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Abstract

Background: In February 2016, a new fungal disease was spotted in wheat fields across eight districts in
Bangladesh. The epidemic spread to an estimated 15,000 hectares, about 16 % of the cultivated wheat area in
Bangladesh, with yield losses reaching up to 100 %. Within weeks of the onset of the epidemic, we performed
transcriptome sequencing of symptomatic leaf samples collected directly from Bangladeshi fields.

Results: Reinoculation of seedlings with strains isolated from infected wheat grains showed wheat blast symptoms
on leaves of wheat but not rice. Our phylogenomic and population genomic analyses revealed that the wheat blast
outbreak in Bangladesh was most likely caused by a wheat-infecting South American lineage of the blast fungus

Magnaporthe oryzae.

Conclusion: Our findings suggest that genomic surveillance can be rapidly applied to monitor plant disease
outbreaks and provide valuable information regarding the identity and origin of the infectious agent.
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Background

Outbreaks caused by fungal diseases have increased in
frequency and are a recurrent threat to global food se-
curity [1]. One example is blast, a fungal disease of rice,
wheat, and other grasses, that can destroy enough food
supply to sustain millions of people [1-3]. Until the
1980s, the blast disease was not known to affect wheat, a
main staple crop critical to ensuring global food security.
In 1985, the disease was first reported on wheat (7riti-
cum aestivum L.) in Parana State, Brazil [4]. It has since
spread throughout many of the important wheat-
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producing areas of Brazil and to neighboring South
American countries including Bolivia and Paraguay. In
South America, blast is now a major threat to wheat
production [5-7]. Currently, wheat blast affects as much
as 3 million hectares, seriously limiting the potential for
wheat production in the vast grasslands region of South
America.

Blast diseases of grasses are caused by fungal species
from the Pyriculariaceae [8] and can occur on 50 grass
species [9]. However, a high degree of host specificity ex-
ists among and within these fungal species [8, 10]. In
South America, wheat blast is caused by isolates of Mag-
naporthe oryzae (syn. Pyricularia oryzae) known as
pathotype Triticum [10-12]. The rice-infecting isolates
of M. oryzae are genetically distinct from wheat-
infecting isolates and generally do not infect wheat [11,
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Fig. 1 Geographical distribution and severity of the wheat blast outbreak in eight southwestern districts of Bangladesh. The map depicts the
intensity of the 2016 wheat blast outbreak across Bangladesh. The percentage of affected area and the total area (hectares) under cultivation are
shown for each district based on the color chart

13-20]. Typical symptoms of wheat blast on spikes are
premature bleaching of spikelets and entire heads [21—
23]. Severely infected wheat heads can be killed, result-
ing in severe yield losses [21, 22]. The disease is gener-
ally spread by infected seeds and airborne spores, and
the fungus can survive in infected crop residues and
seeds [14]. Little is known about the physiology and gen-
etics of the wheat blast pathogen, and our understanding
of the molecular interactions of this pathogen with
wheat remains limited.

In February 2016, wheat blast was detected for the first
time in Asia with reports of a severe outbreak in
Bangladesh relayed through local authorities and the
media [24]. Although wheat is not a traditional crop in

Bangladesh, its cultivation has expanded in recent years,
making it the second major food source after rice [25].
The outbreak is particularly worrisome because wheat
blast could spread further to major wheat-producing
areas in neighboring South Asian countries, thus threat-
ening food security across the region. Here, we report
our immediate response to this plant disease outbreak.
To rapidly determine the precise identity and likely ori-
gin of the outbreak pathogen, we applied field pathoge-
nomics, in which we performed transcriptome
sequencing of symptomatic and asymptomatic leaf sam-
ples collected from infected wheat fields in Bangladesh
[26, 27]. To promote the project and recruit experts, we
immediately released all raw sequence data through a
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dedicated website Open Wheat Blast (http://www.wheat-
blast.net). Phylogenomic and population genomic ana-
lyses revealed that the Bangladesh wheat blast outbreak
was probably caused by isolates belonging to the South
American wheat-infecting lineage of M. oryzae. We con-
clude that the wheat blast pathogen was most likely in-
troduced into Asia from South America.

