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Abstract

Background: Single-cell transcriptomics allows researchers to investigate complex communities of heterogeneous

cells. It can be applied to stem cells and their descendants in order to chart the progression from multipotent

progenitors to fully differentiated cells. While a variety of statistical and computational methods have been proposed

for inferring cell lineages, the problem of accurately characterizing multiple branching lineages remains difficult

to solve.

Results: We introduce Slingshot, a novel method for inferring cell lineages and pseudotimes from single-cell gene

expression data. In previously published datasets, Slingshot correctly identifies the biological signal for one to three

branching trajectories. Additionally, our simulation study shows that Slingshot infers more accurate pseudotimes than

other leading methods.

Conclusions: Slingshot is a uniquely robust and flexible tool which combines the highly stable techniques necessary

for noisy single-cell data with the ability to identify multiple trajectories. Accurate lineage inference is a critical step in

the identification of dynamic temporal gene expression.
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Background
Traditional transcription assays, such as bulk microarrays

and RNA sequencing (RNA-Seq), offer a bird’s-eye view

of transcription. However, as they rely on RNA from a

large number of cells as starting material, they are not

ideal for examining heterogeneous populations of cells.

Newly-developed single-cell assays can give us a much

more detailed picture [1]. This higher resolution allows

researchers to distinguish between closely-related popu-

lations of cells, potentially revealing functionally distinct

groups with complex relationships [2].

For many systems, there are not clear distinctions

between cellular states, but instead a smooth transi-

tion, where individual cells represent points along a

continuum or lineage. Cells in these systems change

states by undergoing gradual transcriptional changes, with

progress being driven by an underlying temporal variable
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or pseudotime. For example, [3] examined the differen-

tiation pattern of skeletal myoblasts, showing that their

development into myocytes and mature myotubes follows

a continuous lineage, rather than discrete steps. Inference

of lineage structure has been referred to as pseudotempo-

ral reconstruction and it can help us understand how cells

change state and how cell fate decisions are made [3–5].

Furthermore, many systems contain multiple lineages that

share a common initial state but branch and terminate at

different states. These complex lineage structures require

additional analysis to distinguish between cells that fall

along different lineages [6–10].

Several methods have been proposed for the task of

pseudotemporal reconstruction, each with their own set

of strengths and assumptions. We describe a few popu-

lar approaches here; for a thorough review see [11, 12].

One of the most well-known methods is Monocle [3],

which constructs a minimum spanning tree (MST) on

cells in a reduced-dimensionality space created by inde-

pendent component analysis (ICA) and orders cells via

a PQ tree along the longest path through this tree. The
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direction of this path and the number of branching events

are left to the user, who may examine a known set of

marker genes or use time of sample collection as indica-

tions of initial and terminal cell states. The more recent

Monocle 2 [8] uses a different approach, with dimen-

sionality reduction and ordering performed by reverse

graph embedding (RGE), allowing it to detect branching

events in an unsupervised manner. The methods Water-

fall [10] and TSCAN [7] instead determine the lineage

structure by clustering cells in a low-dimensional space

and drawing an MST on the cluster centers. Lineages are

represented by piecewise linear paths through the tree,

providing an intuitive, unsupervised method for identi-

fying branching events. Pseudotimes are calculated by

orthogonal projection onto these paths, with the identifi-

cation of the direction and of the cluster of origin again

left to the user. Other approaches use smooth curves to

represent development, but are naturally limited to non-

branching lineages. For example, Embeddr [5] uses the

principal curves method of [13] to infer lineages in a

low-dimensional space obtained by a Laplacian eigenmap

[14]. Yet another class of methods uses robust cell-to-cell

distances and a pre-specified starting cell to determine

pseudotime. For instance, diffusion pseudotime (DPT) [6]

uses a weighted k nearest neighbors (kNN) graph on cells

and calculates distances using transition probabilities over

randomwalks of arbitrary length. Similarly, Wishbone [9],

an extension of Wanderlust [4], uses an ensemble of kNN

graphs on cells along with a randomly selected group of

waypoints to iteratively refine stable distance estimates.

Finally, other methods take a model-based approach to

detecting branching events. GPfates [15] uses a Gaussian

process latent variable model (GPLVM) and overlapping

mixtures of Gaussian processes (OMGP) to infer trajecto-

ries and pseudotimes. A similar method, DeLorean [16],

uses a single GPLVM to infer pseudotimes along a sin-

gle trajectory. And the mixtures of factor analysers (MFA)

method [17] takes a hierarchical Bayesian approach, using

Markov chain Monte-Carlo (MCMC) to sample from the

posterior of a fully generative model that includes branch

identities. See Table 1 for a summary of existing methods.

Here, we introduce Slingshot, a novel lineage inference

tool designed for multiple branching lineages. Slingshot

combines highly stable techniques necessary for noisy

single-cell data with the flexibility to identify multiple lin-

eages with varying levels of supervision. Slingshot consists

of two main stages: 1) the inference of the global lineage

structure and 2) the inference of pseudotime variables

for cells along each lineage (Fig. 1). Like other meth-

ods [7, 10], Slingshot’s first stage uses a cluster-based

MST to stably identify the key elements of the global

lineage structure, i.e., the number of lineages and where

they branch (Fig. 1, Step 1). This allows us to iden-

tify novel lineages while also accommodating the use of

domain-specific knowledge to supervise parts of the tree

(e.g., terminal cellular states). For the second stage, we

propose a novel method called simultaneous principal

curves, to fit smooth branching curves to these lineages,

Table 1 Summary of existing lineage and pseudotime inference methods

Dimensionality
reduction

Cluster based Graph Pseudotime
calculation

Branching Supervision

Diffusion Pseudotime Diffusion maps No Weighted k-NN
graph on cells

Transition probabilities
over arbitrary length
random walks

Yes Starting cell

Embeddr Laplacian
eigenmaps

No N/A Principal curve,
orthogonal projection

No Path direction1 ,
subsetting2

Monocle ICA No MST on cells Diameter path,
PQ trees

Yes3 Path direction1 ,
number of lineages

Monocle 2 Reversed graph
embedding

No Principal graph
on cells

Distance to root Yes Starting cluster

TSCAN PCA Yes MST on clusters Cluster centers,
orthogonal projection

Yes Starting cluster

Waterfall PCA Yes MST on clusters Cluster centers,
orthogonal projection

Yes4 Path direction1

Wishbone Diffusion maps No Ensemble of k-NN
graphs on cells

Distance refinement
by waypoints

Yes5 Starting cell

Slingshot Any Yes MST on clusters Simultaneous principal
curves, orthogonal
projection

Yes Starting cluster, end
clusters (optional)

1Some methods infer a single path or backbone and rely on the user to assign its directionality
2Methods that do not detect branching events require manually subsetting the data down to a single lineage
3Monocle does not detect the number of branching events, the number of lineages must be supplied by the user
4Waterfall detects branching events, but requires subsetting to a single lineage for pseudotime calculation
5Wishbone can only detect a single branching event (two lineages)
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Fig. 1 Schematics of Slingshot’s main steps. The main steps for Slingshot are shown for: Panel (a) a simple simulated two-lineage two-dimensional

dataset and Panel (b) the single-cell RNA-Seq olfactory epithelium three-lineage dataset of [26] (see Results and discussion for details on dataset and

its analysis). Step 0: Slingshot starts from clustered data in a low-dimensional space (cluster labels indicated by color). For Panel (b), the plot shows

the top three principal components, but Slingshot was run on the top five. Step 1: A minimum spanning tree is constructed on the clusters to

determine the number and rough shape of lineages. For Panel (b), we impose some constraints on the MST based on known biology. Step 2:

Simultaneous principal curves are used to obtain smooth representations of each lineage. Step 3: Pseudotime values are obtained by orthogonal

projection onto the curves (only shown for Panel (a))

thereby translating the knowledge of global lineage struc-

ture into stable estimates of the underlying cell-level

pseudotime variable for each lineage (Fig. 1, Step 2).

