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Abstract

Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex lung
disease characterized by scarring of the lung that is believed to result
from an atypical response to injury of the epithelium. Genome-wide
association studies have reported signals of association implicating
multiple pathways including host defense, telomere maintenance,
signaling, and cell-cell adhesion.

Objectives: To improve our understanding of factors that increase IPF
susceptibility by identifying previously unreported genetic associations.

Methods: We conducted genome-wide analyses across three
independent studies and meta-analyzed these results to generate the
largest genome-wide association study of IPF to date (2,668 IPF cases
and 8,591 controls). We performed replication in two independent
studies (1,456 IPF cases and 11,874 controls) and functional analyses
(including statistical fine-mapping, investigations into gene
expression, and testing for enrichment of IPF susceptibility signals in

regulatory regions) to determine putatively causal genes. Polygenic
risk scores were used to assess the collective effect of variants not
reported as associated with IPF.

Measurements and Main Results: We identified and replicated
three new genome-wide significant (P < 5 X 10~ ®) signals of association
with IPF susceptibility (associated with altered gene expression of KIF15,
MADILI, and DEPTOR) and confirmed associations at 11 previously
reported loci. Polygenic risk score analyses showed that the combined
effect of many thousands of as yet unreported IPF susceptibility variants
contribute to IPF susceptibility.

Conclusions: The observation that decreased DEPTOR expression
associates with increased susceptibility to IPF supports recent studies
demonstrating the importance of mTOR signaling in lung fibrosis.

New signals of association implicating KIF15 and MADILI suggest a
possible role of mitotic spindle-assembly genes in IPF susceptibility.
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At a Glance Commentary

Scientific Knowledge on the
Subject: Idiopathic pulmonary
fibrosis (IPF) is a devastating disease
where the lungs become scarred. It is
not known what causes the scarring,
but there have been 17 regions of the
genome that have been reported as
associated with increased susceptibility
to IPF from previous genome-wide
association studies. These identify host
defense (particularly mucus
production), cell-cell adhesion,
signaling, and telomere maintenance
as important processes in the
development of lung fibrosis.

What This Study Adds to the Field:
By combining all previous IPF
genome-wide association studies, we
have identified three novel regions of
the genome identified with IPF risk
and confirmed 11 of the 17 previously
reported regions. The three novel
regions implicate the genes DEPTOR,
KIF15, and MADI1LI1. These findings
support recent research that shows
mTOR signaling promotes lung
fibrogenesis and also implicate
spindle-assembly genes in the
development of IPF.

Idiopathic pulmonary fibrosis (IPF) is a
devastating lung disease characterized by the
buildup of scar tissue. It is believed that damage
to the alveolar epithelium is followed by an
aberrant wound-healing response leading to
the deposition of dense fibrotic tissue, reducing
the lungs’ flexibility and inhibiting gas transfer
(1). Treatment options are limited, and half of
individuals diagnosed with IPF die within 3 to
5 years (1, 2). Two drugs (pirfenidone and
nintedanib) have been approved for the
treatment of IPF, but neither offer a cure, and
they only slow disease progression.

IPF is associated with a number of
environmental and genetic factors.

Identifying regions of the genome
contributing to disease risk improves our
understanding of the biological processes
underlying IPF and helps in the
development of new treatments (3). To date,
genome-wide association studies (4-8)
(GWAS) have reported 17 common variant
(minor allele frequency [MAF] >5%)
signals associated with IPF, stressing the
importance of host defense, telomere
maintenance, cell-cell adhesion, and signaling
with respect to disease susceptibility. The
sentinel (most strongly associated) variant,
rs35705950, in one of these signals that maps
to the promoter region of the MUC5B gene
has a much larger effect on disease
susceptibility than other reported risk variants
with each copy of the risk allele associated
with a fivefold increase in odds of disease (9).
Despite this, the variant rs35705950 has a risk
allele frequency of only 35% in cases
(compared with 11% in the general
population) and so does not explain all IPF
risk. Rare variants (MAF < 1%) in telomere-
related and surfactant genes have also been
implicated in familial pulmonary fibrosis and
sporadic IPF (10, 11).