Results and discussion

Geographical distribution of the wheat blast outbreak in
Bangladesh

The total area of wheat cultivation in Bangladesh in
2016 was about 498,000 ha (Department of Agricultural
Extension, Bangladesh). Wheat blast was observed in
eight southwestern districts, viz., Pabna, Kushtia, Meher-
pur, Chuadanga, Jhenaidah, Jessore, Barisal, and Bhola
(Fig. 1). Out of a total 101,660 ha of cultivated wheat in
those eight districts, an estimated 15 % were affected by
wheat blast.

The severity of wheat blast and associated yield losses
varied among districts. The highest percentage of in-
fected wheat fields was observed in Meherpur (70 %)
followed by Chuadanga (44 %), Jessore (37 %), Jhenaidah
(8 %), Bhola (5 %), Kushtia (2 %), Barisal (1 %), and
Pabna (0.2 %) (Fig. 1). Yield losses in different affected
districts varied. The highest average yield loss was re-
corded in Jhenaidah (51 %) followed by Chuadanga
(36 %), Meherpur (30 %), Jessore (25 %), Barisal (21 %),
Pabna (18 %), Kushtia (10 %), and Bhola (5 %). Although
the average yield loss was lower than 51 % across dis-
tricts, yield losses in individual fields were as high as
100 %. Importantly, 100 % of government-owned
Bangladesh  Agricultural Development Corporation
(BADC) seed multiplication farms in the affected dis-
tricts (ca. 355 ha) were completely cleared by burning to
destroy pathogen inocula by decision of the Ministry of
Agriculture (see https://www.youtube.com/watch?v=Em-
L5YMOkIok). Farmer wheat fields that were severely af-
fected (~100 %) were also burned.

Wheat blast symptoms in the field

To examine disease symptoms in affected wheat fields,
we collected samples from the affected districts. Major
symptoms associated with the epidemic included com-
pletely or partially bleached (dead) spikes similar to
symptoms reported for Brazilian wheat blast epidemics
[21, 22] and symptoms reported from Bangladesh in
2016 [23]. The pathogen attacked the base or upper part
of the rachis, severely affecting spikelet formation above
the point of infection. Complete or partial bleaching of
the spike above the point of infection with either no
grain or shriveled grain was common in all areas af-
fected by wheat blast (Fig. 2a—c). We commonly ob-
served bleached heads with traces of gray, indicative of
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fungal sporulation at the point of infection (arrows in
Fig. 2a—c and g). In severely infected fields, we also
found typical eye-shaped necrotic disease lesions with
gray centers in the leaves of some wheat plants (Fig. 2d)
[21, 28]. Head infections during the flowering stage re-
sulted in no grain production (Fig. 2g), whereas infection
at the grain filling stage resulted in small, shriveled, light
in weight, and discolored (pale) grains (Fig. 2e, f) [22].

To determine whether the spike and leaf symptoms on
wheat were associated with infection by blast fungi (Pyr-
icularia and related genera from the Pyriculariaceae
sensu; see Klaubauf et al. [8]), we examined infected
plant samples using a light microscope. A hallmark of
blast fungi is the production of asexual spores that have
a specific morphology consisting of three-celled pyriform
conidia [8]. Microscopic analyses revealed that gray col-
ored lesions observed on both spikes and leaves carried
large numbers of three-celled pyriform conidia from aer-
ial conidiophores (Fig. 2h). This indicates that the fungus
present in these lesions belongs to the Pyriculariaceae,
consistent with a previous report [22]. However, molecu-
lar taxonomy tools are needed to determine the species
identity.