The Slingshot method is implemented in the open-

source R package slingshot (available from the GitHub

repository https://github.com/kstreet13/slingshot) to be

released through the Bioconductor Project (http://www.

bioconductor.org).

In addition to Slingshot’s core methodological com-

ponents described above for lineage and pseudotime

inference, we note the importance of upstream analy-

sis choices. Indeed, most pseudotemporal reconstruction

methods will either explicitly or implicitly require certain

choices at previous steps in the workflow. Dimensional-

ity reduction, for example, helps in reducing the amount

of noise in the data and in visualization, but a variety of

approaches are available, with a potentially large impact

on the final result (Additional file 1: Figure S7). Mono-

cle recommends ICA or DDRTree, Waterfall and TSCAN

use principal component analysis (PCA), Embedder uses

Laplacian eigenmaps [14], and Wishbone uses diffusion

maps for analysis and t-distributed stochastic neighbor

embedding (t-SNE) [18] for visualization (Table 1). Given

the great diversity of data being generated by single-cell

assays, it seems unlikely that there is a one-size-fits-all

solution to the dimensionality reduction problem; like-

wise for normalization and clustering. These analysis

steps are very important and because different lineage

inference methods make different upstream choices, they

can be difficult to compare. Slingshot does not spec-

ify these upstream methods, but is instead designed

with flexibility and modularity in mind, to easily inte-

grate with the normalization, dimensionality reduction,

and clustering methods deemed most appropriate for a

particular dataset. Our recommended single-cell RNA-

Seq data analysis workflow, implemented in Bioconductor

R packages, is described in [19]: the pipeline includes

the data-adaptive selection of a normalization procedure

(scone package; [20]), dimensionality reduction using a

zero-inflated negative binomial model (zinbwave package;

[21]), and resampling-based sequential ensemble cluster-

ing (RSEC; clusterExperiment package; [22]).

Results and discussion
Slingshot divides the problem of multiple lineage infer-

ence into two stages:

1. Identification of lineages, i.e., ordered sets of cell

clusters, where all lineages share a starting cluster

and each leads to a unique terminal cluster. This is

achieved by constructing an MST on clusters of cells.

2. For each lineage, identification of pseudotimes, i.e., a

one-dimensional variable representing each cell’s

transcriptional progression toward the terminal state.

https://github.com/kstreet13/slingshot
http://www.bioconductor.org
http://www.bioconductor.org
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This is achieved by a method which extends principal

curves [13] to the case of multiple branching lineages.

One of the main challenges of single-cell RNA-Seq data

analysis is the high level of variability. In addition to the

host of biological and technical sources of variation that

can affect any (bulk) RNA-Seq experiment, single-cell data

may contain effects from transcriptional bursting [23, 24]

and drop-out [25]. We therefore believe that robustness to

noise, unwanted technical effects, and preprocessing are

important characteristics of a lineage inference method.

Slingshot provides the flexibility to capture complex lin-

eage structures along with the stability needed for working

with noisy single-cell data.

Real datasets

Robustness to noise. We first examined the stability of

a few well-known methods using a subset of the human

skeletal muscle myoblasts (HSMM) dataset of [3] com-

prising a single lineage. In Fig. 2, we illustrate each

method’s ordering of the full set of 212 cells and show how

consistently it orders cells over 50 subsamples (bootstrap

samples with duplicates removed). The Monocle proce-

dure, which constructs an MST on individual cells and

orders them according to a PQ tree along the longest path

of the MST, was the least stable of the methods we com-

pared. The path drawn by Monocle was highly variable

and sensitive to even small amounts of noise; this instabil-

ity has been previously discussed in [7]. In contrast, other

methods which emphasize stability in the construction

of their primary trajectory and obtain pseudotime val-

ues based on orthogonal projection produced much more

stable orderings.

Both the cluster-based MST method [7, 10] and the

principal curvemethod [5, 13] demonstrated stability over

the bootstrap-like samples shown in Fig. 2b. However, due

to the vertices of the piecewise linear path drawn by the

cluster-based MST, multiple cells will often be assigned

identical pseudotimes, corresponding to the value at the

vertex. The principal curve approach was the most stable

a

b

Fig. 2 Robustness of lineage and pseudotime inference methods: HSMM dataset. We examine the stability of three lineage and pseudotime

inference approaches on the single-lineage HSMM dataset of [3], showing how each method orders the cells for the original dataset, as well as for

50 subsamples of the data. Panel (a): Monocle identifies the longest path through an MST constructed on all cells (red). Waterfall and TSCAN cluster

cells and connect cluster centers with an MST (purple, clustering performed by k-means with k = 5). Embeddr and Slingshot order cells using a

principal curve, i.e., a non-linear fit through the data (green). As in [3], dimensionality reduction is performed by ICA. Panel (b): Scatterplots of

pseudotimes based on 50 subsamples of the data vs. pseudotimes for the original dataset. Subsamples were generated in a bootstrap-like manner,

by randomly sampling n times, with replacement from the original cell-level data and retaining only one instance of each cell. Thus, subsamples

were of variable sizes, but contained on average about 63% of the original cells. The cluster-based MST method occasionally detected spurious

branching events and, for the purpose of visualization, cells not placed along the main lineage were assigned a pseudotime value of 0
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method, but on more complex datasets, it has the obvi-

ous limitation of only characterizing a single lineage. It is

for this reason that we chose to extend principal curves to

accommodate multiple branching lineages.

Multiple lineage inference. One of the biggest chal-

lenges in lineage inference is determining the number and

location of branching events. Some methods introduce

simplifying assumptions or restrictions on discovery; for

example, requiring the user to pre-specify the number of

lineages or limiting the model space to only one or two.

Slingshot allows for multiple lineage detection without

pre-specifying or limiting the number of lineages. Instead,

Slingshot provides a framework for optional incorpora-

tion of localized prior biological knowledge that does not

restrict other parts of the tree or introduce global specifi-

cations. As with the specification of an initial cluster, users

may specify a certain number of terminal clusters, which

will be restricted to a single edge in the cluster-basedMST.

