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Abstract

Protein phosphorylation is a key post-translational modification regulating protein function in
almost all cellular processes. Although tens of thousands of phosphorylation sites have been
identified in human cells, approaches to determine the functional importance of each phosphosite
are lacking. Here, we manually curated 112 datasets of phospho-enriched proteins generated from
104 different human cell types or tissues. We reanalyzed the 6,801 proteomics experiments that
passed our quality control criteria, creating a reference phosphoproteome containing 119,809
human phosphosites. To prioritize functional sites, we used machine learning to identify 59
features indicative of proteomic, structural, regulatory or evolutionary relevance and integrate
them into a single functional score. Our approach identifies regulatory phosphosites across
different molecular mechanisms, processes and diseases, and reveals genetic susceptibilities at a
genomic scale. Several novel regulatory phosphosites were experimentally validated, including a
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role in neuronal differentiation for phosphosites in SMARCC2, a member of the SWI/SNF
chromatin remodeling complex.

Results

Protein phosphorylation is a post-translational modification (PTM) involved in the

regulation of most biological processes and its misregulation has been linked to several
human diseasé2. The full extent of human phosphorylation is still an open question under
active investigation through mass spectrometry (MS) approadietably, an in-depth

study of a single cell line identified over 50,000 phosphopeptides and suggested that 75% of
the proteome may be phosphoryldtethe aggregation of such studies have led to the
identification of over 200,000 phosphosites in resources such as PhosphoSitePRis (PSP)

Although analytical challenges remain, the bottleneck in the study of phosphorylation is
shifting towards its functional characterizaffo@iven that phosphorylation can be poorly
conserved, it has been suggested that not all phosphorylation is relevant foffitness
Therefore, prioritization strategies are crucial to facilitate the discovery of highly relevant
phosphosité¥. Different methodologies have been proposed, including identifying
phosphosites that are highly conseet: located at interface positiofts15 showing

strong regulation, or combinations of such feaft#é8 Mutational studies have also been
used to characterize relevant phosphorylafigrisut cannot yet be applied to human
phosphorylation at scale.

Machine learning methods remain a poorly explored approach to study the functional
relevance of phosphorylation. Here, we generated the largest human phosphoproteome
dataset to date, identifying 119,809 human phosphosites. For each phosphosite, we compiled
annotations covering 59 features and integrated them into a single score of functional
relevance, named here the phosphosite functional score. This score can correctly identify
regulatory phosphosites for a diverse set of mechanisms and predict the impact of
deleterious mutations.

Mass spectrometry-based proteomics map of the human phosphoproteome

In order to create a comprehensive MS-based definition of the human phosphoproteome, we
curated 112 human public phospho-enriched datasets derived from 104 different cell types
and/or tissues from the PRIDE datad&$8upplementary Table 1). Using MaxQuant, we

jointly re-analyzed the subset of 6,801 human MS experiments passing the quality control
criteria, corresponding to 575 days of accumulated instrumentiidiethods). The joint

analysis (deposited in PRIDE, dataset PXD012174) ensured an adequate control of the false
discovery rate (FDR) estimated using a target-decoy stPt@ggthods). FDR was

estimated for correct matching to the peptide-spectrum match (PSM), protein and the
presence of phosphosite modification(s) and kept at <1% (Methods). The modification
localization probability (also called False Localisation Rate) was also estimated, reflecting
the confidence of pinpointing which residue carries the phosphorylation. Probabilities above
75% indicate highly confident localizations (Class | sites).
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We identified 11.7 million phosphorylated peptide-spectrum matches (PSM-level FDR <

1%), corresponding to 181,774 phosphopeptides spanning 203,930 phosphorylated serines,
threonines or tyrosines. Of these, only 119,809 sites passed the 1% site-level FDR correction
(59% true positive sites) with 90,443 classified as CElsg he low true positive percentage
suggests that the accumulation of phosphosite identifications from multiple independent
searches - as archived in phosphosite databases - might be strongly enriched for potential
false positives. The heterogeneity of biological samples analyzed facilitated the

identification of phosphosites in proteins expressed in a wide range of tissues from healthy
and tumor samples (Figure 1a), allowing us to identify a large number of tissue-specific
phosphosites (Figure 1b).

To evaluate the phosphoproteome coverage, we studied the proportion of phosphoproteins
when stratifying them according to their abund@AcErom 14,154 proteins identified,

11,982 (85%) contained at least one FDR-corrected phosphosite. While we observed a bias
towards the identification of more abundant proteins, the trend is similar to that of the non-
modified peptides present in the samples (Figure 1c). This ratio of phosphoproteins, similar
to previous finding$ remained constant regardless of the reported protein abundance in
PaxDb (Figure S1). While some cell types, such as HelLa cells, are very over-represented,
the identified phosphosites are not strongly biased by common samples. The exclusion of the
five most studied cell types (31% of the total instrument time), still results in 83% of the

total identified phosphosites (Figure 1d). Together, these results suggest that we have
achieved very high coverage of phosphosite identification.

For benchmarking purposes, we compared the identified phosphoproteome against the
221,236 human phosphosites reported by MS in the PSP database (JanuarfFair8)

1le). While 11.5% of the high-confidence sites in our study are supported by only 1 MS/MS
evidence, 55% of the PSP sites have this level of support. In absolute numbers, we identified
73,973 phosphosites supported by 5 or more MS/MS evidences, while only 47,448 are
equally supported in PSP. These results point to the importance of aggregating the growing
body of MS phosphoproteomic data while maintaining the statistical reliability.