In this study, we aimed to identify
previously unreported genetic associations
with IPF to improve our understanding of
disease susceptibility and generate new
hypotheses about disease pathogenesis. We
conducted a large GWAS of IPF
susceptibility by utilizing all European cases
and controls recruited to any previously
reported IPF GWAS (5-8) and meta-
analyzing the results. This was followed by
replication in individuals not previously
included in IPF GWAS and bioinformatic
analysis of gene expression data to identify
the genes underlying the identified
association signals. As specific IPF-
associated variants have also been shown to
overlap with other related respiratory traits
including lung function in the general
population, chronic obstructive pulmonary
disease (COPD) (with genetic effects in
opposite directions between COPD and
IPF) (12-14), and interstitial lung
abnormalities (ILAs) (which might be a

precursor lesion for IPF) (15), we tested for
association of the IPF susceptibility variants
with these respiratory phenotypes in
independent datasets. Finally, using polygenic
risk scores, we tested whether there was still a
substantial contribution to IPF risk from
genetic variants with as yet unconfirmed
associations with IPF susceptibility.

Some of the results of these studies have
been previously reported in the form of two
abstracts and a preprint (16-18).

Methods

Study Cohorts
We analyzed genome-wide data from three
previously described independent IPF
case—control collections (named here as the
Chicago [5], Colorado [6], and UK [8]
studies; please refer to the online
supplement for summaries of these
collections). Two more independent
case—control collections (named here as the
UUS [United States, United Kingdom, and
Spain] and Genentech studies) were
included as replication datasets. The new
UUS study recruited cases from the United
States, United Kingdom, and Spain and
selected controls from UK Biobank (19)
(full details on the recruitment, genotyping,
and quality control of UUS cases and
controls can be found in the online
supplement). The previously described (20)
Genentech study consisted of cases from
three IPF clinical trials and controls from
four non-IPF clinical trials (see the online
supplement). All studies were restricted to
unrelated individuals of European ancestry,
and we applied stringent quality control
measures (full details of the quality control
measures of each study can be found in the
online supplement and Figure E1 in the
online supplement). All studies diagnosed
cases using American Thoracic Society and
European Respiratory Society guidelines
(21-23) and had appropriate institutional
review board or ethics approval.

Genotype data for the Colorado,
Chicago, UK, and UUS studies were imputed
separately using the Haplotype Reference

Author Contributions: R.J.A., J.M.O., C.F., LN., R.G.J., and L.V.W. designed the study. R.J.A., B.G.-G., S.-F.M., AD., M.L.P., LM.K,, M.O., X.L., M. Ng,
B.D.H., RKP.,, P.S,, D.F.,, AP.M., KT.Z, and B.L.Y. analyzed the data. J.M.O., S.-F.M., M.O., R.B.,, M.\M.-M., RK.P., P.S., H.L.B.,, WA.F., S.P.H., M.RH.,
N.H., R.B.H., RJ.M., AB.M,, V.N, E.O.,, HP., G.S.,, MKB.W,, Y.Z, NK, AA.,, M.E.S., M. Neighbors, X.R.S., G.G., V.G., H.H., D.J.L.,, AM., J.D.N,,

G.T.0C., VEO., HX,TEF., YB,KH,PJ,D.CN.,DDS., WT, LPH, LS, MD.T., TMM.,, MH.C.,, GMH.,, D.AS., BL.Y., P.LM.,, CF., N, RG.J,
and L.V.W. were responsible for recruitment, screening and genotyping of cases and controls for idiopathic pulmonary fibrosis, interstitial lung abnormalities,
and gene expression analyses. J.M.O., D.A.S,, C.F., LN., R.G.J., and L.V.W. supervised and coordinated the study. R.J.A., R.G.J., and L.V.W. led the writing

of the manuscript. All authors contributed to drafting and providing critical feedback on the manuscript.

Data availability statement: Full summary statistics for the genome-wide meta-analysis can be accessed from https://github.com/genomicsITER/PFgenetics.
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Consortium rl.1 panel (24) (see the online
supplement). For individuals in the
Genentech study, genotypes were derived
from whole-genome sequencing data.
Duplicated individuals between studies were
removed (see the online supplement).

