary
(see Materials and methods) of these control probes, for
200 samples assayed on four plates (Ontario data set).
Columns are the control measure summaries and rows
are samples. The samples have been processed on differ-
ent plates, and we observe a clustering pattern correlated
with plate. Figure 1b shows the first two principal com-
ponents of the same summary data and there is evidence
of clustering according to plate. Figure 1c shows how
the marginal distributions of the methylated channel vary
across plates. This suggests that the summarized control
probes can be used as surrogates for unwanted variation.
This is not a new observation; the use of control probes in
normalization has a long history in microarray analysis.

Functional normalization

We propose functional normalization (see Materials and
methods), a method that extends quantile normalization.
Quantile normalization forces the empirical marginal dis-
tributions of the samples to be the same, which removes
all variation in this statistic. In contrast, functional nor-
malization only removes variation explained by a set of
covariates, and is intended to be used when covariates
associated with technical variation are available and are
independent of biological variation. We adapted func-
tional normalization to data from the 450k array (see
Materials and methods), using our observation that the
control probe summary measures are associated with
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Figure 1 Control probes acts as surrogates for batch effects. (a) Heat map of a summary (see Materials and methods) of the control probes,
with samples on the y-axis and control summaries on the x-axis. Samples were processed on a number of different plates indicated by the color
label. Only columns have been clustered. (b) The first two principal components of the matrix depicted in (@). Samples partially cluster according to
batch, with some batches showing tight clusters and other being more diffuse. (c) The distribution of methylated intensities averaged by plate.
These three panels suggest that the control probe summaries partially measure batch effects. PC, principal component.

technical variability and batch effects. As covariates, we
recommend using the first m = 2 principal components
of the control summary matrix, a choice with which we
have obtained consistently good results; this is discussed
in greater depth below. We have also examined the con-
tributions of the different control summary measures in
several different data sets, and we have noted that the con-
trol probe summaries given the most weight varied across
different data sets. We have found (see below) that we can
improve functional normalization slightly by applying it to
data that have already been background corrected using
the noob method [16].

Functional normalization, like most normalization
methods, does not require the analyst to provide
information about the experimental design. In contrast,
supervised normalization methods, such as SVA [25,26],
ComBat [27], SNM [24] and RUV [28], require the user to
provide either batch parameters or an outcome of interest.
Like functional normalization, RUV also utilizes control
probes as surrogates for batch effects, but builds the
removal of batch effects into a linear model that returns
test statistics for association between probes and pheno-
type. This limits the use of RUV to a specific statistical
model. Methods such as clustering, bumphunting [12,36]
and other regional approaches [37] for identifying dif-
ferentially methylated regions (DMRs) cannot readily be
applied.

Functional normalization improves the replication

between experiments, even when a batch effect is present
As a first demonstration of the performance of our algo-
rithm, we compare lymphocyte samples from the Ontario
data set to Epstein—Barr virus (EBV)-transformed lym-
phocyte samples from the same collection (see Materials
and methods). We have recently studied this transforma-
tion [38] and have shown that the EBV transformation
induces large blocks of hypomethylation encompassing
more than half the genome, like what is observed between

most cancers and normal tissues. This introduces a global
shift in methylation, as shown by the marginal densities in
Additional file 1: Figure S1.

We divided the data set into discovery and validation
cohorts (see Materials and methods), with 50 EBV-
transformed lymphocytes and 50 normal lymphocytes in
each cohort. As illustrated in Additional file 1: Figure S2a,
we attempted to introduce in silico unwanted variation
confounding the EBV transformation status in the valida-
tion cohort (see Materials and methods), to evaluate the
performance of normalization methods in the presence
of known confounding unwanted variation. This has been
previously done by others in the context of genomic pre-
diction [39]. We normalized the discovery cohort, identi-
fied the top k differentially methylated positions (DMPs)
and asked: ‘How many of these k DMPs can be replicated
in the validation cohort? We normalized the validation
cohort separately from the discovery cohort to mimic a
replication attempt in a separate experiment. We identi-
fied DMPs in the validation cohort using the same method
and the result is quantified using a receiver operating
characteristic (ROC) curve where the analysis result for
the discovery cohort is taken as the gold standard.

To enable the comparison between normalization meth-
ods, we fix the number of DMPs across all methods.
Because we know from previous work [38] (described as
WGBS EBV data in Materials and methods) that the EBV
transformation induces large blocks of hypomethylation
covering more than half of the genome, we expected to
find a large number of DMPs, and we set k = 100000.
The resulting ROC curves are shown in Figure 2a. In
this figure we show, for clarity, what we have found to
be the most interesting alternatives to functional normal-
ization in this setting: raw data, quantile normalization
as suggested by Touleimat et al. [11] and implemented
in minfi [12] and the noob background correction [16].
Additional file 1: Figure S3a,b contains results for addi-
tional normalization methods: BMIQ [14], SWAN [13]
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Figure 2 Improvements in replication for the EBV data set. (a) ROC curves for replication between a discovery and a validation data set. The
validation data set was constructed to show in silico batch effects. The dotted and solid lines represent, respectively, the commonly used false
discovery rate cutoffs of 0.01 and 0.05. (b) Concordance curves showing the percentage overlap between the top kK DMPs in the discovery and
validation cohorts. Additional normalization methods are assessed in Additional file 1: Figure S3. Functional normalization shows a high degree of
concordance between data sets. (€) The percentage of the top 100,000 DMPs that are replicated between the discovery and validation cohorts and
also inside a differentially methylated block or region from Hansen et al. [38]. DMP, differentially methylation position; EBV, Epstein—Barr virus;
Funnorm, functional normalization; ROC, receiver operating characteristic.

and dasen [15]. Note that each normalization method will
result in its own set of gold-standard DMPs and these
ROC curves therefore measure the internal consistency
of each normalization method. We note that functional
normalization (with noob background correction) outper-
forms raw data and quantile and noob normalizations
when the specificity is above 90% (which is the relevant
range for practical use).