Prioritizing functional human phosphosites

Having identified a comprehensive high confidence human phosphoproteome, we then
calculated for every phosphosite a diverse set of features that could indicate importance for
fitness (Methods). These properties can be grouped broadly in four categories: the MS-
evidence (e.qg., spectral counts, localization probability), the phosphosite reddlation
including the number of conditions regulated or matching to kinase motifs, the structural
environment (e.g., at interfaces, surface accessibility), or the evolutionary conservation
(Supplementary Note 1). Evolutionary conservation was captured by quantifying residue
conservatiof, conservation of the phosphorylation within protein domain farhfli@sd

the phosphosite evolutionary age, expanding to multicellular species a phylogenetic-based
approach previously described for fungal spé€iesltogether, we calculated a set of 59
features annotating all phosphosites (Methods, Supplementary Table 2). We illustrate the
value of some of these features for identifying regulatory sites in the 65-80 amino acid
region of MAF1, a protein involved in the mTORCL1 signaling pathway (Figure 2a). While
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pS68 and pS75 are known to inhibit the MAF1 RNA pol Il repression function, three other
MS-identified phosphosites in the region have unknown functionaPPoRslative to the

other sites, pS68 and pS75 showed: a higher number of spectral counts, higher conservation,
a better match to the specificity of kinases, and show condition-specific regulation, including
downregulation when treated with the mTOR inhibitors rapamycin or Torin1.

Benefiting from the orthogonal nature of some of these attributes, we next sought to
integrate a set of 59 normalized features into a single score that would prioritize
phosphosites relevant for fithess. We used 2,638 phosphosites curated by PSP and known to
regulate protein function to discriminate, using machine learning, the distinctive properties
of functional serine and threonine phosphorylation (S/T) and tyrosine phosphorylation (Y),
separately. We first asked how well each of the 59 features independently predicted the
known regulatory sites (bars in Figure 2b). The most informative features for function
included the number of different cell lines or tissues in which the site had been identified,
the phosphosite age, how well it matched a kinase specificity model, how often the
phosphosite was regulated in a panel of different perturbations and the presence of
neighboring PTMs.

Different machine-learning algorithms were tested for their capacity to integrate the 59
features with most methods displaying similar performances (Methods). The model selected
was a gradient boosting machine that achieved an average AUC of 86.1% and 85.7% for ST
and Y, respectiveRf. The contribution of the features included in the model denotes their
relevance when combined with the rest of the features (Figure 2b). The performance of each
individual feature in isolation and their contribution to the trained models is detailed in Table
S2. For example, the consensus protein abundance increased its relevance when integrated
with other features, indicating it is not a useful predictor in isolation, but facilitate the
interpretation of other features within the model. The integrated predictor displays a much
higher performance than any of the features independently.

The final model - named here phosphosite functional score - was applied to generate a score
for each of the MS-identified phosphosites, reflecting their importance for organismal fitness
(Supplementary Table 3). In Figure 2c, we show how this score ranked known functional
phosphosites higher than the overall background and, more interestingly, phosphosites
important for human disease - information not included in the model - ranked higher than

the other two sets. Our metric very strongly outperforms general-purpose tools such as
variant effect predictors when estimating the relevance of functional and disease-associated
phosphosites (Figure S2). The functional score correctly distinguished relevant phosphosites
across different protein families as illustrated in four different examples, including the LCK
kinase, the STAT3 transcription factor, the PTPN11 phosphatase and the H2AFX histone
(Figure 2d). In all cases, the phosphosites of known function or associated with diseases
were among the top-ranked. Extensive literature search also pointed to highly scored
phosphosites that, despite not being included in the true positive set derived from PSP, had
supporting evidence of known regulatory function (Figure S3).
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Identifying functional phosphosites involved in diverse mechanisms

Phosphorylation modulates protein function via different molecular mechanisms. The
distributions of phosphosite functional scores for annotated regulatory sites suggest the
method is not strongly biased towards specific mechanisms (Figure S4). Next, we explored
the potential of the functional score to prioritize regulatory functions related to protein-
protein interactions and transcriptional activity.

The presence of a phosphosite at a protein interface, one of the used features, is interpreted
as being likely to regulate protein-protein interactions (Methods, provided in Supplementary
Table 2). For example, the Y34 phosphosite in the Ras Homolog Family Member A (RHOA)
had no annotated function in PSP but ranked as a highly functional site (0.56), partly due to
its presence in multiple interaction interfaces. Indeed, it has been reported that mutation of
Y34 to asparagirfé or phenylalaning-29can disrupt certain interactions (Figure S5). To

test broadly the value of the functional score for protein interactions, we compiled
information on mutational consequences towards measured protein interactions of 394
phosphosite positioR% We observed that phosphosites with a functional score higher than
0.5, had 5 to 10-fold higher chances of the mutation causing changes in interactions (Figure
S6).

Independently, we sought to validate as a proof-of-principle a candidate regulatory
phosphosite in a protein interface. The PLK1-regulated S60 is the best scoring phosphosite
(0.65, Figure 3a) of the RAN Binding Protein 1 (RANB®1)his site is upregulated under
okadaic acid and it is near the Ran interaction interface and the transmembrane nuclear
transporter Ran GTPase Activating Protein 1 (RanGAP) (Figure 3b, PDB:1k5g). To test the
impact of pS60 on RanBP1 interactions, we performed an affinity purification experiment
comparing the 3xFLAG tagged RANBP1 WT with RANBP1 S60E (Methods,
Supplementary Table 4). Among the top scoring interactors, the proteins RAN, RCC1 and
NEMP1 were found. The phospho-mutant binding remained similar to the WT in the case of
RAN and RCC1 but showed a reproducible decrease (p < 0.003) in binding capability to
NEMP1, an interaction partner previously described in other euka?y¢Fgure 3c).

We next explored how the phosphosite prioritization could be used to identify sites
implicated in the regulation of transcriptional activity. Changes in the activation state of
transcription factors (TFs) across different samples can be approximated by quantifying the
changes in expression of their known target g&h&y analyzing 77 breast cancer samples
where phosphorylaticft and gene expressihhad been collected, we correlated the

changes in phosphosite levels within TFs with changes in estimated TF activity (Methods).
We exemplify this approach with phosphosites in STAT1 (Figure 3d), where pS727 is
necessary for full transcriptional activat®nWe observed, as expected, that increased
phosphorylation of S727 was associated with higher estimated TF activities (Figure 3e).
Across all STAT1 phosphosites, the functional score stratified all quantified sites based on
the correlation between the phosphorylation levels and the TF activity (Figure 3f). We
expanded this analysis to the 371 phosphosites in 82 TFs with available paired data and good
quality regulons. Although the set of sites with significant site-TF correlation is relatively
small (19%), we observed that the functional score was able to prioritize sites in which the
changes in phosphorylation strongly correlated with the TF activity (Figure 3g).
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Impact of genetic variation on highly functional phosphosites