This local supervision was used in the analysis of the
olfactory epithelium (OE) data of [26] to mark mature
sustentacular (mSus) cells, microvillous (MV) cells, and
mature olfactory sensory neurons (mOSN) as terminal

states, though only the first had an effect on the even-

tual cluster-basedMST. Slingshot’s resulting lineage struc-

ture established the order of the two bifurcations, which

was later validated. Specifically, it was demonstrated that

sustentacular cells are produced via direct conversion of

horizontal basal cells (HBC), whereas microvillous and

neuronal cells require an intermediate, proliferative state

(see Fig. 3a for a summary of validated relationships

between cell types).

We also note that the OE lineage structure could not

have been recovered using standard Euclidean distances

between cluster centers (Additional file 1: Figure S1c), as

in Waterfall and TSCAN. By failing to utilize the shapes

of the clusters, the standard Euclidean distance identified

a spurious branching event very early on in HBC differ-

entiation. Slingshot allows the use of a shape-sensitive

distance measure inspired by the Mahalanobis distance

[27], which scales the distance between cluster centers

based on the covariance structure of the two clusters.

While Slingshot identified lineages consistent with prior

biological knowledge, other lineage detectionmethods did

not. Monocle 2 only identified two lineages, one of which

terminates in globose basal cells (GBC), a known transi-

tion state, and both of which contain sustentacular cells

and microvillous cells, known endpoints of separate lin-

eages (Fig. 3). TSCAN also produced only two lineages

with similar issues (Additional file 1: Figure S3f). Given

the proper number of lineages, Monocle also misidenti-

fied GBCs as a terminal state, but correctly identified lin-

eages terminating in mOSNs and mSus cells (Additional

file 1: Figure S3e). Diffusion pseudotime identified these

endpoints as well, but it additionally found several spuri-

ous lineages (nine in total, Additional file 1: Figure S3j).

Finally, Wishbone is limited in implementation to only

two lineages, but even when we restricted the analysis to

a

b

c

Fig. 3Multiple lineage inference: OE dataset. Pseudotime variables for each lineage inferred by Slingshot and Monocle 2 on the three-lineage OE

dataset of [26]. Panel (a): Known biological relationships between cell types. Panel (b): For Monocle 2, we used the DDRTree algorithm to obtain a

two-dimensional (or five-dimensional, see Additional file 1: Figure S3d) representation of the data and selected the starting state based on the

highest percentage of cells from the HBC cluster. Panel (c): For Slingshot, we used the top five PCs and clustered cells by RSEC, as in the original

article. The HBC cluster was specified as the origin and the mSus cluster as an endpoint; other endpoints were identified without supervision
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only the sustentacular and neuronal lineages (as identified

by Slingshot), it still failed to accurately characterize this

single branching event (Additional file 1: Figure S4c).

In Additional file 1: Figure S2, we show that, in addition

to capturing complex multi-lineage structures, Slingshot

is also able to correctly detect a single lineage and two

bifurcating lineages, respectively, in the datasets of [3, 10].

In both cases, Slingshot’s final pseudotime variables are

highly correlated with those found in the original publica-

tions, but do not rely on user specification of the number

of lineages nor on subsetting the data, as in the case of

Waterfall.

Simulation study

Design. In order to make a more quantitative compar-

ison of different lineage inference methods and exam-

ine Slingshot’s robustness to upstream computational

choices, we conducted a simulation study with synthetic

datasets generated using the Bioconductor R package

splatter [28]. In the first part of the study, all simu-

lated datasets sconsisted of an initial path that bifurcates

into two distinct lineages (Fig. 4a). In the second part

of the study, each dataset was simulated from a more

complex branching structure, with five distinct lineages

(Fig. 4b). For the two-lineage portion of the simula-

tion study, 1200 synthetic datasets were generated and

for the five-lineage portion, 300 datasets were simu-

lated. The number of cells in the datasets and the

signal-to-noise ratio were varied; parameters defining the

marginal distributions of the expressionmeasures for both

genes and samples were learned from the dataset of [3]

(see Additional file 1: Figure S6 for parameter values

used by splatter). Transcript-level counts were obtained

from the conquer repository [29] and aggregated into

gene-level counts. Unless otherwise noted, datasets were

full-quantile-normalized prior to lineage inference. See

“Methods” section for complete details.

The accuracy of inferred pseudotimes was measured

as follows: for each true lineage, identify the best match

amongst all inferred lineages, according to the Kendall

rank correlation coefficient between the true and inferred

pseudotime variables. Averaging these values over all true

a b

c d

Fig. 4 Comparison of accuracy scores for lineage and pseudotime inference methods: Simulated datasets. Gaussian kernel density plots of accuracy

scores show how five lineage inference methods performed on a series of simulated datasets with two different topologies: Panels (a,c) two

lineages and Panels (b,d) five lineages. In both settings, the simulated data contained variable numbers of cells and levels of noise. Bars to the left of

each density plot represent the percentage of datasets on which a method returned an error. Errors are treated as 0 values for calculating the

median score, but are not included in the density estimates. Monocle, Monocle 2, DPT, and TSCAN were implemented in several ways and these

densities represent the best results obtained by each method. Slingshot was implemented with various dimensionality reduction techniques,

chosen to match the best-case settings of the other methods and with clusters assigned by Gaussian mixture modeling (GMM). See Simulation

study for the definition of accuracy scores based on Kendall’s rank correlation coefficient and Additional file 1 for details on simulation scenarios
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lineages yields the accuracy score for a particular method

on a particular dataset. As with the standard Pearson

correlation coefficient, the Kendall rank correlation coef-

ficient achieves values between -1 and 1, with values closer

to one indicating better agreement between the inferred

and true pseudotimes.

Slingshot was applied with various upstream dimen-

sionality reduction and clustering techniques, allowing us

to assess their impact on the accuracy of the resulting

pseudotime variables. Existing lineage inference methods

were also applied to each dataset in order to compare their

performance. For each of these existing methods, multi-

ple strategies were implemented and the best-performing

strategy was selected as the representative of that method.

We then compared these best-case runs to a similar

implementation of Slingshot, matched for dimensionality

reduction and clustering, when possible.

Monocle and Monocle 2 were implemented using a

range of values for J ′, the size of the reduced-dimensional

space, and two techniques for selecting genes. The first,

suggested in the Monocle vignette, used genes with the

100 highest loadings along the top J ′ principal compo-

nents. The second selected genes with either the 5000

highest means or variances of log-counts; this is com-

parable to using all the genes, but less computationally

burdensome, as Monocle and Monocle 2 tended to be

the slowest of the methods we examined (other meth-

ods used the full set of genes). Since it cannot detect

branching, Monocle was always given the correct num-

ber of lineages. TSCAN was implemented both with

and without the recommended preprocessing step and

with this step in place of full-quantile normalization.