Strains isolated from infected wheat samples cause
symptoms of wheat blast on artificially inoculated wheat
To confirm whether the fungus found on infected wheat
leaves is able to cause the observed symptoms, we iso-
lated ten strains (BTJP 3-1, BTJP 3-2, BTJP 3-3, BTJP 4-
1, BTJP 4-2, BTJP 4-3, BTJP 4-4, BTJP 4-5, BTJP 4-
6, and BT)P 4-7) using a single-conidia isolation method
(Fig. 3a). On potato dextrose agar (PDA) plates, the pre-
dominant morphology of the isolates was gray to white
aerial mycelia with an olive or brown center (Fig. 3b).
After 14-21 days of inoculation, the center of the cul-
ture became black (Fig. 3c). Artificial inoculation of
wheat seedling leaves using conidia of two isolates (BTJP
3-1 and BTJP 4-1) produced characteristic symptoms
five days after inoculation (Fig. 3d-h). Initially, a
diamond-shaped, water-soaked lesion in green leaves
was observed (Fig. 3d), which gradually turned into an
eye-shaped lesion, with a tan or gray colored center
(Fig. 3e, f). At a later stage, the spots enlarged, spread to
entire leaves, and killed the leaves (Fig. 3g, h). No differ-
ence in symptoms was observed on wheat seedlings of
the cultivars Shatabdi and Prodip and between the two
isolates (BTJP 3-1 and BTJP 4-1). Similar disease symp-
toms and sporulation were observed on leaves of artifi-
cially inoculated goosegrass (Eleusine indica) (Fig. 3Kk)
and barley (Hordeum vulgare) (Fig. 31). Terminal infec-
tion stages were characterized by a massive production
of hyaline to pale gray, pyriform, and asexual conidia on
aerial conidiophores. Conidia formation was observed
on all infected wheat (Triticum aestivum), barley (H.
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Fig. 2 Symptoms of blast disease in spikes, leaves, and seeds of wheat in a farmer's field in Jhenaidah in Bangladesh, and a micrograph showing
two conidia of Magnaporthe oryzae. a A completely bleached wheat spike with traces of gray from blast sporulation at the neck (arrow) of the
spike. b Complete bleaching of a wheat spike above the point (arrow) of infection. ¢ Two completely bleached spikes with traces of gray (upper
arrow) and a lesion (lower arrow) from blast sporulation at the base. d Typical eye-shaped lesion (arrow) and dark gray spots on a severely dis-
eased wheat leaf. e Mild blast disease-affected slightly shriveled wheat seeds. f Severe blast-affected shriveled and pale wheat seeds.

g A severely infected rachis with dark gray blast sporulation at the neck (arrow) and severely damaged spikelets. h Micrograph of two conidia
isolated from the infected spike of wheat. Scale bars in e and f=1 cm and in h=10 pm

vulgare), and goosegrass (E. indica) leaves (Fig. 3i-I).
Under the same conditions, no visible symptoms or
sporulation of conidia were observed microscopically on
leaves of artificially inoculated rice (Oryza sativa cv.
BRRIdhan 49; data not shown). These results are con-
sistent with those of Castroagudin et al. [29] showing
that wheat-infecting M. oryzae can infect seedlings of
barley but is largely asymptomatic on rice. The patho-
genicity of wheat blast on E. indica is also consistent
with reports that E. indica is a major alternate host in
South America [30, 31]. E. indica is also a common
weed in the highlands of Bangladesh and may similarly
serve as a alternate host of wheat blast. Understanding
the role of alternate hosts in disease cycles and

epidemics of wheat blast will be key in formulating ef-
fective disease management strategies.

Transcriptome sequencing of wheat leaf samples from
Bangladeshi fields

We used field pathogenomics [26] to identify which
blast fungus species was present in infected wheat
fields in Bangladesh. We collected samples of both
symptomatic and asymptomatic leaves from wheat
fields in different regions of Bangladesh, including
Meherpur and Jhenaidah districts, and extracted total
RNA from four pairs of symptomatic (samples 2, 5, 7,
and 12) and asymptomatic samples (samples F2, F5,
F7, and F12) (Additional file 1: Table S1). We
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Fig. 3 Reinoculation of seedlings with fungal strains isolated from infected wheat seeds. Germinated conidia, growth of mycelia, infection, and
sporulation of strains used to artificially inoculate wheat, barley, and goosegrass. a A germinated three-celled pyriform conidia (arrow) with hyphal
growth on water agar medium. b, ¢ Culture of isolate BTJP 3-1 on PDA plate; upper (left) and reverse side (right). d Photograph showing a
diamond-shaped, water-soaked lesion (initial stage of infection symptom, upper arrow) on a green wheat seedling leaf five days after conidial
inoculation. e, f Development of an eye-shaped lesion with a gray center (arrows in e and f) on wheat leaves. g, h A gradual progression of
symptoms (arrows) on wheat leaves. i-l Light micrographs showing massive conidia production (red arrow) on aerial conidiophores (black arrow)
on artificially infected leaves of wheat cultivars Prodip (i) and Shatabdi (j), goosegrass (k), and barley (I). Photographs were taken by a camera
attached to a microscope at 100x magnification. Scale bars in j, k, and I indicate 50 um

