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Abstract

Schizophrenia is a debilitating psychiatric disorder with approximately 1% lifetime risk globally.
Large-scale schizophrenia genetic studies have reported primarily on European ancestry samples,
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potentially missing important biological insights. Here, we report the largest study to date of East
Asian participants (22,778 schizophrenia cases and 35,362 controls), identifying 21 genome-wide
significant associations in 19 genetic loci. Common genetic variants that confer risk for
schizophrenia have highly similar effects between East Asian and European anegstite8g

+ 0.03), indicating that the genetic basis of schizophrenia and its biology are broadly shared across
populations. A fixed-effect meta-analysis including individuals from East Asian and European
ancestries identified 208 significant associations in 176 genetic loci (53 novel). Trans-ancestry
fine-mapping reduced the sets of candidate causal variants in 44 loci. Polygenic risk scores had
reduced performance when transferred across ancestries, highlighting the importance of including
sufficient samples of major ancestral groups to ensure their generalizability across populations.

Schizophrenia is an often disabling psychiatric disorder that occurs worldwide with a
lifetime risk of about 1% It is well established that genetic factors contribute to the
susceptibility of schizophrenia. Recently, 145 genetic loci have been associated with
schizophrenia in samples of primarily European ance3(iUR), but this still represents
the tip of the iceberg with respect to common variant liability to the disorder: the highly
polygenic nature of common variation underlying this disorder predicts that there are
hundreds more loci to be discoveted

Most genetic studies of schizophrenia have been performed in EUR samples, with relatively
few studies in other populatiotts. This is a substantial deficiency for multiple reasons,
particularly as it greatly limits the discovery of biological clues about schizophrenia. For
some causal variants, ancestry-related heterogeneity yields varying allele frequency and
linkage disequilibrium (LD) patterns such that associations that can be detected in one
population may not be readily detected in others. Examples include a nonsense variant in
TBC1D4 which confers muscle insulin resistance and increases risk for type 2 diabetes,
common in Greenland but rare or absent in other popul8tisegeral Asian-specific coding
variants that influence blood lipith} a variant highly protective against alcoholism that is
common in Asian populations but uncommon elsewHeeand two loci associated with

major depressidif that are more common in the Chinese populations than£5R
(rs12415800: 45% versus 2%; rs35936514: 28% versus 6%).

Even if alleles have similar frequencies across populations, the effects of alleles on risk
might be specific to certain populations if there are prominent but local contributions of
clinical heterogeneity, gene-environment (GXE) or gene-gene (GxG) interactions. In

addition, there have been debates about differences in prevalence, symptomatology, etiology,
outcome, and course of illness across geographical régidfidunderstanding the genetic
architecture of schizophrenia across populations provides insights into whether any
differences represent etiologic heterogeneity on the illness.

Finally, polygenic risk score (PRS) prediction is emerging as a useful tool for studying the
effects of genetic liability, identifying more homogeneous phenotypes, and stratifying
patients. However, previous studies have shown that prediction accuracy decays with
increasing genetic divergence between the risk allele discovery and target #afasEte

risk predicted, measured &5, was only 45% as accurate in EAS as in EUR individuals
when computed from GWAS of Europe&fsThese differences can be explained by

Nat GenetAuthor manuscript; available in PMC 2020 May 18.



siduosnuely Joyiny sispund ONd adoin3 g

siduosnuely Joyny sispund ONd adoin3 g

Lam et al.

Results

Page 3

ancestry-related differences in allele frequencies, LD, and other f&ctongortantly, the
applicability of training data from EUR studies to those of non-European ancestry has not
been fully assessed, leaving uncertainty as to the biological relevance of discoveries made in
EUR samples for non-Europedhs

Schizophrenia genetic associations in East Asian populations

To our knowledge, this is the first study to combine multiple samples with schizophrenia
across East Asia (EAS) to systematically examine the genetic architecture of schizophrenia
in individuals of EAS ancestry. We compiled 22,778 schizophrenia cases and 35,362
controls from 20 samples from East Asia (Supplementary Table 1). Individual-level
genotypes were available from 16 sample collections (Supplementary Table 1), on which we
performed quality control, imputation and association tests (Methods and Supplementary
Table 2). Two sample collections (TAI-1 and TAI-2) were trio-based and pseudo-controls
were used. Four sample collections made available summary statistics for 22K-31K selected
variants (Methods) that had been analyzed in published st&di@smpared with the latest

study using only Chinese individu@lur study has about twice the sample size, and is

much more diverse.

We used a two-stage study design (Supplementary Table 1a). Stage 1 included 13 sample
collections for which we had individual genotype data (13,305 cases and 16,244 controls
after quality control). Stage 2 incorporated the remaining 7 sample collections: full genotype
data from 3 sample collections that arrived after the stage 1 data freeze, and summary
statistics (for selected variants) from 4 sample collections (Supplementary Table 1). Meta-
analyses across stage 1 samples and across all EAS samples were conducted using a fixed-
effect model with inverse-variance weighting. QQ plots (Supplementary Fig. 1) showed no
inflation of test statistics (indicating that ancestry effects have been well controlled)gwith
=1.14,A1000= 1.01, and LD Score regresst8ifLDSC) intercept = 1.0145 + 0.011 using

stage 1 samples.