We also measured the agreement between the top k
DMPs from the discovery cohort with the top kK DMPs
from the validation cohort by looking at the overlap per-
centage. The resulting concordance curves are shown in
Figure 2b, and those for additional methods in Additional
file 1: Figure S3c. The figures show that functional nor-
malization outperforms the other methods.

We can assess the quality of the DMPs replicated
between the discovery and validation cohorts by compar-
ing them to the previously identify methylation blocks
and DMRs [38]. In Figure 2c, we present the percentage
of the initial k = 100000 DMPs that are both replicated
and present among the latter blocks and regions. We note
that these previously reported methylation blocks rep-
resent large-scale, regional changes in DNA methylation
and not regions where every single CpG is differentially
methylated. Nevertheless, such regions are enriched for
DMPs. This comparison shows that functional normaliza-
tion achieves a greater overlap with this external data set,
with an overlap of 67% compared to 57% for raw data,
while other methods, other than noob, perform worse
than the raw data.

Replication between experiments in a cancer study

We applied the same discovery—validation scheme to
measure performance as we used for the analysis of
the Ontario-EBV study, on kidney clear-cell carcinoma

samples (KIRC) from TCGA. In total, TCGA has pro-
filed 300 KIRC cancer and 160 normal samples on the
450K platform. Therefore, we defined a discovery cohort
containing 65 cancer and 65 normal samples and a vali-
dation cohort of 157 cancer and 95 normal samples (see
Materials and methods).

Our in silico attempt at introducing unwanted variation
associated with batch for this experiment succeeded in
producing a validation cohort where the cancer samples
have greater variation in background noise (Additional
file 1: Figure S1b). This difference in variation is a less
severe effect compared to the difference in mean back-
ground noise we achieved for the Ontario-EBV data set
(Additional file 1: Figure S2a). As for the data set con-
taining EBV-transformed samples, we expect large-scale
hypomethylation in the cancer samples and therefore we
again consider k = 100000 loci. The resulting ROC curves
are shown in Figure 3a, and those for additional methods
in Additional file 1: Figure S4a,b. Functional normaliza-
tion and noob are best and do equally well. Again, the
gold-standard set of probes that is used to measure perfor-
mance in these ROC curves differs between normalization
methods, and hence these ROC curves reflect the degree
of consistency between experiments within each method.

To compare further the quality of the DMPs found by
the different methods, we used an additional data set
from TCGA where the same cancer was assayed with the
[lumina 27k platform (see Materials and methods). We
focused on the 25,978 CpG sites that were assayed on
both platforms and asked about the size of the overlap
for the top kK DMPs. For the validation cohort, with the
most unwanted variation, this is depicted in Figure 3b
and Additional file 1: Figure S4c for additional meth-
ods; for the discovery cohort, with least unwanted varia-
tion, results are presented in Additional file 1: Figure S4.
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Figure 3 Improvements in replication for the TCGA-KIRC data
set. (@) ROC curves for replication between a discovery and a
validation data set. The validation data set was constructed to show in
silico batch effects. (b) Concordance plots between an additional
cohort assayed on the 27k array and the validation data set.
Additional normalization methods are assessed in Additional file 1:
Figure S4. Functional normalization shows a high degree of
concordance between data sets. Funnorm, functional normalization;
KIRC, kidney clear-cell carcinoma; ROC, receiver operating
characteristic; TCGA, The Cancer Genome Atlas.

Functional normalization, together with noob, shows the
best concordance in the presence of unwanted variation in
the 450k data (the validation cohort) and is comparable to
no normalization in the discovery cohort.

Functional normalization preserves subtype heterogeneity
in tumor samples

To measure how good our normalization method is at pre-
serving biological variation among heterogeneous sam-
ples while removing technical biases, we use 192 acute
myeloid leukemia samples (ACL) from TCGA for which
every sample has been assayed on both the 27K and the
450K platforms (see Materials and methods). These two
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platforms assay 25,978 CpGs in common (but note the
probe design changes between array types), and we can
therefore assess the degree of agreement between mea-
surements of the same sample on two different platforms,
assayed at different time points. The 450k data appear to
be affected by batch and dye bias; see Additional file 1:
Figure S5.

Each sample was classified by TCGA according to
the French-American-British (FAB) classification scheme
[40], which proposes eight tumor subtypes, and methy-
lation differences can be expected between the subtypes
[41,42]. Using data from the 27k arrays, we identified the
top kK DMPs that distinguish the eight subtypes. In this
case, we are assessing the agreement of subtype variabil-
ity, as opposed to cancer—normal differences. The analysis
of the 27k data uses unnormalized data but adjusts for
sample batch in the model (see Materials and methods).
Using data from the 450k arrays, we first processed the
data using the relevant method, and next identified the
top kK DMPs between the eight subtypes. The analysis of
the 450k data does not include a sample batch in the
model, which allows us to see how well the different nor-
malization methods remove technical artifacts introduced
by batch differences. While both of the analyses are con-
ducted on the full set of CpGs, we focus on the CpGs
common between the two platforms and ask: “What is
the degree of agreement between the top kK DMPs iden-
tified using the two different platforms?” Figure 4a shows
that functional normalization and noob outperform both
quantile normalization and raw data for all values of &,
and functional normalization is marginally better than
noob for some values of k. Additional file 1: Figure S6a
shows the results for additional methods. We can also
compare the two data sets using ROC curves, with the
results from the 27k data as gold standard (Figure 4b
and Additional file 1: Figure S6b). As for the DMPs for
the 27k data, we used the 5,451 CpGs that demonstrate
an estimated false discovery rate less than 5%. On the
ROC curve functional normalization outperforms noob,
quantile normalization and raw data for the full range of
specificity.