A functional phosphosite is expected to introduce a genetic constraint in the genome and
highly functional phosphosites should therefore present a lower tolerance to variation. We
analyzed available information on allele frequency of variants in natural poputations

(Figure 4a) and the clinical significance of mutations on human disé4Beagure 4b,

Methods). In both cases, we observed the expected constraint - mutations in phosphosites
with a high functional score were more likely rare in human populations (Figure 4a) and
pathogenic (Figure 4b). The annotated phosphoproteome provides an opportunity to further
characterize the underlying mechanisms of disease-causing mutations. For example, the
S172P mutation in Tubulin, Beta 2B (TUBB2B) has been associated with polymicrogyria, a
cortical developmental disease causing poor incorporation of tubulin into microfifbules

The finding of a high functional phosphosite in S172 (0.43, Figure 4b) suggests phospho-
regulation as an important disease-related mechanism. Associating disease variants with the
functionally annotated phosphoproteome can facilitate the disease interpretation in a
signaling context, expanding the possibility for diagnostic and therapeutic strategies. We
provide the functional scores for ClinVar variants overlapping phosphorylation sites in
Supplementary Table 5.

The introduction of mutations in highly scored phosphosites is also expected to cause
important functional consequences. We curated information on protein gain/loss of function
as a consequence of 1,092 mutations in phospho-acceptor residues (Methods, Figure 4c). In
line with our expectation, the higher the functional score the higher the chances a mutation
causes an effect (Figure 4c). Interestingly, mutations to alanine in highly scored acceptors
predominantly caused loss-of-function, while mutation to negatively charged residues (i.e.
phospho-mimetic) also had an increased chance of causing a gain-of-function effect. To
further expand on this idea, we selected to study two highly scored phosphosites of unknown
function in glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The two sites - S151 and
T153 - flank the catalytic cysteine C152 in a highly conserved region (Figure 4d).
Phosphorylation was consistently identified by MS and their phosphosite functional scores
(0.63 and 0.70, respectively) indicated a potential regulatory function (Figure 4e). We
hypothesized these phosphosites to be important for the regulation of GAPDH enzymatic
activity and functionally conserved between human and yeast.

To test this hypothesis, we created two phospho-deficient strains S149 and T15%.in the
cerevisiaanain GAPDH gene (TDHS3) that corresponds to S151A and T153A in the human
GAPDH. For these stains we measured their growth together with the TDH3 gene knockout
(KO) in the presence and absence of the topoisomerase inhibitor doxorubicin (Methods).
Deletion of TDH3 has been previously reported to cause slow-growth under doxorubicin, a
phenotype corroborated in our as¥aynterestingly, more acute growth defects were

observed for the 2 phospho-deficient strains under doxorubicin (Figures 4f and 4g). TDH
activity assays under no treatment pointed to a depleted enzymatic activity of the 2 phospho-
deficient strains (Figure 4h). The growth rate under doxorubicin and the enzyme activity of
the point mutants were lower than for the KO strain suggesting that the TDH3 KO may have
some compensation via TDH1/TDH2 that is not seen in the mutants. To gain insight into this
difference we carried out a thermal proteome profiling experithettcomparing the
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thermal stability and protein abundance of 2378 proteins between the mutant strains and WT
(Methods, Supplementary Table 6). In unstressed conditions, TDH2 protein showed higher
abundance in all 3 mutants (KO, S151A and T153A) which is more pronounced in the KO
(Figure S7). With doxorubicin, this increase is only significant in the KO (Figure S7,
Supplementary Table 6). This increase in TDH2 may partially compensate for the loss of
TDH3 activity which would explain the observed differences between the KO and the
phospho-mutant strains. In addition, we measured no significant change in stability or
abundance of TDH3 itself indicating that the impact of the phospho-mutations is not
occurring via the destabilization of the protein. Finally, we found significant enrichment for
increased abundance of glycolytic proteins and increased stability of oxidative
phosphorylation (Figure S8), indicating that the decrease in activity of TDH3 results in
substantial adaptation of the metabolism.

Regulatory phosphosites in the hSWI/SNF remodeling complex member SMARCC2

To further exemplify the usefulness of the functional score we studied regulatory sites
governing the function of SMARCC2/BAF170 during neuronal differentiation. As part of

the SWI/SNF chromatin remodelling complex, SMARCC?2 plays an important role in
neurogenesf$-42 SMARCC2 expression increases during the differentiation towards the
commitment to neuronal precursors. Increased SMARCC2 replaces SMARCC1, composing
the neural progenitor-specific hNSWI/SNF complex (or npBAF comffieXhis switch

recruits the REST (RE1-silencing transcription factor-corepressor) complex an interaction
that is important for neurogene¥isWe identified 2 high scoring phosphosites (S302 and
S304) in SMARCC?2 (Figure 5a) that we hypothesize could play an important regulatory
function during neurogenesis.

To study the selected phosphosites, we used a murine model of neuronal differentiation and
a gene knock-in system (Figure 5b). After verifying the two phosphosites are identified by
MS in mouse neuronal tiss#éswe used CRISPR-based gene editing in mouse embryonic
stem cells (MESC) and independently generated 3 homozygous and 2 heterozygous clones
of the double alanine mutant S302A/S304A, as well as control clones (no mutation after
CRISPR targeting). Neuronal differentiation was performed over 12 days, with an

expecte@* increase of Smarcc2 measured by day 12 (Figure S9), concurrent with post-
mitotic neuron formation (Figure S10). RNA-seq was performed at days 8 and 12,
corresponding to the differentiation to neuronal progenitor cells and post-mitotic neurons.
When comparing the mRNA levels using principal component analysis (PCA, Figure 5c),
the independent clones showed a strong agreement with the major driver of change (PC1,
Figure 5c¢) being time and the second major driver (PC2, Figure 5c) the mutational status. 2
out of 3 homozygous clones showed a clear separation from the heterozygous and CRISPR
controls. A linear model identified 4,776 genes (p < 0.05) showing a gene expression
difference that was dependent on the mutational status. This significant transcriptional
difference is compatible with a change in the differentiation process as a consequence of the
SMARCC2 mutations.