Combining stages 1 and 2, we found 21 genome-wide significant associations at 19 loci
(Table 1, Fig. 1a, Supplementary Table 3, and Supplementary Data Sets 1 and 2), an
additional 14 associations over the most recent schizophrenia genetic study of Chinese
ancestr§. Most associations were characterized by marked differences in allele frequencies
between the EAS and EUR samples: for 15 of 21 loci, the index variants had a higher minor
allele frequencies (MAF) in EAS than EUR. The higher allele frequency potentially confers
better power to detect associations in EAS. For example, we identified a locus (Fig. 1b) with
the top association (rs374528934) having strong evidence in PAS & 1011) but not in

EUR using the stage 1 samples. rs374528934 has MAF of 45% in EAS but only 0.7% in
EUR. No other variant in this locus is significantly associated with schizophrenia in EUR.
This locus contain€ACNAZDZ2(encoding the calcium chanreks-2 subunit) associated

with childhood epileps$*25 and to which the anticonvulsant medication gabapentin binds,
suggesting a path for further therapeutic investiga®iorhis finding also adds new evidence

to the calcium signaling pathway suggested to be implicated in psychiatric di®fders
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Genetic effects are consistent across populations

For causal variants, heterogeneity of genetic effects across populations could arise from
clinical heterogeneity, differences in pathophysiology, environmental differences that change
the genetic effects (GxE interaction), or interaction with other genetic factors that may differ
in frequency across populations (GxG interaction). Heterogeneity in estimating genetic

effect sizes may also be a consequence of differential correlation across genetic markers in a
region, when investigating variants that are tagging the causal variant but do not exert any
influence on the trait in question. Such heterogeneity does not reflect biological differences,
but is rather statistical in nature. While it is assumed that biological pathways underlying
complex human disorders are generally consistent across populations, genetic heterogeneity
has been observed in other genetically complex dis@fidiise large EAS sample allowed

us to systematically explore the heterogeneity of genetic effects influencing liability to
schizophrenia across two major world populations.

Using LDS@3 and common variants (MAF > 5%) outside of the MHC region, we found

that the SNP-heritability of schizophrenia is very similar in EAS (0.23 + 0.03) and EUR

(0.24 £ 0.02) (Methods and Supplementary Fig. 2a). Using the same set of variants, we
found that the genetic correlation for schizophrenia between EAS and EUR was
indistinguishable from 17§ = 0.98 + 0.03) (using POPCORR a method designed for
cross-ancestry comparisons). This finding indicates that the common variant genetic
architecture of schizophrenia outside of the MHC region is highly consistent across EAS and
EUR.

Genetic correlations between schizophrenia and 11 other psychiatric disorders and behavior
traits also showed no significant differences when estimated within EUR and across EAS-
EUR (Supplementary Fig. 2b). In agreement with recent reéfofiswe observed

significant positive genetic correlations for schizophrenia with bipolar disorder, major
depressive disorder, anorexia nervosa, neuroticism, autism spectrum disorder, and
educational attainment. We observed significant negative correlations with general
intelligence, fluid intelligence score, prospective memory, and subjective well-being.

We used partitioned LDS€to look for heritability enrichment in diverse functional

genomic annotations defined and used in previous publicafiéhéviethods and
Supplementary Fig. 2c,d). Using EAS stage 1 samples, we observed significant enrichment
(after Bonferroni correction) in regions conserved across 29 mammals (Conserved
LindbladTor#®). No other annotations were significantly enriched, and there were no
significant differences between EUR-only and EAS-only enrichméhts0(16, two-sided
pairedttest).

We identified gene-sets that are enriched for schizophrenia genetic associations using
MAGMA 37 and gene-set definitions from a recent schizophrenia exome sequencir§ study
(Methods). Despite large differences in sample size and genetic background, the gene-sets
implicated in EAS and EUR samples were highly consistent: we observed no significant
differences between gene-set ranks using the EAS samples from the ranks using EUR
samples P= 0.72, Wilcoxon test, two-sided). In addition, 9 of the top 10 gene-sets

Nat GenetAuthor manuscript; available in PMC 2020 May 18.



siduosnuely Joyiny sispund ONd adoin3 g

siduosnuely Joyny sispund ONd adoin3 g

Lam et al.

Page 5

identified using the EAS samples are also among the top 10 gene-sets identified using EUR
samples (Supplementary Fig. 3).

A study of EUR individuals suggested that common schizophrenia alleles are under strong
background selectidnWe performed two analyses and found that the natural selection
signatures, including positive and background selections, are consistent in schizophrenia-
associated loci across EAS and EUR populations. First, we compared the signatures in the
top 100 associated loci in EAS to those in EUR. Among the selection signatures we
calculated (Methods), none showed a significant difference across populations
(Supplementary Fig. 4&> 0.05 for all panels, two-sidedest). We next asked whether the
population differentiation drives schizophrenia variants to have different effects in different
populations. Using 295 autosomal variants that are genome-wide significant in EAS, EUR or
EAS-EUR combined samples, we did not observe a correla&fon (.003, Supplementary

Fig. 4b) between the population differentiation (measuref;pyand the heterogeneity of

effect size (measured by IggP?value from the heterogeneity test across EAS and EUR).

As a further test, we examined whether the effect size estimates from EUR differ from those
from EAS. We performed a heterogeneity test (Cochran's Q) for the most significant variants
in the 108 published schizophrenia-associated.ldenong them, 7 variants showed

significant heterogeneity after Bonferroni correction (Supplementary Table 4). Postulating
that this might in part be driven by the inflation of EUR estimates as a result of the winner’s
curse, we applied a correction for the winner’s ctsafter which none of the variants

showed evidence for significant heterogeneity, and?halues from the heterogeneity test
follow a uniform distribution £= 0.10, Kolmogorov—Smirnov test, two-tailed).

