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Abstract

We propose an extension to quantile normalization that removes unwanted technical variation using control probes.

We adapt our algorithm, functional normalization, to the Illumina 450k methylation array and address the open

problem of normalizing methylation data with global epigenetic changes, such as human cancers. Using data sets

from The Cancer Genome Atlas and a large case–control study, we show that our algorithm outperforms all existing

normalization methods with respect to replication of results between experiments, and yields robust results even in

the presence of batch effects. Functional normalization can be applied to any microarray platform, provided suitable

control probes are available.

Background
In humans, DNA methylation is an important epigenetic

mark occurring at CpG dinucleotides, which is impli-

cated in gene silencing. In 2011, Illumina released the

HumanMethylation450 bead array [1], also known as

the 450k array. This array has enabled population-level

studies of DNA methylation by providing a cheap, high-

throughput and comprehensive assay for DNA methyla-

tion. Applications of this array to population-level data

include epigenome-wide association studies (EWAS) [2,3]

and large-scale cancer studies, such as the ones avail-

able through The Cancer Genome Atlas (TCGA). Today,

around 9,000 samples are available from the Gene Expres-

sion Omnibus of the National Center for Biotechnology

Information, and around 8,000 samples from TCGA have

been profiled on either the 450k array, the 27k array or

both.

Studies of DNA methylation in cancer pose a chal-

lenging problem for array normalization. It is widely

accepted that most cancers show massive changes in

*Correspondence: khansen@jhsph.edu
1Department of Biostatistics, Johns Hopkins Bloomberg School of Public

Health, 615 N. Wolfe St, E3527, 21205 Baltimore, USA
11McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of

Medicine, 1800 Orleans St., 21287, Baltimore, USA

Full list of author information is available at the end of the article

their methylome compared to normal samples from the

same tissue of origin, making the marginal distribution

of methylation across the genome different between can-

cer and normal samples [4-8]; see Additional file 1:

Figure S1 for an example of such a global shift. We refer

to this as global hypomethylation. The global hypomethy-

lation commonly observed in human cancers was recently

shown to be organized into large, well-defined domains

[9,10]. It is worth noting that there are other situations

where global methylation differences can be expected,

such as between cell types and tissues.

Several methods have been proposed for normalization of

the 450k array, including quantile normalization [11,12],

subset-quantile within array normalization (SWAN) [13],

the beta-mixture quantile method (BMIQ) [14], dasen

[15] and noob [16]. A recent review examined the perfor-

mance of many normalization methods in a setting with

global methylation differences and concluded: ‘There is

to date no between-array normalization method suited to

450K data that can bring enough benefit to counterbal-

ance the strong impairment of data quality they can cause

on some data sets’ [17]. The authors note that not using

normalization is better than using the methods they eval-

uated, highlighting the importance of benchmarking any

method against raw data.
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The difficulties in normalizing DNA methylation data

across cancer and normal samples simultaneously have

been recognized for a while. In earlier work on the

CHARM platform [18], Aryee et al. [19] proposed a vari-

ant of subset quantile normalization [20] as a solution.

For CHARM, input DNA is compared to DNA processed

by a methylation-dependent restriction enzyme. Aryee

et al. [19] used subset quantile normalization to normalize

the input channels from different arrays to each other. The

450k assay does not involve an input channel; it is based on

bisulfite conversion. While not directly applicable to the

450k array design, the work on the CHARMplatform is an

example of an approach to normalizing DNAmethylation

data across cancer and normal samples.

Any high-throughput assay suffers from unwanted

variation [21]. This is best addressed by experimental

design [21]. In the gene expression literature, correc-

tion for this unwanted variation was first addressed by

the development of unsupervised normalization meth-

ods, such as robust multi-array average (RMA) [22]

and variance-stabilizing normalization (VSN) [23]. As

Mecham et al. [24], we use the term ‘unsupervised’ to

indicate that the methods are unaware of the experimen-

tal design: all samples are treated equally. These methods

lead to a substantial increase in signal-to-noise. As exper-

iments with larger sample sizes were performed, it was

discovered that substantial unwanted variation remained

in many experiments despite the application of an unsu-

pervised normalization method. This unwanted variation

is often – but not exclusively – found to be associated with

processing date or batch, and is therefore referred to as

a batch effect. This led to the development of a series of

supervised normalization tools, such as surrogate variable

analysis (SVA) [25,26], ComBat [27], supervised normal-

ization of microarrays (SNM) [24] and remove unwanted

variation (RUV) [28], which are also known as batch effect

removal tools. The supervised nature of these tools allows

them to remove unwanted variation aggressively while

keeping variation associated with the covariate of interest

(such as case/control status). Unsurprisingly, batch effects

have been observed in studies using the 450K array [29].

As an example of unwanted variation that is biological in

origin, we draw attention to the issue of cell-type hetero-

geneity, which has seen a lot of attention in the literature

on DNA methylation [30-34]. This issue arises when pri-

mary samples are profiled; primary samples are usually a

complicated mixture of cell types. This mixture can sub-

stantially increase the unwanted variation in the data and

can even confound the analysis if the cell-type distribution

depends on a phenotype of interest. It has been shown that

SVA can help mitigate the effect of cell-type heterogeneity

[33], but other approaches are also useful [30-32].

In this work, we propose an unsupervised method

that we call functional normalization, which uses control

probes to act as surrogates for unwanted variation. We

apply this method to the analysis of 450k array data, and

show that functional normalization outperforms all exist-

ing normalization methods in the analysis of data sets

with global methylation differences, including studies of

human cancer. We also show that functional normaliza-

tion outperforms the batch removal tools SVA [25,26],

ComBat [27] and RUV [28] in this setting. Our evalua-

tion metrics focus on assessing the degree of replication

between large-scale studies, arguably the most impor-

tant biologically relevant end point for such studies. Our

method is available as the ‘preprocessFunnorm’ func-

tion in the minfi package [12] through the Bioconductor

project [35].

Results and discussion

Control probes may act as surrogates for batch effects

The 450k array contains 848 control probes. These probes

can roughly be divided into negative control probes (613),

probes intended for between array normalization (186)

and the remainder (49), which are designed for qual-

ity control, including assessing the bisulfite conversion

rate (see Materials and methods and Additional file 1:

Supplementary Materials). Importantly for our proposed

method, none of these probes are designed to measure a

biological signal.

Figure 1a shows a heat map of a simple summary

(see Materials and methods) of these control probes, for

200 samples assayed on four plates (Ontario data set).

Columns are the control measure summaries and rows

are samples. The samples have been processed on differ-

ent plates, and we observe a clustering pattern correlated

with plate. Figure 1b shows the first two principal com-

ponents of the same summary data and there is evidence

of clustering according to plate. Figure 1c shows how

the marginal distributions of the methylated channel vary

across plates. This suggests that the summarized control

probes can be used as surrogates for unwanted variation.