Additionally, we present results from a hybrid method

which uses TSCAN for dimensionality reduction and

clustering before using Slingshot for pseudotime infer-

ence, in order to study the combined impact of replac-

ing Euclidean distances by covariance-weighted distances

for the cluster-based MST and piecewise linear paths

by simultaneous principal curves. Diffusion pseudotime

(DPT) was implemented with default parameter values,

but multiple strategies had to be implemented in order to

account for variable amounts of missing information in

the results. The “DPT-Full” strategy uses every branching

event reported, often resulting in cells being dropped due

to missing branch information. Other strategies, such as

“DPT-2”, “DPT-3”, etc., use only the highest-level branch-

ing events, producing the specified number of lineages,

with “DPT-1” ignoring branching events altogether. For

additional details on how these methods were imple-

mented, see the Simulation Study Design and Results

section in Additional file 1 of the Supplementary Informa-

tion. Finally, we note that the bifurcation events present

in datasets generated by splatter are “sharp” rather than

curved (see Additional file 1: Figure S7), which may

disadvantage methods that assume smoothness, such as

Slingshot and DPT.

Comparison of methods. In the two-lineage case, most

of the Monocle strategies performed well, often pro-

ducing a bimodal distribution of accuracy scores with

one peak around 0 and a larger peak at or above 0.5

(Additional file 1: Figure S10). However, Monocle also

returned an error more often than any other method and

these errors seem to be associated with larger sample sizes

(Additional file 1: Figure S11). We also note that Mono-

cle was always provided the correct number of lineages,

which most other methods were not. Among the strate-

gies we implemented, the highest median accuracy score

was achieved with the larger gene set (selected by the

highest 5000 means and variances), with two-dimensional

ICA. We therefore compared these results to Slingshot

accuracy scores using two-dimensional ICA and cluster-

ing by Gaussian mixture modeling (GMM) in Fig. 4b.

Slingshot’s distribution of accuracy scores was similarly

bimodal, but with both peaks shifted slightly higher.

Compared toMonocle, Monocle 2 was more consistent,

but less accurate overall. It rarely returned scores close

to 0 and showed considerably less bimodality, especially

with four- or five-dimensional RGE (Additional file 1:

Figure S10). The lower overall accuracy scores may be

due, in part, to the large number of spurious branching

events it identified; in the synthetic datasets with two lin-

eages, Monocle 2 identified four or more lineages 80.3%

of the time. Unlike other methods, increasing the number

of cells in the dataset did not improve the performance

of Monocle 2, but actually resulted in even more spuri-

ous lineages being found. For datasets of more than 360

cells, Monocle 2 failed to find the correct number of lin-

eages in any simulation, sometimes finding as many as

16 (Additional file 1: Figure S14). As the highest median

accuracy score for Monocle 2 was also produced with the

larger gene set and J ′ = 2, we compare it to the same set

of Slingshot results in Fig. 4b.

As discussed previously, Diffusion Pseudotime suffered

from a considerable proportion of cells with missing

branch assignments, leading to artificially low accuracy

scores. In both the two- and five-lineage cases, the highest

median accuracy score was achieved by the DPT-1 strat-

egy, which did not make use of the branching information.

We examined this issue in the two-lineage case, looking at

the highest-level branching event, which should theoret-

ically divide the cells into three groups: one prior to the

branching event and two after it. On average, 44.1% of cells

were not assigned a group. There was no noticeable rela-

tionship between this percentage and sample size, but the

percentage of unassigned cells did decrease modestly with

increased signal in the data. We compared DPT results

to Slingshot results with eight-dimensional diffusionmaps
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(the highest dimensionality we implemented) and Gaus-

sian mixture modeling in both Figs. 4b and d.

TSCAN with full-quantile normalization produced

accuracy scores comparable toMonocle 2.When run with

the recommended preprocessing step, TSCANdid slightly

worse, particularly in the absence of full-quantile normal-

ization. The highest median accuracy score was produced

by the hybrid method with Slingshot, which used full-

quantile normalization with no additional preprocessing.

For a more complete comparison, Fig. 4b also shows the

best “pure” TSCAN strategy and Slingshot results with

three-dimensional PCA and GMM clustering. We also

note that our comparison may be slightly unfavorable

for TSCAN, because it has built-in methods for select-

ing both J ′ (the reduced number of dimensions) and K

(the number of clusters). This user-friendliness unfortu-

nately means that there are fewer parameters over which

we could try different strategies, hence our implementa-

tions without full-quantile normalization and as part of a

hybrid method with Slingshot. For complete results of all

strategies implemented on the two-lineage datasets, see

Additional file 1: Figure S10.

In the second part of the simulation study, the more

complex five-lineage structure led to lower scores formost

methods, with the notable exception of TSCAN, which

produced a marginally higher median accuracy score than

in the two-lineage case (Fig. 4d). The methods which do

not make use of a cluster-based MST had the poorest

performance in this setting, while TSCAN and Slingshot

fared slightly better. We compared the TSCAN results

to those of the hybrid method and Slingshot with 4-

dimensional PCA and GMM. Again, the best strategies

for Monocle and Monocle 2 made use of the larger gene

sets, this time with 4-dimensional ICA and 5-dimensional

RGE, respectively. We compared this to Slingshot results

using 4-dimensional ICA and GMM. Monocle 2 contin-

ued to identify a large number of spurious lineages and

there was still strong correlation between sample size and

the number of lineages it inferred. For complete results of

all strategies implemented on the five-lineage datasets, see

Additional file 1: Figure S12.

Unlike the two-lineage case, the five-lineage topol-

ogy is asymmetric, meaning that some lineages were

harder to characterize than others. Nonetheless, Slingshot

and TSCAN still generally outperformed other methods

across all lineage types; for a full breakdown of all meth-

ods’ accuracy scores on all lineages, see Additional file 1:

Figure S15.

Robustness to clustering. Although Slingshot uses clus-

ter labels for the identification of lineages and branch-

ing events, the subsequent use of simultaneous principal

curves to obtain pseudotimes makes its final results quite

robust to the choice of clustering method. In comparison,

methods that project cells directly onto a cluster-based

MST, such as TSCAN and Waterfall, are more dependent

on the initial clustering and, particularly, on the loca-

tions of the cluster centers, which can be highly variable

(Additional file 1: Figure S17).

We examined Slingshot’s robustness to the choice of

clusteringmethod using the simulated datasets of the two-

lineage topology and found that the particular clustering

method is generally less important than the choice of K,

the number of clusters (Fig. 5). For the three methods

examined (hierarchical clustering, k-means, and Gaus-

sian mixture modeling), Slingshot consistently produced

similar distributions of accuracy scores over a range of

values for K (Fig. 5). This stability held whether we

used a “good” dimensionality reduction, which gener-

ally led to high accuracy scores (4-D PCA), or not (3-D

PCA). For a similar examination of the impact of different

dimensionality reduction techniques, see Additional file 1:

Figure S8.