Lastly, we evaluated the heterogeneity of schizophrenia genetic effects within EAS samples.
None of the EAS associations showed significant heterogeneity across EAS samples
(Supplementary Table 3). Using their principal components (PC), we further grouped the
samples into the Northeast Asian, Southeast Asian and Indonesian subpopulations
(Methods). We then performed a heterogeneity test (Cochran's Q) and found no significant
heterogeneity among the three subpopulations (Supplementary Fig. 5).

Schizophrenia genetic associations from the meta-analysis of EAS and EUR

As the genetic effects observed in EAS are largely consistent with those observed in EUR,
we performed a meta-analysis including the EUR and EAS samples (stages 1 and 2) using a
fixed-effect model with inverse-variance weighttfigrhe EUR + EAS samples in this

analysis (56,418 cases and 78,818 controls) included all samples of EUR ancestry (33,640
cases and 43,456 controls) from the previous publicatidth the exclusion of three

samples of EAS ancestry and the deCODE samples (1,513 cases and 66,236 controls),
which only had summary statistics for selected variants. The three EAS samples (IMH-1,
HNK-1 and JPN-1) excluded from EUR samples were included in our EAS stage 1.

We identified 208 independent (both in EAS and EUR) variants associated with
schizophrenia across 176 genetic loci (Fig. 2b and Supplementary Tables 5 and 6), among
which 53 loci were novel (not reported in re¥s:7-8. Of the 108 schizophrenia-associated

loci reported in the previous EUR st#d$9 remained significant in this study
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(Supplementary Table 4). Using simulations with a correction for winner's3€uvse

found that this is consistent with an expected over-estimation of the effect sizes due to the
winner's curse in the previous study, rather than implying the 19 loci no longer significant in
this study were false-positives (Supplementary Note). In addition, the deCODE samples
(1,513 cases and 66,236 controls) were not included in the present study, causing the power
for loci that had low MAF in EAS to drop.

Population diversity improves fine-mapping

Causal variants in complex genetic disorders are defined as those that mechanistically
contribute to the disorders, but this does not imply that the variant in isolation is likely to
result in the disordét42 Due to LD, disease-associated loci from genome-wide association
studies usually implicate genomic regions containing many associated variants. A number of
approaches allow for the associated variants to be refined to a smaller set of the most
plausible (or credible) candidate causal varf&t€ Loci implicated in psychiatric

disorders usually have small effect sizes and as a result have generally poor performance
using such approactte?

Diversity in genetic background across populations can be used to improve fine-mapping
resolutior?’. Here we demonstrate that resolution can be improved by exploiting differences
in the patterns of LD between causal (directly associated) and LD (indirectly) associated
variants. Based on the premise that genetic effects are highly consistent across populations,
the causal variants will have consistent effects across populations, whereas non-causal
variants can have inconsistent effects due to population-specific LD patterns. We therefore
expect causal variants to have greater statistical significance and less heterogeneity in trans-
ancestry meta-analysis compared to other alleles that are indirectly associated via LD
(Supplementary Fig. 6). Using an algorithm based on this expectation (Methods), we fine-
mapped 59 schizophrenia associations that reached genome-wide significance in the EUR
and stage 1 EAS combined meta-analysis, had MAF > 0.01 in both EAS and EUR, and for
which we had >95% coverage of common variants (MAF > 1%) with imputation INFO >

0.6 (Supplementary Table 7). The MHC region was excluded from the fine-mapping analysis
due to its long range LD. Stage 2 EAS samples were excluded because not all had full
genome coverage, which confounds the fine-mapping outcome (Methods).

Results from this EAS-EUR trans-ancestry approach improved upon those using only EUR,
with 44 out of 59 loci mapped to a smaller number of candidate causal variants
(Supplementary Table 7). For example, a locus on chromosome 1 (238.8-239.4 Mb), which
initially contained 7 potentially causal variants based on a published fine-mapping fiethod
and EUR samples only, was resolved to a single variant, rs11587347, with 97.6% probability
(Fig. 3a). This variant showed strong association in both populations, while the other 6
variants are equally associated in EUR but not in EAS (Fig. 3b,c). Over all associations, the
median size of the 95% credible set, defined as the minimum list of variants that were >95%
likely to contain the causal variant, dropped from 49 to 30, and the number of associations
mapped to § variants increased from 2 to 7 (Fig. 3d). The number of associations mapped
to a single variant with greater than 50% probability increased from 5 to 8, and median size
of the genomic regions the associations mapped decreased from 154 kb to 94 kb.
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Transferability of genetics across populations

For genome-wide significant loci that individually explain >0.05% of the variance in
schizophrenia liability in either ancestry, we compared the variance explained across EAS
and EUR. Variance was approximated as 2ffLleg(OR)?/(n?/3) (ref.*®) (Supplementary

Fig. 7). Although these variants most often have comparable odds ratio across populations,
their allele frequencies can differ. Variance explained, combining the effect size (OR) and
prevalence of the risk allelé){can be regarded as an approximate measure of the
importance of a causal variant in a population. In our analysis, most of the trans-ancestry
differences in variance explained is explained by allele frequency differences. One of the
implications of this observation, as suggested in recent std20 is that even if the risk
alleles and effect sizes are primarily shared across populations, the disease predictive power
of individual alleles, and of composite measures of those risk alleles such as PRS, may not
be equivalent across populations.