prepared and sequenced RNA-seq libraries using Illu-
mina technology, yielding 68.8 to 125.8 million 101-
bp pair-end reads with an average insert size of
419 bp. Next, following data trimming, we aligned
high-quality reads to both the M. oryzae wheat blast
fungus BR32 and wheat genomes [19, 32]. Sequence
reads from all samples with disease symptoms aligned
to the BR32 genome, ranging from 0.5-18.6 % of the
total reads (Fig. 4a). By contrast, only a minor pro-
portion of the reads from the asymptomatic samples
aligned to the BR32 genome (range: 0.003-0.037 %,
Fig. 4a—c). Between 37.7 % and 86.5 % of total reads

aligned to the wheat genome sequence (Fig. 4a). We
obtained similar numbers when considering the reads
aligning to M. oryzae and wheat transcriptomes (Add-
itional file 2: Table S2). Variation in percentage
mapped reads of host and fungal transcripts among
symptomatic samples is most likely explained by dif-
ferences in the disease severity and infection stage
among field collected leaves. The finding that on
average 6.8 % reads per sampled transcriptome
aligned to the wheat blast genome BR32 indicated
that M. oryzae is present in symptomatic (infected)
wheat samples from Bangladesh.
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Bangladesh wheat blast outbreak was likely caused by a
wheat-infecting South American lineage of M. oryzae

We used phylogenomic approaches to determine how
related the fungal pathogen detected in wheat leaf sam-
ples from Bangladesh is to M. oryzae lineages infecting
cereals and grasses. We also performed population gen-
omics analyses to gain insight into the geographic origin
of these Bangladeshi isolates using a set of sequences
from wheat-infecting M. oryzae isolates collected in
Brazil over the last 25 years. We first determined the
taxonomic affiliation and phylogenetic position of
wheat-infecting Bangladeshi samples. To this aim, we
extracted predicted transcript sequences from the as-
sembled genomic sequences of 20 M. oryzae strains iso-
lated from infected rice (O. sativa), wheat (T. aestivum),
foxtail millet (Setaria spp.), Eleusine spp., Lolium spp.,
and Eragrostis spp. [19] (this study; see Additional file 1:
Table S1 for full details). We identified 2193 groups of
sequences with orthologous relationships across the 20
reference transcriptomes and the two Bangladeshi
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isolates that had the largest number of genes represented
in their transcriptomic sequences. We aligned ortholo-
gous transcripts, processed alignments, and inferred a
maximum likelihood genealogy based on the
concatenated sequences using RAXML [33]. The Bangla-
deshi isolates clustered with high bootstrap support
(>90 %) with wheat-infecting isolates of M. oryzae
(Fig. 5a), indicating that the emergence of wheat blast in
Bangladesh was caused by isolates belonging to the
known M. oryzae wheat-infecting lineage, and not by an
unknown Pyriculariaceae species or a novel M. oryzae
lineage.

Given that the Bangladesh outbreak was caused by iso-
lates related to known wheat-infecting lineages of M.
oryzae, our next step was to infer genealogical relation-
ships between Bangladeshi and South American wheat
blast samples. We performed population genomics ana-
lyses using transcriptomic single nucleotide polymor-
phisms (SNPs) identified by aligning sequence reads to
the M. oryzae reference genome 70-15 [34]. We