This robustness is a result of Slingshot’s use of simulta-

neous principal curves to smooth the cluster-based MST,

but there is still an important relationship between clus-

ters and lineage inference. In extreme cases with too few

clusters, the cluster-based MST may fail to identify a

branching event, and with too many, it may identify spu-

rious branching events. These issues are common to all

cluster-based MST methods and not mitigated by the use

of simultaneous principal curves. However, when the cor-

rect global lineage structure can be approximately iden-

tified, simultaneous principal curves allow for increased

stability and decreased reliance on particular clustering

results.

Conclusions
We have introduced a novel method, Slingshot, for lineage

and pseudotime inference in single-cell genomics data.

Because Slingshot breaks the inference problem into two

steps, we are able to make use of appropriate methods for

each task and avoid the common trade-off between stabil-

ity and the flexibility to detect complex structures. Using a

cluster-based MST for lineage inference allows Slingshot

to identify potentially complex global patterns in the data

without being overly sensitive to individual data points.

And our novel simultaneous principal curves method for

pseudotime inference extends the stability and robust-

ness properties of principal curves to the case of multiple

branching lineages.

We demonstrated Slingshot’s ability to correctly detect

a single lineage and two branching lineages, using the data

of [3, 10] respectively (Additional file 1: Figure S2), and

in both cases it produced results similar to those found

and validated in the original publications. Furthermore,

using the olfactory epithelium dataset of [26], we demon-

strated that with minimal supervision, Slingshot could
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a

b

Fig. 5 Robustness of Slingshot pseudotimes to clusteringmethod: Simulated two-lineage datasets. Gaussian kernel density plots of accuracy scores for

different clustering methods (columns) and numbers of clusters (rows) based on simulated data with two lineages. Clustering was performed using

hierarchical clustering, k-means, and Gaussian mixture modeling, with a range of values for the number of clusters, K. Principal component analysis

was used for dimensionality reduction with two values for the number of components J′ : in Panel (a), three-dimensional PCA produced highly

variable scores, while in Panel (b), four-dimensional PCA produced consistently high scores. Both panels show that Slingshot produces similar

distributions of accuracy scores over a range of values for K. However, when K = 3, Slingshot is often unable to detect the branching event and

the resulting pseudotimes imperfectly match either true lineage. With more clusters, we see consistently accurate results. At higher values of K

(not shown), accuracy scores begin to degrade slowly, as Slingshot begins to overfit and identifymore spurious branching events. See “Simulation study”

section for the definition of accuracy scores based on Kendall’s rank correlation coefficient and Additional file 1 for details on simulation scenarios

correctly identify a complex three-lineage structure that

other methods could not. Our simulation study showed

that this advantage persisted over a range of input data

types. For varying levels of noise and numbers of cells,

Slingshot was able to infer accurate pseudotime variables

more consistently than any other method, even with the

same upstream dimensionality reduction techniques.

Unlike other methods, Slingshot does not restrict or

require a priori knowledge of the number of lineages.

The cluster-based minimum spanning tree enables the

discovery of an arbitrary number of lineages, while also

providing an intuitive framework for optional local super-

vision through the specification of the initial cluster and

any number of terminal clusters. Lineage characteristics

such as initial and terminal states can be difficult to iden-

tify at the level of individual cells due to drop-out effects

and high levels of noise in single-cell data. This presents

a challenge for methods based on robust cell-to-cell dis-

tances, such as Wishbone and DPT, the latter of which

allows both beginning and endpoint specification at the

level of individual cells. Conversely, more unsupervised

methods, which only require an orientation for an other-

wise unsupervised path, such as Monocle and Embeddr,

can end upmissing the initial state altogether.We find that

local supervision at the cluster level provides a nice bal-

ance: due to averaging, clusters are less ambiguous than
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individual cells, making them easier to identify based on

known marker genes, and specifying initial and termi-

nal states provides an intuitive, but not overly restrictive

way to ensure that inferred lineages are consistent with

previously established results. Importantly, the (optional)

specification of known terminal states is a form of local

supervision that does not restrict the discovery of novel

terminal states represented by other clusters. Further-

more, even in the case where all the terminal states

are well characterized, the order and timing of branch-

ing events are often unknown and local supervision can

enhance the inference of the global branching structure, as

demonstrated in the “Results and discussion” section with

the OE dataset of [26]. When there is no prior biological

knowledge, Slingshot can be applied in an unsupervised

manner as to the number and identity of terminal clusters.

It is also important to consider the amount of uncer-

tainty in lineage and pseudotime inference, as this can

impact downstream analyses such as the identification of

differentially expressed genes along or between lineages,

as noted in [30]. For branching lineage structures, there

are two inextricably linked sources of uncertainty: the

assignment of cells to lineages (“structural uncertainty”)

and the calculation of each cell’s pseudotime (“temporal

uncertainty”). While Slingshot only provides point esti-

mates of lineage identities and pseudotimes, we note that

it is generally computationally fast enough to be used

in a bootstrap estimation procedure. Provided that the

normalization, dimensionality reduction, and clustering

steps are similarly fast and that any supervision provided

by researchers can be automated, a bootstrap procedure

could be used to assess uncertainty for the entire inference

process.

Since there are many aspects to the problem of lin-

eage inference, from sample collection to final analysis,

it is important to define precisely the tasks for which

Slingshot is designed. The philosophy of Slingshot is that

upstream analysis steps such as normalization, dimen-

sionality reduction, and clustering do not have a single

solution that works well for all data types; these choices

should therefore not be hardcoded into a lineage inference

method. For example, Slingshot does not enforce a spe-

cific dimensionality reduction method because single-cell

data can come from a variety of assays and in a wide range

of dimensions, from the 271 cells × 47, 192 genes RNA-

Seq dataset of [3] to the 25, 000 cells × 13 markers mass

cytometry dataset of [9]. While the RGE method of Mon-

ocle 2 may work well in certain cases and the diffusion

maps of Wishbone in others, this extreme heterogeneity

seems to preclude any one-size-fits-all solution. Similar

arguments can be made for other upstream analysis steps.

Instead, Slingshot was designed with modularity in mind.

Though it will typically come after normalization, dimen-

sionality reduction, and clustering steps in an analysis

pipeline, it is not a method for addressing these prob-

lems. For example, Slingshot led to biologically meaning-

ful and novel results with PCA in [26] and with diffusion

maps in [31]. Slingshot was applied using our recom-

mended single-cell RNA-Seq data analysis workflow in

[19]: the pipeline includes the data-adaptive selection of

a normalization procedure (scone package; [20]), dimen-

sionality reduction using a zero-inflated negative binomial

model (zinbwave package; [21]), and resampling-based

sequential ensemble clustering (RSEC; clusterExperiment

package; [22]).

Ultimately, single-cell data are noisy, high-dimensional,

and may contain a multitude of competing, interwoven

signals. In the presence of such data, Slingshot provides

a robust and modular method for lineage and pseudo-

time inference, that allows for novel lineage discovery,

meaningful incorporation of biological constraints, and

fits easily within existing analysis pipelines.