Identification of IPF Susceptibility
Signals

In each of the Chicago, Colorado, and UK
studies separately, a genome-wide analysis
of IPF susceptibility, using SNPTEST (25)
v2.5.2, was conducted adjusting for the first
10 principal components to account for
fine-scale population structure. Only
biallelic autosomal variants that had a
minor allele count =10 were in the
Hardy-Weinberg Equilibrium
(P>1x%10"°) and were well-imputed
(imputation quality R* > 0.5) in at least two
studies were included. A genome-wide
meta-analysis of the association summary
statistics was performed across the Chicago,
Colorado, and UK studies using R v3.5.1
(discovery stage). Conditional analyses
were performed to identify independent
association signals in each locus (see

the online supplement).

Sentinel variants (defined as the variant
in an association signal where no other
variants within 1 Mb showed a stronger
association) of the novel signals reaching
genome-wide significance in the meta-analysis
(P<5%10"*), and nominally significant
(P < 0.05) with consistent direction of effect
in each study, were further tested in the
replication samples. We considered novel
signals to be associated with IPF susceptibility
if they reached a Bonferroni-corrected
threshold (P < 0.05/number of signals
followed up) in a meta-analysis of the UUS
and Genentech studies (replication stage; see
the online supplement). Previously reported
signals with P<<5X 10~ ® in the discovery
meta-analysis were deemed a confirmed
association.

Characterization of Signals and
Functional Effects

To further refine our association signals
to include only variants with the

highest probabilities of being causal,
Bayesian fine-mapping was undertaken.
This approach takes all variants within
the associated locus and, using the GWAS
association results, calculates the
probability of each variant being the true
causal variant (under the assumptions that

Allen, Guillen-Guio, Oldham, et al.: Genome-Wide Study of Idiopathic Pulmonary Fibrosis

there is one causal variant and that the
causal variant has been measured). The
probabilities are then combined across
variants to define the smallest set of
variants that is 95% likely to contain the
causal variant (i.e., the 95% credible set) for
each IPF susceptibility signal (see the
online supplement).

To identify which genes might be
implicated by the IPF susceptibility signals,
we identified whether any variants in
the credible sets were genic coding variants
and defined as deleterious (using Variant
Effect Predictor [VEP] [26]). In addition,
we tested to see if any of the credible set
variants were associated with gene
expression using three expression
quantitative trait loci (eQTL) resources
(the Lung eQTL study [n=1,111] [27-29],
the NESDA-NTR [Netherlands Study of
Depression and Anxiety-Netherlands
Twin Register] blood eQTL database
[n=4,896] [30], and 48 tissues in GTEx
[31] [n between 80 and 491]; see the online
supplement). Where IPF susceptibility
variants were found to be associated
with expression levels of a gene, we
tested whether the same variant was likely
to be causal both for differences in gene
expression and IPF susceptibility. We only
report associations with gene expression
where the probability of the same variant
driving both the IPF susceptibility signal
and gene expression signal exceeded 80%
(see the online supplement).

To investigate whether the IPF
susceptibility variants that were in
noncoding regions of the genome might
be in regions with regulatory functions
(for example, in regions of open chromatin),
we investigated the likely functional
impact of those variants using DeepSEA
(deep learning-based sequence analyzer)
(32). Taking all of the IPF susceptibility
variants together, we tested for overall
enrichment in regulatory regions specific to
particular cell and tissue types using
FORGE (functional element overlap
analysis of the results of GWAS
experiments) (33) and GARFIELD (GWAS
analysis of regulatory or functional
information enrichment with LD
correction) (34). Finally, we investigated
whether the genes that were near to the IPF
susceptibility variants were more likely
to be differentially expressed between IPF
cases and controls in four lung epithelial
cell types, using SNPsea (35). More details
are provided in the online supplement.

Shared Genetic Susceptibility with
Other Respiratory Traits

As previous studies have reported shared
genetic susceptibility for IPF and other lung
traits (12, 13, 15), we investigated whether
the new and previously reported IPF
susceptibility signals were associated with
quantitative lung function measures in a
GWAS of 400,102 individuals (36) or with
ILAs in a GWAS comparing 1,699
individuals with an ILA and 10,247 controls
(37). Lung function measures investigated
were FEV,, FVC, the ratio FEV,/FVC (used
in the diagnosis of COPD), and peak
expiratory flow. We applied a Bonferroni
corrected P value threshold to define
variants also associated with ILAs or lung
function.