Here we evaluate this empirically. We assessed how much variation in schizophrenia risk can
be explained in EAS using both EAS stage 1 and EUR training data. Using a standard
clumping approach, we first computed PRS using a leave-one-out meta-analysis approach
with EAS summary statistics (Methods), which explained ~3% of schizophrenia risk using
genome-wide variants on the liability scaf & 0.029 atP= 0.5). In contrast, when EUR
summary statistics were used to calculate PRS in the EAS samples, a maximum of only ~2%
of schizophrenia risk was explaine@?(= 0.022 atP= 0.1) despite a greater than 3-fold

larger EUR effective sample size (Fig. 4 and Supplementary Fig. 8). The variance explained
across varioug?value thresholds provides a proxy for the signal-to-noise ratio, which

differs by training population—relative to the EUR training data, variants from the EAS
training data with more permissiv@values improve the EAS prediction accuracy. These

results indicate that larger EAS studies will be needed to explain similar case/control
variance as currently explained in EUR individuals. Further, although individual loci

typically have the same direction and similar magnitude across populations, aggregating
variants that differentially tag causal loci across populations for genetic risk prediction

results in considerable variability in prediction accuracy.

Discussion

To date, most large-scale psychiatric genetics studies have been based on samples of
primarily EUR ancest To increase global coverage, we compiled the largest non-
European psychiatric genetics cohort to date and leveraged its size and diversity to provide
new insights into the genetic architecture of schizophrenia. This study includes all available
major genotyped schizophrenia samples of East Asia ancestry, and presents analyses that
have not previously been performed with sufficient power in psychiatric genetics. Although
the first schizophrenia genetic associations from two much smaller studies of Chinese
ancestry1-52were not genome-wide significant in the present EAS analysis, several loci
from their subsequent better powered stucffiegsached genome-wide significance.

Consistent with a study using EUR samp|ege note that this is consistent with the

expected inflation of effect size from small studies rather than suggesting loci in previous
studies are false positives.
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When a single population is used to identify the disease-associated loci, the discovery is
skewed towards disease-associated variants that have greater allele frequency in that
population (Supplementary Fig. 9). When multiple populations are used, disease-associated
variants are equally represented across the allele frequency spectrum in these populations
(Supplementary Fig. 9). This demonstrates that including global samples improves power to
find disease associations for which the power varies across populations. In this study, for
example, more EUR than EAS samples would be required to detect around half of the new
loci, as the MAF is higher in EAS than in EUR in these loci.

For traits like body mass index and autoimmune diseases, we observed heterogeneity across
populations in genetic effeé>3 which may point to interactions between genetic
associations and environment factors and/or other genetic loci. In contrast, for
schizophrenia, we did not find significant heterogeneity across EAS and EUR ancestries.
Analyses of genetic heritability, genetic correlation, gene-set enrichment and natural
selection signatures converge on the conclusion that the schizophrenia biology is
substantially shared across EAS and EUR ancestries (with MHC as a potential exception,
discussed later). This remarkable genetic correlatipn 0.98) demonstrates that
schizophrenia risk alleles operate consistently across different ethnic and cultural
backgrounds, at least across EAS and EUR ancestries. Given that the main putative
environmental risk factors (migration, urbanicity and substance misuse) differ across
populations, this finding also suggests any specific genetic liability to schizophrenia acting
via these routes is minimal.

We note that a direct comparison of the effect sizes estimated in EAS with those estimated in
EUR has reduced accuracy as we do not know the exact schizophrenia causal variants. This
is further complicated by inflation in effect size estimates due to the winner’s curse, which
are of different magnitudes due to the sample size. Increasing the sample size, especially in
those of non-European ancestries, will reduce the bias and enable a better isolation of causal
variants, leading to a more precise comparison of the genetic effect size across populations.

The major histocompatibility complex (MHC) hosts the strongest schizophrenia association
in EURP4. In this study, we did not find a significant schizophrenia association in MHC in
EAS. An earlier EUR study mapped the MHC associations to a set of variants (in LD) at
both distal ends of the extended MHC (lead variant: rs13194504) and the complement
component 4C4). None of these associations was significant in EAS in this study, which is
consistent with previous studies of the Chinese andés®/°2 This, however, does not
necessarily suggest population heterogeneity in their pathophysiological effect, as we
attribute the disappearance of MHC signals partially to low frequencies. rs13194504 has
MAF < 1% in EAS compared with 9% in EUR, and théBS allele is extremely

uncommon in samples from China and K8fe¥. Another reason may be the EUR-specific
LD. In EUR, multiple protective alleles that contribute to the MHC associations are all on
the same haplotype across about 6 Mb, due to an extremely long and EUR-specific
haplotype that generates LD patterns at 5-Mb scale. This may also be the reason that
association signals span so many Mb of genome, and the aggregate association signal (at
variants that are in partial LD to multiple signals) is stronger than the signals at the
individual associations.

Nat GenetAuthor manuscript; available in PMC 2020 May 18.
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Two recent studies using much smaller samples with individuals of Chinese ant@stries
reported variants in MHC significantly associated with schizophrenia (rs115070292 and
rs111782145, respectively). The two studies did not replicate each other’s findings as the
reported risk alleles are in very weak LB £ 0.07) and are not in LD with the EUR MHC
associations. rs115070292, from ¥tia/’, is more frequent in EAS (12%) than in EUR

(2%) with P= 10° using 4,384 cases and 5,770 controls of Chinese ancestry. This variant
was not significantly associated in our stuf=(0.44) even though some samples from that
earlier study were included in the current study (BJM-1, 1,312 cases and 1,987 controls).
The OR estimated from these shared samples marginally differs from that estimated using
all EAS samples”R= 0.018), and this association showed marginally significant
heterogeneity across all EAS sampl@s(0.039). Similarly, we did not replicate the
association at rs111782145 fromésial (P =0.47), again despite sample overlap (2,555
cases and 3,952 controls).