This is not a new observation; the use of control probes in

normalization has a long history in microarray analysis.

Functional normalization

We propose functional normalization (see Materials and

methods), a method that extends quantile normalization.

Quantile normalization forces the empirical marginal dis-

tributions of the samples to be the same, which removes

all variation in this statistic. In contrast, functional nor-

malization only removes variation explained by a set of

covariates, and is intended to be used when covariates

associated with technical variation are available and are

independent of biological variation. We adapted func-

tional normalization to data from the 450k array (see

Materials and methods), using our observation that the

control probe summary measures are associated with
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Figure 1 Control probes acts as surrogates for batch effects. (a) Heat map of a summary (see Materials and methods) of the control probes,

with samples on the y-axis and control summaries on the x-axis. Samples were processed on a number of different plates indicated by the color

label. Only columns have been clustered. (b) The first two principal components of the matrix depicted in (a). Samples partially cluster according to

batch, with some batches showing tight clusters and other being more diffuse. (c) The distribution of methylated intensities averaged by plate.

These three panels suggest that the control probe summaries partially measure batch effects. PC, principal component.

technical variability and batch effects. As covariates, we

recommend using the first m = 2 principal components

of the control summary matrix, a choice with which we

have obtained consistently good results; this is discussed

in greater depth below. We have also examined the con-

tributions of the different control summary measures in

several different data sets, and we have noted that the con-

trol probe summaries given the most weight varied across

different data sets. We have found (see below) that we can

improve functional normalization slightly by applying it to

data that have already been background corrected using

the noob method [16].

Functional normalization, like most normalization

methods, does not require the analyst to provide

information about the experimental design. In contrast,

supervised normalization methods, such as SVA [25,26],

ComBat [27], SNM [24] and RUV [28], require the user to

provide either batch parameters or an outcome of interest.

Like functional normalization, RUV also utilizes control

probes as surrogates for batch effects, but builds the

removal of batch effects into a linear model that returns

test statistics for association between probes and pheno-

type. This limits the use of RUV to a specific statistical

model. Methods such as clustering, bumphunting [12,36]

and other regional approaches [37] for identifying dif-

ferentially methylated regions (DMRs) cannot readily be

applied.

Functional normalization improves the replication

between experiments, even when a batch effect is present

As a first demonstration of the performance of our algo-

rithm, we compare lymphocyte samples from the Ontario

data set to Epstein–Barr virus (EBV)-transformed lym-

phocyte samples from the same collection (see Materials

and methods). We have recently studied this transforma-

tion [38] and have shown that the EBV transformation

induces large blocks of hypomethylation encompassing

more than half the genome, like what is observed between

most cancers and normal tissues. This introduces a global

shift in methylation, as shown by the marginal densities in

Additional file 1: Figure S1.

We divided the data set into discovery and validation

cohorts (see Materials and methods), with 50 EBV-

transformed lymphocytes and 50 normal lymphocytes in

each cohort. As illustrated in Additional file 1: Figure S2a,

we attempted to introduce in silico unwanted variation

confounding the EBV transformation status in the valida-

tion cohort (see Materials and methods), to evaluate the

performance of normalization methods in the presence

of known confounding unwanted variation. This has been

previously done by others in the context of genomic pre-

diction [39]. We normalized the discovery cohort, identi-

fied the top k differentially methylated positions (DMPs)

and asked: ‘How many of these k DMPs can be replicated

in the validation cohort?’ We normalized the validation

cohort separately from the discovery cohort to mimic a

replication attempt in a separate experiment. We identi-

fied DMPs in the validation cohort using the samemethod

and the result is quantified using a receiver operating

characteristic (ROC) curve where the analysis result for

the discovery cohort is taken as the gold standard.

To enable the comparison between normalizationmeth-

ods, we fix the number of DMPs across all methods.

Because we know from previous work [38] (described as

WGBS EBV data in Materials and methods) that the EBV

transformation induces large blocks of hypomethylation

covering more than half of the genome, we expected to

find a large number of DMPs, and we set k = 100000.

The resulting ROC curves are shown in Figure 2a. In

this figure we show, for clarity, what we have found to

be the most interesting alternatives to functional normal-

ization in this setting: raw data, quantile normalization

as suggested by Touleimat et al. [11] and implemented

in minfi [12] and the noob background correction [16].

Additional file 1: Figure S3a,b contains results for addi-

tional normalization methods: BMIQ [14], SWAN [13]
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Figure 2 Improvements in replication for the EBV data set. (a) ROC curves for replication between a discovery and a validation data set. The

validation data set was constructed to show in silico batch effects. The dotted and solid lines represent, respectively, the commonly used false

discovery rate cutoffs of 0.01 and 0.05. (b) Concordance curves showing the percentage overlap between the top k DMPs in the discovery and

validation cohorts. Additional normalization methods are assessed in Additional file 1: Figure S3. Functional normalization shows a high degree of

concordance between data sets. (c) The percentage of the top 100,000 DMPs that are replicated between the discovery and validation cohorts and

also inside a differentially methylated block or region from Hansen et al. [38]. DMP, differentially methylation position; EBV, Epstein–Barr virus;

Funnorm, functional normalization; ROC, receiver operating characteristic.

and dasen [15]. Note that each normalization method will

result in its own set of gold-standard DMPs and these

ROC curves therefore measure the internal consistency

of each normalization method. We note that functional

normalization (with noob background correction) outper-

forms raw data and quantile and noob normalizations

when the specificity is above 90% (which is the relevant

range for practical use).

We also measured the agreement between the top k

DMPs from the discovery cohort with the top k DMPs

from the validation cohort by looking at the overlap per-

centage. The resulting concordance curves are shown in

Figure 2b, and those for additional methods in Additional

file 1: Figure S3c. The figures show that functional nor-

malization outperforms the other methods.

We can assess the quality of the DMPs replicated

between the discovery and validation cohorts by compar-

ing them to the previously identify methylation blocks

and DMRs [38]. In Figure 2c, we present the percentage

of the initial k = 100000 DMPs that are both replicated

and present among the latter blocks and regions. We note

that these previously reported methylation blocks rep-

resent large-scale, regional changes in DNA methylation

and not regions where every single CpG is differentially

methylated. Nevertheless, such regions are enriched for

DMPs. This comparison shows that functional normaliza-

tion achieves a greater overlap with this external data set,

with an overlap of 67% compared to 57% for raw data,

while other methods, other than noob, perform worse

than the raw data.