We noted that the homozygous mutants at day 12 displayed transcriptional similarities with
the 8-day clones, suggesting a delay in the differentiation. The homozygous mutants showed
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upregulation of gene signatures associated with murine pluripdteawg significant
downregulation in neuronal differentiation signatdP&sigure 5d). In addition, known

REST target genes - a transcriptional repressor of neuronal genes - were significantly down-
regulated in the homozygous mutant indicating maintained REST activity (Figure 5d).
Neuronal morphology also showed less differentiation in two homozygous clones at 12 days,
with observed cell aggregates, fewer neurites and numerous Smarcc2 marked cells without
the neuronal marker (e.g., Map2) (Figure 5e). Overall, these results point to a significant
delay in the differentiation in the homozygous clones, suggesting that these phosphorylation
sites play a role in the regulation neuronal differentiation by SMARCC2.

Benefiting from the vast amount of proteomics data deposited by the community in the
PRIDE database, we generated a comprehensive human phosphoproteome. The large
fraction of phosphosites identified when excluding the most studied cell lines (e.g., HeLa
cells) highlights the high coverage achieved. However, some limitations need to be taken
into consideration. The difficulties to detect certain phosphopeptides - like those in low
abundant proteins - or to accurately localize phosphorylation events, point to a still-
incomplete phosphoproteome. Rarefaction curve analysis (Figure S11) also suggests we
have not yet reached saturation on the number of identified sites, and the upper limit of
phosphosites remains unknown. Our analysis also indicates that the inadequate aggregation
of parallel MS searches can lead to very substantial accumulation of false positives, which
may be the case for public resources. Our priority has been to provide a high confidence list
of phosphosites, implying that some good quality sites might not have made the final list due
to the stringent criteria (see Methods). The scale and level of curation of the spectral data
analyzed (PRIDE dataset PXD012174) constitute an unprecedented resource to further
develop new methods and strategies necessary to understand phosphoproteomics at large
scale.

Although adequate methods were in place to prevent a biased scoring system, it is possible
the score may be influenced by social bias to better characterize certain functional sites used
for training - such as the tendency for researchers to study conserved positions. While we
think such biases are possible, we don't think they dominate the score as it can predict the
impact of mutations in phosphorylated residues that were not part of the training. Although
we have shown how highly scored phosphorylations are less likely to be mutated or more
likely to be involved in disease processes, the full extent of this prioritization has not been
explored. Disease variants on functional phosphosites could offer a mechanistic explanation
for the disease, possibly indicating a therapeutic strategy perhaps linked to an actionable
regulatory kinase.

Despite the accuracy of the functional score, there were several phosphosites of known
function that have a low functional score. When stratifying the functional phosphosites by
their mechanisms of action (Figure S3) we do not observe a strong difference. As a general
trend phosphosites that impact on cellular localization, often overlapping short unstructured
motifs, show the lowest performance and those regulating enzymatic activities and
conformations — typically within ordered globular regions - show the strongest performance.
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These trends, although not strong, may point to limitations in the current implementation of
the method.

While we integrated a diverse set of features, additional ones may need to be considered in
the future. These could include: measuring occupancy for a larger set of phoshhosites
acquiring diverse PTM datasets for different species, paired measurements of
phosphoproteomics and protein localizatfrand determining the structures of larger set of
phosphorylated proteins. Resolving structures of phosphoproteins has been technically very
challenging, but recent developments in genetically encoded phosphoff&fishould

now serve as an opportunity to make progress in this area. Some of the current features may
indirectly capture missing signals, such as how spectral counts relate to occupancy or the
number of PTMs near a phosphosite may relate to cross-regulation.

Together with the full list of human phosphosites and the spectral data released, the
phosphosite functional score and the relevant features associated constitute a systematic
resource to understand human signaling on a genomic scale. We have shown examples of
how this information can prime the design of experiments in order to identify novel
regulatory phosphosites. While some of the features may suggest a possible regulatory
mechanism, such as the presence of phosphosites at interface positions, the functional score
itself does not predict mechanisms. Moreover, the score might not accurately prioritize
regulatory sites acting in groups, despite including features that capture local regulatory
effects. Additional experimental and computational approaches need to be developed to
study the biochemical consequences of individual and coordinated phosphorylations on a
large scale.

Not all residue phosphorylations are likely to contribute equally to organismal fithess and
some have speculated that a fraction of phosphosites may serve no purpose in present-day
species. Evolutionary studies have suggested that between 35% to 65% sites are constrained
and therefore function&P? Regardless of the degree of non-functional phosphorylation,

there is a clear bottleneck in the characterization of phosphosite function that can be aided
by the functional score. The different analyses provide guidance as to how to interpret and
make use of the score. Scores above 0.5 were associated with 5 to 10 fold increase in
chances of measuring an impact on interactions or phenotypes (Figure 4c and S6). Similarly,
pathogenic mutations have an average score of close to 0.5 compared with around 0.2 for
benign mutations (Figure 4b). At a 0.5 cut-off around 10% of the phosphoproteome remains
with 50% of the true positive phosphosites recovered suggesting that this is useful cut-off for
an initial prioritization. The human phosphoproteome and functional score prioritization
provided here define a roadmap to study the regulation of proteins involved in almost any
cellular process.

Human phosphoproteome MS search

A list of all 307 human datasets annotated to contain phosphorylations was retrieved from
the PRIDE database (June 207 pfter extensive manual curation of all experimental
designs, only untargeted assays that employed phospho-enrichment strategies (e.g. metal
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oxide affinity chromatography, anti-P-Tyr antibodies, etc.) were included. Datasets with
proteomes from more than one species (i.e. infections, xenografts, etc.) were discarded in
order to prevent cross-species contaminants. Similarly, datasets with major genetic
modifications were also discarded for further analysis. For the remaining 110 PRIDE
datasets, additional manual curation was required in order to annotate the biological origin
and the search parameters for each raw file. After applying all filters, 6,801 MS raw files
remained, corresponding to an accumulated instrument time of 575 days.