Polygenic Risk Scores
The contribution of as yet unreported
variants to IPF susceptibility was assessed
using polygenic risk scores. For each
individual in the UUS study, the weighted
score was calculated as the number of risk
alleles, multiplied by the effect size of the
variant (as a weighting), summed across all
variants included in the score. Effect sizes
were taken from the discovery GWAS and
independent variants selected using a
linkage disequilibrium r* < 0.1. As we
wanted to explore the contribution from as
yet unreported variants, we excluded
variants within 1 Mb of each IPF
susceptibility locus from the risk score
calculation (see the online supplement).
The score was tested to identify
whether it was associated with IPF
susceptibility, adjusting for 10 principal
components to account for fine-scale
population structure, using PRSice v1.25
(38). We altered the number of variants
included in the risk score calculation using
a sliding P threshold (Pr) such that the
variant had to have a P value <Py in the
genome-wide meta-analysis to be included
in the score. This allows us to explore
whether variants that do not reach
statistical significance in GWAS of current
size contribute to disease susceptibility. We
used the recommended significance
threshold of P < 0.001 for determining
significantly associated risk scores (38).

Results

Following quality control, 541 cases and 542
controls from the Chicago study, 1,515 cases
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and 4,683 controls from the Colorado study,
and 612 cases and 3,366 controls from the
UK study were available (Table 1 and Figure
El) to contribute to the discovery stage of
the genome-wide susceptibility analysis
(Figure 1). For the replication stage of the
GWAS, after quality control, there were 792
cases and 10,000 controls available in the
UUS study and 664 cases and 1,874
controls available in the Genentech study
(see the online supplement).

To identify new signals of association,
we meta-analyzed the genome-wide
association results for IPF susceptibility for
the Chicago, Colorado, and UK discovery
studies. This gave a maximum sample size of
up to 2,668 cases and 8,591 controls for
10,790,934 well-imputed (R*>0.5) variants
with minor allele count =10 in each study
and which were available in two or more of
the studies (Figure E2).

Three novel signals (in 3p21.31 [near
KIF15, Figure 2A], 7p22.3 [near MADILI,
Figure 2B], and 8q24.12 [near DEPTOR,
Figure 2C]) showed a genome-wide
significant (P <5 X 10~%) association with
IPF susceptibility in the discovery meta-
analysis and were also significant after
adjusting for multiple testing (P <0.01) in
the replication stage comprising 1,467 IPF
cases and 11,874 controls (Tables 2 and
E1). Two additional loci were genome-wide
significant in the genome-wide discovery
analysis but did not reach significance in
the replication studies. The sentinel variants

Table 1. Demographics of Study Cohorts

of these two signals were a low-frequency
intronic variant in RTEL1 (MAF =2.1%,
replication P=0.012) and a rare intronic
variant in HECTD2 (MAF = 0.3%,
replication P=0.155). Conditional analyses
did not identify any additional independent
association signals at the new or previously
reported IPF susceptibility loci (Figure E5).
To identify the likely causal genes for
each new signal, we investigated whether
any of the variants were also associated with
changes in gene expression (Table 3). The
sentinel variant (rs78238620) of the novel
signal on chromosome 3 was a low-
frequency variant (MAF =5%) in an intron
of KIF15 with the minor allele being
associated with increased susceptibility to
IPF and decreased expression of KIF15 in
brain tissue and the nearby gene TMEM42
in thyroid (31) (Figure E7 and Tables E2
and E3i). The IPF risk allele for the novel
chromosome 7 signal (rs12699415,
MAF =42%) was associated with decreased
expression of MADILI in heart tissue (31)
(Figure E8 and Tables E2 and E3ii). For the
signal on chromosome 8, the sentinel
variant (rs28513081) was located in an
intron of DEPTOR, and the IPF risk allele
was associated with decreased expression of
DEPTOR (in colon, lung, and skin [27-29,
31]) and RP11-760H22.2 (in colon and
lung [31]). The risk allele was also
associated with increased expression of
DEPTOR (in whole blood [30]), TAF2 (in
colon [31]), RP11-760H22.2 (in adipose

[31]), and KB-1471A8.1 (in adipose and
skin [31], Figure E9 and Tables E2 and
E3iii). There were no variants predicted to
be highly deleterious within the fine-
mapped signals for any of the loci.