a Percentage of reads mapping to reference genomes
100 Wheat 0 M. oryzae 100
78.9| 08 2 Symptomatic
85.0| 0.008 F2 Asymptomatic Samples from
Meherpur
58.6 7.3 5 Symptomatic | District
85.4| 0.037 F5 Asymptomatic
76.6 0.5 7 Symptomatic
86.5| 0.003 F7 Asymptomatic Samples from
Jhinaidaha
37.7 18.6 12 Symptomatic | District
82.4| 0.004 F12 Asymptomatic
b c
Wheat and M. oryzae transcripts Wheat and M. oryzae transcripts
1e+04 4 o 1e+044
~ -
'S w
k) K
Q Q
£ £
© ©
n n
£ 1e+02 £ 1e+021
£ £
2 2
Qo Qo
€ €
7 7
© ©
S 1e+00 S 1e+00
o o
w w
j=2) jo)
o o
i | -
1e-02 o +—m——— e e 1e-02 -
T T T T T T T T
1e-02 1e+00 1e+02 1e+04 1e-02 1e+00 1e+02 1e+04

Log FPKM symptomatic sample 7

Fig. 4 Transcriptome sequencing of infected leaves from farmer fields reveals Magnaporthe oryzae transcripts in symptomatic samples. a
Comparison of sequence read mapping data from the four sample pairs to the genomes of wheat blast fungus M. oryzae BR32 (in blue) and
wheat (light gray). b, ¢ Scatter plots of fragments per kilobase of transcript per million (FPKM) values from sample pair 7-F7 (b) and 12-F12 (c)
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included all four symptomatic samples from Bangladesh
and a diverse collection of 23 M. oryzae wheat-infecting
isolates sampled from Brazil, the main wheat growing
country affected by wheat blast (Additional file 1: Table
S1). As the wheat blast isolates from Brazil were se-
quenced from genomic DNA, we restricted the analyses
to transcriptomic SNPs genotyped at high confidence in
the symptomatic Bangladeshi sample 12, retaining a total
of 15,871 SNPs. Since the reproductive mode of wheat
blast populations can be mixed, including both sexual
and asexual reproduction [18], we chose to build a
Neighbor-Net network that takes into account potential
recombination among genotypes. The network analyses
identified small groups of near-clonal genotypes (e.g.,
isolates 12.1.205 and 12.1.032i), whereas all other iso-
lates appeared genetically distinct and displayed reticu-
late evolution. The Bangladesh outbreak isolates
grouped as a near-clonal genotype that was most closely
related to a group of Brazilian wheat-infecting isolates
from Minas Gerais, Sdo Paulo, Brasilia, and Goias
(strains PY0925, 12.1.053i, 12.1.117, and 12.1.037, re-
spectively). Systematic analyses of recent wheat-infecting
isolates from Brazil and neighboring countries will be
needed to ascertain the most likely infection route from
South America. Also, additional phylogenomic work,
based on deeper sampling of the diversity of grass-
infecting M. oryzae, will provide further insight into the
genealogical relationships among host-specific lineages
and the timing of lineage splitting/merging events.

Conclusion
Our rapid open source genomic surveillance approach
has revealed the precise identity of the infectious
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Bangladeshi fungus as the known wheat-infecting M.
oryzae lineage and indicated that it most likely origi-
nated from South America. This finding calls for inten-
sive monitoring and surveillance of the wheat blast
pathogen to limit its further spread outside South Amer-
ica and Bangladesh. In addition, our finding indicates
that the knowledge acquired to manage wheat blast in
Brazil using disease resistant cultivars [35-37] and fungi-
cides [38, 39] can be directly applied to the Bangladeshi
epidemic.

Methods

Field data

The dates of first incidence of disease and areas of wheat
cultivation and blast-infected fields in different districts
of Bangladesh were obtained from the Department of
Agricultural Extension (DAE) of Bangladesh. To verify
the data obtained by the DAE on the severity of the
wheat blast epidemic, a second data set on yield loss was
directly collected from the farmers (n = 100) of the most
severely infected wheat blast district, Meherpur, through
face-to-face interviews of randomly selected farmers
after harvesting the crop. Among 15,471 ha with wheat
blast in Bangladesh, the disease incidence in the Meher-
pur district alone involved 9640 ha, approximately 62 %
of the total wheat blast area in the country.