Methods
We start from an n × J matrix of normalized expression

measures (e.g., read counts) for n single cells and J genes

or features. Slingshot assumes that the n cells have been

partitioned into K clusters, potentially corresponding to

distinct cellular states. Although Slingshot can in principle

be applied directly to the normalized expression mea-

sures, we strongly recommend a dimensionality reduction

step before pseudotemporal reconstruction, as Slingshot’s

curve-fitting step uses Euclidean (or related) distances,

which can misbehave in high-dimensional spaces (cf.

curse of dimensionality). Dimensionality reduction can

also strengthen signal in the data and help with visualiza-

tion. We denote the dimension of the reduced space by J ′.

Before detailing Slingshot’s two main steps, we intro-

duce some notation. First, denote by X = (Xij) the n × J ′

reduced-dimensional matrix of gene expressionmeasures,

for cells i * {1, . . . , n} and dimensions j * {1, . . . , J ′}.

Let {C1, . . . , CK } denote the K cell clusters or states, i.e.,

disjoint subsets of cells, typically obtained by clustering

the cells based on their gene expression measures. We

then define a lineage as an ordered set of clusters and let

L denote the total number of lineages. For a particular

lineage, Ll, denote its length (i.e., the number of clus-

ters in the lineage) by Kl and the kth cluster by C
l
k , for

l * {1, . . . , L} and k * {1, . . . ,Kl}. In particular, Cl1 and C
l
Kl

correspond, respectively, to the initial and terminal states
for the lth lineage. It is important to note that a cluster can
belong to multiple lineages and that the ordering of the
clusters within a lineage does not strictly determine the

final relative orderings of cells in those clusters.

As a given cluster can belong tomultiple lineages, so can

a cell. We therefore allow cells to have distinct pseudotime

values for each lineage they are a part of. The pseudotime

value for cell i in lineage l is denoted by tli * Rg0; if cell
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i does not belong to lineage l, i.e., i /* *
Kl

k=1C
l
k
, then set

tli = '. The vector of pseudotime values for lineage l is

denoted by tl =
(

tli : i = 1, . . . , n
)

.

Identification of cluster-based lineages

In its first step, Slingshot identifies lineages by treating

clusters of cells as nodes in a graph and drawing a mini-

mum spanning tree (MST) between the nodes, similar to

the work of [7, 10]. Lineages are then defined as ordered

sets of clusters created by tracing paths through the MST,

starting from a given root node. Our method differs how-

ever in a number of important respects from those of

[7, 10] including the distance measure used for drawing

the tree and the (optional) incorporation of biologically

meaningful supervision.

Shape-sensitive distancemeasure between cell clusters

Constructing an MST involves specifying a distance mea-

sure between nodes (in this case, cell clusters). We have

found that a Mahalanobis-like distance, i.e., a covariance-

scaled Euclidean distance, that accounts for cluster shape,

works well in practice, but users have the option of

specifying any type of distance measure (e.g., Euclidean,

Manhattan). Specifically, the pairwise distance between

clusters i and j, d(Ci, Cj), is defined as

d2(Ci, Cj) c (X̄i − X̄j)
T (Si + Sj)

−1(X̄i − X̄j), (1)

where X̄i represents the center (mean) of cluster i and Si its

empirical covariance matrix in the reduced-dimensional

space. This is essentially a multivariate t-statistic. By

default, Slingshot uses the full covariance matrix of each

cluster, allowing us to draw trees that are better covered

by and representative of the cells in a dataset. However, in

the presence of small clusters, thematrix Si+Sj may not be

invertible and we may replace the full covariance matrix

with the corresponding diagonal covariance matrix.

Some clustering algorithms return probabilities of clus-

ter membership rather than hard assignments. In these

cases, the cluster membership probabilities can be natu-

rally and readily incorporated as weights in most distance

measures. For instance, for the Mahalanobis-like distance

of Eq. 1, we would compute weighted means and covari-

ance matrices.

Biologicallymeaningful supervision

Slingshot allows two forms of supervision during lineage

identification: initial state and terminal states specifica-

tion. Like other methods (TSCAN, Waterfall, Monocle 2),

Slingshot requires the user to identify the initial cluster

or root node. Subsequently, every direct path from this

node to a leaf node (i.e., a cluster with only one edge)

will be called a lineage. Indeed, all existing lineage infer-

ence methods explicitly or implicitly make the assumption

that a starting state can be identified by the user: Mono-

cle and Embeddr construct orderings for which the user

must select the correct direction and Wishbone and DPT

require the user to select an initial cell or group of cells.

In the simple case where the MST constructed by Sling-

shot has only two leaf nodes and one is specified as the

root, this results in a single lineage. If an interior (non-

leaf ) node is specified as the origin, this results in two

lineages, one terminating in each leaf node. Clusters with

more than two edges will create bifurcations and produce

additional lineages.

Additionally, Slingshot optionally allows the user to pro-

vide further supervision in the inference of the lineages by

selecting clusters known to represent terminal cell states,

imposing a local constraint on the MST algorithm. The

constrained MST is obtained by first constructing the

MST on all non-selected clusters and then connecting

each selected cluster to its nearest non-selected neigh-

bor. Such local supervision results in more biologically

meaningful lineages for situations where the data can

be explained by many possible lineage structures. Identi-

fied lineages are by construction consistent with known

biology and provide improved stability over less super-

vised methods. Although terminal state supervision is not

required, in many settings researchers do have knowledge

of the cell types present in their data and systematically

incorporating this knowledge can provide more accu-

rate and stable inference. Importantly, this type of local

supervision does not prevent the discovery of novel lin-

eages; it allows the incorporation of specific knowledge of

cell clusters, without imposing restrictions on the global

branching structure. Ultimately, detecting multiple lin-

eages based on gene expression data is a difficult problem

that benefits from such guidance, as we demonstrate in

the “Results and discussion” section.

Identification of individual cell pseudotimes

The second stage of Slingshot is concerned with assign-

ing pseudotimes to individual cells. For this purpose, we

make use of principal curves [13] to draw a path through

the gene expression space of each lineage. As we show in

the “Results and discussion” section, principal curves give

very robust pseudotimes when there is a single lineage.

Multiple lineages demand more care and are handled

using the simultaneous principal curves method proposed

below. Indeed, just as clusters in the MST may belong

to one or more lineages, the cells which constitute these

clusters may be assigned to one or more lineages. In prin-

ciple, we could construct standard principal curves for

each lineage separately to arrive at pseudotimes. How-

ever, there is no guarantee that these curves would agree

with each other in the neighborhood of clusters shared

between lineages, so cells belonging to multiple lineages

could be assigned very different pseudotime orderings by
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each curve. Since we assume a smooth differentiation pro-

cess, this is potentially a violation and may be problematic

in downstream analysis.