We confirmed genome-wide significant
associations with IPF susceptibility for 11 of
the 17 previously reported signals (in or near
TERC, TERT, DSP, 7q22.1, MUC5B,
ATPI11A, IVD, AKAP13, KANSLI,
FAM13A, and DPPY; Table E1 and Figure
E4). The signal at FAM13A, while genome-
wide significant in the discovery meta-
analysis, was not significant in the Chicago
study. This was the only signal reaching
genome-wide significance in the discovery
genome-wide meta-analysis that did not
reach at least nominal significance in each
study in the discovery analysis. Three
further previously reported signals at
11p15.5 (near MUC5B) were no longer
genome-wide significant after conditioning
on the MUC5B promoter variant (Table
El), consistent with previous reports
(6, 39).

Of the 14 IPF susceptibility signals
(i.e., the 11 previously reported signals we
confirmed and three novel signals), the only
variant predicted to have a potential
functional effect on gene regulation through
disruption of chromatin structure or
transcription factor binding motifs (using
DeepSEA) was rs2013701 (in an intron of
FAM13A), which was associated with a
change in DNase I hypersensitivity in

Chicago Colorado UK uus Genentech

Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls
n 541 542 1,515 4,683 612 3,366 792 10,000 664 1,874
Genotyping Affymetrix 6.0 lllumina Human Affymetrix UK Affymetrix UK Affymetrix UK Affymetrix UK HiSeq X Ten

array/sequencing SNP array 660W Quad BILEVE BiLEVE and Biobank BiLEVE and platform (lllumina)
BeadChip array UK Biobank  and Spain UK Biobank
arrays Biobank arrays
arrays

Imputation panel HRC HRC HRC HRC —
Age, yr, mean 68 63" 66 — 70t 65 69 58 68 —
Sex, M, % 71% 478 68 49 70.8 70.0 75.2 721 73.5 271
Ever smokers, % 72 42 — — 72.9/ 70.0 68.71 68.0 67.3 18,1

Definition of abbreviations: HRC = Haplotype Reference Consortium; UUS = United States, United Kingdom, and Spain.

*Age only available for 103 Chicago controls.
TAge available for 602 UK cases.

*Sex only available for 500 Chicago cases.

§Sex only available for 510 Chicago controls.
ISmoking status only recorded for 236 UK cases.

Smoking status only recorded for 753 idiopathic pulmonary fibrosis cases in UUS.
**Smoking status only recorded for 481 of the Genentech controls.
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Figure 1. Manhattan plot of discovery analysis results. The x axis shows chromosomal position, and
the y axis shows the —log(P value) for each variant in the discovery genome-wide analysis. The red

line shows genome-wide significance (P <5 X 10~

8), and variants in green met the criteria for further

study in the replication analysis (i.e., reached genome-wide significance in the discovery meta-
analysis and had P < 0.05 and consistent direction of effects in each study). Genes in gray are
previously reported signals that reach significance in the discovery genome-wide meta-analysis.
Genes in black are the novel signals identified in the discovery analysis that reach genome-wide
significance when meta-analyzing discovery and replication samples. The signals that did not
replicate are shown in red. For ease of visualization the y axis has been truncated at 25.

18 cell types and FOXA1 in the T-47D cell
line (a breast cancer cell line derived from a
pleural effusion, Table E4). The 14 IPF
susceptibility signals were found to be
enriched in DNase I hypersensitivity site
regions in multiple tissues including fetal
lung tissue (Figures E10 and E11). No
enrichment in differential expression in
airway epithelial cells between IPF cases
and healthy controls was observed for the
14 IPF susceptibility signals when using
SNPsea (Table E5).