Replication between experiments in a cancer study

We applied the same discovery–validation scheme to

measure performance as we used for the analysis of

the Ontario-EBV study, on kidney clear-cell carcinoma

samples (KIRC) from TCGA. In total, TCGA has pro-

filed 300 KIRC cancer and 160 normal samples on the

450K platform. Therefore, we defined a discovery cohort

containing 65 cancer and 65 normal samples and a vali-

dation cohort of 157 cancer and 95 normal samples (see

Materials and methods).

Our in silico attempt at introducing unwanted variation

associated with batch for this experiment succeeded in

producing a validation cohort where the cancer samples

have greater variation in background noise (Additional

file 1: Figure S1b). This difference in variation is a less

severe effect compared to the difference in mean back-

ground noise we achieved for the Ontario-EBV data set

(Additional file 1: Figure S2a). As for the data set con-

taining EBV-transformed samples, we expect large-scale

hypomethylation in the cancer samples and therefore we

again consider k = 100000 loci. The resulting ROC curves

are shown in Figure 3a, and those for additional methods

in Additional file 1: Figure S4a,b. Functional normaliza-

tion and noob are best and do equally well. Again, the

gold-standard set of probes that is used tomeasure perfor-

mance in these ROC curves differs between normalization

methods, and hence these ROC curves reflect the degree

of consistency between experiments within each method.

To compare further the quality of the DMPs found by

the different methods, we used an additional data set

from TCGA where the same cancer was assayed with the

Illumina 27k platform (see Materials and methods). We

focused on the 25,978 CpG sites that were assayed on

both platforms and asked about the size of the overlap

for the top k DMPs. For the validation cohort, with the

most unwanted variation, this is depicted in Figure 3b

and Additional file 1: Figure S4c for additional meth-

ods; for the discovery cohort, with least unwanted varia-

tion, results are presented in Additional file 1: Figure S4.
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Figure 3 Improvements in replication for the TCGA-KIRC data

set. (a) ROC curves for replication between a discovery and a

validation data set. The validation data set was constructed to show in

silico batch effects. (b) Concordance plots between an additional

cohort assayed on the 27k array and the validation data set.

Additional normalization methods are assessed in Additional file 1:

Figure S4. Functional normalization shows a high degree of

concordance between data sets. Funnorm, functional normalization;

KIRC, kidney clear-cell carcinoma; ROC, receiver operating

characteristic; TCGA, The Cancer Genome Atlas.

Functional normalization, together with noob, shows the

best concordance in the presence of unwanted variation in

the 450k data (the validation cohort) and is comparable to

no normalization in the discovery cohort.

Functional normalization preserves subtype heterogeneity

in tumor samples

Tomeasure how good our normalizationmethod is at pre-

serving biological variation among heterogeneous sam-

ples while removing technical biases, we use 192 acute

myeloid leukemia samples (ACL) from TCGA for which

every sample has been assayed on both the 27K and the

450K platforms (see Materials and methods). These two

platforms assay 25,978 CpGs in common (but note the

probe design changes between array types), and we can

therefore assess the degree of agreement between mea-

surements of the same sample on two different platforms,

assayed at different time points. The 450k data appear to

be affected by batch and dye bias; see Additional file 1:

Figure S5.

Each sample was classified by TCGA according to

the French-American-British (FAB) classification scheme

[40], which proposes eight tumor subtypes, and methy-

lation differences can be expected between the subtypes

[41,42]. Using data from the 27k arrays, we identified the

top k DMPs that distinguish the eight subtypes. In this

case, we are assessing the agreement of subtype variabil-

ity, as opposed to cancer–normal differences. The analysis

of the 27k data uses unnormalized data but adjusts for

sample batch in the model (see Materials and methods).

Using data from the 450k arrays, we first processed the

data using the relevant method, and next identified the

top k DMPs between the eight subtypes. The analysis of

the 450k data does not include a sample batch in the

model, which allows us to see how well the different nor-

malizationmethods remove technical artifacts introduced

by batch differences. While both of the analyses are con-

ducted on the full set of CpGs, we focus on the CpGs

common between the two platforms and ask: ‘What is

the degree of agreement between the top k DMPs iden-

tified using the two different platforms?’ Figure 4a shows

that functional normalization and noob outperform both

quantile normalization and raw data for all values of k,

and functional normalization is marginally better than

noob for some values of k. Additional file 1: Figure S6a

shows the results for additional methods. We can also

compare the two data sets using ROC curves, with the

results from the 27k data as gold standard (Figure 4b

and Additional file 1: Figure S6b). As for the DMPs for

the 27k data, we used the 5,451 CpGs that demonstrate

an estimated false discovery rate less than 5%. On the

ROC curve functional normalization outperforms noob,

quantile normalization and raw data for the full range of

specificity.

Replication between experiments with small changes

To measure the performance of functional normalization

in a setting where there are no global changes in methyla-

tion, we used the Ontario-Blood data set, which has assays

of lymphocytes from individuals with and without colon

cancer.We expect a very small, if any, impact of colon can-

cer on the blood methylome. As above, we selected cases

and controls to form discovery and validation cohorts, and

we introduced in silico unwanted variation that confounds

case–control differences in the validation data set only

(see Materials and methods). The discovery and valida-

tion data sets contain, respectively, 283 and 339 samples.
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Figure 4 Improvements in replication of tumor subtype

heterogeneity. In the AML data set from TCGA, the same samples

have been assayed on 450k and 27k arrays. (a) Concordance plots

between results from the 450k array and the 27k array. (b) ROC curves

for the 450k data, using the results from the 27k data as gold

standard. AML, acute myeloid leukemia; Funnorm, functional

normalization; ROC, receiver operating characteristic; TCGA, The

Cancer Genome Atlas.

For k = 100 loci, both functional and quantile nor-

malization show good agreement between discovery and

validation data sets, whereas noob and raw data show an

agreement that is not better than a random selection of

probes (Figure 5a, Additional file 1: Figure S7a).

Functional normalization improves X and Y chromosome

probe prediction in blood samples

As suggested previously [15], one can benchmark perfor-

mance by identifying DMPs associated with sex. One copy

of the X chromosome is inactivated and methylated in

females, and the Y chromosome is absent. On the 450k

array, 11,232 and 416 probes are annotated to be on the
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Figure 5 Performance improvements on blood samples data set.

(a) ROC curve for replication of case–control differences between

blood samples from colon cancer patients and blood samples from

normal individuals, the Ontario-Blood data set. The validation data set

was constructed to show an in silico batch effect. (b) ROC curve for

identification of probes on the sex chromosomes for the Ontario-Sex

data set. Sex is confounded by an in silico batch effect. Both

evaluations show the good performance of functional normalization.

Funnorm, functional normalization; ROC, receiver operating

characteristic.

X and Y chromosomes, respectively. For this analysis it

is sensible to remove regions of the autosomes that are

similar to the sex chromosomes to avoid artificial false

positives that are independent of the normalization step.