All 6,801 MS raw files were jointly searched using MaxQuant 1.6.0.13 {Ri@)dromeda
engin®3 against the UniProt Human Reference Proteome (71,567 sequences, accessed May
2017P4 These were also supplemented with common laboratory contaminants provided by
MQ. Based on the labeling strategy or the digestion enzymes, we identified 17 different
search parameter groups that were applied to their corresponding raw files. Cysteine
carbamidomethylation was set as a fixed modification, while oxidation of methionine (M),
protein N-terminal acetylation, and phosphorylation of serine (S), threonine (T) and tyrosine
(Y) as variable modifications. Minimum peptide length was set to 7 amino acids, and
peptides were allowed to have a maximum of two missed-cleavages. All default parameters
were also applied for the Orbitrap instruments, the precursor mass tolerance was set to 20
ppm for the first search and 4.5 for the main search. Fragment mass tolerances were set to 20
ppm and 0.5 Da for FT and IT detectors, respectively. All other mass tolerance settings were
kept at default values. The search took 60 days in a Dell PowerEdge R730 rack server
configured with Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz, 64 cores, 256 GB high-
capacity DDR4 memory and a 20 TB fast access storage drive.

For the identification of modified peptides, MQ default search parameters were used,
including 1% PSM FDR, 1% site-level FDR, a minimum Andromeda score of 40 and a
minimum delta score of 6. FDR rates are estimated using a target-decoy strategy. In a
standard search, the FDR is controlled on the level of peptide spectrum matches (PSM) and
later in the resulting protein groups. In case of modified peptides, the site decoy fraction
(SDF) can also be used, and when switched on, it is applied after PSM filtering but
separately to protein groups FDR. This filtering step results in a table of PTM sites
containing a specified fraction of site decoy hits. The results for phosphorylation sites are
contained in the “Phospho (STY)Sites.txt” table. Importantly, since SDF is applied
independently of the protein FDR, phosphorylation sites on peptides that are part of proteins
that did not pass protein FDR can still appear in this table. In addition to controlling FDR
rates, it is often beneficial to include thresholds that ensure that only posttranslationally
modified peptide identifications based on spectra of sufficient quality are included. To
achieve that, MQ allows to set a minimum Andromeda score and a minimum Andromeda
delta score for accepting modified peptides. The Andromeda delta score is the difference
between first and second best PSM with a different sequence. Importantly, this filtering
happens before site-level FDR correction.

In order to assess the effect of applying false discovery correction at the site level in addition
to PSM FDR, two separate searches were performed, one keeping the default 1% site decoy
correction and another search removing this filtering. Despite both searches being corrected
at a 1% PSM FDR, the 1% site-FDR search identified 119,809 phosphorylated STYs
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(121,896 when including the 0.98% of decoys), whereas the search performed without the
side level correction identified 252,189 STY hits of which 18.48% were decoys. This
difference highlights the importance of controlling FDR rates at relevant steps in the
identification pipeline of very large PTM datasets. All processing settings and results,
including raw and MQ intermediate files, are available in PRIDE under the accession
PXD012174.

Functional annotation of the human phosphoproteome

An extended description of the data sources and methods to functionally annotate
phosphosites can be found in Supplementary Note 1. The series of features include
information about MS supporting evidence, residue conservation, phosphorylation age
reconstruction, consesus motif binding, conditional phospho-regulation, 1D structural
properties, phosphorylation structural hotspots, structural stability and interfaces and protein
topology annotations.

Al phosphosite functional prioritization

An MS-derived reference phosphoproteome was defined based on the 119,809 FDR-
corrected phosphosites identified in the UniProt reference protéomerder to prevent

problems with redundant sequences, we focused our prioritization strategy in the 116,258
sites contained in the subset of 21,009 reviewed proteins within the reference proteome.
Every site was annotated based on a comprehensive list containing 85 of the aforementioned
features (Supplementary Table 2). The features were filtered as previously described in order
to remove correlated features. Continuous variables were centered, scaled, normalized using
the Yeo-Johnson power transformation and near zero-variance variables excluded using the
R package caret. Only complete features were considered, except for SIFT were a small set
of sites from very large proteins required imputation by nearest neighbors. The discrete
variables included in the remaining 38 features, were transformed into dummy variables,
expanding the list to the final 59 features.

In order to train a machine learning model capable of regressing the functional potential of

all phosphosites, we required the phosphoproteome annotated with functional features and a
gold standard set of functional phosphosites. From the MS-identified phosphosites, we
defined a gold standard using the 2,638 sites with annotated function in the PhosphoSitePlus
database (Nov 2017)sing the remaining sites of unknown function as negatives. A set of
regression models were benchmarked using the same strategy. These include random forest,
gradient boosting machine, generalized linear models, regularized linear models,

Multivariate Adaptive Regression Splines (MARS), and regression trees. The corresponding
R packages for each of the models are described in the caret R wrapper. In all cases, a
separate predictor for ST and Y residues was built. Nested repeated cross-validation (CV)
was used to estimate the generalization error of the underlying model and its
(hyper)parameter search. In the inside loop, a 5-fold CV was performed 10 times in order to
tune the parameters. In the outside loop, a 3-fold CV was repeated 5 times to quantify the
performance of the model using ROC analysis. An extensive search grid was defined for
every training/validation/testing cycle and parallelized in a high-performance computing
environment.
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Despite the small differences in the performance of the best methods, gradient boosting
machine was selected as the final model for the functional score, in part due to its more
harmonic distribution of scores. The parameters displaying the best results were: 500 trees,
interaction depth of 9, 10 minimum observations in a node and shrinkage of 0.0405 for STs
and 0.0105 for Tyrosines. Phosphosite functional scores were derived using these parameters
as the median values of all scores obtained by 3-fold CV repeated 30 times.