Isolation of wheat blast strains from infected seeds and
inoculation of wheat seedlings

Fungal strains were isolated from infected and shriveled
wheat seeds collected from the farmers of the Jhenaidah
district of Bangladesh. Infected wheat seeds were surface
sterilized successively with 95 % ethanol followed by
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10 % sodium hypochlorite and 95 % ethanol [28]. The
seeds were kept in a Petri dish laid with sterilized filter
paper maintaining abundant moisture. Samples were
checked every day under the microscope to monitor the
production of conidia and conidiophores on wheat
seeds. After 3 days of incubation at room temperature
(ca. 30 °C), abundant conidia on aerial conidiophores
were observed. Seeds with conidia were transferred to
an Eppendorf tube containing 1 ml of sterilized water
and vortexed for 1 min at 700 rpm. A conidial suspen-
sion was separated from the seed, diluted 100-fold with
sterilized water, and then spread on 1.5 % water agar
medium and incubated for 2 days [40]. Each plate was
observed under a microscope at 100x magnification to
identify germinated single conidia with hyphal growth.
Germinated conidia were transferred on an agar block
and placed on a PDA plate for 7 days of incubation. Re-
peated cultures were established from the tip of growing
hyphae for further purification. For the production of
conidia, hyphal blocks from a fully grown plate were
transferred into water agar containing sterilized wheat
leaves 40 g L', streptomycin 50 mg L, tetracycline
50 mg L', and chloramphenicol 50 mg L™ [28]. Co-
nidia were harvested from 14-day-old culture plates
flooded with sterilized water containing 0.01 % Tween
20 and gently scraped with an inoculation loop to dis-
lodge conidia from conidiophores [41]. The conidial sus-
pension was then filtered through two layers of
cheesecloth and adjusted to 5 x 10® conidia per ml. Seed-
lings of two wheat varieties, Prodip and Shatabdi, were
grown from surface sterilized seeds in autoclaved soils
and in plastic trays. Seedlings were sprayed with a conid-
ial suspension of two purified isolates, BTJP 3-1 and
BTJP 4-1, until full wet. Non-inoculated controls were
sprayed with a solution of sterilized water and Tween
20. Inoculated plants were immediately covered with
sterilized transparent polyethylene bags to maintain hu-
midity. Plants were kept under natural light conditions
at 30-32 °C for the development of blast symptoms. For
the production of conidia on aerial conidiophores on
symptomatic wheat leaves, excised plant leaves were
placed on wet filter paper in a Petri dish. Sterilized pip-
ette tips were used to support the diseased tissues so
that they were in contact with wet filter paper to prevent
desiccation. The Petri dish was covered with a lid and
placed at room temperature (30-32 °C). After incubation
for 24 h, infected leaves were examined under a light
microscope to confirm sporulation and then photo-
graphed. Strains were reisolated and preserved on dried
filter paper at 4 °C for further examination. Seedlings of
barley (H. vulgare), rice (O. sativa), and goosegrass (E.
indica) were also inoculated by conidia produced by the
strains BTJP 3-1 and BTJP 4-1 following the protocols
described for wheat seedlings.
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Transcriptome sequencing of field collected samples

Leaf blades from wheat displaying blast symptoms and
those with no symptoms were harvested from the same
fields, cut into thin strips (approximately 0.5 x 1.0 c¢m),
and immediately stored in 1 ml RNAlater solution
(Thermofisher Scientific, Basingstoke, UK). Total RNA
was extracted from the samples using the RNeasy Plant
Mini kit (Qiagen, Manchester, UK) following the manu-
facturer’s instructions. The amount and the quality of
RNA samples were determined using the Agilent 2100
Bioanalyzer (Agilent Technologies, Edinburgh, UK).
¢DNA libraries were prepared using the Illumina TruSeq
RNA Sample Preparation Kit (Illumina, Cambridge, UK).
Library quality was confirmed before sequencing using
the Agilent 2100 Bioanalyzer (Agilent Technologies, Ed-
inburgh, UK). The libraries were sequenced on the Illu-
mina HiSeq 2500 system (Illumina) operated by The
Genome Analysis Centre, UK, producing 101-bp paired-
end reads. The reads were mapped to the genomes of
wheat and wheat blast strain M. oryzae BR32 using the
TopHat software, version 2.0.11 [42], and fragments per
kilobase of transcript per million (FPKM) values of
mapped reads to the transcriptomes were calculated
using Cufflinks, version 2.1.1 [43]. De novo assembly of
transcriptomes was performed using sequence reads
from each sample with Trinity software, version 2.06
[44]. Within days of sequencing, the data were made
public on Open Wheat Blast (http://www.wheatblast.-
net). A timeline from sample collection to population
and phylogenomic analysis is provided on the Open
Wheat Blast website (http://s620715531.websitehome.-
co.uk/owb/?p=485).