We therefore remove a set of 30,969 probes that have

been shown to cross-hybridize between genomic regions

[43]. Because some genes have been shown to escape X

inactivation [44], we only consider genes for which the

X-inactivation status is known to ensure an unbiased sex

prediction (see Materials and methods).

We introduced in silico unwanted variation by select-

ing 101 males and 105 females from different plates (see
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Materials and methods), thereby confounding plate with

sex. Results show that functional normalization performs

well (Figure 5b, Additional file 1: Figure S7b).

Functional normalization reduces technical variability

From the Ontario-Replicates lymphocyte data set (see

Materials and methods), we have 19 individuals assayed in

technical triplicates dispersed among 51 different chips.

To test the performance of each method to remove tech-

nical variation, we calculated the probe-specific variance

within each triplicate, and averaged the variances across

the 19 triplicates. Figure 6 presents box plots of these aver-

aged probe variances of all methods. All normalization

methods improve on raw data, and functional normal-

ization is in the top three of the normalization methods.

dasen, in particular, does well on this benchmark, which

shows that improvements in reducing technical variation

do not necessarily lead to similar improvements in the

ability to replicate associations.

Each 450k array is part of a slide of 12 arrays, arranged

in two columns and six rows (see Figure 7). Figure 7a–c

shows an effect of column and row position on quantiles

of the beta value distribution, across several slides. This

effect is not present in all quantiles of the beta distribu-

tion, and it depends on the data set which quantiles are

affected. Figure 7d–f shows that functional normalization

corrects for this spatial artifact.

Number of principal components

As described above, we recommend using functional nor-

malization with the number of principal components set

tom = 2. Additional file 1: Figure S8 shows the impact of

varying the number of principal components on various

performance measures we have used throughout, and

shows that m = 2 is a good choice for the data sets we

have analyzed. It is outperformed by m = 6 in the analy-

sis of the KIRC data and by m = 3 in the analysis of the

AML data, but these choices perform worse in the anal-

ysis of the Ontario-EBV data. While m = 2 is a good

choice across data sets, we leave m to be a user-settable

parameter in the implementation of the algorithm. This

analysis assumes we use the same m for the analysis of

both the discovery and validation data sets. We do this to

prevent overfitting and to construct an algorithm with no

user input. It is possible to obtain better ROC curves by

letting the choice ofm vary between discovery and valida-

tion, because one data set is confounded by batch and the

other is not.

Comparison to batch effect removal tools

Batch effects are often considered to be unwanted vari-

ation remaining after an unsupervised normalization. In

the previous assessments, we have comprehensively com-

pared functional normalization to existing normalization

methods and have shown great performance in the pres-

ence of unwanted variation. While functional normal-

ization is an unsupervised normalization procedure, we

were interested in comparing its performance to super-

vised normalization methods, such as SVA [25,26], RUV

[28] and ComBat [27]. We adapted RUV to the 450k

array (see Materials and methods) and used reference

implementations for the other two methods [45].

We applied these three batch removal tools to all data

sets analyzed previously. We let SVA estimate the num-

ber of surrogate variables, and allowed this estimation to

be done separately on the discovery and the validation

data sets, which allowed for the best possible performance

by the algorithm. For RUV, we selected negative control

probes on the array as negative genes and probes map-

ping to the X and Y chromosomes as positive genes in the
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Figure 7 Spatial location affects overall methylation. Quantiles of the beta distributions adjusted for a slide effect. The 12 vertical stripes are

ordered as rows 1 to 6 in column 1 followed by rows 1 to 6 in column 2. (a) 10th percentile for type II probes for the unnormalized AML data set. (b)

15th percentile for type I probes for the unnormalized AML data set. (c) 85th percentile for type II probes for the unnormalized Ontario-EBV data set.

(a–c) show that the top of the slide has a different beta distribution from the bottom. (d–f) Like (a–c) but after functional normalization, which

corrects this spatial artifact. AML, acute myeloid leukemia.

language of RUV (see Materials and methods for details).

These negative and positive genes were used to select the

number of unwanted factors, as per the recommendations

in Gagnon-Bartsch and Speed [28]. Figure 8 compares the

three methods to functional normalization and raw data

for our evaluation data sets. The three methods have the

greatest difficulty with the TCGA-AML and the Ontario-

Blood data sets compared to functional normalization.

Functional normalization is still a top contender for the

Ontario-EBV and the TCGA-KIRC data sets, although

RUV does outperform functional normalization slightly

on Ontario-EBV. This shows that unsupervised functional
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Figure 8 Comparison to batch effect removal tools SVA, RUV and ComBat. (a) Like Figure 2a, an ROC curve for the Ontario-EBV data set. (b)

Like Figure 3a, an ROC curve for the TCGA-KIRC data set. (c) Like Figure 3b, a concordance curve between the validation cohort from 450k data and

the 27k data for the TCGA-KIRC data set. (d) Like Figure 4a, concordance plots between results from the 450k array and the 27k array for the

TCGA-AML data set. (e) Like Figure 5a, an ROC curve for the Ontario-Blood data set. AML, acute myeloid leukemia; EBV, Epstein–Barr virus; Funnorm,

functional normalization; ROC, receiver operating characteristic.
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normalization outperforms these three supervised nor-

malization methods on multiple data sets.

The effect of normalization strategy on effect size estimates

To assess the impact of normalization on the estimated

effect sizes, we computed estimated methylation differ-

ences on the Beta scale between cases and controls for

the Ontario-EBV and KIRC data sets. Figure 9 shows the

distribution of effect sizes for the top loci in the discov-

ery data sets that are replicated in the validation data

sets. The impact of the normalization method on these

distributions depends on the data set.

The performance of functional normalization for smaller

sample sizes

To assess the performance of functional normalization

with small sample sizes, we repeated the analysis of the

Ontario-EBV data set with different sample sizes by ran-

domly subsampling an equal number of arrays from the

two treatment groups multiple times. For instance, for

sample size n = 30, we randomly drew 15 lymphocyte

samples and 15 EBV-transformed samples. We repeated

the subsampling B = 100 times and calculated 100

discovery–validation ROC curves. Figure 10 shows the

mean ROC curves together with the 0.025 and 0.975 per-

centiles for both the raw data and the data normalized

with functional normalization with noob, for different

sample sizes. At a sample size of 20, functional normal-

ization very slightly outperforms raw data, and functional
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Figure 9 Effect size of the top replicated loci. Box plots represent

the effect sizes for the top k loci from the discovery cohort that are

replicated in the validation cohort. The effect size is measured as the

difference on the beta value scale between the two treatment group

means. (a) Box plots for the top k = 100000 loci replicated in the

Ontario-EBV data set. (b) Box plots for the top k = 100000 loci

replicated in the TCGA-KIRC data set. EBV, Epstein–Barr virus;

Funnorm, functional normalization; w, with.

normalization improves on raw data with sample sizes

n ≥ 30.