The lack of replication across all these studies reflects the complexity of the MHC region
and the limited power for the MHC signals in EAS. As demonstrated in previous studies of
complex disorders, it is still possible that when sample size increases for the EAS, genome-
wide association within the MHC region could emerge. A study designed for the MHC
region, such as in re?®, will be necessary to delineate the contribution of MHC to
schizophrenia in EAS individuals.

Genetic associations usually implicate a large genomic region and thus it can be challenging
to map their molecular functions. We designed a novel algorithm to leverage the population
diversity to fine-map schizophrenia associations to precise sets of variants. Using this
algorithm, we reduced the number of candidate variants associated with schizophrenia and
facilitated the functional interpretation of these associations. Our algorithm only maps the
primary association signals in a locus because the power to fine-map signals beyond that,
especially in the EAS samples, is still limited at the current sample size for schizophrenia.
We also made an assumption that there is only one causal variant driving the primary
association signal. In the scenario that there is a haplotypic effect driven by multiple variants
in strong LD, our approach will split the posterior probability among these variants. We
expect the causal variants to have non-trivial probability so that they will still be reported in
the credible set for future studies. Imputation quality plays a key role in fine-mapping as the
power to map the causal variant decreases if it is poorly imputed. We restricted our study to
genetic associations that have MAF > 1% in both EAS and EUR populations to ensure the
imputation quality. For these associations, we found no major change in the size of the
credible sets when the EUR samples were imputed using the more powerful Haplotype
Reference Consortium (HRC) paffelHowever, the HRC reference panel, with its much

larger sample size and better characterization of low frequency and rare variants, could
improve fine-mapping resolution for variants with MAF <%

Finally, this large-scale EAS sample allowed us to empirically evaluate the congruence of
the genetic basis of schizophrenia between EAS and EUR. In spite of a cross-population
common variant genetic correlation being highly consistent, we found that polygenic risk
models trained in one population have reduced performance in the other population due to
different allele frequency distributions and LD structures. This highlights the importance of
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including all major ancestral groups in genomic studies both as a strategy to improve power
to find disease associations and to ensure the findings have maximum relevance for all
populations.

Methods

Overview of samples

EAS samples, full-genome— Genome-wide genotype data was obtained from 16

samples from East Asia (Supplementary Table 1). Two of these samples (TAI-1 and TAI-2)
had parent-offspring trios and were processed as case/pseudo-controls. DSM-IV was used
for diagnosing all schizophrenia cases in these samples, except for the trios (TAI-1 and
TAI-2), for which DIGS was used. All samples were processed according to quality control
(QC) procedures reported in réfwith details reported in following sections. After QC,
genotypes were phased and imputed against the 1000 Genomes Project Phase 3 reference
panef. Principal component analysis (PCA) was conducted across samples via imputed best
guess genotypes to identify and remove overlapping samples across datasets, cryptic related
samples and population outliers. Eight PCs that were associated to case-control status were
included in univariate logistic regression to control for the population stratification in each
sample.

EAS samples, selected variants— Summary statistics were obtained for a set of

variants from four EAS samples (BJM-2, BJM-3, BJM-4, BIX-5) that had been analyzed in
published studi€s, The summary statistics included odds ratio, standard error, reference
and tested alleles for variants that h&# 10° in either stage 1 or the meta-analysis
combining stage 1 and EUR samples. Between 22,156 and 31,626 variants were available
after the exclusion of strand ambiguRigariants (Supplementary Table 2).

EUR samples— Genotypes for EUR schizophrenia patients and controls were obtained

from the Psychiatric Genomics Consortium as reported if.rafl samples of EUR

ancestry were included in this study except for the deCODE samples (1,513 cases and
66,236 controls). We also note that three sample collections of EAS ancestry reported in ref.
2 were not included in the EUR samples in our analysis but were included in the EAS
samples (IMH-1, HNK-1 and JPN-1). The same procedures used in processing EAS samples
were applied to the EUR samples.

EAS subpopulations— To investigate the heterogeneity of schizophrenia genetics effects
within EAS, we grouped the samples based on their principal components. Other than
Indonesians (UWA-1), which fall into their own subpopulation, samples were grouped into
Northeast Asian subpopulation if their average PC2 was significantly greater than 0 (BIX-2,
BJM-1, XJU-1, JPN-1, KOR-1) and into Southeast Asian subpopulation if their average PC2
was significantly less than 0 (TAI-1, TAI-2, IMH-1, IMH-2, HNK-1, BIX-3). The remaining
samples (UMC-1, SIX-1, BIX-1, BIX-4) were not included in subpopulations. The
heterogeneity test (Cochran’s Q) across subpopulations, calculated pairwise and in three-
way, was conducted using the RICOPILI pipefthe
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Quality control

Quality control procedures were carried out as part of the RICOPILI pipe(ineps:/
sites.google.com/a/broadinstitute.org/ricopili/hgmwith the following steps and

parameters: (1) excluding variants with call rate below 95%; (2) excluding subjects with call
rate below 98%; (3) excluding monomorphic variants; (4) excluding subjects with inbred
coefficient above 0.2 and below -0.2; (5) excluding subjects with mismatch in reported sex
and chromosome X computed sex; (6) excluding variants with missing rate differences
greater than 2% between cases and controls; (7) subsequent to step 6, excluding variants
with call rate below 98%; and (8) excluding variants in violation of Hardy-Weinberg
equilibrium (P< 10° for controls orP< 1010 for cases). Numbers of variants or subjects
removed in each step are reported in Supplementary Table 2.