Phospho-deficient RANBP1 pull-down assay

A 3xFLAG tagged fusion of both the WT (UniProt P43487 canonical isoform) and
phosphomimetic S60E mutant of RANBP1, were synthesized (GENEWIZ). Lentiviral
transduction was used to individually introduce these sequences into HEK293T cells, and
RANBP1 expression was controlled under a doxycycline-inducible promoter. Cells from 3
biological replicates of each WT and S60E expression cells were harvested. Additionally, 2
biological replicates of control cells not expressing 3xFLAG RANBP1 were harvested, in
which no doxycycline was added to the cells. Protein complexes were purified as previously
describeéP, and analyzed on a Thermo Q-Exactive Plus mass spectrometer. Raw data was
searched using MaxQuaftand high confidence protein-protein interactions were scored
using SAINTexpres¥.

TF activity inference and phosphosite coregulation

To systematically estimate transcription factor activities and phosphosite co-regulation
across a panel of primary tumors, paired basal gene expression and quantitative
phosphoproteomic data from the same breast tumors were retrieved from The Cancer
Genome Atlas (TCGAP and Clinical Proteomic Tumor Analysis Consortium (CPTHC)
respectively. From the 105 breast tumors with matched phosphoproteomics data, raw counts
were downloaded from the Gene Expression Omnibus (GSE6Z94d)malized,

processed into counts per million reads and z-transformed. To infer transcription factor (TF)
activities from the expression data, 289 good quality TF regulons (A-C) were retrieved from
the OmniPath resouré®and an enrichment test per tumor was calculated on them using the
analytic Rank-based Enrichment Analysis (aREA) method implemented irr¥ipée
Normalized Enrichment Score (NES) was used as an estimate of relative TF activity as
described in previous stud®®sThe changes in phosphorylation for TF sites quantified

across the 77 samples passing the CPTAC quality control criteria were correlated with their
corresponding TF activities.

Effects of genetic variation in human phosphosites

Variation in natural human populations for 60,706 unrelated individuals was retrieved from
the Exome Aggregation Consortium (ExA®)The variants with their corresponding

adjusted allele frequencies were aligned to UniProt positions using the Needleman-Wunsch
global alignment implemented in the Biostrings R package. Only variants observed in at
least 10 counts were considered for further analysis. In cases were multiple alleles mapped
to the same exact amino acid substitution, the variant with the highest adjusted frequency
was preserved. For comparison purposes, Minor Allele Frequency (MAF) for phospho-
acceptor residues was calculated as the frequency at which the second most common allele
occurs in the population. To further understand the effects in human variation, a total of
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159,633 human clinically relevant variants were retrieved from CI#§Var784 of which

match phospho-acceptor residues. The annotated clinical significances were collapsed into
benign, uncertain or pathogenic. Finally, the phenotypic consequences of introducing 22,090
missense mutations in 3,022 proteins were retrieved from URPTdte 4,764 point-

mutations on phospho-acceptor residues were classified into Alanine (A), Phosphomimetic

(E or D) or Other depending on the resulting residue. Since the phenotypic consequences are
encoded as free text, an in-house parser was required to annotate the effects as gain-of-
function, loss-of-function or no effect.

Phenotypic effects of distant phospho-deficient variants

TDHS3 phosphomutant construction—  Phospho-deficient mutants TDH3 S149A and
T151A were constructed by introducing the point mutations into the TDH3 endogenous
locus in the Y8205 background strain (MATalpha, his3 1; leu2 0; ura3 0; MET15+; LYS2+;
canl::STE2pr-SpHIS5; lypl::STE3pr-LEU2 + GALpr-Scel-NAT) followed by a URA3
marker after the stop codon. The URA3 marker was flanked by Scel recognition sites and
removed by induction of the endonuclease as previously dest4ilRaint mutations were
verified by DNA sequencing of the TDH3 ORF.

TDH3 Growth curves description—  Yeast strains including wild-type, gene control,

TDH3 KO from the yeast gene knockout libf&nand the 2 phospho-deficient mutants were
inoculated into a final volume of 100 uL SC media with and without 75uM doxorubicin in
96-well plates (initial Olggonn=0.05). 4 biological replicates were inoculated in each plate
and the experiment was performed 3 times. All plates were sealed with breathable
membranes (Breathe-Easy) and incubated at 30°C in a thermostated incubator (Cytomat 2,
Thermo Scientific) with continuous shaking. ggnmwas measured every 30 min for 48h

in a Filtermax F5 multimode plate reader (Molecular Devices). Growth curves were
estimated by fitting a standard logistic equation included in the Growthcurver R package.
Cellular fitness was defined by the area under the curve (AUC).

TDH3 Mutant activity measurement— Yeast strains growing in exponential phase were
diluted to the same OD (Qlyn=0.2) in 3 biological replicates and 1ml was collected by
centrifugation. Cell lysis was adapted for yeast cells: cell pellets were resuspended in 500yl
of cold lysis buffer (20 mM Tris pH8, 15mM EDTA pH8, 15mM EGTA pH8 and 0.1%

Triton X-100). Glass beads were added in equal volume (500ul) and cells were lysed by
vortexing at 4°C. Enzymatic activity was quantified twice using the colorimetric
Glyceraldehyde-3-Phosphate Dehydrogenase Activity Assay Kit (Abcam) as described by
the manufacturer.

Two-dimensional thermal proteome profiling (2D-TPP)—  The 2D-TPP protoc6?

was adapted to be compatible wEhcerevisiaeYeast cells were grown overnight at 30°C

in YPAD and diluted to OD600 0.1 in 50 ml fresh YPAD media and when OD600 reached
~0.7 cells were treated with or without 75uM Doxirubicin for 2 hours. Cultures were

collected by centrifugation at 4000x g for 5 min, immediately frozen in liquid nitrogen,
washed with PBS and resuspended to an equivalent of OD660 of 125. 20ul was aliquoted to
10 wells of a PCR plate and the plate was centrifuged at 4.000g for 5 min and was subjected
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to a temperature gradient for 3 min in a thermocycler (Agilent SureCycler 8800) followed by
3 min at room temperature. Cells were lysed in 30 ul of cold lysis buffer (final
concentration: Zymolyase (Amsbio) 0.5mg/ml, 1x protease inhibitor (Roche), 1x
phosphatase inhibitor, 250U/ml benzonase and 1mM MgCI2 in PBS for 30 min shaking at
30°C, followed by five freeze-thaw cycles (freezing in liquid nitrogen, followed by 30s at
25°C in a thermocycler and vortexing). Protein digestion, peptide labelling, Mass
spectrometry-based proteomics and data analysis were performed as previously déscribed

Phenotypic assay of phospho-deficient SMARCC2 during neuronal differentiation

Generation of Smarcc2/BAF170 mutant cell ines—  Mouse embryonic stem (ES)

cells (129XC57BL/6J) were cultured in media containing Knockout-DMEM (Thermo
Fisher) with 15% EmbryoMax FBS (Millipore) and 20 ng/ml leukemia inhibitory factor
(LIF, produced by Protein Expression Facility at EMBL Heidelberg), 1% non-essential
amino acids, 1% Glutamax, 1% Pen/Strep, 1% of 55mM beta-Mercaptoethanol solution.
Cells were maintained at 37°C with 5% CO2. ESCs were routinely tested for mycoplasma
absence by PCR.