Conclusions
We have presented functional normalization, an exten-

sion of quantile normalization, and have adapted this

method to Illumina 450k methylation microarrays. We

have shown that this method is especially valuable for nor-

malizing large-scale studies where we expect substantial

global differences inmethylation, such as in cancer studies

or when comparing between tissues, and when the goal is

to perform inference at the probe level. Although an unsu-

pervised normalization method, functional normalization

is robust in the presence of a batch effect, and performs

better than the three batch removal tools, ComBat, SVA

and RUV, on our assessment data sets. This method fills a

critical void in the analysis of DNA methylation arrays.

We have evaluated the performance of our method on a

number of large-scale cancer studies. Critically, we define

a successful normalization strategy as one that enhances

the ability to detect associations between methylation

levels and phenotypes of interest reliably across multi-

ple experiments. Various other metrics for assessing the

performance of normalization methods have been used

in the literature on preprocessing methods for Illumina

450k arrays. These metrics include assessing variability

between technical replicates [13,14,16,17,46], and com-

paring methylation levels to an external gold standard

measurement, such as bisulfite sequencing [11,14,17]. We

argue that a method that yields unbiased and precise

estimates of methylation in a single sample does not

necessarily lead to improvements in estimating the dif-

ferences between samples, yet the latter is the relevant

end goal for any scientific investigation. This is a con-

sequence of the well-known bias-variance trade-off [47].

An example of this trade-off for microarray normalization

is the performance of the RMA method [48] for analysis

of Affymetrix gene expression microarrays. This method

introduces bias into the estimation of fold-changes for

differentially expressed genes; however, this bias is offset

by a massive reduction in variance for non-differentially

expressed genes, leading to the method’s proven perfor-

mance. Regarding reducing technical variation, we show

in Figure 6 that methods that show the greatest reduc-

tion in technical variation do not necessarily have the best

ability to replicate findings, and caution the use of this

assessment for normalization performance.

In our comparisons, we have separately normalized the

discovery and the validation data sets, to mimic replica-

tion across different experiments. We have shown that

functional normalization was always amongst the top per-

forming methods, whereas other normalization methods

tended to perform well on some, but not all, of our test

data sets. As suggested by Dedeurwaerder et al. [17],
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Figure 10 Sample size simulation for the Ontario-EBV data set. Partial discovery–validation ROC curves for the Ontario-EBV data set similar to

Figure 2a but for random subsamples of different sizes n = 10, 20, 30, 50 and 80. Each solid line represents the mean of the ROC results for B = 100

subsamples of size n. The dotted lines represent the 0.025 and 0.975 percentiles. EBV, Epstein–Barr virus; Funnorm, functional normalization; ROC,

receiver operating characteristic.

our benchmarks showed the importance of comparing

performance to raw data, which outperformed (using

our metrics) some of the existing normalization meth-

ods. For several data sets, we have observed that the

within-array normalization methods SWAN and BMIQ

had very modest performance compared to raw data and

between-array normalization methods. This suggests that

using within-array normalization methods do not lead to

improvements in the ability to replicate findings between

experiments.

Our closest competitor is noob [16], which includes

both a background correction and a dye-bias equalization.

We outperformed noob substantially for the Ontario-

Blood and Ontario-Sex data sets and we performed

slightly better on the TCGA-AML data set. The best per-

formance was obtained by using functional normalization

after the noob procedure.

Our method relies on the fact that control probes carry

information about unwanted variation from a technical

source. This idea was also used by Gagnon-Bartsch and

Speed [28] to design the batch removal tool RUV. As dis-

cussed in the Results section, the RUV method is tightly

integrated with a specific statistical model, requires the

specification of the experimental design, and cannot read-

ily accommodate regional methods [12,36,37] nor cluster-

ing. In contrast, functional normalization is completely

unsupervised and returns a corrected data matrix, which

can be used as input into any type of downstream analy-

sis, such as clustering or regional methods. Batch effects

are often considered to be unwanted variation remaining

after an unsupervised normalization, and we conclude

that functional normalization removes a greater amount

of unwanted variation in the preprocessing step. It is

interesting that this is achieved merely by correcting the

marginal densities.

However, control probes cannot measure unwanted

variation arising from factors representing variation

present in the samples themselves, such as cell-type het-

erogeneity, which is known to be an important confounder

in methylation studies of samples containing mixtures of

cell types [33]. This is an example of unwanted varia-

tion from a biological, as opposed to technical, source.

Cell-type heterogeneity is a particular challenge in EWAS

studies of whole blood, but this has to be addressed by

other tools and approaches.

Surprisingly, we showed that functional normalization

improved on the batch removal tools, ComBat, SVA and

RUV, applied to raw data, in the data sets we have

assessed. It is a very strong result that an unsupervised

normalization method improves on supervised normal-

ization procedures, which require the specification of the

comparison of interest.

While we have shown that functional normalization

performed well in the presence of unwanted variation,

we still recommend that any large-scale study consid-

ers the application of batch removal tools, such as SVA

[25,26], ComBat [27] and RUV [28], after using functional

normalization, due to their proven performance and their

potential for removing unwanted variation that cannot

be measured by control probes. As an example, Jaffe and

Irizarry [33] discuss the use of such tools to control for

cell-type heterogeneity.
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The analysis of the Ontario-Blood data set suggests

that functional normalization has potential to improve the

analysis in a standard EWAS setting, in which only a small

number of differentially methylated loci are expected.

However, if only very few probes are expected to change,

and if those changes are small, it becomes difficult to eval-

uate the performance of our normalization method using

our criteria of successful replication.

The main ideas of functional normalization can readily

be applied to other microarray platforms, including gene

expression and miRNA arrays, provided that the plat-

form of interest contains a suitable set of control probes.

We expect the method to be particularly useful when

applied to data with large anticipated differences between

samples.

Materials andmethods

Infinium HumanMethylation450 BeadChip

We use the following terminology, consistent with the

minfi package [12]. The 450k array is available as slides

consisting of 12 arrays. These arrays are arranged in a six

rows by two columns layout. The scanner can process up

to eight slides in a single plate. We use the standard for-

mula ³ = M/(M+U+100) for estimating the percentage

methylation given (un)methylation intensities U andM.

Functional normalization uses information from the 848

control probes on the 450k array, as well as the out-

of-band probes discussed in Triche et al. [16]. These

control probes are not part of the standard output from

GenomeStudio, the default Illumina software. Instead we

use the IDAT files from the scanner together with the

open source illuminaio [49] package to access the full

data from the IDAT files. This step is implemented in

minfi [12]. While not part of the standard output from

GenomeStudio, it is possible to access the control probe

measures within this software by accessing the Control

Probe Profile.