Replication between experiments with small changes

To measure the performance of functional normalization
in a setting where there are no global changes in methyla-
tion, we used the Ontario-Blood data set, which has assays
of lymphocytes from individuals with and without colon
cancer. We expect a very small, if any, impact of colon can-
cer on the blood methylome. As above, we selected cases
and controls to form discovery and validation cohorts, and
we introduced in silico unwanted variation that confounds
case—control differences in the validation data set only
(see Materials and methods). The discovery and valida-
tion data sets contain, respectively, 283 and 339 samples.
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Figure 4 Improvements in replication of tumor subtype
heterogeneity. In the AML data set from TCGA, the same samples
have been assayed on 450k and 27k arrays. (@) Concordance plots
between results from the 450k array and the 27k array. (b) ROC curves
for the 450k data, using the results from the 27k data as gold
standard. AML, acute myeloid leukemia; Funnorm, functional
normalization; ROC, receiver operating characteristic; TCGA, The
Cancer Genome Atlas.

For k = 100 loci, both functional and quantile nor-
malization show good agreement between discovery and
validation data sets, whereas noob and raw data show an
agreement that is not better than a random selection of
probes (Figure 5a, Additional file 1: Figure S7a).

Functional normalization improves X and Y chromosome
probe prediction in blood samples

As suggested previously [15], one can benchmark perfor-
mance by identifying DMPs associated with sex. One copy
of the X chromosome is inactivated and methylated in
females, and the Y chromosome is absent. On the 450k
array, 11,232 and 416 probes are annotated to be on the
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Figure 5 Performance improvements on blood samples data set.
(a) ROC curve for replication of case—control differences between
blood samples from colon cancer patients and blood samples from
normal individuals, the Ontario-Blood data set. The validation data set
was constructed to show an in silico batch effect. (b) ROC curve for
identification of probes on the sex chromosomes for the Ontario-Sex
data set. Sex is confounded by an in silico batch effect. Both
evaluations show the good performance of functional normalization.
Funnorm, functional normalization; ROC, receiver operating
characteristic.

X and Y chromosomes, respectively. For this analysis it
is sensible to remove regions of the autosomes that are
similar to the sex chromosomes to avoid artificial false
positives that are independent of the normalization step.
We therefore remove a set of 30,969 probes that have
been shown to cross-hybridize between genomic regions
[43]. Because some genes have been shown to escape X
inactivation [44], we only consider genes for which the
X-inactivation status is known to ensure an unbiased sex
prediction (see Materials and methods).

We introduced in silico unwanted variation by select-
ing 101 males and 105 females from different plates (see
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Materials and methods), thereby confounding plate with
sex. Results show that functional normalization performs
well (Figure 5b, Additional file 1: Figure S7b).

Functional normalization reduces technical variability
From the Ontario-Replicates lymphocyte data set (see
Materials and methods), we have 19 individuals assayed in
technical triplicates dispersed among 51 different chips.
To test the performance of each method to remove tech-
nical variation, we calculated the probe-specific variance
within each triplicate, and averaged the variances across
the 19 triplicates. Figure 6 presents box plots of these aver-
aged probe variances of all methods. All normalization
methods improve on raw data, and functional normal-
ization is in the top three of the normalization methods.
dasen, in particular, does well on this benchmark, which
shows that improvements in reducing technical variation
do not necessarily lead to similar improvements in the
ability to replicate associations.

Each 450k array is part of a slide of 12 arrays, arranged
in two columns and six rows (see Figure 7). Figure 7a—c
shows an effect of column and row position on quantiles
of the beta value distribution, across several slides. This
effect is not present in all quantiles of the beta distribu-
tion, and it depends on the data set which quantiles are
affected. Figure 7d—f shows that functional normalization
corrects for this spatial artifact.

Number of principal components

As described above, we recommend using functional nor-
malization with the number of principal components set
to m = 2. Additional file 1: Figure S8 shows the impact of
varying the number of principal components on various
performance measures we have used throughout, and
shows that m = 2 is a good choice for the data sets we

Page 7 of 17

have analyzed. It is outperformed by m = 6 in the analy-
sis of the KIRC data and by m1 = 3 in the analysis of the
AML data, but these choices perform worse in the anal-
ysis of the Ontario-EBV data. While m = 2 is a good
choice across data sets, we leave m to be a user-settable
parameter in the implementation of the algorithm. This
analysis assumes we use the same m for the analysis of
both the discovery and validation data sets. We do this to
prevent overfitting and to construct an algorithm with no
user input. It is possible to obtain better ROC curves by
letting the choice of m vary between discovery and valida-
tion, because one data set is confounded by batch and the
other is not.

Comparison to batch effect removal tools

Batch effects are often considered to be unwanted vari-
ation remaining after an unsupervised normalization. In
the previous assessments, we have comprehensively com-
pared functional normalization to existing normalization
methods and have shown great performance in the pres-
ence of unwanted variation. While functional normal-
ization is an unsupervised normalization procedure, we
were interested in comparing its performance to super-
vised normalization methods, such as SVA [25,26], RUV
(28] and ComBat [27]. We adapted RUV to the 450k
array (see Materials and methods) and used reference
implementations for the other two methods [45].

We applied these three batch removal tools to all data
sets analyzed previously. We let SVA estimate the num-
ber of surrogate variables, and allowed this estimation to
be done separately on the discovery and the validation
data sets, which allowed for the best possible performance
by the algorithm. For RUV, we selected negative control
probes on the array as negative genes and probes map-
ping to the X and Y chromosomes as positive genes in the
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Figure 6 Variance across technical triplicates. Box plots of the probe-specific variances estimated across 19 individuals assayed in technical
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language of RUV (see Materials and methods for details).
These negative and positive genes were used to select the
number of unwanted factors, as per the recommendations
in Gagnon-Bartsch and Speed [28]. Figure 8 compares the
three methods to functional normalization and raw data
for our evaluation data sets. The three methods have the

greatest difficulty with the TCGA-AML and the Ontario-
Blood data sets compared to functional normalization.
Functional normalization is still a top contender for the
Ontario-EBV and the TCGA-KIRC data sets, although
RUV does outperform functional normalization slightly
on Ontario-EBV. This shows that unsupervised functional
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normalization outperforms these three supervised nor-
malization methods on multiple data sets.