We therefore introduce a method of simultaneously fit-

ting the principal curves of each lineage, which shrinks

the curves to a consensus path in areas where lineages

share many common cells, but allows the curves to sep-

arate as they share fewer and fewer cells. This ensures

smooth bifurcations of the paths. We call the resulting

curves simultaneous principal curves, as they are fit by

an iterative procedure based on the principal curves algo-

rithm of [13]. When there is only a single lineage (L = 1),

the pseudotimes of Slingshot are found by the standard

principal curves algorithm, except that the initial curve

is based on the lineage’s path through the MST found in

the first stage (see below for details), rather than the first

principal component. Additional file 1: Figure S19 illus-

trates the main steps in the simultaneous principal curves

algorithm.

Standard principal curves algorithm. We first review

the standard principal curves algorithm of [13] (for a sin-

gle curve) in order to be clear about how we adapt it for

simultaneous principal curves. After specification of an

initial curve, the algorithm iteratively follows these steps:

1. Project all data points onto the curve and calculate

the arc length from the beginning of the curve to

each point’s projection. Setting the lowest value to

zero, this produces pseudotimes.

2. For each dimension j, j * {1, . . . , J ′}, use the cells’

pseudotimes to predict their coordinates, typically

with a smoothing spline. This produces a set of J ′

functions which collectively map pseudotime values

in Rg0 into R
J ′ , thereby defining a smooth curve in J ′

dimensions.

3. Repeat this process until convergence. We use the

sum of squared distances between cells’ actual

coordinates and their projections on the curves to

determine convergence.

We note that these curves use the unit-speed param-

eterization, meaning that a principal curve defined by

c(t) : Rg0 ³ R
J ′ will satisfy ||c′(t)|| = 1 at all points t

in the domain of c. This property ensures the equivalence

between arc length and pseudotime mentioned in Step 1.

In order to characterize multiple branching lineages,

we modify the iterative principal curves algorithm in two

ways: by incorporating cell weights representing their

assignment to particular lineages and by adding a shrink-

age procedure to ensure smooth branching events. The

cell weights are added in Step 1, with each cell’s weight

for a given lineage being based on its projection distance

to the curve representing that lineage. The shrinkage is

performed in Step 2, by first recursively constructing an

average curve for each branching event, then recursively

shrinking the branching lineage curves toward this aver-

age. Thus, as with the individual lineage curves, each

average curve is a function of pseudotime and can, itself,

be averaged and shrunk.

In the case of branching lineages, where L is the total

number of lineages (i.e., terminal states), our goal is to

infer, for each lineage l * {1, . . . , L}, a vector of pseudo-

time values, tl =
(

tli : i = 1, . . . , n
)

, and a vector-valued

function, cl : Rg0 ³ R
J ′ , for the associated curve in the

low-dimensional space.

Average curve construction for each branching event.

Average curves are constructed in a recursive manner,

from the latest branching events to the earliest (i.e., from

the leaves of the MST to the root). Consider a branching

event involving M curves (typically M = 2), cm : Rg0 ³

R
J ′ ,m = 1, . . . ,M, which may either be individual lineage

curves (for branching events leading to leaf nodes) or aver-

age curves (for lineages differentiating in later branching

events). The average curve is simply defined as

cavg(t) c
1

m

M
∑

m=1

cm(t), (2)

for values of t in the domains of each curve being aver-

aged. Because all lineages share the same root cluster, we

ensure that the starting point of all average curves (cavg(0))

will be identical, as will the starting point of the result-

ing shrunken curves. For branching events leading to leaf

nodes, the curves being averaged will be individual lineage

curves, whereas earlier branching events may also involve

averaging average curves.

This recursive procedure ensures that the average

curves constructed for early branching events are blind

to the number of lineages ultimately produced by each

branch. Without this condition, an early bifurcation event

between a lineage that ends in a single terminal state and

another that gives rise to multiple terminal states would

produce an average curve that was strongly biased toward

the latter branch.

Shrinkage for each branching event. Next, we perform

shrinkage for each branching event, bringing the branch-

ing curves into better agreement in regions of shared cells.

Unlike the construction of the average curves, this recur-

sive process starts with the root and works out toward the

leaves, meaning that the earliest branching event is the

first to be shrunk. Let cavg denote the average curve for

a given branching event and let cm denote one of the M

curves to be shrunk at this event. Again, it may be the

case that the curves being shrunk together at this step

represent single lineages or averages of other curves. To

determine how much each curve is shrunk toward the
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average, we construct curve-specific weighting functions

wm : Rg0 ³[ 0, 1], as detailed below, with the constraint

that wm must be non-increasing. Additionally, by specify-

ing thatwm(0) = 1 (representing themaximum amount of

shrinkage), we ensure that diverging curves always share

the same initial point. These weighting functions allow us

to shrink the diverging curves toward the average curve

with the additional update in Step 2:

cnewm (t) c wm(t)cavg(t) + (1 − wm(t))cm(t). (3)

If all the weighting functions are smooth, this shrink-

age step ensures that the final curves will follow a tree

structure with smooth branching events.

Weighting functions for each branching event. Sling-

shot’s default weighting functions satisfy these conditions,

i.e., are smooth, non-increasing, and take on a value of

one at the origin. They are based on the distribution of

pseudotimes for cells shared between the lineages cor-

responding to the branching curves. Specifically, for a

branching event involving lineages {1, . . . ,H}, we define

a set of shared cells
{

i : t1i 	= ', . . . , tHi 	= '
}

and, for one

of the M curves cm to be shrunk at this event, we let

tmmin and tmmax denote, respectively, the lowest and high-

est non-outlier pseudotimes for these cells along the curve

(where outliers are defined by the 1.5 IQR rule of boxplots,

where IQR stands for inter-quartile range). The weighting

function for curve cm is then defined as:

wm(t) c

§

«

«

«

«

1, 0 f t < tmmin

1 − FK

(

t
tmmax−tmmin

− 1
2

)

, tmmin f t f tmmax

0, t > tmmax

,

(4)

where FK is the cumulative distribution function of a stan-

dard cosine kernel with a bandwidth of 1
6 (which places

weight only on values between − 1
2 and 1

2 ). The final

curves are highly robust to the choice of kernel function

(Additional file 1: Figure S20).

In both the single and branching lineage cases, final

pseudotime values are derived from each point’s orthog-

onal projection onto the curves. In the latter case, assign-

ment of cells to lineages is determined by cell weights,

which are calculated in Step 1 of the algorithm, using

a cell’s projection distance to each lineage curve. Cell

weights may be useful in downstream analyses, such as

the identification of genes that are differentially expressed

along and between lineages.

Cells belonging to multiple lineages will have multi-

ple pseudotime values, but these values will agree quite

well for cells positioned before the lineage bifurcation.

This is because all curves share a common point of ori-

gin, cm(0), and the weighting functions wm, which deter-

mine the amount of shrinkage, assign unit weight to

the origin (complete shrinkage) and decrease smoothly

throughout the neighborhood of shared cells. Therefore,

in the region prior to the bifurcation, shrinkage forces

the curves to closely follow their average curve and the

pseudotimes obtained by projection onto these curves will

be highly similar. Additional file 1: Figure S19e shows

the improved agreement between simultaneous principal

curves as compared to separate, standard principal curves.