Control probe summaries

We transform the 848 control probes, as well as the out-of-

band probes [16] into 42 summary measures. The control

probes contribute 38 of these 42 measures and the out-

of-band probes contribute four. An example of a control

probe summary is the mapping of 61 ‘C’ normalization

probes to a single summary value, their mean. The out-

of-band probes are the intensities of the type I probes

measured in the opposite color channel from the probe

design. For the 450k platform, this means 92,596 green

intensities, and 178,406 red intensities that can be used to

estimate background intensity, and we summarize these

values into four summary measures. A full description of

how the control probes and the out-of-band probes are

transformed into the summary control measures is given

in Additional file 1: Supplementary material.

Functional normalization: the general framework

Functional normalization extends the idea of quantile nor-

malization by adjusting for known covariates measuring

unwanted variation. In this section, we present a general

model that is not specific to methylation data. The adap-

tation of this general model to the 450k data is discussed

in the next section. The general model is as follows. Con-

sider Y1, . . . ,Yn high-dimensional vectors each associated

with a set of scalar covariates Zi,j with i = 1, . . . , n index-

ing samples and j = 1, . . . ,m indexing covariates. Ideally

these known covariates are associated with unwanted

variation and unassociated with biological variation; func-

tional normalization attempts to remove their influence.

For each high-dimensional observation Yi, we form the

empirical quantile function for its marginal distribution,

and denote it by q
emp
i . Quantile functions are defined on

the unit interval and we use the variable r ∈[ 0, 1] to evalu-

ate them pointwise, like q
emp
i (r). We assume the following

model in pointwise form

q
emp
i (r) = ³(r) +

m
∑

j=1

Zi,j³j(r) + εi(r), (1)

which has the functional form

q
emp
i = ³ +

m
∑

j=1

Zi,j³j + εi (2)

The parameter function ³ is the mean of the quan-

tile functions across all samples, ³j are the coefficient

functions associated with the covariates and εi are the

error functions, which are assumed to be independent and

centered around 0.

In this model, the term

m
∑

j=1

Zi,j³j (3)

represents variation in the quantile functions explained

by the covariates. By specifying known covariates that

measure unwanted variation and that are not associated

with a biological signal, functional normalization removes

unwanted variation by regressing out the latter term. An

example of a known covariate could be processing batch.

In a good experimental design, processing batch will not

be associated with a biological signal.

In particular, assuming we have obtained estimates ³̂j

for j = 1, . . . ,m, we form the functional normalized

quantiles by

qFunnormi (r) = q
emp
i (r) −

m
∑

j=1

Zi,j³̂j(r) (4)
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We then transform Yi into the functional normalized

quantity Ỹi using the formula

Ỹi = qFunnormi

(

(

q
emp
i

)−1
(Yi)

)

(5)

This ensures that the marginal distribution of Ỹi has

qFunnormi as its quantile function.

We now describe how to obtain estimates ³̂j for j =

1, . . . ,m. Our model 1 is an example of function-on-

scalar regression, described in [50]. The literature on

function-on-scalar regression makes assumptions about

the smoothness of the coefficient functions and uses a

penalized framework because the observations appear

noisy and non-smooth. In contrast, because our observa-

tions Yi are high dimensional and continuous, the jumps

of the empirical quantile functions are very small. This

allows us to circumvent the smoothing approach used in

traditional function-on-scalar regression. We use a dense

grid of H equidistant points between 0 and 1, and we

assume that H is much smaller than the dimension of Yi.

On this grid, model 1 reduces pointwise to a standard

linear model. Because the empirical quantile functions

qemp(r) have very small jumps, the parameter estimates

of these linear models vary little between two neighbor-

ing grid points. This allows us to use H standard linear

model fits to compute estimates ³̂(h) and ³̂j(h), j =

1, . . . ,m, with h being on the dense grid {h ∈ d/H :

d = 0, 1, . . . ,H}. We next form estimates ³̂(r) and ³̂j(r),

j = 1, . . . ,m, for any r ∈[ 0, 1] by linear interpolation.

This is much faster than the penalized function-on-scalar

regression available through the refund package [51].

Importantly, in this framework, using a saturated model

in which all the variation (other than the mean) is

explained by the covariates results in removing all vari-

ation and is equivalent to quantile normalization. In our

notation, quantile-normalized quantile functions are

q
quantile
i (r) = ³̂(r) (6)

where ³̂ is the mean of the empirical quantile func-

tions. This corresponds to the maximum variation that

can be removed in our model. In contrast, including no

covariates makes the model comparable to no normal-

ization at all. By choosing covariates that only measure

unwanted technical variation, functional normalization

will only remove the variation explained by these tech-

nical measurements and will leave biological variation

intact. Functional normalization allows a sensible trade-

off between not removing any technical variation at all (no

normalization) and removing too much variation, includ-

ing global biological variation, as can occur in quantile

normalization.

Functional normalization for 450k arrays

We apply the functional normalization model to the

methylated (M) and unmethylated (U) channels sep-

arately. Since we expect the relationship between the

methylation values and the control probes to differ

between type I and type II probes, functional normal-

ization is also applied separately by probe type to obtain

more representative quantile distributions. We address

themapping of probes to the sex chromosomes separately;

see below. This results in four separate applications of

functional normalization, using the exact same covariate

matrix, with more than 100,000 probes in each normal-

ization fit. For functional normalization, we pickH = 500

equidistant points (see notation in previous section). As

covariates, we use the first m = 2 principal components

of the summary control measures as described above. We

do this because the control probes are not intended to

measure a biological signal since they are not designed to

hybridize to genomic DNA. Our choice ofm = 2 is based

on empirical observations on several data sets.

Following the ideas from quantile normalization for

450k arrays [11,12], we normalize the mapping of probes

to the sex chromosomes (11,232 and 416 probes for the

X and Y chromosomes, respectively) separately from the

autosomal probes. For each of the two sex chromosomes,

we normalize males and females separately. For the X

chromosome, we use functional normalization, and for

the Y chromosome, we use quantile normalization, since

the small number of probes on this chromosome vio-

lates the assumptions of functional normalization, which

results in instability.

Functional normalization only removes variation in the

marginal distributions of the two methylation channels

associated with control probes. This preserves any biolog-

ical global methylation difference between samples. We

have found (see Results) that we get slightly better perfor-

mance for functional normalization if we apply it to data

that have been background corrected with noob [16].

Data

The Ontario study. The Ontario study consists of sam-

ples from 2,200 individuals from the Ontario Familial

Colon Cancer Registry [52] who had previously been

genotyped in a case–control study of colorectal cancer in

Ontario [53]. The majority of these samples are lympho-

cytes derived fromwhole blood.We use various subsets of

this data set for different purposes.