The effect of normalization strategy on effect size estimates
To assess the impact of normalization on the estimated
effect sizes, we computed estimated methylation differ-
ences on the Beta scale between cases and controls for
the Ontario-EBV and KIRC data sets. Figure 9 shows the
distribution of effect sizes for the top loci in the discov-
ery data sets that are replicated in the validation data
sets. The impact of the normalization method on these
distributions depends on the data set.

The performance of functional normalization for smaller
sample sizes

To assess the performance of functional normalization
with small sample sizes, we repeated the analysis of the
Ontario-EBV data set with different sample sizes by ran-
domly subsampling an equal number of arrays from the
two treatment groups multiple times. For instance, for
sample size n = 30, we randomly drew 15 lymphocyte
samples and 15 EBV-transformed samples. We repeated
the subsampling B = 100 times and calculated 100
discovery—validation ROC curves. Figure 10 shows the
mean ROC curves together with the 0.025 and 0.975 per-
centiles for both the raw data and the data normalized
with functional normalization with noob, for different
sample sizes. At a sample size of 20, functional normal-
ization very slightly outperforms raw data, and functional
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Figure 9 Effect size of the top replicated loci. Box plots represent
the effect sizes for the top k loci from the discovery cohort that are
replicated in the validation cohort. The effect size is measured as the
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means. (@) Box plots for the top k = 100000 loci replicated in the
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normalization improves on raw data with sample sizes
n > 30.

Conclusions

We have presented functional normalization, an exten-
sion of quantile normalization, and have adapted this
method to Illumina 450k methylation microarrays. We
have shown that this method is especially valuable for nor-
malizing large-scale studies where we expect substantial
global differences in methylation, such as in cancer studies
or when comparing between tissues, and when the goal is
to perform inference at the probe level. Although an unsu-
pervised normalization method, functional normalization
is robust in the presence of a batch effect, and performs
better than the three batch removal tools, ComBat, SVA
and RUYV, on our assessment data sets. This method fills a
critical void in the analysis of DNA methylation arrays.

We have evaluated the performance of our method on a
number of large-scale cancer studies. Critically, we define
a successful normalization strategy as one that enhances
the ability to detect associations between methylation
levels and phenotypes of interest reliably across multi-
ple experiments. Various other metrics for assessing the
performance of normalization methods have been used
in the literature on preprocessing methods for Illumina
450k arrays. These metrics include assessing variability
between technical replicates [13,14,16,17,46], and com-
paring methylation levels to an external gold standard
measurement, such as bisulfite sequencing [11,14,17]. We
argue that a method that yields unbiased and precise
estimates of methylation in a single sample does not
necessarily lead to improvements in estimating the dif-
ferences between samples, yet the latter is the relevant
end goal for any scientific investigation. This is a con-
sequence of the well-known bias-variance trade-off [47].
An example of this trade-off for microarray normalization
is the performance of the RMA method [48] for analysis
of Affymetrix gene expression microarrays. This method
introduces bias into the estimation of fold-changes for
differentially expressed genes; however, this bias is offset
by a massive reduction in variance for non-differentially
expressed genes, leading to the method’s proven perfor-
mance. Regarding reducing technical variation, we show
in Figure 6 that methods that show the greatest reduc-
tion in technical variation do not necessarily have the best
ability to replicate findings, and caution the use of this
assessment for normalization performance.

In our comparisons, we have separately normalized the
discovery and the validation data sets, to mimic replica-
tion across different experiments. We have shown that
functional normalization was always amongst the top per-
forming methods, whereas other normalization methods
tended to perform well on some, but not all, of our test
data sets. As suggested by Dedeurwaerder et al. [17],



Fortin et al. Genome Biology 2014, 15:503
http://genomebiology.com/2014/15/11/503

Page 10 0of 17

1.0

0.8

1.0

0.8

1.0

0.8

0.0

2 2 2
S @ S o S e
= = £
(%] (%] (%]
f =4 f = =
o < ¢ < 3 <
n e n S » o
o o o
S S 3
o o o
° o T T T T 1 ° o T T T T 1 ° T T T T 1
000 002 004 006 008 0.10 000 002 004 006 008 0.10 000 002 004 006 008 010
1-Specificity 1-Specificity 1-Specificity
° o n=10
@ o | e
3 =
2 2
= S 9
= = o Legend
2 2
3 < § = — Raw
» s » S

— Funnorm w/noob

0.04 0.06
1-Specificity

0.08

0.10

receiver operating characteristic.

Figure 10 Sample size simulation for the Ontario-EBV data set. Partial discovery-validation ROC curves for the Ontario-EBV data set similar to
Figure 2a but for random subsamples of different sizes n = 10, 20, 30, 50 and 80. Each solid line represents the mean of the ROC results for B = 100
subsamples of size n. The dotted lines represent the 0.025 and 0.975 percentiles. EBV, Epstein—Barr virus; Funnorm, functional normalization; ROC,

0.04 0.06
1-Specificity

0.08 0.10

our benchmarks showed the importance of comparing
performance to raw data, which outperformed (using
our metrics) some of the existing normalization meth-
ods. For several data sets, we have observed that the
within-array normalization methods SWAN and BMIQ
had very modest performance compared to raw data and
between-array normalization methods. This suggests that
using within-array normalization methods do not lead to
improvements in the ability to replicate findings between
experiments.