Population and phylogenomic analyses
We used predicted transcript sequences extracted from
the assembled genomic sequences of 20 M. oryzae iso-
lates collected on infected leaves of rice (O. sativa),
wheat (T. aestivum), foxtail millets (Setaria spp.), Eleu-
sine spp., Lolium spp., and Eragrostis spp. (Additional
file 1: Table S1) [18, 19, 45-47]. We used Proteinortho
[48] to identify groups of sequences with orthologous re-
lationships across the 20 reference transcriptomes and
each of the Bangladeshi transcriptomes. We identified
983, 3250, 501, and 3413 groups of orthologous se-
quences across the reference transcriptomes from sam-
ples 2, 5, 7, and 12, respectively. Only the two
Bangladeshi isolates that had the largest number of
orthologous sequences were retained for further analysis
(samples 5 and 12). The consensus set of orthologous
transcripts across the 22 transcriptomes included 2193
groups of sequences. We aligned orthologous groups of
sequences using MACSE, with default parameters [49].
We removed codons with missing data or alignment
gaps. We excluded transcript alignments for which
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>0.5 % of sites corresponded to singletons or doubletons
exclusive to the Bangladeshi isolates, suggesting errone-
ous assignment of predicted sequences to M. oryzae
BR32 transcripts or sequencing errors in transcript as-
semblies. We also excluded the regions corresponding to
the first 30 and last 16 codons and treated ambiguities
as missing data. Maximum likelihood phylogenetic infer-
ence was performed on the concatenated sequence of
1923 orthologs (2,676,792 bp in total), using the
GTRGAMMA model in RAxML version 8.1.17 with 100
bootstrap replicates [33]. The maximum likelihood ge-
nealogy was mid-point rooted along the longest branch,
which was the branch connecting the foxtail millet- and
rice-infecting lineages to other lineages.

For population genomic analyses, we identified tran-
scriptomic SNPs based on short read alignments against
the M. oryzae reference genome 70-15. We mapped
quality-trimmed Illumina short read data generated from
RNA using TopHat version 2.0.14 [43]. For all com-
pletely sequenced genomes, we aligned quality-trimmed
[lumina short read data against the reference genome
70-15 using Bowtie version 2.2.6 [50]. For all strains col-
lected from the Bangladesh outbreak, transcriptomic se-
quences were aligned using TopHat version 2.0.14. We
identified variants in the genomes of the different strains
using the Genome Analysis Toolkit (GATK) version 3.5
from the Broad Institute [51]. We used a two-step vari-
ant calling according to the GATK best practice guide-
lines. We first called raw variants with local reassembly
of read data using Haplotype caller. All raw variant calls
were jointly genotyped using GenotypeGVCEF. We used
SelectVariants to subset the variant calls to contain only
SNPs. Then, the SNPs were hard-filtered using the fol-
lowing criteria: QUAL > 5000.0, QD = 5.0, MQ > 20.0, —
2.0 < ReadPosRankSum < 2.0, -2.0 < MQRankSum_up-
per <2.0, —2.0 < BaseQRankSum < 2.0. Furthermore, we
only retained SNPs genotyped in at least 90 % of all
strains and genotyped the Bangladeshi sample 12 (Add-
itional file 1: Table S1). We used SplitsTree version
4.14.2 to generate a Neighbor-Net network from Brazil-
ian and Bangladeshi wheat blast strains [52]. To build
the network, we used uncorrected p distances calculated
from the SNP supermatrix. The network was drawn
based on equal angle splits.

Additional files

Additional file 1: Table S1. Samples included in the phylogenomic and
population genomic analyses. (XLSX 15 kb)

Additional file 2: Table S2. Short read coverage of Magnaporthe oryzae
and wheat transcriptomes in Bangladeshi samples. (PDF 66 kb)
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