Initialization of simultaneous principal curves algo-

rithm. As mentioned above, we initialize the algorithm

using the MST from the first stage. Specifically, for

each lineage, we start with the piecewise linear path

through the centers of the clusters contained in the lineage

(in contrast, standard principal curves are initialized by

the first principal component over all cells). Starting

with the path through the cluster centers allows us to

leverage the prior knowledge that went into lineage iden-

tification as well as to improve the speed and stability

of the algorithm, though in practice, the two procedures

typically converge to very similar curves.

Datasets

We demonstrate the performance of Slingshot by apply-

ing it to three previously published single-cell RNA-Seq

datasets, each with a different number of terminal cell

types.

HSMM dataset. The first dataset is a subset of the data

used in [3], which assayed 271 human skeletal muscle

myoblasts (HSMM) in order to study their development

into mature myotubes. This is an example of data with

only a single lineage. In their analysis, [3] identify a pop-

ulation of contaminating interstitial mesenchymal cells,

which we omit from the dataset. This results in a sample

of 212 cells believed to form a single, continuous develop-

mental lineage. For our analysis, we used the cluster labels

generated byMonocle as well as a set of labels obtained via

k-means clustering for a range of values of k, and, as in the

original paper, we represented the data in two dimensions

obtained by ICA. The normalized data were downloaded

from the NCBI GEO database (accession GSE52529).

qNSC dataset. The second dataset comes from [10],

who assayed 132 hippocampal quiescent neural stem cells

(qNSC) and their immediate progeny from adult mice,

cells known to be involved in neurogenesis. Their goal

was to assess cellular heterogeneity among this population

and analyze continuous-time developmental dynamics.

After removing a few outliers, their analysis focuses on

101 cells believed to represent the development of qNSCs

into intermediate progenitor cells (IPC), a transitional

state between qNSCs and mature neurons. However, they

note an additional cluster of 23 cells branching off of this
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lineage, potentially representing an alternative terminal

cell type. As in the original paper, we used the hierar-

chical clustering labels and the first two principal com-

ponents as the reduced-dimensional space. Rather than

focus solely on the IPC lineage though, we characterized

the developmental trajectory of both proposed cell fates.

The normalized data and code for preliminary analysis

were downloaded from GEO (accession GSE71485).

OE dataset. The third dataset is that of [26], featuring

616 cells from the adult mouse olfactory epithelium (OE),

tracing the development of quiescent stem cells into three

unique terminal cell fates. The primary lineage maps the

development of horizontal basal cells (HBC) into mature

olfactory sensory neurons (mOSN) via a series of inter-

mediate states. The secondary lineage gives rise to the

support sustentacular (mSus) cells of this system and fea-

tures fewer identifiable intermediates. A third lineage,

which appears to split from the neuronal path, leads to a

cluster of microvillous (MV) cells. Again, we relied on the

cluster labels of the authors, who used a resampling-based

sequential ensemble clustering (RSEC) approach [22], and

represent cells by their coordinates along the first five

principal components. The normalized data and cluster

labels are available from GEO (accession GSE95601).

Simulation study

Simulation parameters. In order to examine the perfor-

mance of Slingshot and other methods in a wide range

of scenarios, we performed a simulation study using the

Bioconductor R package splatter [28] to produce artifi-

cial single-cell RNA-Seq datasets. Many parameters can

potentially be tuned to generate these datasets, includ-

ing parameters determining the distribution of mean gene

expression, library size, outlier expression, drop-out, and

the biological coefficient of variation. In order to make

our simulation study as realistic as possible, we used a

published dataset [3] to learn properties of the marginal

distributions of the expression measures for both genes

and samples.

In the first part of the study, simulated datasets con-

sisted of two branching lineages (Fig. 4a). The number of

cells n was varied from 120 to 1500, by increments of 60

cells. Additionally, we adjusted the signal-to-noise ratio

by varying the probability of a gene being differentially

expressed (DE) along a path between 0.1 (weak signal) and

0.5 (strong signal), by increments of 0.1. For each combi-

nation of sample size and DE proportion, we simulated 10

datasets, for a total of 1,200. In the second part, simulated

datasets consisted of five branching lineages (Fig. 4c). The

number of cells n was varied between 220 and 1,320, by

increments of 220. TheDE proportion was varied between

0.1 and 0.5, as in the two-lineage setting. Since all methods

under consideration can accommodate non-linear paths,

the probability of non-linear DE patterns was set to 0.5,

meaning that half of all DE genes’ true average expres-

sion level varied according to a non-linear function of

pseudotime.

Clustering. We examined Slingshot’s robustness to the

choice of clustering method by performing hierarchi-

cal clustering, k-means clustering, and Gaussian mix-

ture modeling (GMM), to obtain K = 3 to 10 clusters

on the three-dimensional representation of each simu-

lated dataset obtained by PCA. Fixing the dimensionality

reduction technique allows us to focus on the effects of the

clustering method for the dimensionality reduction tech-

nique used. In order to alleviate the potential impact of

outliers, whenever anymethod identified a cluster consist-

ing of 4 cells or fewer, that cluster was removed and the

method was re-run on the remaining cells.

For the purpose of comparing Slingshot with other lin-

eage inference methods, we again used the top three

principal components and set the clustering technique

to be the Gaussian mixture model which minimizes the

Bayesian information criterion (BIC). This is the default

behavior of the mclust R package [32] and similar to the

approach taken by TSCAN, which uses a variable number

of principal components inferred from the data.

Evaluation. Methods were evaluated according to the

agreement between inferred and true pseudotime vari-

ables for each lineage, as measured by the Kendall

rank correlation coefficient. The Kendall rank correla-

tion coefficient assesses the ordinal association between

inferred pseudotimes and true pseudotimes, making it

more robust to outliers and non-linearity than the Pearson

correlation coefficient. We use a slight variant of this mea-

sure designed to reflect errors in the assignment of cells

to lineages. Defining S0 as the set of cells along a true lin-

eage and S1 as the set of cells along an inferred lineage, we

calculate:

τ c
(# of concordant pairs) − (# of discordant pairs)

(

|S0*S1|
2

)
,

(5)

where concordant and discordant pairs are defined

strictly, not allowing for ties. Hence, only cells belonging

to both the true and inferred lineages (i.e., in S0+S1) con-

tribute to the numerator. Cells which are along the true

lineage (i.e., elements of S0) and not assigned a pseudo-

time by the inferred lineage (not inS1) will only contribute

to the denominator, bringing τ closer to 0. Similarly for

extraneous cells which are included in S1 but not in S0.

For each true lineage, we take the maximum τ over all

inferred lineages and average these values within a sin-

gle dataset. This produces a bias in favor of methods that
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identify many, potentially spurious lineages, as there will

be more values over which to take the maximum. We do

not correct for this bias, but simply note that Monocle 2

and DPT-Full are the methods which seem to benefit the

most from it.

Additional file

Additional file 1: Supplemental methods for the analysis of the olfactory

epithelium data and supplemental figures 1-20. (ZIP 34910 kb)
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