Our closest competitor is noob [16], which includes
both a background correction and a dye-bias equalization.
We outperformed noob substantially for the Ontario-
Blood and Ontario-Sex data sets and we performed
slightly better on the TCGA-AML data set. The best per-
formance was obtained by using functional normalization
after the noob procedure.

Our method relies on the fact that control probes carry
information about unwanted variation from a technical
source. This idea was also used by Gagnon-Bartsch and
Speed [28] to design the batch removal tool RUV. As dis-
cussed in the Results section, the RUV method is tightly
integrated with a specific statistical model, requires the
specification of the experimental design, and cannot read-
ily accommodate regional methods [12,36,37] nor cluster-
ing. In contrast, functional normalization is completely
unsupervised and returns a corrected data matrix, which
can be used as input into any type of downstream analy-
sis, such as clustering or regional methods. Batch effects
are often considered to be unwanted variation remaining
after an unsupervised normalization, and we conclude

that functional normalization removes a greater amount
of unwanted variation in the preprocessing step. It is
interesting that this is achieved merely by correcting the
marginal densities.

However, control probes cannot measure unwanted
variation arising from factors representing variation
present in the samples themselves, such as cell-type het-
erogeneity, which is known to be an important confounder
in methylation studies of samples containing mixtures of
cell types [33]. This is an example of unwanted varia-
tion from a biological, as opposed to technical, source.
Cell-type heterogeneity is a particular challenge in EWAS
studies of whole blood, but this has to be addressed by
other tools and approaches.

Surprisingly, we showed that functional normalization
improved on the batch removal tools, ComBat, SVA and
RUV, applied to raw data, in the data sets we have
assessed. It is a very strong result that an unsupervised
normalization method improves on supervised normal-
ization procedures, which require the specification of the
comparison of interest.

While we have shown that functional normalization
performed well in the presence of unwanted variation,
we still recommend that any large-scale study consid-
ers the application of batch removal tools, such as SVA
[25,26], ComBat [27] and RUV [28], after using functional
normalization, due to their proven performance and their
potential for removing unwanted variation that cannot
be measured by control probes. As an example, Jaffe and
Irizarry [33] discuss the use of such tools to control for
cell-type heterogeneity.
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The analysis of the Ontario-Blood data set suggests
that functional normalization has potential to improve the
analysis in a standard EWAS setting, in which only a small
number of differentially methylated loci are expected.
However, if only very few probes are expected to change,
and if those changes are small, it becomes difficult to eval-
uate the performance of our normalization method using
our criteria of successful replication.

The main ideas of functional normalization can readily
be applied to other microarray platforms, including gene
expression and miRNA arrays, provided that the plat-
form of interest contains a suitable set of control probes.
We expect the method to be particularly useful when
applied to data with large anticipated differences between
samples.

Materials and methods
Infinium HumanMethylation450 BeadChip
We use the following terminology, consistent with the
minfi package [12]. The 450k array is available as slides
consisting of 12 arrays. These arrays are arranged in a six
rows by two columns layout. The scanner can process up
to eight slides in a single plate. We use the standard for-
mula 8 = M/(M+ U +100) for estimating the percentage
methylation given (un)methylation intensities & and M.
Functional normalization uses information from the 848
control probes on the 450k array, as well as the out-
of-band probes discussed in Triche et al. [16]. These
control probes are not part of the standard output from
GenomeStudio, the default Illumina software. Instead we
use the IDAT files from the scanner together with the
open source illuminaio [49] package to access the full
data from the IDAT files. This step is implemented in
minfi [12]. While not part of the standard output from
GenomeStudio, it is possible to access the control probe
measures within this software by accessing the Control
Probe Profile.

Control probe summaries

We transform the 848 control probes, as well as the out-of-
band probes [16] into 42 summary measures. The control
probes contribute 38 of these 42 measures and the out-
of-band probes contribute four. An example of a control
probe summary is the mapping of 61 ‘C’ normalization
probes to a single summary value, their mean. The out-
of-band probes are the intensities of the type I probes
measured in the opposite color channel from the probe
design. For the 450k platform, this means 92,596 green
intensities, and 178,406 red intensities that can be used to
estimate background intensity, and we summarize these
values into four summary measures. A full description of
how the control probes and the out-of-band probes are
transformed into the summary control measures is given
in Additional file 1: Supplementary material.
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Functional normalization: the general framework
Functional normalization extends the idea of quantile nor-
malization by adjusting for known covariates measuring
unwanted variation. In this section, we present a general
model that is not specific to methylation data. The adap-
tation of this general model to the 450k data is discussed
in the next section. The general model is as follows. Con-
sider Yy, ..., Y, high-dimensional vectors each associated
with a set of scalar covariates Z;; with i = 1,...,n index-
ing samples and j = 1,..., m indexing covariates. Ideally
these known covariates are associated with unwanted
variation and unassociated with biological variation; func-
tional normalization attempts to remove their influence.
For each high-dimensional observation Y;, we form the
empirical quantile function for its marginal distribution,
and denote it by qup. Quantile functions are defined on
the unit interval and we use the variable r €[ 0, 1] to evalu-
ate them pointwise, like qup (r). We assume the following
model in pointwise form

a;"t ) =a() + Y ZigBi(r) + €(r), ey

j=1

which has the functional form

m
4" =a+ ) Zij+ e (2)
j=1

The parameter function « is the mean of the quan-
tile functions across all samples, f; are the coefficient
functions associated with the covariates and ¢; are the
error functions, which are assumed to be independent and
centered around 0.

In this model, the term

Z ZijBj (3)
j=1

represents variation in the quantile functions explained
by the covariates. By specifying known covariates that
measure unwanted variation and that are not associated
with a biological signal, functional normalization removes
unwanted variation by regressing out the latter term. An
example of a known covariate could be processing batch.
In a good experimental design, processing batch will not
be associated with a biological signal.