Biospecimens and data collected from study partic-

ipants were obtained with written informed consent

and approval from the University of Toronto Office of

Research Ethics (Protocol Reference 23212), in compli-

ance with the WMA Declaration of Helsinki – Ethical

Principles for Medical Research Involving Human Sub-

jects.
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The Ontario-EBV data set. Lymphocyte samples from

100 individuals from the Ontario study were transformed

into immortal lymphoblastoid cell lines using the EBV

transformation. We divided the 100 EBV-transformed

samples into two equal-sized data sets (discovery and val-

idation). For the discovery data set, we matched the 50

EBV-transformed samples to 50 other lymphocyte sam-

ples assayed on the same plates. For the validation data set,

we matched the 50 EBV-transformed samples to 50 other

lymphocyte samples assayed on different plates.

The Ontario-Blood data set. From the Ontario study,

we first created a discovery–validation design where we

expect only a small number of loci to be differentially

methylated. For the discovery data set, we selected all

cases and controls on three plates that showed little evi-

dence of plate effects among the control probes, which

yielded a total of 52 cases and 231 controls. For the

validation data set, we selected four plates where the con-

trol probes did show evidence of a plate effect and then

selected cases and controls from separate plates, to max-

imize the confounding effect of plate. This yielded a total

of 175 cases and 163 controls.

The Ontario-Sex data set. Among ten plates for which

the control probes demonstrated differences in distribu-

tion depending on plate, we selected 101 males from a

set of five plates and 105 females from another set of five

plates, attempting to maximize the confounding effect of

batch on sex.

The Ontario-Replicates data set. Amongst the lym-

phocyte samples from the Ontario study, 19 samples

have been assayed three times each. One replicate is a

hybridization replicate and the other replicate is a bisulfite

conversion replicate. The 57 samples have been assayed

on 51 different slides across 11 different plates.

The TCGA-KIRC data sets. From TCGA, we have

access to KIRC and normal samples, assayed on two dif-

ferent methylation platforms. We use the level 1 data,

contained in IDAT files. For the 450k platform, TCGA

has assayed 300 tumor samples and 160 normal samples.

For the discovery set, we select 65 tumor samples and

65 matched normal samples from slides showing little

variation in the control probes. These 130 samples were

assayed on three plates. For the validation data set, we

select the remaining 95 normal samples together with all

157 cancer samples that were part of the same TCGA

batches as the 95 normal samples. These samples were

spread over all nine plates, therefore maximizing potential

batch effects. For the 27k platform, TCGA has assayed 219

tumor samples and 199 normal samples. There is no over-

lap between the individuals assayed on the 450k platform

and the individuals assayed on the 27k platform.

The TCGA-AML data sets. Also from TCGA, we

used data from 194 AML samples, where each sample

was assayed twice: first on the 27K Illumina array and

subsequently on the 450K array. Every sample but two has

been classified according to the FAB subtype classifica-

tion scheme [40], which classifies tumors into one of eight

subtypes. The two unclassified samples were removed

post-normalization. We use the data known as level 1,

which is contained in IDAT files.

Whole-genome bisulfite sequencing (WGBS) EBV

data. Hypomethylated blocks and small DMRs between

transformed and quiescent cells were obtained from a

previous study [38]. Only blocks and DMRs with a family-

wise error rate equal to 0 were retained (see the reference).

A total of 228,696 probes on the 450K array overlap with

the blocks and DMRs.

Data availability

The Ontario methylation data have been deposited

in dbGAP under accession number [phs000779.v1.p1].

These data were available to researchers under the fol-

lowing constraints: (1) the use of the data is limited to

research on cancer, (2) the researchers have local Insti-

tutional Review Board approval and (3) the researchers

have the approval of either Colon Cancer Family Reg-

istries [54] or Mount Sinai Hospital (Toronto) Research

Ethics Board. The TCGA data (KIRC and AML) are avail-

able through the TCGA Data Portal [55]. TheWGBS EBV

data is available through the Gene Expression Omnibus of

the National Center for Biotechnology Information under

the accession number [GEO:GSE49629]. Our method is

available as the preprocessFunnorm function in the minfi

package through the Bioconductor project [56]. The code

in this package is licensed under the open-source license

Artistic-2.0.

Data processing

Data were available in the form of IDAT files from the

various experiments (see above). We used minfi [12] and

illuminaio [49] to parse the data and used the various nor-

malization routines in their reference implementations

(see below).

We performed the following quality control on all data

sets. As recommended in Touleimat and Tost [11], for

each sample we computed the percentage of loci with a

detection P value greater than 0.01, with the intention of

excluding a sample if the percentage was higher than 10%.

We used the minfi [12] implementation of the detection

P value. We also used additional quality control measures

[12] and we interactively examined the arrays using the

shinyMethyl package [57]; all arrays in all data sets passed

our quality control.

We performed the following filtering of loci, after nor-

malization. We removed 17,302 loci that contain a SNP

with an annotated minor allele frequency greater than or

equal to 1% in the CpG site itself or in the single-base

extension site. We used the UCSC Common SNPs table
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based on dbSNP 137; this table is included in the minfi

package. We removed 29,233 loci that have been shown

to cross-hybridize to multiple genomic locations [43]. The

total number of loci removed is 46,535, i.e. 9.6% of the

array. We chose to remove these loci post-normalization

as done previously [16,58], reasoning that while these

probes may lead to spurious associations, we believe they

are still subject to technical variation and should therefore

contain information useful for normalization.

Comparison to normalization methods

We have compared functional normalization to the most

popular normalization methods used for the 450k array.

This includes the following between-array normalization

methods: (1) quantile: stratified quantile normalization

as proposed by Touleimat et al. [11] and implemented

in minfi [12], (2) dasen: background adjustment and

between-sample quantile normalization of M and U sep-

arately [15] and (3) noob: a background adjustment model

using the out-of-band control probes followed by a dye

bias correction [16], implemented in the methylumi pack-

age. We also consider two within-array normalization

methods: (4) SWAN [13] and (5) BMIQ [14]. Finally,

we consider (6) raw data: no normalization, i.e., we only

matched up the red and the green channels with the rel-

evant probes according to the array design (specifically, it

is the output of the preprocessRaw function in minfi).

In its current implementation, noob yieldedmissing val-

ues for at most a couple of thousand loci (less than 1%)

per array. This is based on excluding loci below an array-

specific detection limit.We have discarded those loci from

our performance measures, but only for the noob perfor-

mance measures. In its current implementation, BMIQ

produced missing values for all type II probes in five sam-

ples for the TCGA-AML data set. We have excluded these

samples for our performance measures, but only for our

BMIQ performance measures.