Phasing and imputation

All datasets were phased using SHAPEI@nd IMPUTES3 using regular steps and

parameters. Additional processing for trios (TAI-1 and TAI-2) was carried out such that
case/pseudo-controls were identified and imputed. All samples were imputed to the 1000
Genomes Project Phase 3 reference faf2/504 subjects, including 504 EAS subjects).
Imputation procedures resulted in dosage files and best guess genotypes iRRiitgry

format. The former was used for subsequent association analysis, and the latter was used in
the PCA and PRS analyses.

Sample overlaps, population outliers and population stratification

We used Eigenstiétto calculate the principal components for all the samples using the best
guess genotypes from imputation (Supplementary Fig. 10b). We computed the identity-by-
descent matrix to identify intra- and inter- dataset sample overlaps. Samples with pi-hat >

0.2 were extracted, followed by Fisher-Yates shuffle on all samples. The number of times
with which each sample was related to another sample was tracked, and samples that were
related to more than 25 samples were removed. When deciding which samples to retain,
trios were preferred, followed by cases, and thereafter a random sample for each related pair
was removed, resulting in removal of 704 individuals.

To identify population outliers, k-means clustering was conducted using the first 20 PCs

from PCA and covariates representing each of the 13 stage 1 samples. Guided by results of
k-means clustering and visual inspection of PCA plots, 46 individuals were identified as
outliers and were excluded. Further population-level inspection was carried out by merging
the 1000 Genomes Project Phase 1 reference samples with stage 1 samples and conducting
PCA (Supplementary Fig. 10a). Using similar approaches reported above, no further
samples were excluded as population outliers.

Eight PCs that were associated with case/control statusPxith.2 were used as covariates
for association analysis in each sample (PCs 1, 4, 5, 6, 8, 9, 15, and 19). QQ plots
(Supplementary Fig. 1) showed that the population structure has been well controlled.
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Association analysis and meta-analysis

Association analysis was carried out for each sample using PRIl genotype dosage
from imputation. Only variants having imputation INFO 0.6 and MAF =1% were

included in the analysis. We performed logistic regression with PCs identified in the prior
subsection as covariates to control for population stratification within each study. Fixed-
effect meta-analysi¢, weighted by inverse-variance, was then used to combine association
results across samples. Meta-analysis for European samples were conducted in the same
matter. In order to find independent schizophrenia associations in both EUR and EAS
populations (Supplementary Table 5), we performed LD clumping twice using the 1000
Genomes Project Phase 3 EUR and EAS reference panels, respectively (with default
parameters in RICOPILI).

Chromosome X analysis

Chromosome X genotypes were processed separately from autosomal variants. Quality
control was conducted separately for males and females, using similar quality control
parameters as above. Cases and pseudo-controls were built out of the trios. Phasing and
imputation were then performed on males and females separately for each sample, followed
by logistic regression with the same PCs, and meta-analysis combining samples (same
parameters as the autosomal analyses). Results were generated for EAS stage 1 samples and
EUR-EAS combined samples (excluding BIX-1, BIX-2 and BIX-3). EAS stage 2, BIX-1,

BIX-2 and BIX-3 samples do not have chromosome X data and were therefore not analyzed.

Genetic correlation and heritability

Schizophrenia heritabilities in the observed scale for samples of EUR and EAS ancestry
were estimated from their summary statistics using L¥¥S@e converted the heritabilities

in the observed scale to liability scale assuming the schizophrenia population prevalence at
1%. The LD scores were pre-computed from the 1000 Genomes Project Phase 3 reference
panel in EUR and EAS respectivelyitps://github.com/bulik/ldgc Only autosomal variants
having MAF greater than 5% in their respective population were included in the analysis,
and variants in the MHC region were not included due to the long-range LD.

We computed the genetic correlations between schizophrenia and other traits within EUR
and across EUR and EAS. EUR and EAS (stage 1 only) summary statistics for autosomal
variants from this study were used as schizophrenia genetic association inputs for their
respective populations. Traits tested included schizopHtdijmolaf8, major depressiéf,
anorexia nervod4, neuroticism & subjective well-being (SWB) autism spectrum disorder
(PGC 2015 release, availablendtip://www.med.unc.edu/pgcattention deficit hyperactivity
disorder (with samples of non-European ancestry removed, availdliip: At
www.med.unc.edu/pgé?, education attainmeft general intelligenc®, fluid intelligence
score and prospective memory result (using individuals from UK Biolbeiuk/
www.nealelab.is/uk-biobankOnly variants having MAF greater than 5% were available
and included. Variants in the MHC region were excluded from the analysis. Genetic
correlations within EUR were computed using LDSC with LD scores pre-computed on the
1000 Genomes Project Phase 3 reference panel (503 EUR subjects). Genetic correlations
across EUR and EAS were computed using POPCBRDOPCORN uses a Bayesian
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approach which assumes that genotypes are drawn separately from each population and
effect sizes follow the infinitesimal model. The inflationasgcores could then be modelled

and a weighted likelihood function which was maximized to find heritability and genetic
correlation. Genetic correlations in POPCORN were computed in the “genetic effect” mode,
which estimates the correlation based on the LD covariance scores and effect sizes from
summary statistics.