In particular, assuming we have obtained estimates /§j

for j = 1,...,m, we form the functional normalized
quantiles by
m
g™ ) = q; () = Y Zijhy(r) (4)

j=1
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We then transform Y; into the functional normalized
quantity Y; using the formula

5, = g (™) ) o

This ensures that the marginal distribution of Y; has
tiu“"OTm as its quantile function.
We now describe how to obtain estimates /§j for j =
1,...,m. Our model 1 is an example of function-on-
scalar regression, described in [50]. The literature on
function-on-scalar regression makes assumptions about
the smoothness of the coefficient functions and uses a
penalized framework because the observations appear
noisy and non-smooth. In contrast, because our observa-
tions Y; are high dimensional and continuous, the jumps
of the empirical quantile functions are very small. This
allows us to circumvent the smoothing approach used in
traditional function-on-scalar regression. We use a dense
grid of H equidistant points between 0 and 1, and we
assume that H is much smaller than the dimension of Y;.
On this grid, model 1 reduces pointwise to a standard
linear model. Because the empirical quantile functions
q*™P(r) have very small jumps, the parameter estimates
of these linear models vary little between two neighbor-
ing grid points. This allows us to use H standard linear
model fits to compute estimates &(4) and 3j(h), j =
1,...,m, with & being on the dense grid {h € d/H :
d=0,1,...,H}. We next form estimates &(r) and /§,-(r),
j = 1,...,m, for any r €[0,1] by linear interpolation.
This is much faster than the penalized function-on-scalar
regression available through the refund package [51].

Importantly, in this framework, using a saturated model
in which all the variation (other than the mean) is
explained by the covariates results in removing all vari-
ation and is equivalent to quantile normalization. In our
notation, quantile-normalized quantile functions are

qquantile r) = &(7‘) (6)

4

where & is the mean of the empirical quantile func-
tions. This corresponds to the maximum variation that
can be removed in our model. In contrast, including no
covariates makes the model comparable to no normal-
ization at all. By choosing covariates that only measure
unwanted technical variation, functional normalization
will only remove the variation explained by these tech-
nical measurements and will leave biological variation
intact. Functional normalization allows a sensible trade-
off between not removing any technical variation at all (no
normalization) and removing too much variation, includ-
ing global biological variation, as can occur in quantile
normalization.
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Functional normalization for 450k arrays

We apply the functional normalization model to the
methylated (M) and unmethylated (U) channels sep-
arately. Since we expect the relationship between the
methylation values and the control probes to differ
between type I and type II probes, functional normal-
ization is also applied separately by probe type to obtain
more representative quantile distributions. We address
the mapping of probes to the sex chromosomes separately;
see below. This results in four separate applications of
functional normalization, using the exact same covariate
matrix, with more than 100,000 probes in each normal-
ization fit. For functional normalization, we pick H = 500
equidistant points (see notation in previous section). As
covariates, we use the first m = 2 principal components
of the summary control measures as described above. We
do this because the control probes are not intended to
measure a biological signal since they are not designed to
hybridize to genomic DNA. Our choice of m = 2 is based
on empirical observations on several data sets.

Following the ideas from quantile normalization for
450k arrays [11,12], we normalize the mapping of probes
to the sex chromosomes (11,232 and 416 probes for the
X and Y chromosomes, respectively) separately from the
autosomal probes. For each of the two sex chromosomes,
we normalize males and females separately. For the X
chromosome, we use functional normalization, and for
the Y chromosome, we use quantile normalization, since
the small number of probes on this chromosome vio-
lates the assumptions of functional normalization, which
results in instability.

Functional normalization only removes variation in the
marginal distributions of the two methylation channels
associated with control probes. This preserves any biolog-
ical global methylation difference between samples. We
have found (see Results) that we get slightly better perfor-
mance for functional normalization if we apply it to data
that have been background corrected with noob [16].

Data

The Ontario study. The Ontario study consists of sam-
ples from 2,200 individuals from the Ontario Familial
Colon Cancer Registry [52] who had previously been
genotyped in a case—control study of colorectal cancer in
Ontario [53]. The majority of these samples are lympho-
cytes derived from whole blood. We use various subsets of
this data set for different purposes.

Biospecimens and data collected from study partic-
ipants were obtained with written informed consent
and approval from the University of Toronto Office of
Research Ethics (Protocol Reference 23212), in compli-
ance with the WMA Declaration of Helsinki — Ethical
Principles for Medical Research Involving Human Sub-
jects.
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The Ontario-EBV data set. Lymphocyte samples from
100 individuals from the Ontario study were transformed
into immortal lymphoblastoid cell lines using the EBV
transformation. We divided the 100 EBV-transformed
samples into two equal-sized data sets (discovery and val-
idation). For the discovery data set, we matched the 50
EBV-transformed samples to 50 other lymphocyte sam-
ples assayed on the same plates. For the validation data set,
we matched the 50 EBV-transformed samples to 50 other
lymphocyte samples assayed on different plates.

The Ontario-Blood data set. From the Ontario study;,
we first created a discovery—validation design where we
expect only a small number of loci to be differentially
methylated. For the discovery data set, we selected all
cases and controls on three plates that showed little evi-
dence of plate effects among the control probes, which
yielded a total of 52 cases and 231 controls. For the
validation data set, we selected four plates where the con-
trol probes did show evidence of a plate effect and then
selected cases and controls from separate plates, to max-
imize the confounding effect of plate. This yielded a total
of 175 cases and 163 controls.

The Ontario-Sex data set. Among ten plates for which
the control probes demonstrated differences in distribu-
tion depending on plate, we selected 101 males from a
set of five plates and 105 females from another set of five
plates, attempting to maximize the confounding effect of
batch on sex.