For clarity, in the figures we focus on the top-performing

methods which are raw data, and quantile and noob

normalization. The assessments of the other methods,

dasen, BMIQ and SWAN, are available in Additional file 1:

Supplementary Materials.

Comparison to SVA

We used the reference implementation of SVA in the sva

package [45]. We applied SVA to the M values obtained

from the raw data. Surrogate variables were estimated

using the iteratively re-weighted SVA algorithm [26], and

were estimated separately for the discovery and validation

cohorts. In the analysis of the Ontario-EBV data set, SVA

found 21 and 23 surrogate variables, respectively, for the

discovery and the validation cohorts. In the analysis of the

Ontario-Blood data set, SVA found 18 and 21 surrogate

variables, respectively, for the discovery and the validation

cohorts. In the analysis of the TCGA-KIRC data set, SVA

found 29 and 32 surrogate variables, respectively, for the

discovery and the validation cohorts. In the analysis of the

TCGA-AML data set, SVA found 24 surrogate variables.

Comparison to RUV

The RUV-2 method was originally developed for gene

expression microarrays [28]. The method involves a num-

ber of domain-specific choices. To our knowledge, there is

no publicly available adaption of RUV-2 to the 450k plat-

form, so we adapted RUV-2 to the 450k array. The core of

the method is implemented in software available from a

personal website [59]. As negative genes (genes not asso-

ciated with the biological treatment group), we selected

the raw intensities in the green and red channels of the

614 internal negative control probes available on the 450k

array.

To determine the number k of factors to remove (see

Gagnon-Bartsch and Speed [28] for details of this param-

eter), we followed the approach described in [28]. First,

for each value k = 0, 1, . . . , 40, we performed a differen-

tial analysis with respect to sex. Second, we considered as

positive controls the probes that are known to undergo

X inactivation (see section Sex validation analysis) and

probes mapping to the Y chromosome. Third, for the

top ranked m = 25000, 50,000 and 100,000 probes, we

counted how many of the positive control probes are

present in the list. Finally, we picked the value of k for

which these counts are maximized. The different tuning

plots are presented in Additional file 1: Figure S9. The

optimal k was 14 and 11 for the discovery and the valida-

tion cohorts of the Ontario-EBV data set, respectively. In

the analysis of the Ontario-Blood data set, the optimal k

was 0 and 3, respectively, for the discovery and the valida-

tion cohorts. In the analysis of the TCGA-KIRC data set,

the optimal k was 36 and 5, respectively, for the discovery

and the validation cohorts. In the analysis of the TCGA-

AML data set, k was selected to be 0 (which is equivalent

to raw data).

Comparison to ComBat

We used the reference implementation of ComBat in the

sva package [45]. Because ComBat cannot be applied to

data sets for which the phenotype of interest is perfectly

confounded with the batch variable, we could only run

ComBat for the AML and KIRC data sets.

Identification of differentially methylated positions

To identify DMPs, we used F-statistics from a linear

model of the beta values from the array. The linear model

was applied on a probe-by-probe basis. In most cases, the

model included case/control status as a factor. In the 27K

data, we adjusted for batch by including a plate indicator

(given by TCGA) in the model.
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Discovery–validation comparisons

Tomeasure the consistency of each normalizationmethod

at finding true DMPs, we compared results obtained on

a discovery–validation split of a large data set. Compar-

ing results between two different subsets of a large data

set is an established idea and has been applied to the con-

text of 450k normalization [14,46]. We extended this basic

idea in a novel way by introducing an in silico confound-

ing of treatment (case/control status) by batch effects

as follows. In a first step, we selected a set of samples

to be the discovery cohort, by choosing samples where

the treatment variable is not visibly confounded by plate

effects. Then the validation step is achieved by select-

ing samples demonstrating strong potential for treatment

confounding by batch, for example by choosing samples

from different plates (see descriptions of the data). The

extent to which it is possible to introduce such a con-

founding depends on the data set. In contrast to earlier

work [46], we normalized the discovery and the validation

cohorts separately, to mimic an independent replication

experiment more realistically. The idea of creating in sil-

ico confounding between batch and treatment has been

previously explored in the context of genomic prediction

[39].

We quantified the agreement between validation and

discovery in two ways: by an ROC curve and a concor-

dance curve. For the ROC curve, we used the discovery

cohort as the gold standard. Because the validation cohort

is affected by a batch effect, a normalization method that

is robust to batch effects will show better performance on

the ROC curve. Making this ROC curve required us to

choose a set of DMPs for the discovery cohort. The advan-

tage of the ROC curve is that the plot displays immediately

interpretable quantities, such as specificity and sensitivity.

For the concordance curve, we compared the top k

DMPs from the discovery and the validation sets, and dis-

played the percentage of the overlap for each k. These

curves do not require us to select a set of DMPs for the

discovery cohort. Note that these curves have been previ-

ously used in the context of multiple-laboratory compari-

son of microarray data [60].

Sex validation analysis

On the 450k array, 11,232 and 416 probes map to the X

and Y chromosomes, respectively. Because some genes

have been shown to escape X inactivation [44], we only

considered genes for which the X-inactivation status is

known to ensure an unbiased sex prediction. From [44],

1,678 probes undergo X-inactivation, 140 probes escape

X-inactivation, and 9,414 probes have either variable or

unknown status.

For the ROC curves, we defined the true positives to

be the 1,678 probes undergoing X-inactivation and the

probes mapping to the Y chromosome (416 probes); by

removing the probes that have been shown to cross-

hybridize [43], we were left with 1,877 probes. For the

true negatives, we considered the 140 probes escaping X-

inactivation and the autosomal probes that do not cross-

hybridize. The rest of the probes were removed from the

analysis.

Sample size simulation

To assess the performance of functional normalization

for different small sample sizes, we devised the follow-

ing simulation scheme for the Ontario-EBV data set. First,

we kept the discovery data set intact to ensure a rea-

sonable gold standard in the discovery–validation ROC

curves; we only simulated different sample sizes for the

validation subset. For sample sizes n = 10, 20, 30, 50

and 80, we randomly chose half of the samples from the

EBV-transformed samples, and the other half from the

lymphocyte samples. For instance, for n = 10 samples,

we randomly picked five samples from each of the treat-

ment groups. We repeated this subsampling B = 100

times, which generated 100 discovery–validation ROC

curves for each n. For a fixed n, we considered the

mean of the B = 100 ROC curves as well as the

0.025 and 0.975 quantiles to mimic a 95% confidence

interval.

Reproducibility

A machine-readable document detailing our analyses is

available at GitHub [61].

Additional file

Additional file 1: Supplementary information. Supplementary

Figures S1–S9 and supplementary material with a description of how

control probes are treated.
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