Previous studies have reported an
overlap of genetic association loci between
lung function and IPF (12). We undertook a
lookup of the 14 IPF susceptibility loci in
the largest GWAS of lung function in the
general population published to date (36).
The sentinel variants of 12 of the 14 IPF
susceptibility loci were at least nominally
associated (P < 0.05) with one or more lung
function trait in general population studies
(Tables 3 and E6). After adjustments for
multiple testing (P <5.2 X 10~ %), the
previously reported variants at FAMI13A,
DSP, and IVD were associated with
decreased FVC, and variants at FAM13A,
DSP, 7q22.1 (ZKSCANI), and ATP11A

Allen, Guillen-Guio, Oldham, et al.: Genome-Wide Study of Idiopathic Pulmonary Fibrosis

were associated with increased FEV,/FVC.
Similarly, for the three novel susceptibility
variants, all showed at least a nominal
association with decreased FVC and
increased FEV/FVC. We observed a
nominally significant association of the
MUCS5B IPF risk allele with decreased FVC
and increased FEV,/FVC. The IPF risk
alleles at MAPT were significantly
associated with both increased FEV; and
FVC. To determine how the variants
identified for IPF susceptibility are related
to differences in lung function between
cases and controls, we investigated whether
variants known to be associated with lung
function show an association in our IPF
GWAS. Of the 279 variants reported (36) as
associated with lung function (Table E7), 8
showed an association with lung function
after corrections for multiple testing (located
in or near MCL1, DSP, ZKSCANI1, OBFCI,
IVD, MAPT, and two signals in FAM13A).
As interstitial lung abnormalities may
be a precursor to IPF in a subset of patients,
and there have been previous reports of
shared genetic etiology between IPF and
ILAs (37, 40, 41), we investigated whether
our three new signals and the 11 previously

reported signals were associated with ILAs
in the largest ILA GWAS reported to date
(37). Eight of the IPF susceptibility loci
were at least nominally significantly
associated with either ILAs or subpleural
ILAs with consistent direction of effects
(i.e., the allele associated with increased IPF
risk was also associated with increased ILA
risk). The new KIF15, MADILI, and
DEPTOR signals were not associated with
ILAs (although the rare risk allele at
HECTD? that did not replicate in our study
showed some association with an increased
risk of subpleural ILAs [P=0.003] with a
large effect size similar to that observed in
the IPF discovery meta-analysis).

To quantify the impact of as yet
unreported variants on IPF susceptibility,
polygenic risk scores were calculated
excluding the 14 IPF susceptibility variants
(as well as all variants within 1 Mb). The
polygenic risk score was significantly
associated with increased IPF susceptibility
despite exclusion of the known genetic
association signals (including MUC5B). As
the Pt for inclusion of variants in the score
was increased, the risk score became more
significant reaching a plateau at around
Pr=0.2 with risk score P<3.08 X 10~
and explaining around 2% of the
phenotypic variation (Figure E12),
suggesting that there is a modest but
statistically significant contribution of
additional as yet undetected variants to IPF
susceptibility. Further increasing Pr beyond
0.2 did not improve the predictive accuracy
of the risk score.

Discussion

We undertook the largest GWAS of IPF
susceptibility to date and identified three novel
signals of association that implicated genes not
previously known to be important in IPF.
The strongest evidence for the new
signal on chromosome 8 implicates
DEPTOR, which encodes the dishevelled,
Egl-10 and Pleckstrin domain-containing
mTOR-interacting protein. DEPTOR
inhibits mTOR (mammalian target of
rapamycin) kinase activity as part of both
the mTORC1 and mTORC2 protein
complexes. The IPF risk allele at this locus
was associated with decreased gene
expression of DEPTOR in lung tissue (Table
E2). TGFB-induced DEPTOR suppression
can stimulate collagen synthesis (42), and
the importance of mTORCI1 signaling via
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Figure 2. Region plots of three novel idiopathic pulmonary fibrosis susceptibility loci from discovery genome-wide meta-analysis. Each point represents a
variant with chromosomal position on the x axis and the —log(P value) on the y axis. Variants are colored in by linkage disequilibrium with the sentinel
variant. Blue lines show the recombination rate, and gene locations are shown at the bottom of the plot. Region plots are shown for the three replicated
novel idiopathic pulmonary fibrosis susceptibility loci, i.e., (A) the susceptibility signal on chromosome 3 near KIF15, (B) the susceptibility signal on

chromosome 7 near MAD1L1, and (C) the susceptibility signal on chromosome 8 near DEPTOR.