The Ontario-Replicates data set. Amongst the lym-
phocyte samples from the Ontario study, 19 samples
have been assayed three times each. One replicate is a
hybridization replicate and the other replicate is a bisulfite
conversion replicate. The 57 samples have been assayed
on 51 different slides across 11 different plates.

The TCGA-KIRC data sets. From TCGA, we have
access to KIRC and normal samples, assayed on two dif-
ferent methylation platforms. We use the level 1 data,
contained in IDAT files. For the 450k platform, TCGA
has assayed 300 tumor samples and 160 normal samples.
For the discovery set, we select 65 tumor samples and
65 matched normal samples from slides showing little
variation in the control probes. These 130 samples were
assayed on three plates. For the validation data set, we
select the remaining 95 normal samples together with all
157 cancer samples that were part of the same TCGA
batches as the 95 normal samples. These samples were
spread over all nine plates, therefore maximizing potential
batch effects. For the 27k platform, TCGA has assayed 219
tumor samples and 199 normal samples. There is no over-
lap between the individuals assayed on the 450k platform
and the individuals assayed on the 27k platform.

The TCGA-AML data sets. Also from TCGA, we
used data from 194 AML samples, where each sample
was assayed twice: first on the 27K Illumina array and
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subsequently on the 450K array. Every sample but two has
been classified according to the FAB subtype classifica-
tion scheme [40], which classifies tumors into one of eight
subtypes. The two unclassified samples were removed
post-normalization. We use the data known as level 1,
which is contained in IDAT files.

Whole-genome bisulfite sequencing (WGBS) EBV
data. Hypomethylated blocks and small DMRs between
transformed and quiescent cells were obtained from a
previous study [38]. Only blocks and DMRs with a family-
wise error rate equal to O were retained (see the reference).
A total of 228,696 probes on the 450K array overlap with
the blocks and DMRs.

Data availability

The Ontario methylation data have been deposited
in dbGAP under accession number [phs000779.v1.pl].
These data were available to researchers under the fol-
lowing constraints: (1) the use of the data is limited to
research on cancer, (2) the researchers have local Insti-
tutional Review Board approval and (3) the researchers
have the approval of either Colon Cancer Family Reg-
istries [54] or Mount Sinai Hospital (Toronto) Research
Ethics Board. The TCGA data (KIRC and AML) are avail-
able through the TCGA Data Portal [55]. The WGBS EBV
data is available through the Gene Expression Omnibus of
the National Center for Biotechnology Information under
the accession number [GEO:GSE49629]. Our method is
available as the preprocessFunnorm function in the minfi
package through the Bioconductor project [56]. The code
in this package is licensed under the open-source license
Artistic-2.0.

Data processing

Data were available in the form of IDAT files from the
various experiments (see above). We used minfi [12] and
illuminaio [49] to parse the data and used the various nor-
malization routines in their reference implementations
(see below).

We performed the following quality control on all data
sets. As recommended in Touleimat and Tost [11], for
each sample we computed the percentage of loci with a
detection P value greater than 0.01, with the intention of
excluding a sample if the percentage was higher than 10%.
We used the minfi [12] implementation of the detection
P value. We also used additional quality control measures
[12] and we interactively examined the arrays using the
shinyMethyl package [57]; all arrays in all data sets passed
our quality control.

We performed the following filtering of loci, after nor-
malization. We removed 17,302 loci that contain a SNP
with an annotated minor allele frequency greater than or
equal to 1% in the CpG site itself or in the single-base
extension site. We used the UCSC Common SNPs table
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based on dbSNP 137; this table is included in the minfi
package. We removed 29,233 loci that have been shown
to cross-hybridize to multiple genomic locations [43]. The
total number of loci removed is 46,535, i.e. 9.6% of the
array. We chose to remove these loci post-normalization
as done previously [16,58], reasoning that while these
probes may lead to spurious associations, we believe they
are still subject to technical variation and should therefore
contain information useful for normalization.

Comparison to normalization methods

We have compared functional normalization to the most
popular normalization methods used for the 450k array.
This includes the following between-array normalization
methods: (1) quantile: stratified quantile normalization
as proposed by Touleimat et al. [11] and implemented
in minfi [12], (2) dasen: background adjustment and
between-sample quantile normalization of M and U sep-
arately [15] and (3) noob: a background adjustment model
using the out-of-band control probes followed by a dye
bias correction [16], implemented in the methylumi pack-
age. We also consider two within-array normalization
methods: (4) SWAN [13] and (5) BMIQ [14]. Finally,
we consider (6) raw data: no normalization, i.e., we only
matched up the red and the green channels with the rel-
evant probes according to the array design (specifically, it
is the output of the preprocessRaw function in minfi).

In its current implementation, noob yielded missing val-
ues for at most a couple of thousand loci (less than 1%)
per array. This is based on excluding loci below an array-
specific detection limit. We have discarded those loci from
our performance measures, but only for the noob perfor-
mance measures. In its current implementation, BMIQ
produced missing values for all type II probes in five sam-
ples for the TCGA-AML data set. We have excluded these
samples for our performance measures, but only for our
BMIQ performance measures.

For clarity, in the figures we focus on the top-performing
methods which are raw data, and quantile and noob
normalization. The assessments of the other methods,
dasen, BMIQ and SWAN, are available in Additional file 1:
Supplementary Materials.

Comparison to SVA

We used the reference implementation of SVA in the sva
package [45]. We applied SVA to the M values obtained
from the raw data. Surrogate variables were estimated
using the iteratively re-weighted SVA algorithm [26], and
were estimated separately for the discovery and validation
cohorts. In the analysis of the Ontario-EBV data set, SVA
found 21 and 23 surrogate variables, respectively, for the
discovery and the validation cohorts. In the analysis of the
Ontario-Blood data set, SVA found 18 and 21 surrogate
variables, respectively, for the discovery and the validation
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cohorts. In the analysis of the TCGA-KIRC data set, SVA
found 29 and 32 surrogate variables, respectively, for the
discovery and the validation cohorts. In the analysis of the
TCGA-AML data set, SVA found 24 surrogate variables.