ES lines with double C to G point mutations encoding S302A and S304A substitutions in
Smarcc2/BAF170 were generated using CRISPR-Cas9 mediated knock-in mutation
according to the published proto€®IBriefly, oligonucleotides encoding guide sequences
were cloned into pSpCas9(BB)-2A-GFP (PX458, Addgene). The resulting plasmid (2 pg
Smarcc2_gl or g2) and 100 uM ssODN repair templates (180 bp, sSODN_Smarcc2_g1 or
g2, IDT ultrameres) were nucleofected into ES cells using 4D-nucleofector (Lonza) for gene
editing. Two days after nucleofection, individual transfected cells were plated in 96 well
plates by FACS. Cells carrying homozygous or heterozygous introduced mutations in
Smarcc2/BAF170 were identified by Sanger sequencing. In addition, cells that retained a
wild type Smarcc2/BAF170 sequence despite having gone through the CRISPR mutagenesis
process were retained as CRISPR controls.

Smarcc2_gl AGGGGGGCAACTATAAGAAG
Smarcc2_g2 CTCTGGGGTGGGTGAAGGAG
SSODN_Smarcc2_g1

GGGTAAACTGCTGCTCATCCCACGTCCTGTTGTGCAGGTAAACAGCCCAG
ATTCAGACAGACGAGACAAGAAGGGGGGCAATTATAAGAAAAGAAAGCGC
GCTCCCGCTCCTTCACCCACCCCAGAGGCTAAGAAGAAAAACGCTAAGAA
AGGGTAAGCTACCTCCTGTGCCCACACGCG

SSODN_Smarcc2_g2

TCCCACGTCCTGTTGTGCAGGTAAACAGCCCAGATTCAGACAGACGAGAC
AAGAAGGGGGGCAACTATAAGAAGAGGAAGCGCGCTCCCGCCCCATCACC
CACCCCAGAGGCTAAGAAGAAAAACGCTAAGAAAGGGTAAGCTACCTCCT
GTGCCCACACGCGCTGTCCTGATGCCATCTCA
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Neuronal Differentiation— ES cells with heterozygous or homozygous Smarcc2
mutations, along with CRISPR control cells, were neuronally differentiated according to
Bibel et af3. To start differentiation, ES cells were plated on bacterial Petri dishes in CA
media containing DMEM high glucose (Thermo Fisher) with 10% FBS, 1% non-essential
amino acids, 1% Glutamax, 1% Pen/Strep, 1% of 55mM beta-Mercaptoethanol solution.
After 4 days retinoic acid was added to embryonic bodies at a final concentration of 5uM.
For neural culture, after 8 days embryoid bodies were dissociated with trypsin and plated in
N2 media composed of regular DMEM supplemented with N2 and B27-VitaminA (Thermo
Fisher). Plates were pre-coated with Poly-D-Lysine (Sigma) and Laminin (Roche). Half of
the N2 media was changed every two days. Samples of differentiating cells were snap frozen
in liquid nitrogen on the day of plating (D0O) as well as on the four (D4), eight (D8) and
twelve (D12) days following differentiation.

Western Blotting— ES cell-derived neuronal BAF170 protein levels were visualized by
western blot. Crude nuclear extracts were prepared from D12 mutant cell lines and CRISPR
controls. Extracts were also prepared from DO, D4, D8 and D12 wild type differentiating
cells. Extracts were run on SDS/PAGE gels (4-12%), transferred to PVDF membranes and
probed with primary antibodies to BAF170 (Active Motif, 1:1000) and Histone H4 (1:6000,
Abcam). Membranes were washed, probed with HRP tagged goat anti-rabbit secondary
antibodies, and visualized with Immobilon chemiluminescent reagent (Millipore) using a
Chemidoc Touch imaging system (Bio-Rad).

Immunofluorescence— Neuronal morphology and SMARCC2/BAF170 protein

localization were visualized using indirect immunofluorescence of D12 neuronal cultures.
D8 cells were placed on coverslips and fixed on D12 with 2% PFA in PBS for 15 minutes at
room temperature. Coverslips were washed 3 times in PBS and permeabilized with 100%
methanol for 5 minutes at -20°C. Permeabilized cells were washed twice with wash buffer
(0.05% Tween 20 in PBS) and blocked for 30 minutes with 2% BSA in PBS. Cells were
then incubated with primary antibodies (1:400 MAP2 (Sigma) and 1:2000 BAF170 (Active
Motif)) for 1 hour at room temperature or overnight at 4°C. Coverslips were given 3 washes
in wash buffer for 5 minutes each. Secondary antibodies (anti-Mouse Alexa Fluor 594 and
anti-Rabbit Alexa Fluor 488) were applied for 30 minutes at room temperature followed by
an additional two 5-minute washes in wash buffer. Coverslips were washed briefly in sterile
water, inverted and mounted on microscope slides with Prolong Gold antifade reagent.
Images were collected at 40x with a Ti-Eclipse Fluorescence Microscope (Nikon). Image
Analysis was performed using Fiji and the Cell Counter plugin.