Partitioned heritability

Partitioned LDS@*was conducted to look for heritability enrichment in diverse annotations
using EAS (stage 1) and EUR autosomal variants (summary statistics), respectively. LD
scores for each annotation were computed using a combination of PLANE LDSE3

using the 1000 Genomes Project EAS and EUR subjects, respectively. We used baseline
annotation®* and additional annotations including chromatin accessibility in brain dorso-
lateral prefrontal cortex through the Assay for Transposase-Accessible Chromatin using
sequencing peaks (ATAC Bryo®s) conserved regions located in “ATAC Bryois” (ATAC
Bryois & Conserved LindbladToP), and introgressed regions from Neanderthal
(Neanderthal Vernof}. Variants can be included in multiple annotations. Multi-allelic
variants were removed.

Gene-set analysis

We performed gene and gene-set based tests using MAGX8anome-wide summary

statistics for autosomal variants from EAS, EUR and EAS+EUR meta-analyses were used in
this analysis. Variant-to-gene annotation was performed using RefSeq NCBI37.3 with a
window of 5 kb upstream and 1.5 kb downstream. LD was taken from 1000 Genomes
Project EAS, EUR and EUR-EAS panels, respectively. The gene-Basddes were

computed using~test and multivariate linear model, and competitive tests were used for
gene-set analysis. Seventy gene-sets were selected and tested in this study (Supplementary
Table 8), including those from the Molecular Signatures Datdfaséated to psychiatric
disease®’7."8and from ‘gwaspipelinelttps://github.com/freeseek/gwaspipeline/blob/
master/makegenes)siGene-sets were ranked for EUR, EAS and EAS+EUR analyses,
respectively. The top-ranking gene-sets were compared across analyses to identify common
schizophrenia pathways. Additionally, Wilcoxon sign rank tests was conducted to compare
the ranking of gene-sets between the EUR and EAS datasets.

Natural selection analysis

We used the CHB and CEU panels from the 1000 Genomes Project Phase 3 to investigate
the natural selection signatures in schizophrenia-associated loci for EAS and EUR
populations, respectively. We used the following selection signatures, with their sensitivity
to timeframes discussed in Rfintegrated Haplotype Score (iIH$AS captures the

haplotype homozygosity at a given variant. We calculated iHS using the R rehh géckage
Genetic distance between variants was determined using HapMap phase Il genetic map.
Ancestral and derived alleles were obtained from the 1000 Genome project, which inferred
the ancestral state using six primates on the EPO (Enredo-Pecan-Ortheus) pipeline. Only
biallelic variants that have MAF >5% were included in the analyéisoss Population
Extended Haplotype Homozygosity (XPEFA)XPEHH detects variants under selection in
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one population but not the other. We used CEU as the reference panel when calculating
XPEHH for CHB and vice vers&ixation index (Fst)Fst measures the population
differentiation due to genetic structure. We estima#ieflising the Weir and Cockerham
approachl, which is robust to sample size effecsolute derived allele frequency

difference (JADAF})|ADAF| measures population differentiation between CHB and CEU
populations.Composite of Multjple signals (CMZ)85 CMS combines iHS, XPEHHEst

and |ADAF|. As a result, CMS potentially has better power to detect the selection signature.

For each varianGMSs = []_ , pi, in which p; is the rank of the variant using methd

sorted by increasinfgtvalues, divided by the total number of varialsstatisticB statistic
measures the background selection. We calculated the B statistic a§4n ref.

Trans-ethnicity fine-mapping

For a disease-associated genetic locus, fine-mapping defines a “credible set” of variants that
contains the causal variant with certain probability (e.g., 99% or 95%). Bayesian fine-
mapping approach43.86.87have been widely used for studies of a single ancestry. Here,

we extended a Bayesian fine-mapping appréagibefining credible sets, Methods) to

studies of more than one ancestry. Intuitively, the extension was achieved through a prior
calculated from the heterogeneity across ancestries, such that variants that have different
odds ratio across populations will have a smaller prior probability to be the causal variant.

As in several previous studfe®® we restricted our fine-mapping analysis to the primary
association signal in each locus. This is done by takwayiants that are in LD with the
lead variant (the variant having the most significBwtlue) with/2 > 0.1 in EUR or EAS.
AssumeD represents the data including the genotype matfior the Pvariants and disease
Y for Nindividuals, ang represents a collection of model parameters. We define the
model, denoted by, as the causal status for tRgariants in locus: A { g}, in which g is
the causal status for varightg = 1 if the variany is causal, and; = 0 if it is not. For the
primary association signal and under the presumption that the causal variant is the same
across all ancestries, one and only one oftiariants is causakj g =1. For convenience,
we defined; as the model in which only varighis causal, andlg as the model in which no
variant is causal (null model). The probability of modg(where varianf is the only causal
variant in the locus) given the dat@)(can be calculated using Bayes's rule:

PrlA.
o] <o -

With the steepest descent approximation, the assumption of a flat prior on the model
parametersfl), and the assumption of one causal variant per locus (equation 2&),ref.
Pr(A;| D) can be approximated as:

Pri4))

1
Pr(D)’ @

Pr(AJ.|D) ~ Pr( D| A, BN
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in which NVis the sample size. We denqtjeas the;y2 test statistic for variant which can

be calculated from thvalue from the meta-analysis combining EAS and EUR samples.
Using equation 3 in refS, we have:

2

Pr(D|A,3,) ~ exp(% Pr(D]A, By)- @

Pr(A)) is the prior probability that variajits causal. We have shown that schizophrenia
causal variants have consistent genetic effect across populations. Therefore, we model the
prior probability as a function of the heterogeneity measuréd in

Pr(A j) =1- 15 . €)

Using equations 2 and BfA, | D) in equation 1 can be calculated as

—-1/2

2
X ~
<5 (1 -1 ?)1\1;(0) Pr(D|Ag. By)

Pr(Ale) R exp

We only use stage 1 samples in fine-mapping so the variants have the same sample size
(assuming all variants have good imputation quality). Therefér¥2, £fD) and
Pr(D|A0, B,) can be regarded as constants,

2
‘i
Pr(Aj|D) o eXp| -

-4

The normalized causal probability for varigig then

P(Aj) = Pr(AJ.|D)/§ Pr(AID)

And the 95% credible set of variants is defined as the smallest set of vaSjanish that

ZA]E SP(AJ.) >95% .