Comparison to RUV

The RUV-2 method was originally developed for gene
expression microarrays [28]. The method involves a num-
ber of domain-specific choices. To our knowledge, there is
no publicly available adaption of RUV-2 to the 450k plat-
form, so we adapted RUV-2 to the 450k array. The core of
the method is implemented in software available from a
personal website [59]. As negative genes (genes not asso-
ciated with the biological treatment group), we selected
the raw intensities in the green and red channels of the
614 internal negative control probes available on the 450k
array.

To determine the number k of factors to remove (see
Gagnon-Bartsch and Speed [28] for details of this param-
eter), we followed the approach described in [28]. First,
for each value k = 0,1,...,40, we performed a differen-
tial analysis with respect to sex. Second, we considered as
positive controls the probes that are known to undergo
X inactivation (see section Sex validation analysis) and
probes mapping to the Y chromosome. Third, for the
top ranked m = 25000, 50,000 and 100,000 probes, we
counted how many of the positive control probes are
present in the list. Finally, we picked the value of k for
which these counts are maximized. The different tuning
plots are presented in Additional file 1: Figure S9. The
optimal k was 14 and 11 for the discovery and the valida-
tion cohorts of the Ontario-EBV data set, respectively. In
the analysis of the Ontario-Blood data set, the optimal k
was 0 and 3, respectively, for the discovery and the valida-
tion cohorts. In the analysis of the TCGA-KIRC data set,
the optimal k was 36 and 5, respectively, for the discovery
and the validation cohorts. In the analysis of the TCGA-
AML data set, k was selected to be 0 (which is equivalent
to raw data).

Comparison to ComBat

We used the reference implementation of ComBat in the
sva package [45]. Because ComBat cannot be applied to
data sets for which the phenotype of interest is perfectly
confounded with the batch variable, we could only run
ComBat for the AML and KIRC data sets.

Identification of differentially methylated positions

To identify DMPs, we used F-statistics from a linear
model of the beta values from the array. The linear model
was applied on a probe-by-probe basis. In most cases, the
model included case/control status as a factor. In the 27K
data, we adjusted for batch by including a plate indicator
(given by TCGA) in the model.
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Discovery-validation comparisons

To measure the consistency of each normalization method
at finding true DMPs, we compared results obtained on
a discovery—validation split of a large data set. Compar-
ing results between two different subsets of a large data
set is an established idea and has been applied to the con-
text of 450k normalization [14,46]. We extended this basic
idea in a novel way by introducing an in silico confound-
ing of treatment (case/control status) by batch effects
as follows. In a first step, we selected a set of samples
to be the discovery cohort, by choosing samples where
the treatment variable is not visibly confounded by plate
effects. Then the validation step is achieved by select-
ing samples demonstrating strong potential for treatment
confounding by batch, for example by choosing samples
from different plates (see descriptions of the data). The
extent to which it is possible to introduce such a con-
founding depends on the data set. In contrast to earlier
work [46], we normalized the discovery and the validation
cohorts separately, to mimic an independent replication
experiment more realistically. The idea of creating in sil-
ico confounding between batch and treatment has been
previously explored in the context of genomic prediction
[39].

We quantified the agreement between validation and
discovery in two ways: by an ROC curve and a concor-
dance curve. For the ROC curve, we used the discovery
cohort as the gold standard. Because the validation cohort
is affected by a batch effect, a normalization method that
is robust to batch effects will show better performance on
the ROC curve. Making this ROC curve required us to
choose a set of DMPs for the discovery cohort. The advan-
tage of the ROC curve is that the plot displays immediately
interpretable quantities, such as specificity and sensitivity.

For the concordance curve, we compared the top k
DMPs from the discovery and the validation sets, and dis-
played the percentage of the overlap for each k. These
curves do not require us to select a set of DMPs for the
discovery cohort. Note that these curves have been previ-
ously used in the context of multiple-laboratory compari-
son of microarray data [60].

Sex validation analysis
On the 450k array, 11,232 and 416 probes map to the X
and Y chromosomes, respectively. Because some genes
have been shown to escape X inactivation [44], we only
considered genes for which the X-inactivation status is
known to ensure an unbiased sex prediction. From [44],
1,678 probes undergo X-inactivation, 140 probes escape
X-inactivation, and 9,414 probes have either variable or
unknown status.

For the ROC curves, we defined the true positives to
be the 1,678 probes undergoing X-inactivation and the
probes mapping to the Y chromosome (416 probes); by
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removing the probes that have been shown to cross-
hybridize [43], we were left with 1,877 probes. For the
true negatives, we considered the 140 probes escaping X-
inactivation and the autosomal probes that do not cross-
hybridize. The rest of the probes were removed from the
analysis.

Sample size simulation

To assess the performance of functional normalization
for different small sample sizes, we devised the follow-
ing simulation scheme for the Ontario-EBV data set. First,
we kept the discovery data set intact to ensure a rea-
sonable gold standard in the discovery-validation ROC
curves; we only simulated different sample sizes for the
validation subset. For sample sizes n = 10,20, 30,50
and 80, we randomly chose half of the samples from the
EBV-transformed samples, and the other half from the
lymphocyte samples. For instance, for » = 10 samples,
we randomly picked five samples from each of the treat-
ment groups. We repeated this subsampling B = 100
times, which generated 100 discovery—validation ROC
curves for each n. For a fixed n, we considered the
mean of the B = 100 ROC curves as well as the
0.025 and 0.975 quantiles to mimic a 95% confidence
interval.

Reproducibility
A machine-readable document detailing our analyses is
available at GitHub [61].

Additional file

Additional file 1: Supplementary information. Supplementary
Figures S1-S9 and supplementary material with a description of how
control probes are treated.
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