4E-BP1 for TGFB-induced collagen
synthesis has recently been demonstrated in
fibrogenesis (43). MADILI, implicated by a
new signal on chromosome 7 and eQTL
analyses of nonlung tissue, is a mitotic
checkpoint gene, mutations in which have
been associated with multiple cancers
including lung cancer (44, 45). Studies have
shown that MADI, a homolog of MADILI,
can inhibit TERT activity (or possibly
enforce expression of TERT when the
promoter E-box is mutated) (45, 46). This
could suggest that MADILI may increase
IPF susceptibility through reduced
telomerase activity. Another spindle-
assembly-related gene (47), KIF15, was
implicated by the new signal on
chromosome 3 (along with TMEM42).
The genome-wide study also identified
two signals that were not replicated after
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multiple testing adjustments. RTELI, a gene
involved in telomere elongation regulation,
has not previously been identified in an IPF
GWAS; however, the collective effect of
rare variants in RTELI has been reported as
associated with IPF susceptibility (48-54).
The ubiquitin E3 ligase encoded by
HECTD?2 has been shown to have a
proinflammatory role in the lung, and other
HECTD?2 variants may be protective against
acute respiratory distress syndrome (55).
However, the lack of replication for these
signals in our data suggests that further
exploration of their relationship to
interstitial lung diseases is warranted.

By combining the largest available
GWAS datasets for IPF, we were able to
confirm 11 of 17 previously reported signals.
Conditional analysis at the 11p15.5 region
indicated that previously reported signals at

MUC2 and TOLLIP were not independent
of the association with the MUC5B
promoter variant. Previously reported
signals at EHMT2, OBFCI, and MDGA2
were only found to be associated in one of
the discovery studies and showed no
evidence of an association with IPF
susceptibility in the other two discovery
studies. Only the 11 signals that we
confirmed in our data were included in
subsequent analyses.

The IPF susceptibility signals at
DSP, FAM13A, 7q22.1 (ZKSCANI), and
17q21.31 (MAPT) have also been reported
as associated with COPD, although with
opposite effects (i.e., the allele associated
with increased risk of IPF being associated
with decreased risk of COPD). Spirometric
diagnosis of COPD was based on a reduced
FEV,/FVC ratio. In an independent dataset
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Table 2. Discovery and Replication Association Analysis Results for the Five Signals Reaching Significance in the Discovery Genome-Wide Association Studies
that Have Not Previously Been Reported as Associated with Idiopathic Pulmonary Fibrosis

Meta-Analysis of Discovery

Major Minor MAF Discovery Meta-Analysis Replication Meta-Analysis and Replication
Chr Pos rsid Locus Allele Allele (%) OR [95% CI] P Value OR [95% CI] P Value OR [95% CI] P Value
3 44902386 rs78238620 KIF15 T A 5.3 1.58[1.37-1.83] 5.12x 10710 1.48 [1.24-1.77] 1.43x107° 1.54 [1.38-1.73] 4.05x 10~ '*
7 1909479 rs12699415 MADIL1 G A 420 1.28[1.19-1.37] 7.15x 107 "% 1.29 [1.18-1.41] 2.27 x 1078 1.28 [1.21-1.35] 9.38 x 102°
8 120934126 rs28513081 DEPTOR A G 42.8 0.82 [0.76-0.87] 1.20 X 107° 0.87 [0.80-0.95] 0.002 0.83 [0.79-0.88] 1.93 X 101
10 93271016 rs537322302 HECTD2 C G 0.3 7.82[3.77-16.2] 3.43 X 1078 1.75 [0.81-3.78] 0.155 3.85 [2.27-6.54] 6.25 X 1077
20 62324391 rs41308092 RTEL1 G A 21 212[1.67-2.69] 7.65x 1070 1.45[1.08-1.94] 0.012  1.82[1.51-2.19] 2.24x10°"°

Definition of abbreviations: Chr=chromosome; Cl = confidence interval; MAF = minor allele frequency; OR =odds ratio; Pos = position; rsid = reference SNP cluster ID.
The minor allele is the effect allele, and the MAF is taken from across the studies used in the discovery meta-analysis.
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Table 3. Gene Expression and Spirometric Results for the Three Novel IPF Susceptibility Loci

rsid of
Sentinel
Chr Variant

3 rs78238620
7 rs12699415
8 rs28513081

eQTL FEV;, FVC FEV,/FVC
P
Annotation Lung Tissue Nonlung Tissue B [95% CI] Value B [95% CI] P Value B [95% CI] P Value