RNA sequencing— Total RNA was extracted from D8 and D12 differentiating cells using
the RNeasy RNA isolation kit (Qiagen) followed by DNase digestion using TURBO DNase
(Thermo Fisher). mRNAs were isolated from 1 pg of total RNA using a PolyA selection kit
(NEB) and sequencing libraries were prepared using the NEBnext Ultra RNA library prep
kit for lllumina (NEB). Completed libraries were sequenced on a NextSeq 500 sequencer
(Ilumina) using a 75 bp single-end run. Reads were aligned to the murine GRCm38
assembly using HISAT2 v2.£# Aligned reads were converted to BAM format and sorted
using samtools v0.1.$9 Read counts were calculated using htseg-€8using the murine
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gene sets annotated in Ensembl&/9R&eads with less than 10 counts were discarded for
further analysis. Read counts from all samples were combined using the R&anead
analyzed using DESef2 Gene set signatures for ESC, neuronal differentiation and TF
regulons were downloaded from MSigB5B

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Phosphorylation sites are ranked for functional relevance using a comprehensive, hi
quality human phosphoproteome.
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Figure 1. Comprehensive catalog of in-vivo human phosphosites.
a) Number of phosphosites (Localisation probability > 0.5) binned by the number of

peptide-spectrum matches coming from the re-analyzed human phospho-enriched datasets
curated from PRIDE. b) Examples of broad or tissue-specific phosphosites with spectral
count information. c) Phosphopeptide and unphosphorylated peptide MS/MS support for all
human proteins binned using the consensus protein abundance from PaxDb d) Cumulative
increase in the number of phosphosites for each added MS experiment by biological origin:
all samples (blue), top 5 most common cell lines or tissues or remaining samples (grey). MS
experiments were sorted by size. Inset - Accumulated instrument time and the total number
of phosphosites identified per sample. e) Total number of unique identified phosphosites and
MS/MS support in the combined PRIDE analysis and PSP.
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Figure 2. A functional score for human phosphosites.
a) MAF1 phosphosites in the 65-80 region with feature annotations b) Feature discriminative

power (AUCSs) after repeated cross-validation between phosphosites of known and unknown
function (AUC, red, green, yellow and blue bars). Discriminative power (AUCs) after
integrating all features using different machine learning algorithms (AUC, grey bars). The
contribution of each feature to the final model (point-ranges). c) Distribution of functional
scores for all phosphosites (blue), with known regulatory roles (yellow) and associated with
human diseases (green). Sample size (n) represents number of phosphosites. d) Functional
score and regulatory function for phosphosites in different protein families.
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Fig_ure 3. Identification of functional sitesregulating protein interaction and transcriptional

activity.

a) Fuzctional score for 10 phosphosites identified in RANBP1. b) Structural model of
RANBP1 in complex with RAN (PDB:1k59). ¢) MS binding quantification for RANBP1
interaction partners (RAN, RCC1, and NEMP1) pulling-down the control, the WT, or the
S60E RANBP1 mutant. 3 biological replicates between wild type and mutant were
compared using a two-sided t test and displayed when significant (p<0.05). Boxes represent
Q1-Q3 with a centre in the median value. d) Functional score for 10 phosphosites identified
in STAT1 with unknown (blue) known activating (yellow) and inhibitory (green) regulatory
activity. e) Pearson correlation between the changes in phosphorylation levels of the known
activation site of STAT1 (S727) with the changes in estimated STAT1 transcriptional activity
across 74 tumor samples. Pointrange represents the binned median and confidence limits
based on non-parametric bootstrap. f) Relationship between STAT1 phosphosite functional
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score and the Pearson correlation between the TF activity and the phosphorylation changes
across 74 tumor samples. g) Fraction of phosphosites in TFs showing significantly
correlated changes (Pearson’s correlation p<0.05) with the corresponding TF activity,
stratified by their functional score. Data based on 323 transcription factor phosphosites
obtained from TCGA and CPTAC consortia (see Methods).
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Figure 4. Consequences of genetic variantsfor phosphositeswith high functional scores.
a) Median (CI > 95%) minor allele frequency for variants sorted by phosphosite functional

score and compared with synonymous and stop codon causing variants occurring at
phosphosite positions. b) Mean functional score (Cl > 95%) for phosphosites at positions
with mutations found in patients and having benign, uncertain or pathogenic consequences.
The S172P mutation in Tubulin, Beta 2B (TUBB2B) is highlighted as an example - see main
text ¢) Fold ratio of mutations in phosphorylated positions reported in mutagenesis studies
having gain/loss of function effects versus no effect and stratified by functional score. d) MS
evidence for the phosphorylation of S151 and T153 in GAPDH and their structural context
flanking a catalytic cysteine e) Position and functional score for all GAPDH phosphosites
and alignment of two human phosphosites (S151 and T153) to the corresponding S.
cerevisiae TDH3 (S149 and T151). Color gradient corresponds to supporting evidence of
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phosphorylation based on ancestral reconstruction f) Consensus growth curves and (g) mean
and standard error of the area under the growth curve for wild type (WT), control, GAPDH
knockout (KO) and S149 and T151 phospho-deficient mutants in the presence or absence of
doxorubicin (75 uM). Every clone is present 4 times in each plate and the experiment
repeated 3 times for a total of 12 replicates. h) TDH3 activity as mean and SE measured
twice in 3 independent extracts obtained from control and mutant strains.
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Figure 5. Smarcc2 S302A/S304A homozygous mutants show delayed neuronal differentiation.
a) Functional score for SMARCC2/BAF170 phosphosites. b) Design for CRISPR Knock-in

mutagenesis of control (+/+), heterozygous (+/-) and homozygous (-/-) Smarcc2/Baf170
S302A/S304A mutation followed by expected neuronal differentiation timeline. ¢) PCA plot
based on the normalized RNA-seq levels of 25,411 mouse genes obtained from of the 7
clonal lines at days 8 and 12. d) Normalized RNA-seq log counts of genes contained in
signatures of Late ESC, neurons or transcriptionally regulated by REST as measured in 6
independent biological replicates presenting control (+/+), heterozygous (+/-) and
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homozygous (-/-) backgrounds. e) Merged immunofluorescence images of differentiated
cells on day 12 stained with antibodies against neuronal microtubules Map2 (red) and
Smarcc2/Bafl70 (Green). Scale bar represents 25 pm.
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