Polygenic risk score analysis

We constructed PRS using a pruning and thresholding approach in a study set of EAS
individuals with training summary statistics from either EUR or EAS individuals. In the

former case, we used summary statistics from all EUR individuals in this study; in the latter
case, we used a leave-one-out meta-analysis approach across the 13 stage 1 samples to build
PRS.
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For the EUR training data, we extracted EUR individuals (FIN, GBR, CEU, IBS, TSI) from
1000 Genomes Proj@étPhase 3 as an LD reference panel to greedily clump variants. For
the EAS LD reference panel, we created two panels: (1) an analogous EAS panel (CDX,
CHB, CHS, JPT, KHV) from 1000 Genome Proféd?hase 3 (Fig. 4 and Supplementary

Fig. 7c,d), and (2) an LD panel from best guess genotypes from each cohort in the study
(Supplementary Fig. 7a,b,e,f). For both EAS and EUR prediction sets, we filtered to variants
with a MAF greater than 1% in each respective population and removed indels and strand
ambiguous variants. We subset each list of variants to those in the summary statistics with an
imputation INFO > 0.9. We then selected approximately independent loci at v&yaige
thresholds or top-rankingvariants using an LD threshold 8f<0.1 in a window of 500
kilobase pairs in PLINR® with the --clump flag. We treated the MHC with additional

caution to minimize overfitting in this region, selecting only the most significant variant
from the HLA region. To profile variants, we multiplied the log odds ratio for selected
variants by genotypes and summed these values across the genome if°RIsiNg the --
score flag for each of the 13 EAS stage 1 samples. We assessed case/control variance
explained by computing Nagelkerke’s and a liability-scale pse®das in Leeet a8 by
comparing a full model with the PRS and 10 principal components with a model excluding
the PRS. Results of PRS were presented in two ways the first we selected SNP based on
GWAS Rvalue thresholdsAy) (i.e. 5e-8, 1e-6, 1e-4, 0.001, 0.001, 0.05, 0.1, 0.2, 0.5, 1) and
Pvalue ranks. In the latter, top ranked SNPs that exist between both EUR and EAS
summary statistics were selected based on the SNP rank thresholds (i.e. top 100, 1,500,
5,000, 15,000, 25,000, 35,000, 50,000, all).
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Editorial summary

Genome-wide meta-analysis with individuals of East Asian or European ancestry
identifies 176 loci associated with schizophrenia. Despite consistent genetic effects
across populations, polygenic risk models trained in one population have reduced
performance in the other population.
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cases, 43,456 control$, Number of variants in the 95% credible set using the trans-
ancestry (EAS+EUR) and published fine-mapping approaches (EUR only).
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Genome-wide significant loci in the East Asian populations.

Table 1

SNP
rs4660761
rs848293
rs17592552
rs2073499
rs76442143
rs10935182
rs4856763
rs13096176
rs6832165
rs13142920
rs4479913
rs320696
rs11986274
rs2612614
rs4147157
rs10861879
rs1984658
rs9567393
rs9890128
rs11665111
rs55642704
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BP

44440146
58382490
201176071
50374293
51043599
136137422
161831675
180752138
24270210
176728614
165075210
137047137
38259481
65310836
104536360
108609634
123483426
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Stage 1 Stage 2 Combined
P OR P OR P OR
3.6E-06 0.91 3.53E-04 0.92 5.08E-09
3.7E-10 0.90 3.10E-09 0.87 9.87E-18
8.4E-10 0.86 2.68E-05 0.89 1.50E-13
1.1E-09 0.89 2.14E-05 0.91 1.33E-13
6.9E-09 1.14 1.03E-02 1.08 6.40E-10
1.3E-06 0.90 1.33E-04 0.90 7.08E-10
3.9E-06 0.92 8.54E-06 0.91 1.73E-10
3.1E-07 0.88 2.21E-03 0.90 3.35E-09
3.7E-08 1.12 3.70E-01 1.08 2.79E-08
9.5E-05 0.93 5.85E-06 0.89 4.85E-09
3.6E-07 1.13 9.98E-05 1.12 1.53E-10
5.5E-08 0.90 1.07E-02 0.93 2.81E-09
5.1E-04 1.07 2.73E-06 1.11 1.44E-08
2.2E-08 1.14 451E-02 1.06 1.62E-08
6.6E-10 0.90 3.87E-07 0.89 1.32E-15
48E-07 1.09 5.00E-03 1.07 1.18E-08
5.1E-11 0.89 2.14E-04 0.92 8.62E-14
3.5E-08 1.11 4.37E-03 1.07 1.13E-09
3.5E-08 0.90 2.44E-02 0.91 2.61E-09
5.2E-06 1.08 6.89E-04 1.09 1.46E-08
1.1E-06 1.09 7.11E-06 1.10 3.76E-11
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BP, genomic position in HG19; AL, reference and non-reference alleles; OR, odd& r&i@lue., (EAS stage 1) = 13,305 cases, 35,362
controls;n7 (EAS stage 1+2) = 22,778 cases, 35,362 controls. Fixed effect inverse variance meta-analysis was utilized t8\gduesate
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