Intron (KIF15) — | KIF15 —0.011 [-0.022 to 0.000] 0.069  —0.022 [-0.033 to 0.011] 2.92x10™* 0.017 [0.006 to 0.028] 0.005

| TMEM42
Intron (MAD1L1) — | MAD1L1 —0.007 [-0.012 to —0.002]  0.011 —0.011 [-0.016 to —0.007] 1.41 X 10™°  0.008 [0.003 to 0.012] 0.005
Intron (DEPTOR) | DEPTOR ¢t DEPTOR 0.001 [-0.004 to 0.006] 0.822  —0.005 [-0.010 to —0.001] 0.045 0.011 [0.006 to 0.016] 4.22x107°

| RP11-760H22.2 ¢ RP11-760H22.2
1 KB-1471A8.1
t TAF2

Definition of abbreviations: Chr=chromosome; Cl = confidence interval; eQTL = expression quantitative trait loci; IPF =idiopathic pulmonary fibrosis; rsid =reference SNP cluster ID.
Annotation of the variant was taken from Variant Effect Predictor (VEP). A list of all variants included in the credible sets with their annotations and eQTL results can be found in Table E3. For
colocalization, only genes where there was a greater than 80% probability of colocalization between the IPF risk signal and gene expression of that gene are reported in this table. In the
colocalization column, 1 denotes that the allele that increases IPF risk was associated with increased expression of the gene, | denotes that the IPF risk allele was associated with decreased
expression of the gene, and ¢ denotes that the IPF risk allele was associated with increased expression in some tissues and decreased expression in others. Full results from the eQTL and
colocalization analyses can be found in Table E2. The spirometric results for the three novel IPF risk loci are taken from Shrine and colleagues (36) using the allele associated with increased
IPF risk as the effect allele, with B being the change in z-score units. Results for all IPF risk variants can be found in Table E6.



of 400,102 individuals, eight of the IPF
signals were associated with decreased FVC
and with a comparatively weaker effect on
FEV,. This is consistent with the lung
function abnormalities associated with IPF,
as well as the decreased risk of COPD. Of
note, only around 3% of previously
reported lung function signals (36) also
showed association with IPF susceptibility
in our study. This suggests that while some
IPF susceptibility variants might represent
genes and pathways that are important in
general lung health, others are likely to
represent more disease-specific processes.

Using polygenic risk scores, we
demonstrated that, despite the relatively
large proportion of disease susceptibility
explained by the known genetic signals of
association reported here, IPF is highly
polygenic with potentially hundreds (or
thousands) of as yet unidentified variants
associated with disease susceptibility.

A strength of our study was the large
sample size compared with previous GWAS
and the availability of an independent
replication dataset. A limitation of our study
was that the controls used were generally

younger in all studies included, and there
were differences in sex and smoking
distributions in some of the studies. As age,
sex, and smoking status were not available
for all individuals in four of our datasets, we
were unable to adjust for these variables
without substantially reducing our sample
size. However, cases and controls in the
UUS and UK datasets were matched for age,
sex, and smoking. The three novel signals
replicated in all of the discovery and
replication datasets, providing reassurance
that the signals we report are robust despite
differences between the datasets. As we had
limited information beyond IPF diagnosis
status for a large proportion of the
individuals included in the studies, we
cannot rule out some association with other
age-related conditions that are comorbid
with IPF. However, other age-related
conditions were not excluded from either
the cases or controls. For the signals near
KIF15 and MADILI, there was substantial
evidence for an association with gene
expression in nonlung tissues but not in
either of the two (nonfibrotic) lung tissue
eQTL datasets. This could reflect cell

type-specific effects that are missed when
studying whole tissue or effects that are
disease-dependent. Finally, our study was
not designed to identify rare functional
variant associations. As both common and
rare variants are known to be important in
IPF susceptibility (39), this is a limitation of
our study.

In summary, we report new biological
insights into IPF susceptibility and
demonstrate that further studies to
identify the genetic determinants of IPF
susceptibility are needed. Our new signals of
association with IPF susceptibility provide
increased support for the importance of
mTOR signaling in pulmonary fibrosis as
well as the possible implication of mitotic
spindle-assembly genes.
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of this article at www.atsjournals.org.
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